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A PRERADICAL WHICH SATISFIES THE PROPERTY THAT
EVERY WEAKLY DIVISIBLE MODULE IS DIVISIBLE

By

Yasuhiko TAKEHANA

Recently M. Sato has studied a radical satisfying the property that every

weakly codivisible module is codivisible in [6]. In this paper we study preradicals

for which every weakly divisible module is divisible. We characterize an idem-

potent preradical with this property in Theorems 1.7 and 1.8. Moreover we char-

acterize an idempotent preradical for which every weakly divisible module is

injective in Proposition 1.10. Dually we consider a radical for which every

weakly codivisible module is projective in Proposition 1.13.
In \S 2 we study a preradical $t$ which has the property that $t(E/K)=(t(E)+K)/K$

holds for any injective module $E$ and any submodule $K$ of $E$ . We call this an
injectively epi-preserving preradical and characterize in Theorem 2.1.

Dualizing this, we study a preradical which has the property that $t(K)=$

$K\cap t(P)$ holds for any projective module $P$ and any submodule $K$ of $P$, and we

have Theorem 2.4.
Last we give examples of these preradicals.

1. Weakly (co-) divisible modules and (co-) divisible modules.

Throughout this paper $R$ is a ring with a unit element, every right R-module

is unital and Mod-R is the category of right R-modules. A subfunctor of the

identity functor of Mod-R is called a preradical. A preradical $t$ is called idem-

potent (resp. radical) if $t(t(M))=t(M)$ (resp. $t(M/t(M))=0$) for any module $M$. For

a preradical $t$ we put $g_{t}=\{M\in Mod- R;t(M)=M\}$ and $\mathcal{F}_{t}=\{M\in Mod- R;t(M)=0\}$

whose elements are said to be torsion and torsionfree modules respectively. We

say that $M$ is divisible (resp. weakly divisible) if $Hom_{R}(-, M)$ preserves the

exactness for every exact sequence $0\rightarrow A\rightarrow B\rightarrow C\rightarrow 0$ with $C\in \mathcal{F}_{l}$ (resp. $B\in \mathcal{F}_{l}$ ).

Dually we say that $M$ is codivisible (resp. weakly codivisible) if $Hom_{R}(M.-)$

preserves the exactness for every exact sequence $0\rightarrow A\rightarrow B\rightarrow C\rightarrow 0$ with $A\in \mathcal{F}_{l}$

(resp. $B\in \mathcal{F}_{t}$ ).

To begin with we study a fundamental property of weakly divisible modules.
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LEMMA 1.1. Let $t$ be a preradical and $A$ a weakly divisible module. If $K$ is

a submodule of $A$ containing $t(A)$ , then $K$ is also a weakly divisible module.

PROOF. Consider the following exact sequence $0\rightarrow X^{f}\rightarrow Y$ with $Y\in \mathcal{F}_{t}$ . Since
$A$ is weakly divisible, for any $g\in Hom_{R}(X, K)$ there exists some $h\in Hom_{R}(Y, A)$

such that $i\cdot g=f\cdot h$ , where $i$ is the inclusion map of $K$ into $A$ . Then we have
$h(Y)=h(t(Y))\subset t(A)\subset K$. Thus $K$ is weakly divisible.

PROPOSITION 1.2. Let $t$ be an idempotent preradical and consider an exact
sequence $0\rightarrow N\rightarrow M\rightarrow M/N\rightarrow 0$ of right R-modules. Then we have

(1) If $N$ is weakly divisible, then $t(N)=N\cap t(M)$ .
(2) If $N$ is divisible, then $t(M/N)=(t(M)+N)/N$.

PROOF. (1) Suppose that $N$ is weakly divisible. We consider the following

exact sequence,
$0\rightarrow N\cap t(M)\rightarrow t(M)\rightarrow t(M)/(N\cap t(M))\rightarrow 0$ .

Since $t(N)\subset N\cap t(M)\subset N,$ $N\cap t(M)$ is weakly divisible by Lemma 1.1. Thus the

above sequence splits, and so $N\cap t(M)$ is a torsion module. Hence $N\cap t(M)=$

$t(N\cap t(M))\subset t(N)$ , and so we have $N\cap t(M)=t(N)$ .
(2) Suppose that $N$ is divisible. We put $t(M/N)=L/N$, where $L$ is a sub-

module of $M$ containing $N$. Then the sequence $0\rightarrow N\rightarrow L\rightarrow L/N\rightarrow 0$ splits as $N$

is divisible and $L/N$ is torsion. So there exists a torsion submodule $H$ of $L$ such
that $L=JN\oplus H$. Thus $t(L)=t(N)\oplus H$ and we have $t(M)+N\supset f(L)+N=t(N)+H+N$

$=L$ . On the other hand, since $t(M/N)\supset(t(M)+N)/N$, we have $L\supset l(M)+N$. Thus

$L=t(M)+N$, and so $t(M/N)=(t(M)+N)/N$.
Next we characterize weakly divisible modules for an idempotent preradical.

For a module $M$ let $E(M)$ denote the injective hull of $M$.

LEMMA 1.3. Let $t$ be an idempotent preradical. Then an R-module $A$ is

weakly divisible if and only if $A$ contains $t(E(A))$ .

PROOF. Let $A$ be a weakly divisible module. Since $t(A)\subset A\cap t(E(A))\subset A$ ,

$A\cap t(E(A))$ is weakly divisible by Lemma 1.1. As $t(E(A))$ is torsion, the exact
sequence $0\rightarrow A\cap t(E(A))\rightarrow t(E(A))$ splits. Thus there is some submodule $K$ of
$t(E(A))$ such that $t(E(A))=(A\cap t(E(A)))\oplus K$. Then we have $A\cap K=0$ as
$(A\cap t(E(A)))\cap K=A\cap K$. Since $A$ is an essential submodule of $E(A)$ , we have
$K=0$ . Hence $t(E(A))=A\cap t(E(A))\subset A$ . The converse is easily verified.

The following lemma can be seen in Proposition 4.1 in [2] for a left exact

radical.
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LEMMA 1.4. Let $t$ be an idempotent preradical. Then an R-module $M$ is
divisible if and only if $E(M)/M$ is torsionfree.

PROOF. Let $E(M)/M\in \mathcal{F}_{t}$ . Consider an exact sequence of Mod-R $0\rightarrow X^{i}\rightarrow Y$

$\rightarrow gY/X\rightarrow 0$ with $Y/X\in \mathcal{F}_{l}$ . For any $f\in Hom_{R}(X, M)$ , there exists an $h\in Hom_{R}$

$(Y, E(M))$ such that $j\cdot f=h\cdot i$ , where $j$ is the inclusion map of $M$ into $E(M)$ .
Then $h$ induces $\tilde{h}\in Hom_{R}(Y/X, E(M)/M)$ such that $\tilde{h}(y+X)=h(y)+M$ for any
$y\in Y$. Since $Y/X\in \mathcal{F}_{l}$ and $E(M)/M\in \mathcal{F}_{t}$ , we have $\tilde{h}=0$ . This implies that
$h(Y)\subset M$ and so $M$ is divisible.

Conversely assume that $M$ is divisible. Put $t(E(M)/M)=L/M$ where $L$ is a
submodule of $E(M)$ containing $M$, and consider the exact sequence $ 0\rightarrow M\rightarrow L\rightarrow$

$L/M-0$ . As $M$ is divisible and $L/M$ is torsion, the above sequence splits. Since
$L$ is an essential extension of $M$, we have $L/M=0$ and so $E(M)/M$ is torsionfree.

A preradical $t$ is called a left exact (resp. an epi-preserving) preradical if
$t(N)=N\cap t(M)$ (resp. $t(M/N)=(t(M)+N)/N$) for any $M\in Mod- R$ and any submodule
$N$ of $M$.

For a preradical $t$ let $\sigma_{l}(M)$ denote $M\cap t(E(M))$ for any $M\in Mod- R$ . It is
easily verified that $\sigma_{t}(M)$ is uniquely determined for any choice of $E(M)$ .

LEMMA 1.5. $\sigma_{t}(-)$ is a left exact preradical for a preradical $t$ .

PROOF. It is easily verified that $\sigma_{l}(-)$ is a preradical. Let $M\in Mod- R$ and
$N$ a submodule of $M$. We can find a submodule $K$ of $E(M)$ such that $E(M)=$

$E(N)\oplus K$. Hence we have $t(E(M))=t(E(N))\oplus t(K)$ and $ E(N)\cap t(E(M))=t(E(N))\oplus$

$(E(N)\cap t(K))=t(E(N))$ . Thus $\sigma_{t}(N)=N\cap t(E(N))=N\cap E(N)\cap t(E(M))=N\cap t(E(M))$

$=N\cap M\cap t(E(M))=N\cap\sigma_{t}(M)$ .

LEMMA 1.6. Let $t$ be a preradical. Then $t(M)\supset M\cdot t(R)$ holds for any
$M\in Mod- R$ .

PROOF. Define $f_{m}\in Hom_{R}(R, M)$ by $f_{m}(r)=mr$ for $m\in M$ and $r\in R$ . Then
we have $m\cdot t(R)=f_{m}(t(R))\subset t(M)$ , since $t$ is a preradical. Thus we have $M\cdot t(R)$

$\subset t(M)$ .

Now we shall study the following condition $(^{*})$ :
$(^{*})$ Every weakly divisible module is divisible.

THEOREM 1.7. Let $t$ be a preradical. Consider the $followi_{7l}gC0ndi\prime r$

(1) to (8):

(1) Every weakly divisible module is divisible.



156 Yasuhiko TAKEHANA

(2) $A/t(A)$ has no nonzero torsion factor module for any weakly divisible
module $A$ .

(3) $M=K+\sigma_{t}(M)$ holds for any module $M$ and any submodule $K$ of $M$ such
that $M/K$ is torsion.

(4) $M/\sigma_{l}(M)$ has no nonzero torsion factor module for every module $M$.
(5) Any direct sum of $R/\sigma_{l}(R)$ has no nonzero torsion factor module.
(6) $M/M\cdot\sigma_{t}(R)$ has no nonzero torsion factor module for every module $M$.
(7) $M=K+M\cdot\sigma_{t}(R)$ holds for any module $M$ and any submodule $K$ of $M$

such that $M/K$ is torsion.
(8) $M/t(M)$ has no nonzero torsion factor module for every module $M$ such

that $t(M)=\sigma_{l}(M)$ .
Then we have the following implications (1) $\rightarrow(2)\rightarrow(3)\rightarrow(4)\rightarrow(5)\rightarrow(6)\rightarrow(7)\rightarrow(3)$

and (4) $\rightarrow(8)$ . If further $t$ is an idempotent preradical, all the conditions are
equivalent.

PROOF. (1) $\rightarrow(2)$ : Consider the following exact sequence $0\rightarrow K\rightarrow A\rightarrow A/K\rightarrow 0$

where $A$ is weakly divisible and $K$ is a submodule of $A$ containing $t(A)$ and $A/K$

is torsion. By Lemma 1.1, $K$ is weakly divisible and therefore divisible. Thus
the above sequence splits, as $A/K$ is torsion. So there exists a torsion submodule
$H$ of $A$ such that $A=K\oplus H$. Since $K\supset t(A)\supset H$ and $0=K\cap H$, we have $H=0$ ,
and so $A/K=0$ as desired.

(2) $\rightarrow(3)$ : Let $M/K$ be torsion for a submodule $K$ of $M$. Since $\mathcal{F}_{t}$ is closed
under taking factor modules and $M/(K+\sigma_{l}(M))\cong(M+t(E(M)))/(K+t(E(M))),$ $(M+$

$t(E(M)))/(K+t(E(M)))$ is torsion. As $E(M)\supset M+t(E(M))\supset l(E(M)),$ $M+t(E(M))$ is
weakly divisible by Lemma 1.1. Since $K+t(E(M))$ contains $t(M+t(E(1lf)))$ , we
have $(M+t(E(M)))/(K+t(E(M)))=0$ . Thus $M=K+\sigma_{l}(M)$ holds.

(3) $\rightarrow(4)$ : For a module $M$, let $K$ be a submodule of $M$ containing $\sigma_{t}(M)$

such that $M/K$ is torsion. Then we have $M=K+\sigma_{t}(M)=K$.
(4) $\rightarrow(5)$ : Consider the following canonical epimorphism $g:\oplus R_{i}\rightarrow\oplus(R_{i}/\sigma_{t}(R_{i}))$ ,

where $\oplus R_{i}$ is a direct sum of $R_{i}=R$ . Clearly $Ker(g)=\oplus\sigma_{t}(R_{i})$ . As the
preradical $\sigma_{t}(-)$ preserves direct sums, $\oplus\sigma_{t}(R_{i})=\sigma_{t}(\oplus R_{i})$ . Thus $\oplus(R_{i}/\sigma_{l}(R_{i}))\cong$

$(\oplus R_{i})/\sigma_{t}(\oplus R_{i})$ , and (5) holds under the assumption.
(5) $\rightarrow(6)$ : For a module $M$ let $N$ be a submodule of $M$ containing $M\cdot\sigma_{t}(R)$

such that $M/N$ is torsion. Then $M/N$ is a right $R/\sigma_{t}(R)$-module. So $M/N$ is a
factor module of a direct sum of $R/\sigma_{l}(R)$ , and so $M/N=0$ .

(6) $\rightarrow(7)$ : For a module $M$ let $K$ be a submodule of $M$ such that $M/K$ is
torsion. As $\mathcal{F}_{l}$ is closed under taking factor modules, $M/(K+M\cdot\sigma_{t}(R))$ is torsion.
But since $M/(M\cdot\sigma_{t}(R))$ has no nonzero factor module, we must have $M=$
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$K+M\cdot\sigma_{l}(R)$ .
(7) $\rightarrow(3)$ : By Lemma 1.6, $M\cdot\sigma_{l}(R)\subset\sigma_{l}(M)$ holds for any module $M$ and so

(3) holds.
(4) $\rightarrow(8)$ : It is clear.
Henceforth let $t$ be an idempotent preradical. We shall prove the implica-

tions (8) $\rightarrow(2)$ and (2) $\rightarrow(1)$ .
(8) $\rightarrow(2)$ : For any weakly divisible module $A,$ $t(A)=\sigma_{l}(A)$ holds by Lemma

1.3. Thus (2) holds.
(2) $\rightarrow(1)$ : By Lemma 1.3 and Lemma 1.4, it is sufficient to prove that if

$A\supset t(E(A))$ , then $E(A)/A$ is torsionfree. We put $t(E(A)/A)=L/A$ , where $L$ is a
submodule of $E(A)$ containing $A$ . By Lemma 1.1, $L$ is weakly divisible since
$t(E(A))\subset L\subset E(A)$ . Since $t(L)\subset A\subset L$ and $L/A\in \mathcal{F}_{l}$ , we have $L/A=0$ and so
$E(A)/A$ is torsionfree as desired.

For an idempotent preradical $t$ , we have another characterization of the
condition $(^{*})$ .

THEOREM 1.8. For an idempotent preradical $t$ , the following assertions are
equivalent:

(1) Every weakly divisible module is divisible.
(2) For any weakly divisible mhdule $A$ and any submodule $B$ of $A,$ $(t(A)+B)/$

$B=t(A/B)$ holds.
(3) For any divisible module $A$ and any submodule $B$ of $A,$ $(t(A)+B)/B=t$

$(A/B)$ holds.
(4) For any injective module $A$ and any submodule $B$ of $A,$ $(t(A)+B)/B=$

$t(A/B)$ holds.

PROOF. (1) $\rightarrow(2)$ : Let $A$ be a weakly divisible module and $B$ a submodule of
$A$ . We put $t(A/B)=C/B,$ $C$ a submodule of $A$ . Consider the sequence $0\rightarrow t(A)+B$

$\rightarrow C\rightarrow C/(t(A)+B)\rightarrow 0$ . By Lemma 1.1, $t(A)+B$ is weakly divisible, and so $t(A)+B$

is divisible by the assumption. Thus by (2) of Proposition 1.2, $t(C/(t(A)+B))=0$ .
But since $C/(t(A)+B)$ is torsion, we have $C=t(A)+B$ as desired.

(2) $\rightarrow(3)\rightarrow(4)$ : These are clear.
(4) $\rightarrow(1)$ : By Lemmas 1.3 and 1.4, it is sufficient only to prove that for a

module $A$ if $A\supset t(E(A))$ , then $t(E(A)/A)=0$ . On the other hand, $t(E(A)/A)=$

$(t(E(A))+A)/A$ . Thus if $A\supset t(E(A)),$ $t(E(A)/A)=0$ holds as desired.

COROLLARY 1.9. If $t$ is an epi-preserving and idempotent preradical, then

every weakly divisible module is divisible.
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PROOF. It is clear by Theorem 1.8.
Next we consider the following condition $(^{**})$ :

$(^{**})$ Any weakly divisible module is injective.

PROPOSITION 1.10. Let $t$ be a preradical. Consider the following conditions:
(1) Any weakly divisible module is injective.
(2) $t$ has the following properties:

(a) Any factor module of $E/t(E)$ is torsionfree for any injective module $E$ .
(b) For any module $M,$ $E(M)/M$ is torsion.

(3) For any module $M,$ $M+t(E(M))=E(M)$ holds.
Then we have the implications (1) $\rightarrow(2)\rightarrow(3)$ . If further $t$ is an idempotent

preradical, then (3) $\rightarrow(1)$ holds.

PROOF. (1) $\rightarrow(2)$ : For an injective module $E$ , let $L$ be a submodule of $E$

containing $t(E)$ . By Lemma 1.1, $L$ is weakly divisible and so injective. Thus
there exists a submodule $H$ of $E$ such that $E=L\oplus H$. Then $t(E)=t(L)\oplus t(H)$

and so $t(E)=L\cap t(E)=t(L)\oplus(L\cap t(H))=t(L)$ . Thus we have $t(H)=0$ and so
$t(E/L)=0$ . So (a) holds. Next for a module $M$, we put $t(E(M)/M)=L/M$, where
$L$ is submodule of $E(M)$ . By Lemma 1.1, $L$ is weakly divisible and so injective.
Thus $L$ is a direct summand of $E(M)$ . Since $L$ is a large submodule of $E(M)$ ,

$L=E(M)$ and so $E(M)/M$ is torsion. So (b) holds.
(2) $\rightarrow(3)$ : For a module $M,$ $t(E(M)/M)=E(M)/M$ by (b). By (a), $(E(M)/M)$

$/((M+t(E(M)))/M)$ is torsionfree, and so $t(E(M)/M)=(M+t(E(M)))/M$. Thus
$M+t(E(M))=E(M)$ .

(3) $\rightarrow(1)$ : By Lemma 1.3, it is sufficient to prove that if $M\supset t(E(\Lambda f))$ for a
module $M$, then $M=E(M)$ . If $M\supset t(E(M))$ , then $M=M+t(E(M))=E(M)$ .

In the remainder of this section we treat weakly codivisible modules. At first
in the case $t$ is a radical, we shall characterize a weakly codivisible module with
a projective cover.

LEMMA 1.11. Let $t$ be a preradical. If $A$ is a weakly codivisible module and
$K$ is a submodule of $t(A)$ , then $A/K$ is also a weakly codivisible module.

PROOF. See (1) of Lemma 11 of [6].

LEMMA 1.12. Let $t$ be a radical. Suppose that a module $A$ has a projective

cover $0\rightarrow K\rightarrow P^{h}\rightarrow A\rightarrow 0$ . Then $A$ is weakly codivisible if and only if $t(P)$ contains $K$.

PROOF. Let $A$ be a weakly codivisible module. Consider the sequence
$0\rightarrow(K+t(P))/t(P)\rightarrow P/t(P)\rightarrow P/(K+t(P))\rightarrow 0$ . By Lemma 1.11, $P/(K+t(P))$ is weakly
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codivisible as $P/(K+t(P))\cong A/h(t(P))$ and $t(A)\supset h(t(P))$ . Since $P/t(P)$ is torsionfree,
the above sequence splits. As $(K+t(P))/t(P)$ is a small submodule of $P/t(P)$ , we
have $(K+t(P))/t(P)=0$ , and so $K\subset t(P)$ . The converse is easily verified.

Next we consider the property that any weakly codivisible module is pro-
jective.

PROPOSITION 1.13. Let $t$ be a preradical and $R$ a right perfect ring.
$(0\rightarrow K_{M}\rightarrow P_{M}\rightarrow M\rightarrow 0)$ denotes the projective cover of a module M. Consider the

following conditions:
(1) Any weakly codivisible module is projective.
(2) $t$ has the following properties:

(a) Any submodule of $t(P)$ is torsion for any projective module $P$.
(b) For any module $M,$ $K_{M}$ is torsionfree.

(3) $K_{M}\cap t(P_{M})=0$ holds for any module $M$.
Then we have the implications (1) $\rightarrow(2)\rightarrow(3)$ . If further $t$ is a radical, then

(3) $\rightarrow(1)$ holds.

PROOF. (1) $\rightarrow(2)$ : Let $K$ be a submodule of $t(P)$ for a projective module $P$.
Since $P/K$ is weakly codivisible by Lemma 1.11, $P/K$ is projective and so there

exists a module $S$ such that $P=K\oplus S$ . Thus $t(P)=t(K)\oplus t(S)$ and so we have
$K=K\cap t(P)=t(K)\oplus(K\cap t(S))=t(K)$ . Thus (a) holds. By Lemma 1.11, $P_{M}/t(K_{M})$

is weakly codivisible for a module $M$ and so projective. Thus the sequence
$0\rightarrow t(K_{M})\rightarrow P_{M}\rightarrow P_{M}/t(K_{M})\rightarrow 0$ splits. Since $t(K_{M})$ is a small submodule of $P_{M}$ ,

$t(K_{M})=0$ and (b) holds.
(2) $\rightarrow(3)$ : For a module $M,$ $K_{M}\cap t(P_{M})$ is torsion by (a). Thus $K_{M}\cap t(P_{M})=$

$t(K_{M}\cap t(P_{M}))\subset t(K_{M})=0$ by (b) as desired.
(3) $\rightarrow(1)$ : It is sufficient to prove that for a module $M$, if $t(P_{M})\supset K_{M}$ , then

$K_{M}=0$ by Lemma 1.12. This is easy.

2. Injectively epi-preserving preradial and projectively left exact preradical.

In this section we study a preradical which satisfies (4) of Theorem 1.8. We

call it an injectively epi-preserving preradical.

THEOREM 2.1. Let $t$ be a pre radical. Then the following assertions are
equivalent:

(1) $(\sigma_{t}(M)+N)/N\supset t(M/N)$ holds for any module $M$ and any submodule $N$

of $M$.
(2) For a module $M$ such that $t(M)=\sigma_{l}(M),$ $t(M/N)=(t(M)+N)/N$ holds for
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any submodule $N$ of $M$.
(3) $t(E/K)=(t(E)+K)/K$ holds for any injective module $E$ and any submodule

$K$ of $E$.
(4) Any factor module of $M/\sigma_{t}(M)$ is torsionfree for any module $M$.
(5) Any factor module of $E/t(E)$ is torsionfree for any injective module $E$ .
(6) Any factor module of any direct sum of $R/\sigma_{l}(R)$ is torsionfree.
(7) Any factor module of $M/M\cdot\sigma_{t}(R)$ is torsionfree for any module $M$.
(8) $(_{\lrcorner}lI\cdot\sigma_{t}(R)+N)/N\supset f(M/N)$ holds for any module $M$ and any submodule $N$

of $M$.
(9) Any factor module of $P/\sigma_{t}(P)$ is torsionfree for any projective module $P$.
(10) For any injective module $E,$ $t(L)=L\cdot t(R)$ holds for any factor module

$L$ of $E/t(E)$ .

PROOF. (1) $\rightarrow(2)$ : For any module $M$ and any submodule $N$ of $M,$ $ t(M/N)\supset$

$(t(M)+N)/N$ holds since $t$ is a preradical. If $t(M)=\sigma_{t}(M)$ , then $t(M/N)\subset(t(M)+$

$N)/N$ holds, and so (2) holds.
(2) $\rightarrow(3)\rightarrow(5)$ and (4) $\rightarrow(9)$ : These are clear.
(5) $\rightarrow(4)$ : Since $M/\sigma_{t}(M)\cong(M+t(E(M)))/t(E(M))$ for a module $M$, it is sufficient

to prove that any factor module of $(M+t(E(M)))/t(E(M))$ is torsionfree for a
module $M$. Let $N$ be a submodule of $M+t(E(M))$ containing $t(E(M))$ . Since
$E(M)/N$ is torsionfree, $(M+t(E(M)))/N$ is torsionfree as desired.

(9) $\rightarrow(6)\rightarrow(7)$ : We can verify as in the proof of (4) $\rightarrow(5)\rightarrow(6)$ of Theorem 1.7.
(7) $\rightarrow(8)$ : Let $M$ be a module and $N$ a submodule of $M$. We put $M/N=X$

and $(M\cdot\sigma_{t}(R)+N)/N=Y$. Then $X/Y$ is torsionfree, and so $0=t(X/Y)\supset(t(X)+Y)/$

$Y$. Thus $t(X)\subset Y$ holds.
(8) $\rightarrow(1)$ : It follows from the fact that $M\cdot\sigma_{t}(R)\subset\sigma_{t}(M)$ for any module $M$.
(3) $\rightarrow(10)$ : Let $E$ be an injective module and $K$ a submodule of $E$ containing

$t(E)$ . By the assumption we have $t(E/K)=0$ and $(E/K)\cdot t(R)=(E\cdot t(R)+K)/K\subset$

$(t(E)+K)/K=0$ , and so $t(E/K)=(E/K)\cdot t(R)$ holds as desired.
(10) $\rightarrow(5)$ : Let $E$ be an injective module and $K$ a submodule of $E$ containing

$t(E)$ . By the assumption, $t(E/K)=(E/K)\cdot t(R)$ . Since $(E/K)\cdot t(R)\subset(t(E)+K)/K=0$ ,

$t(E/K)=0$ as desired.

COROLLARY 2.2. Let $t$ be a preradical. If $t(E(R))\supset R$ , then $t$ is an injectively
epi-preserving preradical and any injective module is torsion.

PROOF. The first claim is clear by (6) of Theorem 2.1. If $t(E(R))\supset R$ , then
$\sigma_{l}(R)=R$ and so $\sigma_{t}(M)=M$ for any module $M$. Thus any injective module is
torsion.
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Next we dualize Theorem 2.1. We consider a preradical $t$ which has the
property that $t(K)=K\cap t(P)$ holds for any projective module $P$ and any sub-
module $K$ of $P$. We call it a projectively left exact preradical.

LEMMA 2.3. Let $t$ be a preradical. For any projective module $P,$ $t(P)=$

$P\cdot t(R)$ holds.

PROOF. It is obvious.
(2) and (4) of the following theorem are seen in Theorem 13 of [6] for a

radical $t$ .

THEOREM 2.4. Let $t$ be a preradical. Then the following assertions are
equivalent:

(1) $M\cdot t(R)\cap N\subset t(N)$ holds for any module $M$ and any submodule $N$ of $M$.
(2) For any module $M$ such that $t(M)=M\cdot t(R),$ $t(N)=N\cap t(M)$ holds for any

submodule $N$ of $M$.
(3) For any projective module $P,$ $t(K)=K\cap t(P)$ holds for any submodule $K$

of $P$.
(4) Any submodule of $M\cdot t(R)$ is torsion for any module $M$.
(5) For any projective module $P$, any submodule of $t(P)$ is torsion.
(6) Any submodule of any direct sum of $t(R)$ is torsion.
(7) $t$ has the following properties:

(a) $t(R)$ is torsion.
(b) For a projective module $P$ and a torsion submodule $L$ of $P$, any

submodule of $L$ is torsion.

PROOF. (1) $\rightarrow(2)$ : It is clear.
(2) $\rightarrow(3)$ : This is clear by Lemma 2.3.
(3) $\rightarrow(5)$ : Let $P$ be a projective module and $K$ a submodule of $t(P)$ . By the

assumption, $t(K)=K\cap t(P)=K$. Hence (5) holds.
(5) $\rightarrow(6)$ ; Let $K$ be a submodule of $\oplus t(R)$ . Since $\oplus R$ is projective and

$t(\oplus R)=\oplus t(R)\supset K,$ $K$ is torsion.
(4) $\rightarrow(1)$ : For a module $M$, let $N$ be a submodule of $M$. Since $ M\cdot t(R)\cap$

$N\subset M\cdot t(R),$ $M\cdot t(R)\cap N=t(M\cdot t(R)\cap N)\subset t(N)$ .
(7) $\rightarrow(5)$ : (a) implies the fact that for any projective module $P,$ $t(P)$ is torsion

by Lemma 2.3. Thus (5) holds.
(3) $\rightarrow(7)$ : (a) is easy. Let $P$ be a projective module, $L$ a torsion submodule

of $P$ and $K$ a submodule of $L$ . Then we have $t(K)=K\cap t(P)\supset K\cap t(L)=K\cap L=K$.
Thus (b) holds.
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(6) $\rightarrow(4)$ : Let $M$ be a module and $K$ a submodule of $M\cdot t(R)$ . The canonical
epimorphism $g:R^{(M)}\rightarrow M\rightarrow 0$ induces $t(g):t(R)^{(M)}\rightarrow M\cdot t(R)\rightarrow 0$ , as $-\otimes_{R}t(R)$ is
right exact. Since $t(g)$ is an epimorphism, $K$ is a factor module of some sub-

module of $t(R)^{(M)}$ . Thus $K$ is torsion.

COROLLARY 2.5. If a pre radical $t$ is epi-preserving and projectively left
exact, then $t$ is left exact.

PROOF. It is sufficient to prove that for any module $M$ any submodule of
$t(M)$ is torsion. Since $t$ is epi-preserving, $t(M)=M\cdot t(R)$ for any module $\Lambda f$ by

[1]. Thus by (4) of Theorem 2.4, any submodule of $t(M)$ is torsion.

PROYOSITION 2.6. If $t$ is an epi-preserving preradical satisfying (a) of (7) of
Theorem 2.4, then $t$ is idempotent.

PROOF. Let $M$ be a module. Since $t(M)=M\cdot t(R)$ and $t(t(M))=t(M)\cdot t(R)=$

$M\cdot t(R)\cdot t(R)=M\cdot t(t(R)),$ $t(M)=t(t(M))$ .

Finally we give examples of these preradicals. They all are neither idem-
potent nor radical. Especially, the preradical in Example 1 is both injectively

epi-preserving and projectively left exact. However the preradicals in Examples

2 and 3 are either injectively epi-preserving or projectively left exact.

EXAMPLE 1. Let $Z$ be the ring of rational integers. For a module $M_{Z}$ , we
put $t(M)=J(M)+Soc(M)$ , where $J(M)$ denotes the intersections of all maximal
submodules of $M$ and Soc$(M)$ denotes the sum of all minimal submodules of $M$.
It is easily verified that $t$ is a preradical on Mod-Z.

(1) $t$ is not an idempotent preradical (hence not left exact), as $t(Z/8Z)$

$\neq t(t(Z/8Z))$ .
(2) $t$ is not a radical (hence not epi-preserving), as $t((Z/8Z)/t(Z/8Z))\neq 0$ .
(3) $t$ is a projectively left exact preradical as $t(Z)=0$ .
(4) $t$ is an injectively epi-preserving preradical by Corollary 2.2 as $t(E(Z))$

$=E(Z)\supset Z$.
(5) $\mathcal{F}_{l}$ is not closed under taking submodules as $t(E(Z))=E(Z)$ and $t(Z)=0$ .
(6) $\mathcal{F}_{t}$ is not closed under taking factor modules as $t(Z)=0$ and $t(Z/2Z)\neq 0$ .

EXAMPLE 2. Let $Z$ be the ring of rational integers. For a module $M_{Z}$ , we
put $t(M)=J(M)\cap Soc(M)$ . It is easily verified that $t$ is a preradical on Mod-Z. $t$

is not an idempotent preradical, not a radical and a projectively left exact

preradical as $t(Z/8Z)\neq t(t(Z/8Z)),$ $t((Z/8Z)/t(Z/8Z))\neq 0$ and $t(Z)=0$ , respectively.



A preradical which statisfies the property 163

Suppose that $t$ is an injectively epi-preserving preradical. By (6) of Theorem 2.1,
any factor module of a direct sum of $Z$ is torsionfree as $t(E(Z))=0$ . Thus any
Z-module is torsionfree. But $t(Z/8Z)\neq 0$ , and so $t$ is not an injectively epi-
preserving preradical.

EXAMPLE 3. Let $Z$ be the ring of rational integers. For a module $M_{Z}$ ,

$t(M)=Soc(M)+2M$, where $2M=\{2m;m\in M\}$ . It is easily proved that $t$ is a
preradical on Mod-Z. $t$ is not an idempotent preradical, not a radical and an
injectively epi-preserving preradical as $t(Z/8Z)=t(t(Z/8Z)),$ $t((Z/8Z)/t(Z/8Z))\neq 0$

and $t(E(Z))=E(Z)$ , respectively. Suppose that $t$ is a projectively left exact pre-
radical. Then $t(Z)=2Z$ is torsion by (6) of Theorem 2.4. But $t(Z)\neq t(t(Z))$ , and
so $t$ is not a projectively left exact preradical.
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Addendum

Recently the author has received a paper by M. Sato entitled “ On pseudo-
cohereditary sub-torsion theories and weakly divisible modules”, where he has
also studied the property that every weakly divisible module is divisible for an
idempotent preradical.
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