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ON SOME OSCILLATING PROPERTIES OF THE
SOLUTIONS OF A CLASS OF FUNCTIONAL

–DIFFERENTIAL EQUATIONS

By

D. C. ANGELOVA and D. D. BAINOV

A great number of papers is dedicated to the study of the oscillating pro-
perties of the solutions of functional-differential equations with retarded argu-
ment. The case when the transformed argument depends on the unknown
function is of special interest since such a dependence is natural for many real
systems [1], [2].

The oscillating properties of the solutions of a class of differential equations
of retarded type with a delay depending on the unknoun function are studied in
the present paper.

Consider the following equation of n-th ordes $(n>1)$

$y^{(n)}(t)+(-1)^{n+1}\sum_{i=1}^{p}q_{i}(t)y(\Delta_{i}(t, y(t)))=0$ , (1)

where $q_{i}(t):[t_{0}, \infty)\rightarrow R_{+},$ $\Delta_{i}(t, u):[t_{O}, \infty)\times R\rightarrow R$ for $i=\overline{1,p};t_{0}\geqq 0$ . $ R_{+}[0, +\infty$ )

and $R=(-\infty, +\infty)$ .
Assume that for $i=\overline{1,p}$ the following conditions (A) hold.

Al. The function $\Delta_{i}(t, u)$ is continuous with respect to the set of arguments;

A2. $\Delta_{i}(r, u)<t$ for every fixed $u,$ $|u|\leqq D$ , where $D$ is a positive constant;

A3. $\lim_{t\rightarrow\infty}\Delta_{i}(t, u)=+\infty$ for every fixed $u,$ $|u|\leqq D$ ;

A4. $\Delta_{i}(t, u_{1})\leqq\Delta_{i}(t, u_{2})$ for $u_{1}\leqq u_{2}<0,$ $\Delta_{i}(t, u_{1})\geqq\Delta_{i}(t, u_{2})$ for $0<u_{1}\leqq u_{2}$ and
$\Delta_{i}(t_{1}, u)\leqq\Delta_{i}(t_{2}, u)$ for $r_{o}\leqq r_{1}\leqq t_{2}$ ;

A5. The functions $q_{i}(t)\in C[[t_{0}, \infty),$ $R_{+}$ ] and there exists an index
$i_{o}\in\{1,2, \cdots , p\}$ such that $q_{i_{O}}(t)>0$ for $t\geqq t_{0}$ .

DEFINITION 1 ([3], p. 53). A real valued function $\Psi(t)$ will be considered a
solution of the equation (1) if it is defined on the semiaxis $t\geqq t_{0}$ , has $n$ derivatives
on it and satisfies the following conditions:
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$\Psi^{(n)}(t)+(-1)^{n+1}\sum_{i=1}^{p}q_{i}(t)\Psi(\Delta_{i}(t, \Psi(t)))=0$ ,

$\Psi^{(k)}(t)=\Phi_{k}(t)\in C[E_{t_{O}}, R]$ , $k=\overline{0,n-1}$ ,

$\Phi_{k}(t_{o})=\Psi^{(k)}(t_{o}+0)$ ,

where $\Phi_{k}(t_{0})$ are functions defined on the initial set $E_{t_{O}}$

$E_{t_{O}}=$ { $t\geqq t_{0}$ : $\Delta_{i}(t,$ $u)\leqq t_{0}$ for $|u|\leqq D,$ $i=\overline{1,p}$ } $\cup\{t_{0}\}$ .
Consider the following set of solutions of the equation (1):

$S=$ { $y(t):y(t)\not\equiv O$ for $t\geqq T\geqq t_{o},$ $ T<\infty$}.

We shall assume that the functions $q_{i}(t)$ and $\Delta_{i}(t, u)$ are such that there
exist solutions of the equation (1) belonging to $S$ .

DEFINITION 2 ([3], p. 45). We shall say that the solution of the equation
(1) belonging to the set $S$ [is oscillating with respect to the solution $y(t)\equiv 0$ if
there exists an infinite set of values $t=t_{i}$ such that $y(t_{i})=0$ and besides
$\lim_{i\rightarrow\infty}t_{i}=+\infty$ .

DEFINITION 3 ([3], p. 45). We shall say that the solution $y(t)$ of the equation
(1) belonging to the set $S$ is non-oscillating with respect to $y(t)\equiv 0$ if there
exists $\overline{t}\geqq t_{o}$ such that $y(t)\neq 0$ for $t\geqq\overline{t}$ .

THEOREM. Assume that
1. The conditions $(A)$ hold.

2. $\lim\sup_{it\rightarrow+\infty}\sum_{=1}^{p}\int_{\Delta_{(t.u)}}^{l}.[\Delta_{i}(t, u)-\Delta_{i}(s, u)]^{n-1}q_{i}(s)ds>(n-1)$ ! (2)

for every fixed $u,$ $|u|\leqq D$ , where $\Delta^{*}(t, u)=\max_{1\leq i\leq p}\Delta_{i}(t, u)$ .
Then every bounded solution $|y(t)|\leqq D$ of the equation (1) is an oscillating

one with respect to the solution $y(t)\equiv 0$ .
In order to prove this theorem we shall need the following

LEMMA ([4]). Let $u(t)$ be a continuous positive function on the segment
$[t_{o}, \infty)$ with absolutely continuous derivatives up to $n-1$ -th order preserving their
sign on this interval. If for almost every $ t\in[t_{o}, \infty$ )

$u^{(n)}(t)\leqq 0$ (resp. $\geqq 0$),

then there exist numbers $\overline{t}\in[t_{o}, \infty$ ) and $l\in\{0,1, \cdots, n\}$ such that $l+n$ is odd
(resp. even) and the inequalities
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$u^{(i)}(t)\geqq 0$ , $i=\overline{0,l-1}$ (3)

(1) $u^{(i)}(t)\geqq 0$ , $i=\overline{l,n}$ (4)

hold for $r\geqq\overline{r}$ .
PROOF OF THEOREM. Assume the contrary, $i$ . $e$ . that there exists a bounded

non-oscillating solution $y(t)$ of the equation (1). We could assume without loss
of generality that $y(t)>0$ for $t\geqq t_{1}$ , where $ t_{o}\leqq t_{1}<\infty$ since the case $y(t)<0$ could
be reduced to the considered one by means of the substituting $y=-w$ .

It follows from the conditions Al and A3 that there exists a number
$t_{2}\in[t_{1}, \infty)$ such that

$\Delta_{i}(t, y(t))\geqq t_{1}$ , $t\geqq t_{2}$ , $i=\overline{1,}$p. (5)

Rewrite the equation (1) in the following form:

$(-1)^{n}y^{(n)}(t)=\sum_{i=1}^{p}q_{i}(t)y(\Delta_{i}(t, y(t)))$ . (6)

Taking into account the conditions A5, the inequality (5) and the positivity
of the solution $y(t)$ on the interval $[t_{1}, \infty$ ), we could conclude that the equation
(6) implies the inequality

$(-1)^{n}y^{(n)}(t)>0$ $(t\geqq t_{2})$ . (7)

From this inequality it follows immediately that the derivatives $y^{(i)}(t)$

$(i=\overline{0,n-1})$ preserve their sign for $t\geqq t_{3}$ , where $ t_{3}\in[t_{2}, \infty$ ).

Let $ n=2\lambda$ . Then $y^{(n)}(t)>0$ and according to Lemma there exist numbers
$t_{4}\geqq t_{3}$ and $l\in\{0,2, \cdots , 2\mu, \cdots, n\}$ such that $l+n$ is even and that the inequalities
(3) and (4) hold for $t\geqq t_{4}$ .

First assume that $l\geqq 2$ . Then $y^{\prime\prime}(t)>0$ for $t\geqq t_{4},$ $i$ . $e$ . the function $y^{\prime}(t)$ is a
monotone non-decreasing one and its values are positive only. This contradicts
the assumption that the function $y(t)$ is bounded. The contradiction obtained
shows that $l\overline{\in}\{2,4, \cdots , n\},$ $i$ . $e$ . $1=0$ . Therefore, the inequality

$(-1)^{i}y^{(i)}(t)>0$ (8)

holds for $t\geqq t_{4}$ and $i=\overline{0,n}$ .
Applying the Taylor formula to some arbitrary $u,$ $v(u\leqq v)$ and taking into

account the inequality (8), we obtain

$y(u)-y(v)=\frac{u-v}{1!}y^{\prime}(v)+\frac{(u-v)^{2}}{2!}y^{\prime\prime}(v)+\cdots+\frac{(u-v)^{n-1}}{(n-1)!}y^{(n-1)}(\xi)$

$=\frac{v-u}{1!}(-1)^{1}y^{\prime}(v)+\frac{(v-u)^{2}}{2!}(-1)^{2}y^{\prime\prime}(v)\perp\cdots$
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$+\frac{(v-u)^{n-1}}{(n-1)!}(-1)^{n-1}y^{(n- 1)}(\xi)>\frac{(-1)^{n-1}y^{(n- 1)}(\xi)}{(n-1)!}(v-u)^{n-1}$

$>\frac{(-1)^{n-1}y^{(n-1)}(v)}{(n-1)!}(v-u)^{n-1}$ ,

where $\xi\in(u, v)$ .
It follows from the conditions A3 and A4 that there exists $r_{5}\geqq r_{4}$ such that

$y(\Delta_{i}(s, y(s)))-y(\Delta_{i}(t, y(t)))$

$=\frac{(-1)^{n-1}y^{(n-1)}(\Delta_{i}(t,y(t)))}{(n-1)!}[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n- 1}$ (9)

for any $t\geqq s\geqq t_{5}$ .
Multiplying (9) by $q_{i}(s)$ and summing up with respect to $i$ from 1 to $p$ ,

taking into account the condition A5, we obtain

$\sum_{i=1}^{p}y(\Delta_{i}(s, y(s)))q_{i}(s)-\sum_{i=1}^{p}y(\Delta_{i}(t, y(t)))q_{i}(s)$

$>\frac{(-1)^{n- 1}}{(n-1)!}\sum_{i=1}^{p}y^{(n- 1)}(\Delta_{i}(t, y(t)))[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)$ . (10)

Then in virtue of (6) and (10) we have

$(-1)^{n}y^{(n)}(s)>\sum_{i=1}^{p}y(\Delta_{i}(t, y(t)))q_{i}(s)$

$+\frac{(-1)^{n-1}}{(n-1)!}\sum_{i=1}^{p}y^{(n- 1)}(\Delta_{i}(t, y(t)))[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)$ . (11)

Integrating (11) with respect to $s$ from $\Delta^{*}(t, y(t))$ to $t$ , we obtain
$(-1)^{n}y^{(n- 1)}(t)-(-1)^{n}y^{(n-1)}(\Delta^{*}(t, y(t)))$

$>\sum_{i=1}^{p}y(\Delta_{i}(t, y(t)))\int_{\Delta^{r}(t,y(t))}^{t}q_{i}(s)ds$ (12)

$-\frac{1}{(n-1)!}\sum_{i=1}^{p}y^{(n-1)}(\Delta_{i}(t, y(t)))\int_{\Delta^{t}\cdot(t,y(t))}[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)ds$ .

The inequality (7) implies that the function $y^{(n-1)}(t)$ is a non-decreasing one.
Then taking into account the definition of $\Delta^{*}(t, y(t))$ and (7), we shall obtain
the estimate

$y^{(n-1)}(\Delta_{i}(t, y(t)))\leqq y^{(n-1)}(\Delta^{*}(t, y(t)))$ $(i=\overline{1,p})$

and therefore

$(-1)^{n}y^{(n-1)}(t)$

$>\frac{y^{(n-1)}(\Delta^{*}(t,y(t)))}{(n-1)!}[(n-1)!-\sum_{i=1}^{p}\int_{\Delta_{(}^{s}t,y(t))}^{t}[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)ds]$
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$+\sum_{i=1}^{p}y(\Delta_{i}(t, y(t)))\int_{\Delta_{(t,y(t))}^{*}}^{t}q_{i}(s)ds$ (13)

$>\frac{y^{(n-1)}(\Delta^{*}(t,y(t)))}{(n-1)!}[(n-1)!-\sum_{i=1}^{p}\int_{\Delta*}^{t}(t, y(t))[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)ds]$ ,

since $y(\Delta_{i}(t, y(t)))>0$ , the condition A5 holds and $\Delta^{*}(t, y(t))<t$ .
Taking into consideration the condition A4 and the assumption on the posi-

tivity of the solution $y(t)$ for the expression $[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}$ , we
obtain the following estimate:

$[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}$

$=\{[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(t))]+[\Delta_{i}(s, y(t))-\Delta_{i}(s, y(s))]\}^{n-1}$ (14)

$\geqq[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(t))]^{n-1}+[\Delta_{i}(s, y(t))-\Delta_{i}(s, y(s))]^{n-1}$ .
In virtue of the condition (2) we obtain from (14)

$\sum_{i=1}^{p}\int_{\Delta^{*}(t,y(t))}^{t}[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)ds$

$\geqq\sum_{i=1}^{p}\int_{\Delta*}^{t}(t, y(t))[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(t))]^{n-1}q_{i}(s)ds$

$+\sum_{i=1}^{p}\int_{\Delta*}^{t}(t, y(t))[\Delta_{i}(s, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)ds$ (15)

$>\sum_{i=1}^{p}\int_{\Delta^{*}(t,y(t))}^{t}[\Delta_{i}(s, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)ds)+(n-1)$ !

for $t\geqq t_{6}\geqq t_{5}$ .
Since $y(t)$ is a non-decreasing function and the condition A4 is satisfied, the

last inequality could be rewritten as follows:

$\sum_{i=1}^{p}\int_{\Delta*}^{l}(t, y(t))[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)ds>(n-1)$ ! $(t\geqq t_{6})$ . (16)

Hence

$(n-1)!-\sum_{i=1}^{p}\int_{\Delta^{*}(t,y(t))}^{t}[\Delta_{i}(t, y(t))-\Delta_{i}(s, y(s))]^{n-1}q_{i}(s)ds<0$ $(t\geqq t_{6})$ . (17)

From (8) we obtain
$y^{(n-1)}(\Delta^{*}(t, y(t)))<0$ $(t\geqq t_{6})$ (18)

for $i=n-1$ .
Taking into account (17) and (18), we could rewrite the inequality (13) in

the form:
$(-1)^{n}y^{(n-1)}(t)>0$
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and this contradicts the inequality (8) for $i=n-1$ .
Therefore, every bounded solution of the equation (1) is an oscillating one.
Let $n=2\lambda+1$ . The conditions of Lemma are satisfied in this case as well as

the case $ n=2\lambda$ . Therefore, there exist numbers $t_{4}\geqq t_{3}$ and $l\in\{1,2, \cdots, n\}$ such
that $l+n$ is even and that the inequalities (3) and (4) hold for $t\geqq t_{4}$ . It is clear
that $l=2\mu+1\geqq 1$ . If $1>1$ , it follows from (3) that the bounded function $y(t)$

should diverge to infinity, which is impossible. Thus, $l=l$ and the condition (4)

could be rewritten as follows

$(-1)^{i+1}y^{(i)}(t)>0$ $(t\geqq t_{4} ; i=\overline{1,n})$ (19)

Applying the Taylor formula and taking into account (19), we obtain

$y(v)-y(u)\geqq\frac{(v-u)^{n-1}}{(n-1)!}(-1)^{n}y^{(n-1)}(v)$ . (20)

Arguing as in the proof of the theorem for $ n=2\lambda$, we get to a contradiction
with the inequality (19). Thus, the theorem has been proved.

Point out that the behaviour of the solutions of the equation (1) in the case
the delay depends only on the argument has been considered in $[5]-[7]$ .

Next we shall give some examples.

EXAMPLE 1. Consider the second order equation

$y^{\prime\prime}(t)-M(1+\cos t)y(t-\frac{\pi}{2})-Ny(t-\pi-y^{2}(t))=0$ , (21)

where $M$ and $N$ are positive constants and satisfy the condition

$(\frac{\pi^{2}}{8}+\frac{\pi}{2}+2)M+\frac{\pi^{2}}{8}N>1$ . (22)

The functions $\Delta_{1}(t, u)=t-\frac{\pi}{2},$ $\Delta_{2}(t, u)=t-\pi-u^{2}$ are continuous on the set

$[t_{0}, \infty)\times[-D, D]$ , where $t_{0}>\pi+D$ and $D=const>0$ . They satisfy the conditions
$A2-A4$ . The functions $q_{1}(t)=M(1+\cos t)\geqq 0$ and $q_{2}(t)=N>0$ are defined and
continuous on the interval $[t_{o}, \infty$ ). Hence they satisfy the condition A5. The
condition (2) holds. Actually, by (22)

$\lim_{t\rightarrow}\sup_{\infty}\{\int_{\Delta\cdot(t.u)}^{t}\sum_{i=1}^{2}[\Delta_{i}(t, u)-\Delta_{i}(s, u)]q_{i}(s)ds\}$

$=\lim_{c_{+}}\sup_{\infty}\{(M+N)\int_{t-\pi/2}^{t}(t-s)ds+M\int_{t-\pi/2}^{t}(t-s)\cos sds\}$

$=\frac{(M+N)\pi^{2}}{8}+\lim_{t\rightarrow}\sup_{\infty}\{M[\sin t-\cos t]+\frac{M\pi}{2}\cos t\}\geqq\frac{M+N}{8}\pi^{2}$
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$+2M+\frac{M\pi}{2}>1$ .

Therefore, in virtue of Theorem, every bounded solution of the equation (21)

is oscillating.

EXAMPLE 2. Consider now the third order equation

$y^{\prime\prime\prime}(t)+y(t-2-\sqrt{}^{3}\overline{6}y^{2}(t))=0$ . (23)

The conditions (A) and (2) hold for it and, therefore, all the bounded solutions
of this equation are oscillating.

In fact, the functions $q(t)=1,$ $\Delta(t, u)=t-2-\sqrt[3]{6}u^{2}$ are continuous and take
positive values for $|u|\leq D$ and $t\geqq t_{o}=2+\sqrt[3]{6}D^{2}$ , where $D=const>0$ . It could be
easily verified that the conditions $A2-A5$ are satisfied. Let us verify the condi-
tion (2):

$\lim_{t\rightarrow}\sup_{\infty}\int_{\Delta_{(t,u)}^{*}}^{t}[\Delta(t, u)-\Delta(s, u)]^{2}q(s)ds$

$=\lim_{t\rightarrow}\sup_{\infty}\int_{l-2-\sqrt{}\overline{6}u^{2}}^{l}\theta(t-s)^{2}ds$

$=\lim_{t\rightarrow}\sup_{\infty}\frac{(2+3\sqrt{}\overline{6}u^{2})^{3}}{3}=\frac{8}{3}+4u^{2}\sqrt[3]{6}+2u^{4}\sqrt[3]{36}+2u^{6}>\frac{8}{3}>2$ .

Therefore, according to Theorem, every bounded solution of the equation
(23) is oscillating.
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