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RELATIVE FREE ENERGY AND ITS APPLICATION
TO SPEED CHANGE MODEL

By
Makoto MoORI and Masasi KOWADA

§1. Introduction.

The purpose of this paper is to study a continuous spin system by introduc-
ing the relative free energy* which plays a role of the free energy in discrete
spin systems.

Although the usual free energy is a very important functional, it can be
available to only identically distributed 2-spin lattice systems. About such Sys-
tems, refer to Holley [I], [2]. On the other hand, our relative free energy
enables us to deal with spin systems with state space not necessarily discrete
nor identically distributed. In Section 3, we consider a 1-dimensional lattice spin
system with continuous state space to show that the relative free energy does
not increase with time and especially it strictly decreases if the initial state is
not Gibbsian; this is one of the main results of this paper. From this fact,
moreover we conclude that the time evolution of any shift invariant non-Gibbsian
state converges to an equilibrium state. The precise definitions of the relative
free energy et al are given in Section 2.

§ 2. Definition of relative free energy.

Let Q4 be a compact Hausdorff space with Second countability axiom, and
let B4 be its topological Borel field. We suppose that a probability measure vy
is given on (£2%, Bx). We denote the two sided countable direct product of
copies of (24, By, v&) by (2, 8, v). Let C, be the family of all (—n, n)-cylinder
sets i.e. the sets of the form {we®; w;€E,;, i=0, +1, ---, +n}, E;€ By, and we
denote by B, the o-algebrd generated by C,.

The restriction to B, of a probability measure ¢ on @ is denoted by p™.
Moreover the set of all probability measures on B(4%,) is denoted by @(&,).
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* In , Sulivan defined the relative free energy which is similar to ours and obtained
the similar results. But his free energy depends on the special kind of invariant meas-
ure of the generator. Therefore it is hardly possible to deal with our model.
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Any measurable finite partition &, of £2x induces a measurable finite partition
& of 2 each atom of which has the form {we®; w,€l}, I€§, and we say that
¢ is induced by &, The family of all measurable finite partitions of 2« is de-
noted by A and we identify the partition & of 24 and the partition £ of 2
which is induced by &,.

DEFINITION 1. For #=® and any finite measurable partition & of 2, we put

H(, &)= 2,0 log £ @)
v 1 v J
h*(p, &)= hm o1 (,u, V T%), (2.2)
where T is the shift transformation; (Tw);=w;i+:. In we take
0log 0=0
p log —O—= { _ (2.3)
+ o0 if p>0,
if they appear. Note that H*(y, £§)=0, since
7)o ) N\
Suhlog L = > p(r1 -0 )=o0. 2.4)

The following is a repetition of usual entropy calculus and we omit
the proof.

LEMMA 1. Let §<5. Then

HX(y, §)=H*(u, 1) (2.5)
and

h*(p, E)=h*(p, 1) (2.6)

LEMMA 2. If p is shift invariant, then

B, O=sup— H*(p, \/ T%) @.7)

1
2n+1
for any € A.

PrROOF. We need only to show that a,=H*(g, {l/o T7&) is subadditive, i.e.
A

n s . . . .
Grnim=d.+an When there exists n such that H*(y, >=/OT’E)=+OO, it is trivial

to see it. When H*(yu, \7 TI&)< 400 for any n, we get
# N
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am+an—am+n

oy - NIa)  ppaan " N man+r)
v(lo - NIn)  vJariN - N sy

=2uoN - N minsy1) log
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where I,={we?; w;sE}, for some E<&, and X is taken over all Iy, -+, [inoy.
Let U be a continuous function on £24X 2% and put

n

Un@)=% Ui, o), w=Q. 29)

DEFINITION 2. For g2 and £ 4, we put

[SQUn(w)d#<n>(a))+HV(#, jz\’/inTjg)} ) 2.10)

Y = 1
Fop, §=Tm s

Then the relative free energy f#(u) of p with respect to U and v is defined by
Fo(p)=sup fu(p, £). (2.11)
seA

As can be easily seen, fy(u)=-4co if p¢ is not absolutely continuous with
respect to v for some n.

LEMMA 3. If p is shift invariant, then
£ 8= U@, on)dp@+h), (2.12)

where h*(p)= sup h*(y, §).
A
DEFINITION 3. We call 2*(u) a relative entropy of p with respect to .

§ 3. Speed Change Model.

In this section we consider a speed change model. A physical sketch of our
model is as follows;

i) each spin stays in a point with exponential holding time which depends
on the nearest neighbour spins, ‘

ii) each spin changes its direction independently with a transition probability p.

The process of a speed change model which we are going to deal with is a
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Markov process (2, @, {T,}) with the infinitesimal generator ¢ defined by
of@= L0, pey, PLF@H—/@duu(e), (3.1

where Ci(w)=exp [Ulw;-1, w;)+U(wi, wi+1)] and wt<s 2 is defined by

( ¢) { wj; ]¢l
e =i weow
and p(¢, @) satisfies the following four conditions:
) L>pl, ¢)>1>0, O, pE Py, (3.2)
ii) SQ‘ p(¢, dva()=1  for any P 2y. (3.3)
iii) de* (sb)S;D(S[’: A)f (¢)dv*(¢)=gf (@)dvi(d) (3.4)

for any integrable function f on £..

iv) For any ¢>0 and any ¢ < £y, there exists a neighbourhood 0y of ¢ such
that | p(¢, @)—p(J’, )| <e for any ¢’'€0, and any @& Q4.

The existence of the Markov process with this generator comes from Ligget
31

Evidently, the definition domain of ¢ includes Efzknjffn, where &, is the set
of all real valued bounded measurable functions which do not depend on the

coordinates w; (|i|=n+1, n+2, ---) of w. Clearly the generater ¢ transforms &,
intO grn-{-l.

Let An s ={Gy, -+, o) il =0, || =max {n, [6:[+1}, -, [iz] =max {n, |i]
+1, -+, |te-1|+1}, and let
aty f@)={p4, 0ICU@D @) —Ci@) (@) Tdun(eh) (35)

We now define a ‘dual operator’ ¢%* (k=1, 2, ---) by

G f()=2G%u,, - T*upflw), (3.6)

where f€F, and the summation is taken over (iy, -, i) EAn .
The direct calculation gives us the following

[av@ @ @) g@={dvw)/@er* (@) (37)

for f, g=%F,.
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Let L' be the space of the integrable functions with respect to v. Then the
the norm estimations of ¢f and ¢¥f=g¢%'f are given by,

D lefl=2Cn+DKI S ‘ (3.8)
2) |@xfl=2@n+DKIfIl feFa, (3.9)

where |-|| is the L*-norm and K= L(sup eV¢* ¥?)2,
| LEMMA 4. For feZF, put
exp (t9)f (@)= £ -1 0*/(@) (310
Then the right term converges in the L'-norm and we have

T%—exp LDf@) | a=0f@)  a.e. 3.11)

PROOF. Remark that Ci(w)g b (@i, P)Lf (@) — F(@)]dvs(¢) depends only on

(W_pn, ~+, wy) for 1=0, &1, ---, ==(n—1) and that it depends only on (w_,_1, ***, ®n)
for +=—n and (w_,, ***, wa+1) for :=n. Appealing to this fact, we get

lexp G DfII= /Il exp [4Kt(2n+1+exp (4K1))] (3.12)
for feF,. As to we have

& rerr—r}-or]

=3 & 4o = & o).
Thus
i {8 fror—r-arlo.

We shall define the time evolution g, of py€< by

w(f)=ulexp(tQ)f), [feF,

which becomes a probability measure on 4.

LEMMA 5. Suppose that p™ is absolutely continuous with respect to v™ for
any n. Then p{™ is also absolutely continuous with respect to v™ for any n and
t=0. Movreover,

dﬂén) _ «
W—E[(CXP (tG¥p)nl 321, a.e. (3.13)
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where
(exp (té’*)p)n=§}) —ti!g:’ikp‘"“” (3.14)
and
pm=St T (3.15)

Proor. For feg,,

| fdvm ELexp (14902 2]

=Sfdv(exp (tG*)p)n

k
t 'deg:ikp(n-rk)f

I
a
Lpe
=

) t k .
35 o )duas

I

=de exp (t@)f
=/l:(f) .

§4. Decreasing Property of relative free energy.

In this section, we show the decreasing property of free energy. As easily
seen by (3.4), v is an invariant measure when the potential U=0 (this is the case
when each spin moves independently). Thus it is natural to consider the relative
free energy with respect to v.

THEOREM 1. The relative free energy f§(u:) is monotone decreasing in t for
any pep.

To show the above theorem, we employ an approximation technique.

Since the potential U is continuous, for any £>0, there exists a partition
&=/ such that for any partition »>§,

0=U(x, y)— i%fAU(x’, yH<e 4.1

y'EB
| p(x, P)—p(x’, P <e,  for any ¢y and x'€A4,

where A and B are atoms in 7 including x and y, respectively. We define
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Uyx, y)= ing(x’, v, A, Bey, x€A, yEB. (4.2)
y'EB
Then it follows
fo, (W= <fo,(w+e  for all peP 4.3)

In order to prove the theorem, it is sufficient to prove the following lemma.

LEMMA 6. For any partition {>7 Ced),

flyfv(/lt; C)éff/v(ﬂy C)+5K*t ’
where K*:ez||U||+equR—l(l_'_zezsL_{_zeezs).
Indeed from this lemma, it follows
fluj(llt)§ff/,7(#t)+8§ff/‘(ﬂ)+€(ff*l‘+1)

and this implies the above theorem.

PROOF OF LEMMA 6. For convenience we use the following notations. For

Ae _\Z T7y, let A; be the i-th projection of A, and we define

Ufd)=3 Upwi, 012 (4.4)

Cl(A)= eUn(@i-1, 00 +Up(@, 034D (4.5)
where w;€A; |i|=n,
(note that the right terms of and do not depend on the choice of w)
and let for BeT*y, E=t?(A) be the set such that

B j=i
Ej:{ (4.6)

A;  J#F

Moreover we put for A, Bey
p(4, B)=SB Inf (g, P)dva(d). @.7)
Since
v — i 1 ﬂt(A)
Fb (=T 5= SH{UL (D pl At pue( D log L0

we shall evaluate the quantity for any partition {4 ({>7%)

4
dt

{?[Uv(A)#z(AH-Iu;(A) log P;‘((j)) ]}

d
dr ©

@) (Uy(A+1og 2520

:2( v(A)

A
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I

3(aue 3 0| pter, YD~ L@ dus ()

xlog 24 )) Upcar_ 222(5 AuCi@)| | pls, dva(g)

V(A T 4B

S de.C; (w)S p(w,, ¢)dv*(¢)>log #u(A) ) eV

n :
where 3 means the summation over the sets A< V T’C and X} means the sum-
A4 -n B

mation over the sets B Ti(.

Let A€C, be a set such that v(4)>0 and p:(A)=0. Then it follows from
that for sufficiently small A >0,

dﬂs(z‘l)

freen(A)= S ds<||leX |k, 4.8)

and hence we get

d #t( )
ot (VAR A) i 4) log 2220

—1; _1_ ﬂ“‘h( ) eUncd
_}Ll—l:rol h, #t"‘h(A)l (A) 7 <0 (4'9)

Moreover, if there exists some i and B such that ¢(t?A)>0, then we can easily

show that L{UW(A);;;(A)—{—m(A) log ¢4 )} —oo, Noticing the above facts,

d v(A)
we get

_dt-{ p> [[U,/(A)ﬂc(AHﬂt(A) log ﬂZ(,f)) }}

p(TB(A)) V1T Aoy 4)
te(A)eV 1D p(zB(A))

>

1.=7l

22 log
xSAci<w>dm<w>SBp<wf, S)dva(g), (4.19)

where we take 0 log %zo, plog0=—co (p>0), and —co<—oo, if they appear.

In the above summation the n-th term is bounded above ;
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po(TB(A)) 1Ry (A,)
> E log ML(A)QU”(A)))*<B)

A Bgy)

x[Ca@ip@)| p(@n gavaig)

o (BT TR (An) o
= % % 1:(A) log (A)eUW(A))V (B) e*Ui Lyy(B)

<K,=_Le*"W'-1, (4.11)
where log*x=max {0, log x}. Similarly, we can show the (—n)-th term is also

bounded above.
As to the main term, we proceed as follows; putting

o E)=p(E)e"1® [vy(Ey) , (4.12)

we get

3 sl [ s gc@dsdgape)

« og LeTRANTTE Dy (Ar)
B (DT (B)

= S StplAXp(A;, B)tevy(B)) log "?)”(ff( f{f” CIAY(1+ 2¢¢%)

i=-(n-1)

'S 5%, (z3(A))
o D, T (AP Ay B) log = CHA)

ne1 () A))
= 3 T Tmn4, BCUA g ZHIED

f==

+e@2n+1)K,, (4.13)

where >3* (3°) means the summation over A< \7T"C and Be<{ for which

ot (cP(A))

& (A =0 (<0), respectively, and

log
K, =011 4202 [ +2e¢%) .

Moreover,

9 (cB(A
% %ﬂz(A)P(Ai, B)C%(A) log ? Zzgt(/(l) )

_ ‘ , aiy(zP(A)
= 33l A)p(As, B)C;(A)Fo<—"@w
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vx(B)
+ 2 (A2 (p(B, A e (AD — p(As, B))CUA)

=22 m(Ap(Ay B)CZ(A)FO(—G—g%%;i)-i—eZ"U"e , (4.14)

where
Fy(x)=log+1—x=0. (4.15)

Combing (4.10), [(4.11), [4.13), and (4.14), we get

pe(A)
{ZU,(A)[it(A)+Z/~‘t(A) log 02y }

<2K,+e(2n+1)Ky, (4.16)

where Ky=K,+¢*Y", and hence
Ilz(A)
[SU A A+ S (A log 2575}

{2 U, (A)p(A)+ EF(A) log ﬂ((A)) }+2Kot+e(2n—|—1)K*t . (4.17)

Deviding the both sides in (4.17) by 2n+1 and taking lim we obtain

n-—co

Fo (e O Fb, (1, O+eKut
This completes the proof of the lemma 6.

DEFINITION 4. We shall agree to say that a measure p& is a Gibbsian
measure (with respect to v), if for any n the conditional measure p(A; o, | R >n)

satisfies
,U(A s o, [ R >n=1/Z(®w-n-1, Wn+1)

XSAe—U,,ch)dv(n)(w_m e, @), (4.18)

where A=C, and

Z(@-n-1, wm):ge-”»+1<w>d»<"><w-n, o). (4.19)

As can be easily seen, g is a Gibbsian measure if and only if ‘™ is absolutely
continuous with respect to v‘™ for any n and there exists a version p™(w)
dﬂ(n)
- dp™

(w) such that eV»@ p™(w) depends only on w-n and wn.

LEMMA 7. If p is Gibbsian, then pe=p (go=p).
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PROOF. Since Ci(w%)o™(%)=Ci(w)p™(w) a.e. v for |i|<n and for any ¢&

04, we get
GXp™(w)=0 a.e. y, for any n=1, 2, -- (4.20)
Therefore

yz(A)=deXAp(")=y(A) for any A€Cy, n=l,2, . 4.21)

This completes the proof.

THEOREM 2. Let u be a shift invariant, non Gibbsian measure, then fy(u:)
satisfies only one of the followings

i) fy(p)=-+o0 for any t=0

i) There exists to=0 such that fy(p)==o0 for t<t, and fy(p:) is strictly
monotone decreasing for t>t,, unless p., is Gibbsian.

COROLLARY. If the initial state p is shift invariant, non-Gibbsian probability
measure with finite free energy, and the evolution p. converges to a measure fi
in the weak topology, then @ is a Gibbsian measure.

PROOF OF THEOREM 2. It is sufficient to show the decreasing property for
shift invariant non-Gibbsian measure g with fy(p)<oo. Thus we assume that
¢ has a density p for any n. Then, since p is not Gibbsian, we can find
no such that for any n=n, there exist ¢ (|| <n) and >0 for which
o™ (% Ci(w%)

o™ (@)Ci(w)

v (@, e, On, B); F )§—5}>0 (4.22)

holds. Here, we may assume n,=2":—1 for some positive integer n;.
Let &,, be a finite partition of £24« such that

Utxe, y9—Ules 39| <o (423
and
[5Ces, $)— e, $)I <, 429

where A, BE&,, xo, x1EA, o, y21€B and ¢=24. Put

g

7=V, T%n. (4.25)

Moreover, we let 7 be a partition defined by
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12
foimsom@< i) p=0,1, 0, w1
m m
and
{w; pT(w)=m}. (4.26)
Put ph=7RVvyP. Let p,=/4 be a patition which satisfies
V" (U{A\U{B; BE \) T'pm and BC A} ; Acqk) <m=®,  (4.27)
A
and for a partition =%, define the function (¢/v)™ by
LY\ =D V&
(v) @="L07, it esle Y Ty, (4.28)
Then we get,
(4.29)

(&Y @ —p @] = }=0.

lim v{w ;
m—oo
Hence, combining the above fact and [4.22), we get for sufficiently large m and

any 1 (|¢] <no)

270+2 ; (#/V)m(w%)ci(w%) . 0
”Ek ){(w-no; ’ wnoy ¢) ’ FO( (#/”)m(w)cl(w) )< 'E}’

no 3
:ygkznow){(w_no, vt Wy ?); a)EAEj \/n TJ77, peB
=-Typ

such that

B no oiy @A) . _ 0
X(A)e V T’y and Fy ooy )= 2}>0. (4.30)

We now define
(i) (B
at,n(fz (A)) (4.31)

2n-1
Frnlpt)= 3, 3 AT (A, B)C?(A)FO(W :

where ; means the summation over Ae _2 , T’y. By (4.30), it follows that
=

Fon()<—0" (4.32)

for some 6’>0 and for sufficiently large m.
Appealing to the shift-invariance of x, and the concavity of F,, we have
Fm, n(ﬂt)§_2Fm,n—1(ﬂt) (433)

and hence by (4.14) and the continuity of Fn, »,(¢) in g, we get
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4
“dt

/h(A)
{SU(Dp )+ 3 ) log Lo 70

<F,. n<y>+%<2n+l—1>K*+2Ko

S_2n~n1_5___|_ _L(Z"*'l-——l)K*—{—ZKo
2 m

and therefore for sufficiently small >0,

(A
{?Uﬁm(z@/«tt(/l)—f— 3 1(A) log li((A))}’

£1(A)
={ Ui A)+ 3 p(A) log =5 f

_Qn-m1m1g§7 4 1 %(2“1_1)]{*1‘—{—2](01‘ .

Then dividing the both terms by 2"*'+1 and taking lim, we get

-ni-25/ 1
Foy (o M=, (g, 9)—27M70 t+ Kt

Therefore it follows that

1
Fo(p)=ro(p)—27"17%0"t + E(K*t—i—l) .

This completes the proof.

§5. Concluding remark.

| (4.34)

(4.35)

(4.36)

(4.37)

13

We can show that the variational principle still holds for the relative free

energy. Precisely this means that the equation

inf [y () =s1(@)
pres

(5.1)

has a unique solution g&S, and it must be Gibbsian where S is the set of all
shift invariant probability measures on . This result will be shown in the

forcecoming paper.
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