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ON THE HYPERSPACE (€(X) OF CONTINUA

By

R. EscoBepo, V. SANCHEZ-GUTIERREZ and J. SANCHEZ-MARTINEZ

Abstract. Let X be a continuum. Let C(X) be the hyperspace
of all closed, connected and nonempty subsets of X, with the
Hausdorff metric. For a mapping f: X — Y between continua,
let C(f): C(X)— C(Y) be the induced mapping by f, given by
C(f)(A4) = f(A). In this paper we study the hyperspace €(X) =
{C(A4): A e C(X)} as a subspace of C(C(X)), and define an induced
function €(f) between €(X) and €(Y). We prove some relationships
between the functions f, C(f) and €(f) for the following classes of
mapping: confluent, light, monotone and weakly confluent.

1. Introduction

A continuum is a nondegenerate compact connected metric space. Given a
continumm X, denote by 2% and C(X) the hyperspace of all nonempty closed
subsets and all subcontinua of X, respectively, equipped with the Hausdorff
metric (see [10, Definition 0.1, p. 1]). It is well known that 2% and C(X) are
continua (see [10, Theorem 1.13, p. 65]) and then C(C(X)) is a continuum. We
consider €(X) = {C(4) : 4 e C(X)} as a subspace of C(C(X)). We study some
properties of this hyperspace. Also we give a characterization of the arc and
circumference using the structure of its hyperspaces €(X).

A mapping means a continuous and not constant function. Given a mapping
f X — Y between continua, let C(f): C(X) — C(Y) be the induced mapping
by f, given by C(f)(A4) = f(A) for each 4 € C(X). We consider €(f) : €(X) —
€(Y) given by €(f)(C(A4)) = C(f(A4)), for each C(A4) € €(X). Let .# be a class
of mappings between continua. A general problem is to find all possible rela-
tionships among the following three statements:
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(1) fed,

(2) C(f) e s

(3) 6(f) e 5
In this paper we study the interrelations among the statements (1)—(3), for the
following classes of mappings: confluent, light, monotone and weakly confluent.
Readers especially interested in this problem are referred to [1], [2], [3], [5] and
[6].

The paper is divided into five sections. In Section 2, we give the basic
definitions for understanding the paper. In Section 3, we give examples of
geometric models of €(X) for some continua X. In Section 4, we present some
properties about topological structure of €(X). Finally, Section 5 is devoted to
the study of the relationships between the mappings f, C(f) and €(f).

2. Definitions and Preliminaries

The symbols N and R will denote the set of positive integers and real
numbers, respectively. The symbol 7 will denote the closed interval [0, 1]. An arc
is any space which is homeomorphic to I. A simple closed curve is a space
homeomorphic to S' = {(x, y) e R? : x> 4+ y> = 1}.

Given a continuum Z, 4 C Z and ¢ > 0, ¥;(4), clz(4), intz(4) and 0z(A4)
denote the respective open ball about A of radius & closure, interior and
boundary of 4 in Z.

In this paper, dimension means inductive dimension as defined in [10, (0.44),
p- 21]. The symbol dim will be used to denote dimension.

Given a finite collection Kj, ..., K, of subsets of X, (Kj,...,K,), denotes the
following subset of 2%:

,
{AGZX;A C UK,«,AHK,»#@ for each ie{l,...,r}}.
i=1
It is known that the family of all subsets of 2% of the form <(K,...,K,), where
each K; is an open subset of X, forms a basis for a topology for 2% (see [10,
Theorem 0.11, p. 9]) called the Vietoris Topology. The Vietoris topology and the
topology induced by the Hausdorff metric coincide (see [10, Theorem 0.13, p. 10]).
The hyperspaces C(X) and F,(X) are considered as subspaces of 2%.

A continuum X is said to be a dendrite provided that it is locally connected
and contains no circle. A graph is a continuum which can be written as the union
of finitely many arcs, any two of which are either disjoint or intersect only in one
or both of their end points. A tree, or acyclic graph, is a graph which contains
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no simple closed curve. Hereditarily unicoherent provided that for each pair of
subcontinua 4 and B of X, AN B is connected.
We need the following well known definition.

DermNITION 2.1. Given a sequence {Am};‘f:l of subsets of X define:
+ lim sup 4,, as the set of points x € X such that there exists a sequence

m— o0
of positive numbers m; < mp < --- and there exists points X, € 4,, such
that lim x,,, = x;
* lim inf 4,, as the set of points x € X such that for each n € N there exists
m— oo

a point x, € A, such that lim x, = x.

It is well known that a sequence {4,,},,_, in C(X) converges to 4 € C(X) if
and only if lim sup 4, C 4 C lim inf A4,,.
m— o0

m—oo

Let X be a continuum. We define Cj:C(X)— C(C(X)), given by
Cy(A)=C(A), for each A4e C(X). Notice that C(X)= C;(C(X)). Thus
Cy: C(X) — €(X) is a biyective function.

REMARK 2.2. Cj is continuous if for any sequence {4;},.n of subcontinua
A; of X converging to a subcontinuum A4 of X, any subcontinuum B of A4 is a
limit of subcontinua B; of A4;.

DerFNITION 2.3, A continuum X is said to be C*-smooth at A4 e C(X)
provided that C3 is continuous at 4. A continuum X is said to be C*-smooth
provided that Cj is continuous on C(X), i.e., at each 4 € C(X).

It is well known that, each arc-like continuum is C*-smooth (see [10,
Theorem 15.13, p. 525]), C*-smoothness implies hereditary unicoherence (see [4,
Corollary 3.4, p. 203] and [10, Note 1, p. 530]). Thus each arcwise connected
C*-smooth continuum is a dendroid (see [10, Theorem 15.19, p. 528]). Further, a
locally connected continuum is C*-smooth if and only if it is a dendrite (see [10,
Theorem 15.11, p. 522]).

Using Remark 2.2, is easy to show the following result.

THEOREM 2.4. For a continuum X, the following statements are equivalent:
1) X is C*-smooth;

2) Cy is a homeomorphism;

3) C(X) is homeomorphic to €(X);
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4) €(X) is a continuum;
5) €(X) is compact.

REMARK 2.5. Let X be a continuum. The union mapping % : 22° — 2%
is the function given by %(«/) =] o/ for each .o/ € 22" (see [8, Exercise 11.5,
p. 91]). Denote by %y = %|g(y)- Notice that (C;)"' =uy. In addition, by
[8, Exercise 11.5 (2), p. 91], %x is a continuous function.

REMARK 2.6. Let X be a continuum, by Remark 2.5, if {C(4,)},.n 1s @
sequence in €(X) converging to a point C(4) € €(X), then {4,},.n converges
to 4 in C(X).

A mapping f: X — Y between metric spaces is said to be:

— confluent if for each subcontinuum K of Y and for each component M of
STUK), f(M) =K;

— light if f~(y) is totally disconnected for each ye Y;

— monotone if f~'(y) is connected in Y for each ye Y;

— weakly confluent if for each subcontinuum K of Y, there exists a sub-
continuum M of X such that f(M) =K.

A general study of these mappings can be found in [9].

3. Examples

From Theorem 2.4 and [10, Theorem 15.11, p. 522], we have the following
two corolaries.

COROLLARY 3.1. Let X be a locally connected continuum. €(X) is home-
omorphic to C(X) if and only if X is a dendrite.

COROLLARY 3.2. Let X be a graph. €(X) is homeomorphic to C(X) if and
only if X is a tree.

ExampLE 3.3. Notice that S' is C*-smooth in C(A) for each Ae
C(S') — {S'}, because in this case A is an arc. On the other hand, C(S!) is an
isolated point in €(S!), in particular €(S!) is not connected and is not compact.
On the contrary, suppose that there exists a sequence {A4;},.n, such that A4; is
an arc contained in S' for each ie N and {C(4,)};.n is a sequence in €(S!)
converging to C(S1).
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For each i e N, we denote by «@; and b; the end points of A4;. So, we may
assume that {a;},.n and {b;};.n both converge to a point p e S!.

Notice that, for each 0 < e < 1, there exists N € N such that qg;,b; €
clgi (7:({p})) NS, for all i > N. Thus, by the point

(cls1(7e({p}) NS') e C(SY),

there is not a sequence of elements in each C(4;) converging to

clsi(7:({p})) N S".

This is a contradiction, because {C(4;)};.n converges to C(S).
We conclude that, €(S') is homeomorphic to the union of the unit disk D in
the plane R? minus the point (0,0) and {q}, where ¢ is any point in R*> — D.

Regarding [4, Corollary 3.4, p. 203], we present the following example.

ExamMpLE 3.4. Let
T={(x0eR:-1<x<1}U{(0,y)eR*:0< y<1},

p=(-1,0) and ¢ = (1,0). For each ne N consider:

‘= gpﬁa,mz(al+ﬁa,q=(ﬁpﬁazmd@z(Lﬁﬂ;

« I,, J,, K, and L, the linear segments joining p with a,, a, with b,, b, with

¢, and ¢, with d,, respectively.

Define X = TU (U,en 11Uy UK, UL,). It is clear that X is a hereditarily
unicoherent continuum. The hyperspace €(X) is not compact. In fact, if for each
neN we consider 7, =1,UJ,UK,UL,, then T, is an arc and lim 7, = T.
Notice {C(T,)},.n does not converge to C(T) because

A= mmeR%—lgxgl u(aneR%OSygl,
2 2 2
is an element in C(7') which is not limit of points 4, in C(T,).

4. Properties of the Hyperspace €(X)

REMARK 4.1. The spaces X, {{x} € C(X):xe X} and {{{x}} e €(X)} are
mutually homeomorphic, for each continuum X.

PROPOSITION 4.2.  For each continuum X, intcicx))(€(X)) = .
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Proor. Take 4 e C(X)—{X}. Using [11, Exercise 5.25, p. 85], we can
consider {4,},.n be a sequence in C(X) such that limA4,=4 and A<
A1 $A4, S X for each neN. Thus {C(4)UFi(4,)},.n IS a sequence in

C(C(X)) —€(X) converging to C(A4). Hence, C(A) ¢ intecix)(€(X)). Then,
intecgx)) (C(X )) c {C(X)}. Since {C(X)} is a closed subset in the continuum
C(C(X)), inte(cu) (€(X)) = & O

THEOREM 4.3. Let X be a continuum. Consider the following conditions:
(1) X is locally connected,

(2) C(X) is locally connected,

(3) €(X) is locally connected.

Then (1) and (2) are equivalent and (3) implies (1) (consequently (3) implies (2)).

Proor. It is well known that (1) and (2) are equivalent (see [7, Exercise 2.17,
p- 28)).

To see (3) implies (2) let pe X and U be an open subset of X contain-
ing p. Notice that <{U))» NE(X) is an open subset in €(X) containing C({p}).
By hypothesis there exists MW be an open connected subset of €(X) such
that

C({p}) C W C clg(x) (W) € KUY NE(X).

By [10, Exercise 15.9 (2), p. 124] we have that " = (J{./ : ./ C cl¢(c(x)) 2} is a
subcontinuum in C(X), observe that #~ C {(U). Again, by [10, Excercise 15.9 (2),
p. 124] we obtain that W =|J{4: A€ #} is a subcontiuum of X such that
pe W C U. Using that C({p}) e intgx) I we have that p einty(W). So X is
locally connected in p. O

Regarding Theorem 4.3, we present an example that show that (1) does not
imply (3).

ExaMPLE 4.4. For each neN, let

1\* 1

and define X = U;O: , Sy, the continuum known as Hawaiian earring. It is clear
that X is locally connected. We will prove that €(X) is not locally connected
in C({(0,0)}). Let U be an open subset of €(X) containing C({(0,0)}). Since
lim C(S,) = C({(0,0)}), there exists m € N such that C(S,,) € . Consider the
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following two disjoint sets

B={C(4)eCX):S, A},
and

W={C(4) e €X):S, CA4}.

Notice that C({(0,0)}) e BN, C(S,) eWNU and C(X) = L NIW.

On the other hand, if {C(4,)},.n 18 a sequence in €(X) converging to
a point C(4)e€C(X) and S,, € C(4,) for each n, then S, € C(A4) because
lim A, = A. Thus, W is closed in €(X).

Whith an idea similar to that given in Example 3.3, we can prove that B is
closed in €(X).

We conclude that U is not connected. So, €(X) is not locally connected at

C({(0,0)}).

ProprosITION 4.5. If X and Y are two C*-smooth continua and C(X) is
homeomorphic to C(Y), then €(X) is homeomorphic to C(Y).

ProOF. Let /1: C(X) — C(Y) be a homeomorphism. Consider /4 : €(X) —
€(Y) defined by i = C} o hoy. Since h~' = C} o h™' o Uy, we conclude that /
is a homeomorphism. |

REMARK 4.6. In general C(X) homeomorphic to C(Y) does not imply €(X)
homeomorphic to €(Y). For example, if X =7 and Y = S!, C(X) and C(Y) are
both 2-cells and €(X) is homeomorphic to C(X) but €(Y) is not homeomorphic
to C(Y).

THEOREM 4.7. Let X and Y be two continua. If X is C*-smooth and €(X) is
homeomorphic to €(Y), then C(X) and C(Y) are homeomorphic.

Proor. Let /:@€(X)— €(Y) be a homeomorphism. Notice that /=
Uy o ho Cy is a bijective mapping between C(X) and C(Y). We conclude that
h is a homeomorphism. O

We say that a continuum X has unique hyperspace €(X) if for each con-
tinuum Y the condition €(X) homeomorphic to €(Y) implies that X is homeo-
morphic to Y.
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THeOREM 4.8. If X is homeomorphic to I or S', then X has unique
hyperspace C(X).

PrOOF. Suppose that X =7 or X = S!, and let Y be a continuum such that
€(X) is homeomorphic to €(Y). Since €(X) is homeomorphic to unit disk D in
the plane R? or the union of D minus the point (0,0) and the set {¢}, where ¢
is any point in R? — D, then by Theorem 4.3, Y is locally connected, further Y
is arcwise connected. By [8, Theorem 70.1, p. 337], Y does not contain simple
triods. By [11, Proposition 9.5, p. 142], Y is an arc or a simple closed curve.
Since €(I) is connected and €(S"') is not, we conclude that Y is an arc if X =1,
or Y is a simple closed curve if X = S!. O

THEOREM 4.9. Let X be a continuum. The following conditions are equivalent:
1) X is homeomorphic to [0,1];

2) €(X) is homeomorphic to [0,1];

3) €(X) is homeomorphic to [0,1]", for some n e N;

4) €(X) is the finite product of locally connected continua.

Proor. 1) implies 2) follows from Corollary 3.1 and Remark 4.6. It is clear
that 2) = 3) = 4) hold.

Now, to see that 4) implies 1), notice that €(X) is a continuum, thus by
Theorem 2.4, C(X) is homeomorphic to €(X). By [10, (10.1)], X is an arc or a
simple closed curve. By Example 3.3, we conclude that X is an arc. O

Using Example 3.3, Theorem 4.8 and [8, Theorem 70.1, p. 337], we have the
following result.

THEOREM 4.10. Let X be a continuum. The following conditions are equiv-
alent:
1) X is homeomorphic to S';
2) €(X) is homeomorphic to the union of a unit disk D in the plane R* minus
the point (0,0) and {q}, where q is any point in R*> — D;
3) €(X) is a locally connected, two-dimensional and nonconnected space.

5. On Induced Function €(f)

Given a mapping f: X — Y between continua, we consider the induced
mapping C(f) : C(X) — C(Y), given by C(f)(A) = f(A4) for each 4 € C(X) (see
[5])- In a similar way we define the function €(f):C€(X) — €(Y), given by
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C(f)(C(A)) = C(f(A)) for each C(A) € €(X). Tt is clear that €(f) is well defined
and the following diagrams

cx) 22 (v

o

CX) 5 )

and

are commutative.
We begin with some simple results.

THEOREM 5.1. Let f: X — Y be a mapping between continua. Then the
following conditions are equivalent:

(1) fis 1-1;

() C(f) is 1-1;

(3) €(f) is 1-1.

THEOREM 5.2. Let f: X — Y be a mapping between continua. Then the
following conditions are equivalent:

(1) f is weakly confluent;

(2) C(f) is surjective;

(3) €(f) is surjective.

ExampLE 5.3. In general, if f is a continuous function between continua
it is not necessarily true that €(f) is a continuos function. For example, let
f:[0,1] — S, given by f(x) = (cos 2nx,sin 2zx). Notice that f is a mapping,
but €(f) is not a continuous function because {C([1,1—1])} _ converges to
C([0,1]) in €([0,1]) because [0,1] is C*-smooth and

ten(e(br D))=

does not converge to C(S!) in €(S!) (see Example 3.3).
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THEOREM 5.4. Let f: X — Y be a mapping between continua. Then the
following conditions are equivalent:

(1) f is a homeomorphism;

(2) C(f) is a homeomorphism;

(3) €(f) is a homeomorphism.

Proor. Conditions (1) and (2) are equivalent by [2, Theorem 3.11, p. 199].
To see (2) implies (3), by Theorems 5.1 and 5.2, €(f) is a surjective function.
To show the continuity of €(f), let {C(4,)},.n be a sequence in €(X) con-
verging to C(A4) € €(X). It suffices to show that lim sup C(f(4,)) C C(f(4)) C
lim inf C(/(4,)). o

Let Be limsup C(f(4,)), thus there is a sequence {ni},.n in N such

that for each k € N there exists B, € C(f(Ay,)) and lim B, = B. Since C(f)
is a homeomorphism, lim C(f)~'(B,,) = C(f) " '(B), ie., lim f~'(B, ) = /~(B).
Notice that f~!(B,,) € C(4,,) and f~!(B) e C(X), therefore f~!(B) e C(4) and
then Be C(f(A4)).

On the other hand, if E e C(f(A4)), then f~'(E)e C(A4). For each neN,
let E,e C(4,) such that lim E, = f~'(E). By hypothesis, lim C(f)(E,) =
C(f)(f~YE)) = E. Thus, E € liminf C(f(A4,)). We conclude that C(f)(A4) C
lim inf C(f(4,)). o

(3) implies (1) follows from Theorems 5.1 and 5.2. ]

ProposiTiION 5.5. If f: X — Y is a mapping between continua and Y is
C*-smooth, then €(f) is continuous.

Proor. This proposition follows from the fact that

C(f) = Cy o C(f) o Ux. O
The following result is immediate from Theorem 5.4.
COROLLARY 5.6. C*-smoothness is a topological property.

DEFINITION 5.7. A mapping f : X — Y is said to be C-mapping if €(f) is
a mapping.

By the class of monotone mappings we have the following theorem.
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THEOREM 5.8. Let f: X — Y be a surjective C€-mapping between continua.
Consider the following conditions:

(1) f is monotone;

(2) C(f) is monotone;

(3) €(f) is monotone.
Then (1) and (2) are equivalent, and (3) implies (2).

Proor. It is known that (1) and (2) are equivalent (see [6, Theorem 3.2,
p. 241)).

Now, suppose that €(f) is monotone and let Be C(Y). Notice that
€(f)"'(C(B)) is a connected set in €(X). Thus

C(f) " (B) = ux(C(f) ' (C(B)))

is a connected set in X. Then (3) implies (2). O
Regarding Theorem 5.8, we have that (1) does not imply (3).

ExaMPLE 5.9. Let
X =S'"U{(x,00eR*: 1 <x <2},
Y ={(x,00eR*: 1 <x<2}

and f:X — Y be the quotient mapping such that f(S')={(1,0)} and the
identity in Y. Notice that f is a monotone €-mapping by Proposition 5.5. Since
C(f)(C({(0,1)})) = €(S'), we have that €(f) is not monotone.

THEOREM 5.10. Let f: X — Y be a monotone C-mapping between continua,
if X is C*-smooth then €(f) is monotone.

Proor. It follows from the fact that, for each C(B)e €(Y) we have
that

C(f)7(C(B)) = Cx(C (/) (B)). O
With respect the class of confluent mappings we have the following results.

THEOREM 5.11. Let f: X — Y be a C-mapping between continua. Consider
the following conditions:
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(1) f is confluent;
(2) C(f) is confluent;
(3) €(f) is confluent.
Then each of (2) and (3) implies (1).

Proor. It is known that (2) implies (1) (see [6, Theorem 6.3, p. 246]).

To see (3) implies (1), suppose that €(f) is confluent and let Be C(Y) and K
be a component of f~!(B).

Consider B = {{{x}} : xe B} C €(Y). It is clear that B is a subcontinuum
of €(Y). Choose any point p e K. Notice that {{p}} € €(f) " (B). Let & be
the component of €(f)~'(B) containing {{p}}. Observe that (J{4 e C(X):
C(4) e &} = K. In fact, since

Uy (K) = {4 e C(X): C(4) € |},

and %y is a mapping and {p} € #x(K), by [6, Lemma 3.1, p. 241], | J{4 € C(X) :
C(A4) e 8} is a connected set contained in f~!(B) cointaining p, then

J{daecx): c(4) e 8} Kk,

therefore | J{4 € C(X): C(4) e K} = K because {{{k}}: ke K} C & Tt is clear
that f(K) C B. Let x € B. Since €(f) is confluent, there exists C(D) € & such that
C(H(C(D)) ={{x}}. Thus there exists de D C|J{4eC(X):C(4)efk} =K
such that f(d) = x. We conclude that f(K) = B. ]

Regarding Theorem 5.11, (1) and (2) are equivalent when Y is locally
connected (see [6, Theorem 6.3, p. 246]), and (1) does not imply (2) (see [6,
p. 247)).

THEOREM 5.12. Let f: X — Y be a C-mapping between continua, if X is
C*-smooth and C(f) is confluent, then €(f) is confluent.

Proor. Let B be a subcontinuum of €(Y) and D be a component of
€(f)"1(B). Since X is C*-smooth, we have that %y (D) is a component of
C(f) " (y(B)). Thus, using that C(f) is confluent, we obtain that €(f)(D)
B.

(]

ExaMPLE 5.13. Let X =S!, Y =[-1,1] and f: X — Y the projection onto
the first coordinate. By [6, Theorem 6.3, p. 246], C(f) is confluent and by
Proposition 5.5 €(f) is a mapping. Is clear that €(f) ' (€(Y))=E€(X) and
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{C(X)} is a component of €(f) ' (€(Y)). Notice that €(f)({C(X)}) = {C(Y)}
# C(Y) and then €(f) is not confluent.

THEOREM 5.14. Let f: X — Y be a mapping between continua. If Y is
C*-smooth and €(f) is confluent then C(f) is confluent.

Proor. Let ./ be a subcontinuum of C(Y) and # be a component of
C(f)"'(A). Using that Y is C*-smooth, we have that C} () is a subcontinuum
of €(Y). Notice that C} (%) C €(f) ' (C; (o)), thus there exists D a component
of €(f) ' (C;(#)) such that DN C}(A) # &. Since Uy (D) is a connected set
contained in C(f)~'(#) and %N Uy (D) # &, we conclude that %y (D) C 4.
The fact that €(f)(D) = Cj (/) implies that C(f)(4) = . O

THEOREM 5.15. Let f: X — Y be a C-mapping between continua. Consider
the following conditions:

(1) f is weakly confluent,

(2) C(f) is weakly confluent;

(3) €(f) is weakly confluent.
Then each of (2) and (3) implies (1).

Proor. If C(f) or €(f) are weakly confluent, then C(f) is surjective which
is equivalent to the weak confluence of f. O

Regarding Theorem 5.15, (1) does not imply (2) (see [3, Example 6.8,
p. 149]).

With similar proofs to those of Theorems 5.12 and 5.14, we have the
following two results.

COROLLARY 5.16. Let f: X — Y be a C-mapping between continua, if X is
C*-smooth and C(f) is weakly confluent, then C(f) is weakly confluent.

COROLLARY 5.17. Let f: X — Y be a mapping between continua. If Y is
C*-smooth and €(f) is weakly confluent then C(f) is weakly confluent.

For the class of light mappings we have the following results.

THEOREM 5.18. Let f: X — Y be a C-mapping. Consider the following
conditions:
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(1) f is light

(2) C(f) is lightv;

(3) €(f) is light.

Then (2) implies (3) and (3) implies (1). Consequently (2) implies (1).

Proor. To see (2) implies (3), suppose on the contrary that there exists
C(B) € €(Y) and D is a nondegenerated component of €(f) (D). Since %y is
a bijective mapping, %y (D) is a nondegenerate connected subset of C(f)~"(B),
which is a contradiction.

On the other hand, to see (3) implies (1), let X = {{{x}} e €(X) : x € X} and
notice that X is homeomorphic to X, so €(f)|y is light and

CNQ) = {{{y}} e€(Y): ye Y}

Consider the homeomorphisms ¢g: X — X and /:C€(f)(Y) — ¥, given by
g(x) = {{x}} and A({{y}}) =y for each xe X and ye Y, respectively. Since
S =hoC€(f)|yog, we conclude that f is light. O

Regarding Theorem 5.18, (1) does not imply (2) (see [1, Theorem 3.10,
p. 184]).

THEOREM 5.19. If f: X — Y is a C-mapping, X is C*-smooth and C(f) is
light, then C(f) is light.

PrOOF. On the contrary, suppose that there exists Be C(Y) and Z is
a nondegenerated componnent of C(f) '(B). Notice that C:(%) is a non-
degenerated connected set contained in €(f) '(C(B)) which is a contradiction.
Then C(f) is light. ]

By [I, Theorem 3.7, p. 183] and Theorems 5.18 and 5.19, we have the
following result.

COROLLARY 5.20. Let f: X — Y be a C-mapping. If X is C*-smooth, then
the following conditions are equivalent:
(1) C(f) is light,
(2) for every A,Be C(X) the condition A G B implies the condition
f(4) € f(B);
(3) €(f) is light;
(4) for every C(A),C(B) e C(X) the condition C(A) & C(B) implies the con-
dition €(f)(C(4)) & €(f)(C(B)).
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