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ON THE HYPERSPACE CðX Þ OF CONTINUA

By

R. Escobedo, V. Sánchez-Gutierrez and J. Sánchez-Martínez

Abstract. Let X be a continuum. Let CðXÞ be the hyperspace

of all closed, connected and nonempty subsets of X , with the

Hausdor¤ metric. For a mapping f : X ! Y between continua,

let Cð f Þ : CðXÞ ! CðY Þ be the induced mapping by f , given by

Cð f ÞðAÞ ¼ f ðAÞ. In this paper we study the hyperspace CðXÞ ¼
fCðAÞ : A A CðXÞg as a subspace of CðCðXÞÞ, and define an induced

function Cð f Þ between CðXÞ and CðYÞ. We prove some relationships

between the functions f , Cð f Þ and Cð f Þ for the following classes of

mapping: confluent, light, monotone and weakly confluent.

1. Introduction

A continuum is a nondegenerate compact connected metric space. Given a

continumm X , denote by 2X and CðXÞ the hyperspace of all nonempty closed

subsets and all subcontinua of X , respectively, equipped with the Hausdor¤

metric (see [10, Definition 0.1, p. 1]). It is well known that 2X and CðXÞ are

continua (see [10, Theorem 1.13, p. 65]) and then CðCðXÞÞ is a continuum. We

consider CðXÞ ¼ fCðAÞ : A A CðX Þg as a subspace of CðCðX ÞÞ. We study some

properties of this hyperspace. Also we give a characterization of the arc and

circumference using the structure of its hyperspaces CðX Þ.
A mapping means a continuous and not constant function. Given a mapping

f : X ! Y between continua, let Cð f Þ : CðX Þ ! CðYÞ be the induced mapping

by f , given by Cð f ÞðAÞ ¼ f ðAÞ for each A A CðXÞ. We consider Cð f Þ : CðXÞ !
CðY Þ given by Cð f ÞðCðAÞÞ ¼ Cð f ðAÞÞ, for each CðAÞ A CðX Þ. Let M be a class

of mappings between continua. A general problem is to find all possible rela-

tionships among the following three statements:
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(1) f A M;

(2) Cð f Þ A M;

(3) Cð f Þ A M;

In this paper we study the interrelations among the statements (1)–(3), for the

following classes of mappings: confluent, light, monotone and weakly confluent.

Readers especially interested in this problem are referred to [1], [2], [3], [5] and

[6].

The paper is divided into five sections. In Section 2, we give the basic

definitions for understanding the paper. In Section 3, we give examples of

geometric models of CðXÞ for some continua X . In Section 4, we present some

properties about topological structure of CðXÞ. Finally, Section 5 is devoted to

the study of the relationships between the mappings f , Cð f Þ and Cð f Þ.

2. Definitions and Preliminaries

The symbols N and R will denote the set of positive integers and real

numbers, respectively. The symbol I will denote the closed interval ½0; 1�. An arc

is any space which is homeomorphic to I . A simple closed curve is a space

homeomorphic to S1 ¼ fðx; yÞ A R2 : x2 þ y2 ¼ 1g.
Given a continuum Z, A � Z and e > 0, VeðAÞ, clZðAÞ, intZðAÞ and qZðAÞ

denote the respective open ball about A of radius e, closure, interior and

boundary of A in Z.

In this paper, dimension means inductive dimension as defined in [10, (0.44),

p. 21]. The symbol dim will be used to denote dimension.

Given a finite collection K1; . . . ;Kr of subsets of X , hK1; . . . ;Kri, denotes the

following subset of 2X :

A A 2X : A �
[r
i¼1

Ki;A \ Ki 0q for each i A f1; . . . ; rg
( )

:

It is known that the family of all subsets of 2X of the form hK1; . . . ;Kri, where

each Ki is an open subset of X , forms a basis for a topology for 2X (see [10,

Theorem 0.11, p. 9]) called the Vietoris Topology. The Vietoris topology and the

topology induced by the Hausdor¤ metric coincide (see [10, Theorem 0.13, p. 10]).

The hyperspaces CðX Þ and FnðXÞ are considered as subspaces of 2X .

A continuum X is said to be a dendrite provided that it is locally connected

and contains no circle. A graph is a continuum which can be written as the union

of finitely many arcs, any two of which are either disjoint or intersect only in one

or both of their end points. A tree, or acyclic graph, is a graph which contains
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no simple closed curve. Hereditarily unicoherent provided that for each pair of

subcontinua A and B of X , A \ B is connected.

We need the following well known definition.

Definition 2.1. Given a sequence fAmgym¼1 of subsets of X define:
� lim sup

m!y
Am as the set of points x A X such that there exists a sequence

of positive numbers m1 < m2 < � � � and there exists points xmk
A Amk

such

that lim xmk
¼ x;

� lim inf
m!y

Am as the set of points x A X such that for each n A N there exists

a point xn A An such that lim xn ¼ x.

It is well known that a sequence fAmgym¼1 in CðXÞ converges to A A CðXÞ if

and only if lim sup
m!y

An � A � lim inf
m!y

Am.

Let X be a continuum. We define C �
X : CðXÞ ! CðCðXÞÞ, given by

C �
X ðAÞ ¼ CðAÞ, for each A A CðX Þ. Notice that CðXÞ ¼ C �

X ðCðX ÞÞ. Thus

C �
X : CðX Þ ! CðXÞ is a biyective function.

Remark 2.2. C �
X is continuous if for any sequence fAigi AN of subcontinua

Ai of X converging to a subcontinuum A of X , any subcontinuum B of A is a

limit of subcontinua Bi of Ai.

Definition 2.3. A continuum X is said to be C �-smooth at A A CðXÞ
provided that C �

X is continuous at A. A continuum X is said to be C �-smooth

provided that C �
X is continuous on CðXÞ, i.e., at each A A CðXÞ.

It is well known that, each arc-like continuum is C �-smooth (see [10,

Theorem 15.13, p. 525]), C �-smoothness implies hereditary unicoherence (see [4,

Corollary 3.4, p. 203] and [10, Note 1, p. 530]). Thus each arcwise connected

C �-smooth continuum is a dendroid (see [10, Theorem 15.19, p. 528]). Further, a

locally connected continuum is C �-smooth if and only if it is a dendrite (see [10,

Theorem 15.11, p. 522]).

Using Remark 2.2, is easy to show the following result.

Theorem 2.4. For a continuum X , the following statements are equivalent:

1) X is C �-smooth;

2) C �
X is a homeomorphism;

3) CðXÞ is homeomorphic to CðX Þ;

189On the hyperspace CðXÞ of continua



4) CðXÞ is a continuum;

5) CðXÞ is compact.

Remark 2.5. Let X be a continuum. The union mapping U : 22
X ! 2X

is the function given by UðAÞ ¼
S

A for each A A 22
X

(see [8, Exercise 11.5,

p. 91]). Denote by UX ¼ UjCðX Þ. Notice that ðC �
X Þ

�1 ¼ UX . In addition, by

[8, Exercise 11.5 (2), p. 91], UX is a continuous function.

Remark 2.6. Let X be a continuum, by Remark 2.5, if fCðAnÞgn AN is a

sequence in CðX Þ converging to a point CðAÞ A CðXÞ, then fAngn AN converges

to A in CðXÞ.

A mapping f : X ! Y between metric spaces is said to be:

– confluent if for each subcontinuum K of Y and for each component M of

f �1ðKÞ, f ðMÞ ¼ K ;

– light if f �1ðyÞ is totally disconnected for each y A Y ;

– monotone if f �1ðyÞ is connected in Y for each y A Y ;

– weakly confluent if for each subcontinuum K of Y , there exists a sub-

continuum M of X such that f ðMÞ ¼ K .

A general study of these mappings can be found in [9].

3. Examples

From Theorem 2.4 and [10, Theorem 15.11, p. 522], we have the following

two corolaries.

Corollary 3.1. Let X be a locally connected continuum. CðX Þ is home-

omorphic to CðXÞ if and only if X is a dendrite.

Corollary 3.2. Let X be a graph. CðXÞ is homeomorphic to CðX Þ if and

only if X is a tree.

Example 3.3. Notice that S1 is C �-smooth in CðAÞ for each A A

CðS1Þ � fS1g, because in this case A is an arc. On the other hand, CðS1Þ is an

isolated point in CðS1Þ, in particular CðS1Þ is not connected and is not compact.

On the contrary, suppose that there exists a sequence fA1gi AN, such that Ai is

an arc contained in S1 for each i A N and fCðAiÞgi AN is a sequence in CðS1Þ
converging to CðS1Þ.
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For each i A N, we denote by ai and bi the end points of Ai. So, we may

assume that faigi AN and fbigi AN both converge to a point p A S1.

Notice that, for each 0 < e < 1, there exists N A N such that ai; bi A

clS 1ðVeðfpgÞÞ \ S1, for all i > N. Thus, by the point

ðclS 1ðVeðfpgÞÞ \ S1Þ A CðS1Þ;

there is not a sequence of elements in each CðAiÞ converging to

clS 1ðVeðfpgÞÞ \ S1:

This is a contradiction, because fCðAiÞgi AN converges to CðS1Þ.
We conclude that, CðS1Þ is homeomorphic to the union of the unit disk D in

the plane R2 minus the point ð0; 0Þ and fqg, where q is any point in R2 �D.

Regarding [4, Corollary 3.4, p. 203], we present the following example.

Example 3.4. Let

T ¼ fðx; 0Þ A R2 : �1a xa 1g [ fð0; yÞ A R2 : 0a ya 1g;

p ¼ ð�1; 0Þ and q ¼ ð1; 0Þ. For each n A N consider:
� an ¼ �1

nþ1 ;
1

nþ1

� �
, bn ¼ 0; 1þ 1

nþ1

� �
, cn ¼ 1

nþ1 ;
1

nþ1

� �
and dn ¼ 1; 1

nþ1

� �
;

� In, Jn, Kn and Ln the linear segments joining p with an, an with bn, bn with

cn and cn with dn, respectively.

Define X ¼ T [ ð
S

n AN In [ Jn [ Kn [ LnÞ. It is clear that X is a hereditarily

unicoherent continuum. The hyperspace CðXÞ is not compact. In fact, if for each

n A N we consider Tn ¼ In [ Jn [ Kn [ Ln, then Tn is an arc and lim Tn ¼ T .

Notice fCðTnÞgn AN does not converge to CðTÞ because

A ¼ ðx; 0Þ A R2 : � 1

2
a xa

1

2

� �
[ ð0; yÞ A R2 : 0a ya

1

2

� �
;

is an element in CðTÞ which is not limit of points An in CðTnÞ.

4. Properties of the Hyperspace CðXÞ

Remark 4.1. The spaces X , ffxg A CðXÞ : x A Xg and fffxgg A CðXÞg are

mutually homeomorphic, for each continuum X .

Proposition 4.2. For each continuum X , intCðCðXÞÞðCðXÞÞ ¼ q.
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Proof. Take A A CðXÞ � fXg. Using [11, Exercise 5.25, p. 85], we can

consider fAngn AN be a sequence in CðX Þ such that lim An ¼ A and A �
Anþ1 �An �X for each n A N. Thus fCðAÞ [ F1ðAnÞgn AN is a sequence in

CðCðXÞÞ � CðXÞ converging to CðAÞ. Hence, CðAÞ B intCðCðX ÞÞðCðXÞÞ. Then,

intCðCðXÞÞðCðXÞÞ � fCðXÞg. Since fCðXÞg is a closed subset in the continuum

CðCðXÞÞ, intCðCðXÞÞðCðX ÞÞ ¼ q. r

Theorem 4.3. Let X be a continuum. Consider the following conditions:

(1) X is locally connected;

(2) CðXÞ is locally connected;

(3) CðXÞ is locally connected.

Then (1) and (2) are equivalent and (3) implies (1) (consequently (3) implies (2)).

Proof. It is well known that (1) and (2) are equivalent (see [7, Exercise 2.17,

p. 28]).

To see (3) implies (2) let p A X and U be an open subset of X contain-

ing p. Notice that hhUii \ CðX Þ is an open subset in CðXÞ containing CðfpgÞ.
By hypothesis there exists W be an open connected subset of CðXÞ such

that

CðfpgÞ � W � clCðX ÞðWÞ � hhUii \ CðXÞ:

By [10, Exercise 15.9 (2), p. 124] we have that W ¼
S
fA : A � clCðCðXÞÞ Wg is a

subcontinuum in CðX Þ, observe that W � hUi. Again, by [10, Excercise 15.9 (2),

p. 124] we obtain that W ¼
S
fA : A A Wg is a subcontiuum of X such that

p A W � U . Using that CðfpgÞ A intCðX Þ W we have that p A intX ðWÞ. So X is

locally connected in p. r

Regarding Theorem 4.3, we present an example that show that (1) does not

imply (3).

Example 4.4. For each n A N, let

Sn ¼ ðx; yÞ A R2 : x� 1

n

� �2

þ y2 ¼ 1

n2

( )
;

and define X ¼
Sy

n¼1 Sn, the continuum known as Hawaiian earring. It is clear

that X is locally connected. We will prove that CðXÞ is not locally connected

in Cðfð0; 0ÞgÞ. Let U be an open subset of CðX Þ containing Cðfð0; 0ÞgÞ. Since

lim CðSnÞ ¼ Cðfð0; 0ÞgÞ, there exists m A N such that CðSmÞ A U. Consider the
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following two disjoint sets

V ¼ fCðAÞ A CðXÞ : Sm 6� Ag;

and

W ¼ fCðAÞ A CðXÞ : Sm � Ag:

Notice that Cðfð0; 0ÞgÞ A V \ U, CðSmÞ A W \ U and CðXÞ ¼ V \W.

On the other hand, if fCðAnÞgn AN is a sequence in CðXÞ converging to

a point CðAÞ A CðX Þ and Sm A CðAnÞ for each n, then Sm A CðAÞ because

lim An ¼ A. Thus, W is closed in CðX Þ.
Whith an idea similar to that given in Example 3.3, we can prove that V is

closed in CðXÞ.
We conclude that U is not connected. So, CðXÞ is not locally connected at

Cðfð0; 0ÞgÞ.

Proposition 4.5. If X and Y are two C �-smooth continua and CðX Þ is

homeomorphic to CðY Þ, then CðX Þ is homeomorphic to CðY Þ.

Proof. Let h : CðXÞ ! CðY Þ be a homeomorphism. Consider ĥh : CðXÞ !
CðY Þ defined by ĥh ¼ C �

Y � h �UX . Since ĥh�1 ¼ C �
X � h�1 �UY , we conclude that ĥh

is a homeomorphism. r

Remark 4.6. In general CðXÞ homeomorphic to CðYÞ does not imply CðXÞ
homeomorphic to CðYÞ. For example, if X ¼ I and Y ¼ S1, CðXÞ and CðY Þ are
both 2-cells and CðX Þ is homeomorphic to CðX Þ but CðYÞ is not homeomorphic

to CðY Þ.

Theorem 4.7. Let X and Y be two continua. If X is C �-smooth and CðXÞ is

homeomorphic to CðY Þ, then CðX Þ and CðYÞ are homeomorphic.

Proof. Let h : CðXÞ ! CðY Þ be a homeomorphism. Notice that ĥh ¼
UY � h � C �

X is a bijective mapping between CðXÞ and CðYÞ. We conclude that

ĥh is a homeomorphism. r

We say that a continuum X has unique hyperspace CðXÞ if for each con-

tinuum Y the condition CðXÞ homeomorphic to CðYÞ implies that X is homeo-

morphic to Y .
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Theorem 4.8. If X is homeomorphic to I or S1, then X has unique

hyperspace CðXÞ.

Proof. Suppose that X ¼ I or X ¼ S1, and let Y be a continuum such that

CðX Þ is homeomorphic to CðY Þ. Since CðX Þ is homeomorphic to unit disk D in

the plane R2 or the union of D minus the point ð0; 0Þ and the set fqg, where q

is any point in R2 �D, then by Theorem 4.3, Y is locally connected, further Y

is arcwise connected. By [8, Theorem 70.1, p. 337], Y does not contain simple

triods. By [11, Proposition 9.5, p. 142], Y is an arc or a simple closed curve.

Since CðIÞ is connected and CðS1Þ is not, we conclude that Y is an arc if X ¼ I ,

or Y is a simple closed curve if X ¼ S1. r

Theorem 4.9. Let X be a continuum. The following conditions are equivalent:

1) X is homeomorphic to ½0; 1�;
2) CðXÞ is homeomorphic to ½0; 1�2;
3) CðXÞ is homeomorphic to ½0; 1�n, for some n A N;

4) CðXÞ is the finite product of locally connected continua.

Proof. 1) implies 2) follows from Corollary 3.1 and Remark 4.6. It is clear

that 2Þ ) 3Þ ) 4Þ hold.

Now, to see that 4) implies 1), notice that CðXÞ is a continuum, thus by

Theorem 2.4, CðXÞ is homeomorphic to CðXÞ. By [10, (10.1)], X is an arc or a

simple closed curve. By Example 3.3, we conclude that X is an arc. r

Using Example 3.3, Theorem 4.8 and [8, Theorem 70.1, p. 337], we have the

following result.

Theorem 4.10. Let X be a continuum. The following conditions are equiv-

alent:

1) X is homeomorphic to S1;

2) CðXÞ is homeomorphic to the union of a unit disk D in the plane R2 minus

the point ð0; 0Þ and fqg, where q is any point in R2 �D;

3) CðXÞ is a locally connected, two-dimensional and nonconnected space.

5. On Induced Function Cð f Þ

Given a mapping f : X ! Y between continua, we consider the induced

mapping Cð f Þ : CðXÞ ! CðY Þ, given by Cð f ÞðAÞ ¼ f ðAÞ for each A A CðXÞ (see
[5]). In a similar way we define the function Cð f Þ : CðX Þ ! CðYÞ, given by
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Cð f ÞðCðAÞÞ ¼ Cð f ðAÞÞ for each CðAÞ A CðXÞ. It is clear that Cð f Þ is well defined
and the following diagrams

CðXÞ ���!Cð f Þ
CðY Þ

C �
X

???y
???yC �

Y

CðXÞ ���!
Cð f Þ

CðY Þ

and

CðXÞ ���!Cð f Þ
CðY Þ

UX

???y
???yUY

CðXÞ ���!
Cð f Þ

CðY Þ

are commutative.

We begin with some simple results.

Theorem 5.1. Let f : X ! Y be a mapping between continua. Then the

following conditions are equivalent:

(1) f is 1-1;

(2) Cð f Þ is 1-1;

(3) Cð f Þ is 1-1.

Theorem 5.2. Let f : X ! Y be a mapping between continua. Then the

following conditions are equivalent:

(1) f is weakly confluent;

(2) Cð f Þ is surjective;

(3) Cð f Þ is surjective.

Example 5.3. In general, if f is a continuous function between continua

it is not necessarily true that Cð f Þ is a continuos function. For example, let

f : ½0; 1� ! S1, given by f ðxÞ ¼ ðcos 2px; sin 2pxÞ. Notice that f is a mapping,

but Cð f Þ is not a continuous function because C 1
n
; 1� 1

n

� 	
 �� 

n AN

converges to

Cð½0; 1�Þ in Cð½0; 1�Þ because ½0; 1� is C �-smooth and

Cð f Þ C
1

n
; 1� 1

n

� �� �� �� �
n AN

¼ C f
1

n
; 1� 1

n

� �� �� �� �
n AN

;

does not converge to CðS1Þ in CðS1Þ (see Example 3.3).
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Theorem 5.4. Let f : X ! Y be a mapping between continua. Then the

following conditions are equivalent:

(1) f is a homeomorphism;

(2) Cð f Þ is a homeomorphism;

(3) Cð f Þ is a homeomorphism.

Proof. Conditions (1) and (2) are equivalent by [2, Theorem 3.11, p. 199].

To see (2) implies (3), by Theorems 5.1 and 5.2, Cð f Þ is a surjective function.

To show the continuity of Cð f Þ, let fCðAnÞgn AN be a sequence in CðXÞ con-

verging to CðAÞ A CðXÞ. It su‰ces to show that lim sup
n!y

Cð f ðAnÞÞ � Cð f ðAÞÞ �
lim inf
n!y

Cð f ðAnÞÞ.
Let B A lim sup

n!y
Cð f ðAnÞÞ, thus there is a sequence fnkgk AN in N such

that for each k A N there exists Bnk A Cð f ðAnk ÞÞ and lim Bnk ¼ B. Since Cð f Þ
is a homeomorphism, lim Cð f Þ�1ðBnk Þ ¼ Cð f Þ�1ðBÞ, i.e., lim f �1ðBnk Þ ¼ f �1ðBÞ.
Notice that f �1ðBnk Þ A CðAnk Þ and f �1ðBÞ A CðX Þ, therefore f �1ðBÞ A CðAÞ and

then B A Cð f ðAÞÞ.
On the other hand, if E A Cð f ðAÞÞ, then f �1ðEÞ A CðAÞ. For each n A N,

let En A CðAnÞ such that lim En ¼ f �1ðEÞ. By hypothesis, lim Cð f ÞðEnÞ ¼
Cð f Þð f �1ðEÞÞ ¼ E. Thus, E A lim inf

n!y
Cð f ðAnÞÞ. We conclude that Cð f ÞðAÞ �

lim inf
n!y

Cð f ðAnÞÞ.
(3) implies (1) follows from Theorems 5.1 and 5.2. r

Proposition 5.5. If f : X ! Y is a mapping between continua and Y is

C �-smooth, then Cð f Þ is continuous.

Proof. This proposition follows from the fact that

Cð f Þ ¼ C �
Y � Cð f Þ �UX : r

The following result is immediate from Theorem 5.4.

Corollary 5.6. C �-smoothness is a topological property.

Definition 5.7. A mapping f : X ! Y is said to be C-mapping if Cð f Þ is

a mapping.

By the class of monotone mappings we have the following theorem.
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Theorem 5.8. Let f : X ! Y be a surjective C-mapping between continua.

Consider the following conditions:

(1) f is monotone;

(2) Cð f Þ is monotone;

(3) Cð f Þ is monotone.

Then (1) and (2) are equivalent, and (3) implies (2).

Proof. It is known that (1) and (2) are equivalent (see [6, Theorem 3.2,

p. 241]).

Now, suppose that Cð f Þ is monotone and let B A CðYÞ. Notice that

Cð f Þ�1ðCðBÞÞ is a connected set in CðX Þ. Thus

Cð f Þ�1ðBÞ ¼ UX ðCð f Þ�1ðCðBÞÞÞ

is a connected set in X . Then (3) implies (2). r

Regarding Theorem 5.8, we have that (1) does not imply (3).

Example 5.9. Let

X ¼ S1 [ fðx; 0Þ A R2 : 1a xa 2g;

Y ¼ fðx; 0Þ A R2 : 1a xa 2g

and f : X ! Y be the quotient mapping such that f ðS1Þ ¼ fð1; 0Þg and the

identity in Y . Notice that f is a monotone C-mapping by Proposition 5.5. Since

Cð f Þ�1ðCðfð0; 1ÞgÞÞ ¼ CðS1Þ, we have that Cð f Þ is not monotone.

Theorem 5.10. Let f : X ! Y be a monotone C-mapping between continua,

if X is C �-smooth then Cð f Þ is monotone.

Proof. It follows from the fact that, for each CðBÞ A CðYÞ we have

that

Cð f Þ�1ðCðBÞÞ ¼ C �
X ðCð f Þ�1ðBÞÞ: r

With respect the class of confluent mappings we have the following results.

Theorem 5.11. Let f : X ! Y be a C-mapping between continua. Consider

the following conditions:
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(1) f is confluent;

(2) Cð f Þ is confluent;

(3) Cð f Þ is confluent.

Then each of (2) and (3) implies (1).

Proof. It is known that (2) implies (1) (see [6, Theorem 6.3, p. 246]).

To see (3) implies (1), suppose that Cð f Þ is confluent and let B A CðYÞ and K

be a component of f �1ðBÞ.
Consider B ¼ fffxgg : x A Bg � CðY Þ. It is clear that B is a subcontinuum

of CðY Þ. Choose any point p A K . Notice that ffpgg A Cð f Þ�1ðBÞ. Let K be

the component of Cð f Þ�1ðBÞ containing ffpgg. Observe that
S
fA A CðX Þ :

CðAÞ A Kg ¼ K . In fact, since

UX ðKÞ ¼ fA A CðXÞ : CðAÞ A Kg;

and UX is a mapping and fpg A UX ðKÞ, by [6, Lemma 3.1, p. 241],
S
fA A CðX Þ :

CðAÞ A Kg is a connected set contained in f �1ðBÞ cointaining p, then[
fA A CðXÞ : CðAÞ A Kg � K ;

therefore
S
fA A CðXÞ : CðAÞ A Kg ¼ K because fffkgg : k A Kg � K. It is clear

that f ðKÞ � B. Let x A B. Since Cð f Þ is confluent, there exists CðDÞ A K such that

Cð f ÞðCðDÞÞ ¼ ffxgg. Thus there exists d A D �
S
fA A CðX Þ : CðAÞ A Kg ¼ K

such that f ðdÞ ¼ x. We conclude that f ðKÞ ¼ B. r

Regarding Theorem 5.11, (1) and (2) are equivalent when Y is locally

connected (see [6, Theorem 6.3, p. 246]), and (1) does not imply (2) (see [6,

p. 247]).

Theorem 5.12. Let f : X ! Y be a C-mapping between continua, if X is

C �-smooth and Cð f Þ is confluent, then Cð f Þ is confluent.

Proof. Let B be a subcontinuum of CðYÞ and D be a component of

Cð f Þ�1ðBÞ. Since X is C �-smooth, we have that UX ðDÞ is a component of

Cð f Þ�1ðUY ðBÞÞ. Thus, using that Cð f Þ is confluent, we obtain that Cð f ÞðDÞ ¼
B. r

Example 5.13. Let X ¼ S1, Y ¼ ½�1; 1� and f : X ! Y the projection onto

the first coordinate. By [6, Theorem 6.3, p. 246], Cð f Þ is confluent and by

Proposition 5.5 Cð f Þ is a mapping. Is clear that Cð f Þ�1ðCðYÞÞ ¼ CðXÞ and
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fCðX Þg is a component of Cð f Þ�1ðCðY ÞÞ. Notice that Cð f ÞðfCðXÞgÞ ¼ fCðYÞg
0CðY Þ and then Cð f Þ is not confluent.

Theorem 5.14. Let f : X ! Y be a mapping between continua. If Y is

C �-smooth and Cð f Þ is confluent then Cð f Þ is confluent.

Proof. Let A be a subcontinuum of CðY Þ and B be a component of

Cð f Þ�1ðAÞ. Using that Y is C �-smooth, we have that C �
Y ðAÞ is a subcontinuum

of CðYÞ. Notice that C �
X ðBÞ � Cð f Þ�1ðC �

Y ðAÞÞ, thus there exists D a component

of Cð f Þ�1ðC �
Y ðAÞÞ such that D \ C �

X ðBÞ0q. Since UX ðDÞ is a connected set

contained in Cð f Þ�1ðAÞ and B \UX ðDÞ0q, we conclude that UX ðDÞ � B.

The fact that Cð f ÞðDÞ ¼ C �
Y ðAÞ implies that Cð f ÞðBÞ ¼ A. r

Theorem 5.15. Let f : X ! Y be a C-mapping between continua. Consider

the following conditions:

(1) f is weakly confluent;

(2) Cð f Þ is weakly confluent;

(3) Cð f Þ is weakly confluent.

Then each of (2) and (3) implies (1).

Proof. If Cð f Þ or Cð f Þ are weakly confluent, then Cð f Þ is surjective which

is equivalent to the weak confluence of f . r

Regarding Theorem 5.15, (1) does not imply (2) (see [3, Example 6.8,

p. 149]).

With similar proofs to those of Theorems 5.12 and 5.14, we have the

following two results.

Corollary 5.16. Let f : X ! Y be a C-mapping between continua, if X is

C �-smooth and Cð f Þ is weakly confluent, then Cð f Þ is weakly confluent.

Corollary 5.17. Let f : X ! Y be a mapping between continua. If Y is

C �-smooth and Cð f Þ is weakly confluent then Cð f Þ is weakly confluent.

For the class of light mappings we have the following results.

Theorem 5.18. Let f : X ! Y be a C-mapping. Consider the following

conditions:
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(1) f is light;

(2) Cð f Þ is lightv;

(3) Cð f Þ is light.

Then (2) implies (3) and (3) implies (1). Consequently (2) implies (1).

Proof. To see (2) implies (3), suppose on the contrary that there exists

CðBÞ A CðYÞ and D is a nondegenerated component of Cð f Þ�1ðDÞ. Since UX is

a bijective mapping, UX ðDÞ is a nondegenerate connected subset of Cð f Þ�1ðBÞ,
which is a contradiction.

On the other hand, to see (3) implies (1), let X ¼ fffxgg A CðXÞ : x A Xg and

notice that X is homeomorphic to X , so Cð f ÞjX is light and

Cð f ÞðYÞ ¼ fffygg A CðYÞ : y A Yg:

Consider the homeomorphisms g : X ! X and h : Cð f ÞðYÞ ! Y , given by

gðxÞ ¼ ffxgg and hðffyggÞ ¼ y for each x A X and y A Y , respectively. Since

f ¼ h � Cð f ÞjX � g, we conclude that f is light. r

Regarding Theorem 5.18, (1) does not imply (2) (see [1, Theorem 3.10,

p. 184]).

Theorem 5.19. If f : X ! Y is a C-mapping, X is C �-smooth and Cð f Þ is

light, then Cð f Þ is light.

Proof. On the contrary, suppose that there exists B A CðYÞ and D is

a nondegenerated componnent of Cð f Þ�1ðBÞ. Notice that C �
X ðDÞ is a non-

degenerated connected set contained in Cð f Þ�1ðCðBÞÞ which is a contradiction.

Then Cð f Þ is light. r

By [1, Theorem 3.7, p. 183] and Theorems 5.18 and 5.19, we have the

following result.

Corollary 5.20. Let f : X ! Y be a C-mapping. If X is C �-smooth, then

the following conditions are equivalent:

(1) Cð f Þ is light;

(2) for every A;B A CðX Þ the condition A � B implies the condition

f ðAÞ � f ðBÞ;
(3) Cð f Þ is light;

(4) for every CðAÞ;CðBÞ A CðX Þ the condition CðAÞ � CðBÞ implies the con-

dition Cð f ÞðCðAÞÞ � Cð f ÞðCðBÞÞ.
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[ 8 ] A. Illanes and S. B. Nadler, Jr., Hyperspaces, Fundamentals and Recent Advances, Pure and

Applied Mathematics, New York: Marcel Dekker, Inc., 1999.
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