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REFINED VERSION OF HASSE’S SATZ 45

ON CLASS NUMBER PARITY

By

Humio Ichimura

Abstract. For an imaginary abelian field K , Hasse [3, Satz 45]

obtained a criterion for the relative class number to be odd in terms

of the narrow class number of the maximal real subfield Kþ and

the prime numbers which ramify in K , by using the analytic class

number formula. In [4], we gave a refined version (¼ ‘‘D-decomposed

version’’) of Satz 45 by an algebraic method. In this paper, we give

one more algebraic proof of the refined version.

1. Introduction

For a number field N, let hN denote the class number of N. When N is an

imaginary abelian field with the maximal real subfield Nþ, we write hþN ¼ hNþ

and put h�N ¼ hN=h
þ
N . Further, let

~hhþN be the class number of Nþ in the narrow

sense. Let k=Q be an imaginary abelian extension of 2-power degree, and F=Q

a real abelian extension with 2F ½F : Q�, and put K ¼ Fk. In [3, Satz 45], Hasse

proved the following theorem.

Theorem 1. Under the above setting, assume further that the extension K=Q

is cyclic. Then h�K is odd if and only if (i) ~hhþK is odd, (ii) exactly one prime number

ramifies in k=Q, say p, and (iii) the prime number p does not split in F=Q.

When F ¼ Q, we immediately obtain the following corollary from Satz 45 and

Washington [11, Theorem 10.4(b)].

Corollary 1. For an imaginary cyclic extension k=Q of 2-power degree, h�k
is odd if and only if exactly one prime number ramifies in k.
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In what follows, we do not assume that K=Q is cyclic. Using class field

theory, we can easily show that the ratios h�K=h
�
k and ~hhþK=

~hhþk are integers. In

view of the above results, one is naturally interested in the parity of h�K=h
�
k , which

is the subject of this note.

Hasse proved Theorem 1 heavily using the analytic class number formula.

Recently, Conner and Hurrelbrink [2, Theorem 13.8] gave a purely algebraic

proof of Theorem 1 using (i) their exact hexagon involving the cohomology

groups HiðK=Kþ;MÞ with i ¼ 0; 1 where M is the group of units or the ideal

class group of K and (ii) some fundamental properties of local norm residue

symbols. In [4, Corollary 2], sharpening the method in [2], we obtained the

following refined version of Theorem 1.

Let D ¼ GalðF=QÞ ¼ GalðK=kÞ. For a number field N, we denote by AN

and AN;y the 2-parts of the ideal class group and the narrow class group of

N, respectively. We put A ¼ AK , Aþ ¼ AKþ and Aþ
y ¼ AKþ;y for brevity. We

define the minus class group A� ¼ A�
K to be the kernel of the norm map

A ! Aþ. We regard the above groups as modules over the group ring Z2½D�.
Let j be a nontrivial Q2-valued character of D, which we often regard as a

primitive Dirichlet character. Here, Z2 denotes the ring of 2-adic integers and Q2

a fixed algebraic closure of the 2-adic rationals Q2. For a Z2½D�-module X , XðjÞ
denotes the j-component of X . (See § 2, for the definition of the j-component.)

Let S be the set of prime numbers p such that a prime divisor of kþ over p

ramifies in k.

Theorem 2. Under the above setting, we have A�ðjÞ ¼ f0g if and only if (i)

Aþ
yðjÞ ¼ f0g and (ii) jðpÞ0 1 for any prime number p A S.

Corollary 2. The ratio h�K=h
�
k is odd if and only if (i) the ratio ~hhþK=

~hhþk is

odd and (ii) no prime number p in S splits in F .

The main purpose of this paper is to give one more algebraic proof of

Theorem 2 using a classical reflection argument. Further, we apply Theorem 2 to

show that the 2-part of the class group of the cyclotomic Z2-extension over a

certain imaginary abelian field is trivial (Theorem 3). We show Theorem 2 in § 4

after some preliminaries in § 2 and 3. In § 5, we show Theorem 3.

Remark. In some cases, there are two di¤erent proofs for an assertion

on the 2-part of the ideal class group. For instance, a theorem of Armitage
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and Fröhlich [1] was generalized by Taylor [10] and Oriat [9] in two di¤erent

ways. Taylor used some properties of norm residue symbols, while Oriat used a

reflection argument. Recently, we gave in [5, Theorem 2] an alternative proof of

[10, Assertion ð�Þ] using a reflection argument. This paper gives another instance

of two di¤erent proofs.

2. Kummer Duality

Let D be a finite abelian group whose order is odd. Let j be a Q2-valued

character of D of order d ¼ dj. Denote by ej the idempotent of the group ring

Z2½D� corresponding to j:

ej ¼
1

jDj
X

d AD

Trðjðd�1ÞÞd:

Here, Tr is the trace map from Q2ðzdÞ to Q2, zd being a primitive dth root of

unity. For a module X over Z2½D�, we denote by XðjÞ the j-component X ej

(or ejX ). Let Oj ¼ Z2½j� be the subring of Q2 generated by the values of j over

Z2. Then the j-component X ðjÞ is naturally regarded as an Oj-module. We

choose a complete set G ¼ GD of representatives of the Q2-conjugacy classes of

the Q2-valued characters of D. Then we have a canonical decomposition

X ¼ 0
j

XðjÞ

where j runs over the characters in G.

Let T=N be an abelian extension over a number field N with 2F ½T : N�, and
let D ¼ GalðT=NÞ. Let L=T be a pro-2 abelian extension which is Galois over N.

Let G ¼ GalðL=TÞ. Then we can naturally regard G as a module over Z2½D�.
For a character j A G ¼ GD, we denote by LðjÞ the intermediate field of L=T

corresponding to 0 0
c
GðcÞ by Galois theory where c runs over the characters

in G with c0 j. Then we have a natural isomorphism GalðLðjÞ=TÞGGðjÞ of

Z2½D�-modules.

Now, assume that the extension L=T is of exponent 2. Let V be the

subgroup of T�=ðT�Þ2 such that L ¼ Tðv1=2 j ½v� A VÞ. Here, for a multiplicative

abelian group X and an element x A X , ½x� denotes the class in X=X 2 con-

taining x. We can naturally regard V as a module over Z2½D�. The Kummer

pairing

V � G ! m2 ¼ fG1g; ð½v�; gÞ 7! hv; gi ¼ ðv1=2Þg�1
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is nondegenerate and satisfies a relation hvd; gdi ¼ hv; gi for ½v� A V , g A G and

d A D. Because of this relation, the pairing induces a nondegenerate subpairing

Vðj�1Þ � GðjÞ ! m2:

Thus, we obtain the following lemma, which we repeatedly use in this paper.

Lemma 1. Under the above setting, the Galois group GalðLðjÞ=TÞ is can-

onically isomorphic to GðjÞ as Z2½D�-modules, and

LðjÞ ¼ Tðv1=2 j ½v� A Vðj�1ÞÞ:

3. Lemmas

We use the same notation as in Theorem 2. In particular, j is a nontrivial

Q2-valued character of D ¼ GalðF=QÞ ¼ GalðK=kÞ. For a number field N, ON

denotes the ring of integers of N. Let E ¼ EKþ ¼ O�
Kþ be the group of units of

Kþ. We put Pþ ¼ Galðkþ=QÞ so that GalðKþ=QÞ ¼ Pþ � D. We put

X ¼ ðKþÞ�=ððKþÞ�Þ2

for brevity.

Lemma 2. Under the above setting, if Aþ
yðjÞ is trivial, then both of AþðjÞ

and Aþðj�1Þ are trivial.

Proof. Let Kþ
>0 be the subgroup of ðKþÞ� consisting of totally positive

elements. Let Eþ ¼ E VKþ
>0, and E0 be the subgroup of E consisting of units e

satisfying the congruence e1 u2 mod 4 for some u A Kþ. We have a natural

exact sequence

f0g ! ðKþÞ�=EKþ
>0 ! Aþ

y ! Aþ ! f0g ð1Þ

compatible with the action of D. We see that ððKþÞ�=EKþ
>0ÞðjÞ is trivial if and

only if ðEþ=E
2ÞðjÞ is trivial. This is because (i) the Galois module ðKþÞ�=Kþ

>0

is isomorphic to F2½Pþ � D� via the sign map, and (ii) the OF -module ðE=E2ÞðjÞ
is isomorphic to ðOj=2OjÞlr with r ¼ jPþj by a theorem of Minkowski on units

of a Galois extension (cf. Narkiewicz [8, Theorem 3.26a]). Here, F2 is a finite field

of 2 elements. Since Aþ
yðjÞ is trivial, it follows from (1) that AþðjÞ ¼ f0g and

ððKþÞ�=EKþ
>0ÞðjÞ ¼ f0g. From the latter, it follows that

ðEþ=E
2ÞðjÞ ¼ f0g: ð2Þ
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Let H be the class field of Kþ corresponding to the class group Aþ=Aþ2, and V

the subgroup of X such that H ¼ Kþðv1=2 j ½v� A VÞ. We see that

ðEððKþÞ�Þ2=ððKþÞ�Þ2ÞVV ¼ ðEþ VE0ÞððKþÞ�Þ2=ððKþÞ�Þ2

¼ ðEþ VE0Þ=E2 ð3Þ

by using Exercise 9.3 of Washington [11]. For each ½v� in V , we have vOKþ ¼ A2

for some ideal A of Kþ. By mapping ½v� to the ideal class ½A�, we obtain from (3)

the following Kummer sequence

f0g ! ðEþ VE0Þ=E2 ! V ! Aþ;

which is compatible with the action of D. Assume that Aþðj�1Þ is nontrivial.

Then it follows from Lemma 1 that VðjÞ is nontrivial. However, as AþðjÞ is

trivial, we see from the above Kummer sequence that ððEþ VE0Þ=E2ÞðjÞ is non-

trivial, and hence ðEþ=E
2ÞðjÞ is nontrivial. This contradicts (2). r

In [4, Lemma 2], we showed the following assertion by e¤ectively using the

nontriviality of j.

Lemma 3. Under the above setting, the natural map AþðjÞ ! AðjÞ is

injective.

We define subgroups Aþ and A of Aþ and A, respectively, by

Aþ ¼ 0
j

0
AþðjÞ and A ¼ 0

j

0
AðjÞ

where j runs over the nontrivial characters in G ¼ GD. By Lemma 3, we can

regard Aþ as a subgroup of A. Then we put

A� ¼ A=Aþ;

which we naturally regard as a Z2½D�-module. Let j0 be the trivial character

of D. Though the structures of the two minus class groups A�=A�ðj0Þ and A�

are slightly di¤erent in general, we can easily show that jA�ðjÞj ¼ jA�ðjÞj. In

particular, A�ðjÞ is trivial if and only if A�ðjÞ is trivial. Let M=K , M�=K

and Mþ
y=Kþ be the class fields corresponding to the class groups A, A� and

Aþ
y, respectively. Regarding the Galois groups GalðM=KÞ, GalðM�=KÞ and
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GalðMþ
y=KþÞ as modules over D ¼ GalðK=kÞ ¼ GalðKþ=kþÞ, we define the

intermediate fields MðjÞ, M�ðjÞ and Mþ
yðjÞ as in Section 2 for each nontrivial

character j A G. In other words, MðjÞ=K , M�ðjÞ=K and Mþ
yðjÞ=Kþ are the

class fields corresponding to AðjÞ, A�ðjÞ and Aþ
yðjÞ, respectively.

Lemma 4. If A�ðjÞ is trivial, then Aþ
yðjÞ is trivial.

Proof. First, we show that AþðjÞ ¼ f0g using an argument in [7]. Because

of Lemma 3 and the definition of A�, we see that A�ðjÞ is the subgroup of AðjÞ
consisting of classes c with cJ ¼ c�1. Here, J denotes the complex conjugation.

Let Bþ be the elements c of AþðjÞ ðJAðjÞÞ with c2 ¼ 1. For each c A Bþ, we

have cJ ¼ c ¼ c�1. It follows that Bþ JA�ðjÞ. As A�ðjÞ ¼ f0g, this implies that

AþðjÞ ¼ f0g. It follows that AðjÞ ¼ f0g and hence MðjÞ ¼ K . Now assume

that Aþ
yðjÞ is nontrivial. Then there exists a quadratic subextension N0=K

þ

of Mþ
yðjÞ=Kþ. We see that N0 VK ¼ Kþ because j is nontrivial. Therefore, it

follows that N0K=K is an unramified quadratic extension contained in MðjÞ,
which is a contradiction. r

4. Proof of Theorem 2

We use the same notation as in the previous sections. Replacing F with the

abelian field corresponding to ker j, we may as well assume that the Galois

group D ¼ GalðF=QÞ is cyclic, and j : D ! Q�
2 is injective. Further, we put

c ¼ j�1

for simplicity. Let h0 (resp. h1) be the 2-part (resp. odd part) of the class number

hK of K , and h 0
0 the least common multiple of h0 and 2. We choose an ele-

ment ~eej A Z½D� so that ~eej 1 ej mod h 0
0 and the coe‰cients of ~eej are multiple

of h1. We choose ~eec A Z½D� in a similar way. We fix an element d A ðkþÞ� such

that

k ¼ kþðd 1=2Þ:

Proof of the ‘‘only if ’’-part. Assume that A�ðjÞ ¼ f0g. By Lemma 4, we

already know that Aþ
yðjÞ ¼ f0g. Hence, it su‰ces to show that jðpÞ0 1 for any

prime number p in S. Assume that jðpÞ ¼ 1 for some p A S. Let } be a prime

ideal of kþ over p. As j is injective, the assumption jðpÞ ¼ 1 implies that } splits

completely in Kþ. We choose a prime ideal P of Kþ over }. As Aþ
yðjÞ ¼ f0g, it

follows from Lemma 2 that AþðjÞ ¼ f0g. Hence, we have P~eej ¼ pOKþ for some
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element p in Kþ. The ideal P~ee2j is not a square of an ideal of Kþ because

~ee2j 1 ej 2 0 mod 2 and } splits completely in Kþ. In particular, p~eej is not a

square in ðKþÞ�. Let

Nc ¼ Kþððp~eejÞ1=2Þ:

From the above, Nc=K
þ is a quadratic extension. As j is nontrivial, we see

that Nc VK ¼ Kþ.

Let ~PP be the prime ideal of K over P. As p A S, we have P ¼ ~PP2. We have

AðjÞ ¼ f0g since A�ðjÞ and AþðjÞ are both trivial. Hence, ~PP~eej ¼ xOK for some

x A K�. It follows that p ¼ ex2 for some unit e of K . Thus, we see that

NcK ¼ Kððp~eejÞ1=2Þ ¼ Kððe~eejÞ1=2Þ

and that this is a ð2; 2Þ-extension over Kþ. Let J A GalðK=KþÞ be the complex

conjugation. Then, as NcK=Kþ is a Galois extension, we see that ðe~eejÞJ ¼ e~eejh2

for some unit h of K . Hence, we can extend the automorphism J to that of

NcK by

~JJ : ðe~eejÞ1=2 7! ðe~eejÞ1=2h:

Since NcK=Kþ is a ð2; 2Þ-extension, ~JJ 2 is the trivial automorphism and hence

we obtain hhJ ¼ 1. It follows that ðe~eejhÞJ ¼ e~eejh, and hence x ¼ e~eejh A ðKþÞ�.
We see that h is a root of unity in K by the relation hhJ ¼ 1 and a theorem

([11, Theorem 4.12]) on units of a CM field. Hence, Kððh~eejÞ1=2Þ=Q is an abelian

extension. However, since j is nontrivial, we observe using Lemma 1 that this

extension would be non-abelian if the class ½h~eej � in K�=ðK�Þ2 were nontrivial.

Therefore, it follows that the class ½h~eej � is trivial and hence

NcK ¼ Kððe~ee2j Þ1=2Þ ¼ Kððx~eejÞ1=2Þ:

Then we obtain p~eej ¼ x~eejy2 or ðdxÞ~eejy2 for some y A ðKþÞ�. As j is nontrivial

and d A ðkþÞ�, we see that d~eej is a square in ðkþÞ�. Hence, P~ee2j ¼ p~eejOKþ is a

square of a principal ideal of Kþ. This is a contradiction. r

To prove the ‘‘if ’’-part, we need to show two more lemmas.

Lemma 5. Let D0 be a nontrivial subgroup of D, and let k ¼ kD=D0
be the

restriction map Z2½D� ! Z2½D=D0�. Then we have kðejÞ ¼ 0.

Proof. We have
P

d AD0
jðdÞ ¼ 0 since D0 is nontrivial and j is injective.

The assertion follows from this. r
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Lemma 6. Let P be a prime ideal of Kþ, and } ¼ PV kþ and p ¼ }VQ. If

jðpÞ0 1 and AþðjÞ ¼ f0g, then P~ee2j ¼ x2OKþ for some x A ðKþÞ�.

Proof. Let F0 be the decomposition field of p at F=Q, and D0 ¼
GalðF=F0Þ. As jðpÞ0 1, D0 is a nontrivial subgroup of D. We put Kþ

0 ¼ F0k
þ

and P0 ¼ PVKþ
0 . Since P0 remains prime in Kþ, we see that P~eej ¼ P

kð~eejÞ
0 OKþ

where k ¼ kD=D0
is the restriction map in Lemma 5. By Lemma 5, we have

kð~eejÞ1 0 mod 2, and hence P~eej ¼ A2 for some ideal A of Kþ. It follows that

P~ee2j ¼ ðA~eejÞ2. As AþðjÞ ¼ f0g, A~eej is principal, and hence the assertion follows.

r

Proof of the ‘‘if ’’-part. Assume that (i) Aþ
yðjÞ ¼ f0g and that (ii)

jðpÞ0 1 for any prime number p A S. Then we have

AþðcÞ ¼ f0g

by Lemma 2. To show the assertion, assume to the contrary that A�ðjÞ is

nontrivial. Then the extension M�ðjÞ=K is nontrivial. Let u be an arbitrary

infinite prime divisor of Kþ. By using an argument in Iwasawa [6] (or in

pp. 186–187 of [11]), we see that there exists a quadratic extension N0 ¼
Kþðw1=2Þ=Kþ with w A Kþ which is unramified at u and satisfies N0K JM�ðjÞ.
In particular, N0 VK ¼ Kþ. Let v ¼ w~eec and N ¼ Kþðv1=2Þ. Then we see that

NK ¼ N0KJM�ðjÞ from Lemma 1 and that NK=Kþ is a ð2; 2Þ-extension. Since
the extension N=Kþ is unramified outside S and y, we can write

vOKþ ¼
Y

P

PaPA2

for some ideal A of Kþ. Here, P runs over the prime ideals of Kþ with

PVQ A S, and aP ¼ 0 or 1. As ½v� A XðcÞ, we may as well replace the Kummer

generator v with v
~ee2
c . Then, since AþðcÞ ¼ f0g and cðpÞ0 1 for any p A S, it

follows from Lemma 6 that vOKþ ¼ x2OKþ for some x A ðKþÞ�. Therefore, we

have

N ¼ Kþðe1=2Þ ¼ Kþððe~eecÞ1=2Þ

for some unit e of Kþ with ½e� A ðE=E 2ÞðcÞ. It follows that N=Kþ is unramified

outside y and S V f2g. Therefore, when 2 B S or N=Kþ is unramified at 2,

N=Kþ is unramified outside y, and hence NJMþ
yðjÞ. Thus, we see that Aþ

yðjÞ
is nontrivial, which is a contradiction.
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Assume that 2 A S and that there is a prime ideal P of Kþ over 2 which

ramifies in N. Since k ¼ kþðd 1=2Þ, the quadratic subfields of the ð2; 2Þ-extension
NK=Kþ are K , N and

N 0 ¼ KþððdeÞ1=2Þ ¼ Kþððde~eecÞ1=2Þ:

Since NK=K is unramified at P, and K=Kþ and N=Kþ are ramified at P,

the third extension N 0=Kþ is unramified at P. Therefore, ordPðdÞ is even. This

means that ord}ðdÞ is even as ½Kþ : kþ� is odd, where } ¼ PV kþ. Then, re-

placing d with dy2 for some y A ðkþÞ�, we may as well assume that ðd;PÞ ¼ 1.

Since N 0=Kþ is unramified at P, we have de~eec 1 u2 mod P2e for some u A Kþ by

Exercise 9.3 of [11]. Here, e is the ramification index of P over Q. Let D0 be the

decomposition group of the prime 2 at F=Q. Let c0 ¼ cjD0
and define ec0

and ~eec0

similarly to ec and ~eec. Since P is stable under the action of D0, we have

ðde~eecÞ~eec0 1 v2 mod P2e

for some v A ðKþÞ�. As cð2Þ0 1, D0 is nontrivial and hence d~eec0 is a square in

kþ. Further, we have ~eec~eec0
1 ~eec mod 2 as ecec0

¼ ec. Therefore, we see that

e~eec 1w2 mod P2e for some w A ðKþÞ�. This implies that N=Kþ is unramified at

P, a contradiction. r

5. Cyclotomic Z2-extension

Let F , D and j be as in the previous sections. For an integer nb 0, let

kn ¼ Qðz2 nþ2Þ, Kn ¼ Fkn, Fn ¼ Kþ
n and Bn ¼ kþ

n . As in the previous sections, we

identify D with GalðKn=knÞ and GalðFn=BnÞ. We write j@ j�1 when j and j�1

are conjugate over Q2. It is well known that the class groups ABn;y and A�
kn

are

trivial for all nb 0. We generalize this fact as follows.

Theorem 3. Under the above setting, assume that

ðC1Þ j@ j�1; ðC2Þ jð2Þ0 1; ðC3Þ AF ðjÞ ¼ f0g:

Then the class groups AFn;yðjÞ and A�
Kn
ðjÞ are trivial for all nb 0.

Proof. We write An;y ¼ AFn;y for brevity. By virtue of Theorem 2 (and

the assumption (C2)), the triviality of A�
Kn
ðjÞ follows from that of An;yðjÞ. The

assumption (C1) implies that

X ðjÞ ¼ Xðj�1Þ ð4Þ
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for a Z2½D�-module X . Further, it follows from the assumptions (C1) and (C3)

that A0;yðjÞ ¼ f0g by [9, Théorème 2]. To show Theorem 3, assume to the

contrary that An;yðjÞ0 f0g for some nb 1. Let Mn;yðjÞ=Fn be the class field

corresponding to ðAn;y=A2
n;yÞðjÞ. The cyclic extension Fn=F is of degree 2n and

unramified outside 2. Hence, using an argument in [6], we see that there exists

a quadratic extension N 0 ¼ F ðw1=2Þ=F unramified at some prime ideal of F over

2 with N 0Fn JMn;yðjÞ. In particular, we have N 0 VFn ¼ F . Put v ¼ w~eej , and

N ¼ Fðv1=2Þ. Then, we see from Lemma 1 and (4) that NFn ¼ N 0Fn JMn;yðjÞ
and N VFn ¼ F . Clearly, N=F is unramified outside 2y. Using Lemma 6 and

(C2), (C3), we can show that N ¼ F ðe1=2Þ for some unit e of F with ½e� A
ðE=E2ÞðjÞ by an argument similar to that in the proof of the ‘‘if part’’ of

Theorem 2. Here, E ¼ O�
F .

We already know that the narrow class group A0;yðjÞ is trivial. Hence, the

quadratic extension N=F is ramified at some prime ideal P of F over 2. We

define an integer pj of Fj inductively by p0 ¼ 2 and pj ¼ 2þ ffiffiffiffiffiffiffiffiffi
pj�1

p
for jb 1.

Then pj is a local parameter of each prime ideal of Fj over 2 and Fjþ1 ¼ Fjðp1=2
j Þ.

Since NFn=Fn is unramified at 2, there exists some j with 0a ja n� 1 such

that NFj=Fj is ramified and NFjþ1=Fjþ1 is unramified at the primes ideals over P.

This implies that the intermediate extension FjððepjÞ1=2Þ=Fj of the ð2; 2Þ-extension
NFjþ1=Fj is unramified at the primes ideals over P. However, this is impossible

because e is a unit and pj is a local parameter of the prime ideals of Fj over 2.

r
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