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REFINED VERSION OF HASSE’S SATZ 45
ON CLASS NUMBER PARITY

By

Humio IcHIMURA

Abstract. For an imaginary abelian field K, Hasse [3, Satz 45]
obtained a criterion for the relative class number to be odd in terms
of the narrow class number of the maximal real subfield K+ and
the prime numbers which ramify in K, by using the analytic class
number formula. In [4], we gave a refined version (= “A-decomposed
version”) of Satz 45 by an algebraic method. In this paper, we give
one more algebraic proof of the refined version.

1. Introduction

For a number field N, let iy denote the class number of N. When N is an
imaginary abelian field with the maximal real subfield N*, we write i} = hy+
and put hy = hy/hj;. Further, let A be the class number of N* in the narrow
sense. Let k/Q be an imaginary abelian extension of 2-power degree, and F/Q
a real abelian extension with 2 4 [F : Q], and put K = Fk. In [3, Satz 45], Hasse
proved the following theorem.

THEOREM 1. Under the above setting, assume further that the extension K/Q
is cyclic. Then hy is odd if and only if (i) hy is odd, (ii) exactly one prime number
ramifies in k/Q, say p, and (iii) the prime number p does not split in F/Q.

When F = Q, we immediately obtain the following corollary from Satz 45 and
Washington [11, Theorem 10.4(b)].

COROLLARY 1. For an imaginary cyclic extension k/Q of 2-power degree, h;
is odd if and only if exactly one prime number ramifies in k.
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In what follows, we do not assume that K/Q is cyclic. Using class field
theory, we can easily show that the ratios hg/h; and iz}g/iz,j are integers. In
view of the above results, one is naturally interested in the parity of hg /A, , which
is the subject of this note.

Hasse proved Theorem 1 heavily using the analytic class number formula.
Recently, Conner and Hurrelbrink [2, Theorem 13.8] gave a purely algebraic
proof of Theorem 1 using (i) their exact hexagon involving the cohomology
groups H'(K/K*, M) with i =0,1 where M is the group of units or the ideal
class group of K and (ii) some fundamental properties of local norm residue
symbols. In [4, Corollary 2], sharpening the method in [2], we obtained the
following refined version of Theorem 1.

Let A =Gal(F/Q) = Gal(K/k). For a number field N, we denote by Ay
and Ay o, the 2-parts of the ideal class group and the narrow class group of
N, respectively. We put 4 = Ag, AT = Ag+ and A7 = Ag+ o, for brevity. We
define the minus class group A~ = Ax to be the kernel of the norm map
A — AT. We regard the above groups as modules over the group ring Z;[A].
Let ¢ be a nontrivial Q,-valued character of A, which we often regard as a
primitive Dirichlet character. Here, Z, denotes the ring of 2-adic integers and Q,
a fixed algebraic closure of the 2-adic rationals Q,. For a Z,[A]-module X, X (¢)
denotes the g-component of X. (See §2, for the definition of the gp-component.)
Let S be the set of prime numbers p such that a prime divisor of k% over p
ramifies in k.

THEOREM 2. Under the above setting, we have A~ (p) = {0} if and only if (i)
AL () ={0} and (ii) ¢(p) # 1 for any prime number p € S.

COROLLARY 2. The ratio hg/h; is odd if and only if (i) the ratio h/h; is
odd and (ii) no prime number p in S splits in F.

The main purpose of this paper is to give one more algebraic proof of
Theorem 2 using a classical reflection argument. Further, we apply Theorem 2 to
show that the 2-part of the class group of the cyclotomic Z,-extension over a
certain imaginary abelian field is trivial (Theorem 3). We show Theorem 2 in §4
after some preliminaries in §2 and 3. In §5, we show Theorem 3.

REmMARK. In some cases, there are two different proofs for an assertion
on the 2-part of the ideal class group. For instance, a theorem of Armitage
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and Frohlich [1] was generalized by Taylor [10] and Oriat [9] in two different
ways. Taylor used some properties of norm residue symbols, while Oriat used a
reflection argument. Recently, we gave in [5, Theorem 2] an alternative proof of
[10, Assertion ()] using a reflection argument. This paper gives another instance
of two different proofs.

2. Kummer Duality

Let A be a finite abelian group whose order is odd. Let ¢ be a Q,-valued
character of A of order d = d,. Denote by ¢, the idempotent of the group ring
Z,[A] corresponding to ¢:

— 32 o6

JeA

€y

Here, Tr is the trace map from Q,({;) to Q,, {; being a primitive dth root of
unity. For a module X over Z,[A], we denote by X(p) the p-component X
(or e,X). Let 0, = Z,[¢p] be the subring of Q, generated by the values of ¢ over
Z,. Then the gp-component X(¢) is naturally regarded as an (),-module. We
choose a complete set [’ = 'y of representatives of the Q,-conjugacy classes of
the Q,-valued characters of A. Then we have a canonical decomposition

X=@D X(p)

where ¢ runs over the characters in I.

Let T/N be an abelian extension over a number field N with 2 4 [T : N], and
let A= Gal(T/N). Let L/T be a pro-2 abelian extension which is Galois over N.
Let G =Gal(L/T). Then we can naturally regard G as a module over Z,[A].
For a character ¢ e I' = I's, we denote by L(p) the intermediate field of L/T
corresponding to (—B;j G(y) by Galois theory where  runs over the characters
in ' with  # ¢. Then we have a natural isomorphism Gal(L(p)/T) = G(p) of
Z,]|A]-modules.

Now, assume that the extension L/T is of exponent 2. Let V be the
subgroup of T /(T*)? such that L = T(v'/2|[v] € V). Here, for a multiplicative
abelian group X and an element x € X, [x] denotes the class in X/X? con-
taining x. We can naturally regard 7 as a module over Z,[A]. The Kummer
pairing

VxG—uy={x1}; ([t].9) — <v.g>= (")
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is nondegenerate and satisfies a relation {v°,¢°> = <{v,g)> for [v]e V, ge G and
0 € A. Because of this relation, the pairing induces a nondegenerate subpairing

Vip™) x Glp) = 1y
Thus, we obtain the following lemma, which we repeatedly use in this paper.

LemMMA 1. Under the above setting, the Galois group Gal(L(p)/T) is can-
onically isomorphic to G(p) as Z,[A]-modules, and

Lip) =T |[v]e V(p™")).

3. Lemmas

We use the same notation as in Theorem 2. In particular, ¢ is a nontrivial
Q>-valued character of A = Gal(F/Q) = Gal(K/k). For a number field N, Oy
denotes the ring of integers of N. Let E = Ex+ = (g be the group of units of
K. We put PT = Gal(k"/Q) so that Gal(K*/Q) = P* x A. We put

X=(K")/(K")")?
for brevity.

LEmMMA 2.  Under the above setting, if AL () is trivial, then both of A" (p)
and A*(p7') are trivial.

ProoF. Let KI, be the subgroup of (K*)™ consisting of totally positive
elements. Let E, = ENKZ,

>0°
satisfying the congruence ¢ = u?> mod 4 for some ue K*. We have a natural

and Ey be the subgroup of E consisting of units ¢

exact sequence
{0} — (K7)"/EKSy — A}, — A7 — {0} (1)

compatible with the action of A. We see that ((K)*/EKZ,)(p) is trivial if and
only if (E./E?)(p) is trivial. This is because (i) the Galois module (K*)*/KJ,
is isomorphic to Fp[P* x A] via the sign map, and (ii) the Or-module (E/E?)(¢p)
is isomorphic to (¢,/20,)®" with r = |P*| by a theorem of Minkowski on units
of a Galois extension (cf. Narkiewicz [8, Theorem 3.26a]). Here, F, is a finite field
of 2 elements. Since A7 (p) is trivial, it follows from (1) that A" (p) = {0} and
((K™)*/EKZ,)(p) = {0}. From the latter, it follows that

(E+/E*)(p) = {0}. (2)
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Let H be the class field of K* corresponding to the class group 4%/4*2, and V
the subgroup of X such that H = K*(v'/?|[v] € V). We see that

(E(K))*/(KT)))NV = (E-NE)((KH))*/((K)*)?
= (E. NE)/E? (3)

by using Exercise 9.3 of Washington [11]. For each [v] in ¥, we have (g = %>
for some ideal 2 of K*. By mapping [v] to the ideal class [2], we obtain from (3)
the following Kummer sequence

{0} = (E+NE)/E* = V — A,

which is compatible with the action of A. Assume that A (p~!) is nontrivial.
Then it follows from Lemma 1 that V(p) is nontrivial. However, as 4" (¢p) is
trivial, we see from the above Kummer sequence that ((E. N Ey)/E?)(p) is non-
trivial, and hence (E,/E?)(p) is nontrivial. This contradicts (2). O

In [4, Lemma 2|, we showed the following assertion by effectively using the
nontriviality of ¢.

LemMa 3. Under the above setting, the natural map A" (p) — A(p) is
injective.

We define subgroups A7 and 4 of A" and A, respectively, by

At =@ 4" (p) and 4=P A(p)

where ¢ runs over the nontrivial characters in ' =I'y. By Lemma 3, we can
regard A" as a subgroup of A. Then we put

A* = A)d,

which we naturally regard as a Z,[A]-module. Let ¢, be the trivial character
of A. Though the structures of the two minus class groups 4~ /4 (¢,) and 4*
are slightly different in general, we can easily show that |4~ (p)| = |4*(¢)|. In
particular, 4~ (p) is trivial if and only if A*(p) is trivial. Let M/K, M~ /K
and M} /K" be the class fields corresponding to the class groups A, A* and
A}, respectively. Regarding the Galois groups Gal(M/K), Gal(M~/K) and
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Gal(Mf/K*) as modules over A= Gal(K/k)= Gal(K"/k™), we define the
intermediate fields M(p), M~ (p) and M (p) as in Section 2 for each nontrivial
character ¢ e I'. In other words, M(¢p)/K, M~ (¢)/K and M} (p)/K* are the
class fields corresponding to A(p), A*(p) and A7 (p), respectively.

LemMa 4. If A (p) is trivial, then AY (p) is trivial.

ProoF. First, we show that A*(p) = {0} using an argument in [7]. Because
of Lemma 3 and the definition of 4~, we see that A~ (p) is the subgroup of A(p)
consisting of classes ¢ with ¢/ = ¢~!. Here, J denotes the complex conjugation.
Let BT be the elements ¢ of A (p) (S A(p)) with ¢*> = 1. For each ce B, we
have ¢/ = ¢ = ¢!, 1t follows that B* = A~ (). As A= (p) = {0}, this implies that
At (p) = {0}. Tt follows that A(p) ={0} and hence M(p) =K. Now assume
that A7 (p) is nontrivial. Then there exists a quadratic subextension No/K™*
of M} (p)/K*. We see that NN K = K+ because ¢ is nontrivial. Therefore, it
follows that NyK/K is an unramified quadratic extension contained in M(p),
which is a contradiction. O

4. Proof of Theorem 2

We use the same notation as in the previous sections. Replacing F with the
abelian field corresponding to ker ¢, we may as well assume that the Galois
group A = Gal(F/Q) is cyclic, and ¢ : A — Q5 is injective. Further, we put

y=9p"

for simplicity. Let /o (resp. /1) be the 2-part (resp. odd part) of the class number
hx of K, and hj the least common multiple of /4 and 2. We choose an ele-
ment é, € Z[A] so that &, = e, mod /; and the coefficients of &, are multiple
of h;. We choose &y € Z[A] in a similar way. We fix an element d € (k)™ such
that

k =kt (d'?).

PROOF OF THE “ONLY IF’-PART. Assume that 4~ (¢) = {0}. By Lemma 4, we
already know that A% (p) = {0}. Hence, it suffices to show that ¢(p) # 1 for any
prime number p in S. Assume that ¢(p) =1 for some pe S. Let p be a prime
ideal of k" over p. As ¢ is injective, the assumption ¢(p) = 1 implies that e splits
completely in K. We choose a prime ideal 8 of K over p. As 47 (p) = {0}, it
follows from Lemma 2 that 47 (p) = {0}. Hence, we have % = n(k- for some
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element © in K*. The ideal ‘Béﬁ is not a square of an ideal of K+ because
é; =e,#0 mod2 and p splits completely in K*. In particular, 7% is not a
square in (KT)*. Let

Ny = K*((@)'7).

From the above, Ny,/K™* is a quadratic extension. As ¢ is nontrivial, we see
that Ny NK = K.

Let P be the prime ideal of K over PB. As p € S, we have P = PB>. We have
A(p) = {0} since 4 (¢) and A" (p) are both trivial. Hence, B* = xOx for some
x e K*. Tt follows that 7= = ex? for some unit ¢ of K. Thus, we see that

NyK = K((n*)'?) = K((c%)"/?)

and that this is a (2,2)-extension over K. Let J € Gal(K/K™") be the complex
J

conjugation. Then, as NyK/K* is a Galois extension, we see that (%)’ = &%p?
for some unit # of K. Hence, we can extend the automorphism J to that of
NwK by
F ()2 s ()17,

Since NyK/K™* is a (2,2)-extension, J? is the trivial automorphism and hence
we obtain 5y’ = 1. It follows that (¢%5)” = &%y, and hence & = &%y e (KT)™.
We see that # is a root of unity in K by the relation 7’/ =1 and a theorem
(11, Theorem 4.12]) on units of a CM field. Hence, K((7%)"/*)/Q is an abelian
extension. However, since ¢ is nontrivial, we observe using Lemma 1 that this
extension would be non-abelian if the class [3%] in K*/(K*)* were nontrivial.

Therefore, it follows that the class [#%] is trivial and hence
NyK = K((e%)"%) = K((¢%)"?).

Then we obtain 7% = &%y? or (d&)%y? for some ye (KT)*. As ¢ is nontrivial
and d e (k7)*, we see that d% is a square in (k*)”. Hence, B = n% 0+ is a
square of a principal ideal of K. This is a contradiction. O

To prove the “if’-part, we need to show two more lemmas.

Lemma 5. Let Ay be a nontrivial subgroup of A, and let k = Kkp/a, be the
restriction map Zo|A] — Zy[A/Ao]. Then we have k(e,) = 0.

Proor. We have ) ;.5 () =0 since Ay is nontrivial and ¢ is injective.
The assertion follows from this. |
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LEMMA 6. Let B be a prime ideal of K*, and p = BNk™ and p = pNQ. If
o(p) # 1 and A" (p) = {0}, then B = x20x+ for some x € (KT)™.

Proor. Let Fy be the decomposition field of p at F/Q, and Ay =
Gal(F/Fy). As ¢(p) # 1, Ay is a nontrivial subgroup of A. We put K;" = Fok™
and By, = PN K, . Since P, remains prime in K*, we see that P = *Iig(é’”)(ﬁK-
where x = Kp/a, is the restriction map in Lemma 5. By Lemma 5, we have
k(é,) =0 mod 2, and hence P = A for some ideal A of K+. It follows that
P = (U*)?. As A*(p) = {0}, A is principal, and hence the assertion follows.

[

PROOF OF THE “IF”-PART. Assume that (i) AF(p) ={0} and that (ii)
o(p) # 1 for any prime number p e S. Then we have

A* () ={0}

by Lemma 2. To show the assertion, assume to the contrary that A4~ (¢p) is
nontrivial. Then the extension M (¢)/K is nontrivial. Let v be an arbitrary
infinite prime divisor of K. By using an argument in Iwasawa [6] (or in
pp. 186-187 of [11]), we see that there exists a quadratic extension Ny =
K*(w'/?)/K* with we K* which is unramified at v and satisfies NoK = M~ (p).
In particular, NoNK = K*. Let v =w®% and N = K*(v!/?). Then we see that
NK = NoK = M~ (p) from Lemma 1 and that NK/K™ is a (2,2)-extension. Since
the extension N/K™ is unramified outside S and oo, we can write

o0+ = [ B>
P
for some ideal A of K*. Here, ¥ runs over the prime ideals of Kt with
PNQeS, and ap =0 or 1. As [v] € X(y)), we may as well replace the Kummer
generator v with v%. Then, since AT () = {0} and y(p) # 1 for any pe S, it
follows from Lemma 6 that v(g+ = x*>0k+ for some x e (K*)*. Therefore, we
have

N = K+(81/2) _ K+((SE./,)1/2)

for some unit ¢ of K* with [¢] € (E/E?)(y). It follows that N/K* is unramified
outside oo and SN{2}. Therefore, when 2¢ S or N/K* is unramified at 2,
N/K™ is unramified outside co, and hence N = M} (¢). Thus, we see that A7 (¢)
is nontrivial, which is a contradiction.
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Assume that 2 € S and that there is a prime ideal P of K™ over 2 which
ramifies in N. Since k = k*(d'/?), the quadratic subfields of the (2,2)-extension
NK/K* are K, N and

N'=K*((de)'?) = K*((de*)'?).

Since NK/K is unramified at ¥, and K/K* and N/K*' are ramified at B,
the third extension N'/K™ is unramified at B. Therefore, ordy(d) is even. This
means that ord,(d) is even as [K*: k"] is odd, where p =B Nk*. Then, re-
placing d with dy? for some y e (k*)”, we may as well assume that (d,B) = 1.
Since N'/K™* is unramified at B, we have de® = u*> mod B* for some u € K* by
Exercise 9.3 of [11]. Here, e is the ramification index of % over Q. Let Ay be the
decomposition group of the prime 2 at F/Q. Let ¥, = ¥|a, and define ey, and ey,
similarly to e, and é,. Since ¥ is stable under the action of Ay, we have

(de?)% = v? mod P*

for some ve (KT)*. As y(2) # 1, Aq is nontrivial and hence d® is a square in
k*. Further, we have é,é;, =é, mod 2 as eyey, = ey. Therefore, we see that
¢ = w? mod P for some w e (KT)*. This implies that N/K* is unramified at
B, a contradiction. O

5. Cyclotomic Z,-extension

Let F, A and ¢ be as in the previous sections. For an integer n > 0, let
kn = Q({yn2), Ky = Fky, F, = K and B, = k. As in the previous sections, we
identify A with Gal(K,/k,) and Gal(F,/B,). We write ¢ ~ ¢p~! when ¢ and ¢!
are conjugate over Q,. It is well known that the class groups 4p, , and A4, are
trivial for all n > 0. We generalize this fact as follows.

THEOREM 3. Under the above setting, assume that
(CL) p~9p~', (C2) p(2) #1, (C3) Ar(p) = {0}.
Then the class groups Af, .(p) and Ag (p) are trivial for all n > 0.
Proor. We write A, ., = Af, . for brevity. By virtue of Theorem 2 (and

the assumption (C2)), the triviality of Ay (¢) follows from that of A4, (p). The
assumption (C1) implies that

X(p)=X(p") “4)
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for a Z,[A]-module X. Further, it follows from the assumptions (C1) and (C3)
that Ao o (p) = {0} by [9, Théoréme 2]. To show Theorem 3, assume to the
contrary that A, .,(p) # {0} for some n > 1. Let M, ,(p)/F, be the class field
corresponding to (A, /A2 ,)(p). The cyclic extension F,/F is of degree 2" and
unramified outside 2. Hence, using an argument in [6], we see that there exists
a quadratic extension N’ = F(w'/?)/F unramified at some prime ideal of F over
2 with N'F, € M, ,.(p). In particular, we have N'NF,=F. Put v =w%, and
N = F(v'/?). Then, we see from Lemma 1 and (4) that NF, = N'F, = M, ,.(p)
and NNF, =F. Clearly, N/F is unramified outside 2c0. Using Lemma 6 and
(C2), (C3), we can show that N = F(¢!'/?) for some unit ¢ of F with [g]e
(E/E*)(p) by an argument similar to that in the proof of the “if part” of
Theorem 2. Here, E = O5.

We already know that the narrow class group Ao o (¢) is trivial. Hence, the
quadratic extension N/F is ramified at some prime ideal P of F over 2. We
define an integer #; of F; inductively by mp =2 and n; =2+ /m;—y for j> 1.
Then 7; is a local parameter of each prime ideal of F; over 2 and Fjy; = Fj(njl/ 2).
Since NF,/F, is unramified at 2, there exists some j with 0 < j<n—1 such
that NF;/F; is ramified and NFj,;/F;;; is unramified at the primes ideals over 3.
This implies that the intermediate extension Fj((snj)l/ %) /F; of the (2,2)-extension
NF;,/F; is unramified at the primes ideals over 3. However, this is impossible
because ¢ is a unit and 7; is a local parameter of the prime ideals of F; over 2.

O
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