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PARTIALLY ORDERED RINGS

By

Yoshimi Kitamura and Yoshio Tanaka

Abstract. We shall consider partially ordered rings as a general-

ization of ordered rings. We give properties or related matters of

partially ordered rings, using convex ideals or non-negative semi-

cones. Also, we consider order-preserving isomorphisms between

residue class rings which are partially ordered rings.

1. Introduction

The symbol R means a non-zero commutative ring with the identity element

denoted by 1, and I means an ideal of R with I 0R (similar, for R 0 and I 0),

unless otherwise stated.

The symbol Z; N means the ring of integers; the set of natural numbers,

respectively, and let Z� ¼ NU f0g. Also, R; Q means the field of real numbers;

the field of rational numbers, respectively.

As is well-known, the concept of ‘‘positive cone’’ of rings is useful in

orderings on integral domains. This concept plays important roles in the study of

ordered integral domains or ordered fields, as the positive parts which determine

their orderings. The ring Z, as well as the field Q, has the unique positive cone.

In [2], we induce the notion of ‘‘non-negative cone’’ of rings, and we study

ordered rings, including integral domains.

In Section 2, we introduce the notion of ‘‘non-negative semi-cone’’ of rings.

This notion will play important roles in the study of partially ordered rings as

their non-negative parts. For each ring R, there exists a bijection between the

class of non-negative semi-cones of R and the class of ordering relations on R

each of which makes R a partially ordered ring. We give properties and related
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matters of partially ordered rings in terms of non-negative semi-cones. We

consider conditions for a subset of a partially ordered ring to be a partial ordered

subring (or totally ordered subring). We give a characterization of non-negative

semi-cones of Z. Also, we give a characterization of a partially ordered ring in

which the ordered additive group (or ordered ring) Z is embeddable.

In Section 3, we deal with residue class rings of partially ordered rings. For a

partially ordered ring R and an ideal I of R, the residue class ring R=I has the

canonical ordering relation induced from the order of R. As is well-known, the

ring R=I is a partially ordered ring by the ordering relation i¤ I is convex in R

([1]). We consider necessary and su‰cient conditions for I to be convex, or R=I to

be a partially ordered ring, using non-negative semi-cones. We give a charac-

terization for an ideal of a partially ordered ring Z to be convex. Also, for a

principal ideal I of the polynomial ring R½x� over an ordered integral domain R,

we give a characterization for I to be convex in R½x� with respect to two typical

orders on R½x�.
In Section 4, we consider order-preserving isomorphisms between residue

class rings which are partially ordered rings. Let ðR;aÞ and ðR 0;a0Þ be partially

ordered rings, and I ; I 0 be an ideal of R;R 0 respectively. For a homomorphism s

of ðR;aÞ to ðR 0;a0Þ, we naturally induce a homomorphism s of R=I to R 0=I 0

under sðIÞH I 0. For R=I and R 0=I 0 being partially ordered rings, we give a

characterization of a homomorphism s : ðR;aÞ ! ðR 0;aÞ such that the map s

is an isomorphism with s and s�1 order-preserving, and we apply this to rings

of continuous functions. Finally, related to certain properties on the map s, we

give examples and matters on the map s.

2. Partially Ordered Rings and Non-negative Semi-cones

For a ring R, we shall introduce a non-negative semi-cone of R. We give

properties and related mattes of partially ordered rings in terms of non-negative

semi-cones.

Definition 2.1. Let A be a set, anda be a binary relation on A. Thena is

a partial order (or semi-order) if it satisfies the following: (i) xa x for all x A A,

(ii) xa y and ya x implies x ¼ y, and (iii) xa y and ya z implies xa z.

For a partial ordera on R, ðR;aÞ is a partially ordered ring ([1]) if R satisfies

the following conditions:

(a) aa b implies aþ xa bþ x for all x.

(b) aa b and 0a x implies axa bx.
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To define such a partial order on R, it is enough to specify the elementsb 0,

subject to:

R has a binary relation a satisfying the following conditions:

(a) 0 ab 0 and �ab 0 i¤ a ¼ 0.

(b) 0 a; bb 0 implies aþ bb 0.

(c) 0 a; bb 0 implies abb 0.

For a partially ordered ring ðR;aÞ, if the ordera is a total order, then such

an ðR;aÞ is called a totally ordered ring (abbreviated ordered ring), in particular,

when R is a field (resp. integral domain), such an ordered ring ðR;aÞ is called an

ordered field (resp. ordered integral domain).

Remark 2.2. (1) If a is a partial order on a set A, then defining x < y by

xa y and x0 y, a binary relation < on A satisfies the following: (i) for any

x; y A A, two of x < y, y < x, x ¼ y do not hold simultaneously, and (ii) x < y

and y < z implies x < z. Conversely, for a binary relation < on A satisfying (i)

and (ii), define xa y by x < y or x ¼ y, then a is a partial order on A.

(2) For a binary relation (such as a partial order) a on R, the following are

equivalent.

(a) aa b implies aþ xa bþ x for all x (i.e., (a) in Definition 2.1).

(b) aa b i¤ 0a b� a.

Let A;BHR. Define �A ¼ f�x j x A Ag, Aþ B ¼ fxþ y j x A A; y A Bg, and
A � B ¼ fxy j x A A; y A Bg; in particular, for A ¼ fag, let us denote A � B by aB.

Also, define AnB ¼ fx j x A A; x B Bg.

Definition 2.3. For a subset S of a ring R, let us call S a non-negative

semi-cone (resp. non-negative cone ([2])) of R if S satisfies (a), (b), and (c) (resp.

(a), (b), (c), and (d)) below:

(a) S V ð�SÞ ¼ f0g.
(b) S þ SHS.

(c) S � SHS.

(d) R ¼ S U ð�SÞ.

For a non-negative semi-cone S of a ring R, we define aaS b by b� a A S.

While, in a partially ordered ring ðR;aÞ, the symbol S means its non-

negative part fx A R j 0a xg, unless otherwise stated.

The part S in a partially ordered ring ðR;aÞ is a non-negative semi-cone of

the ring ðR;aÞ with a¼aS. Conversely, for a non-negative semi-cone S of a
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ring R, ðR;aSÞ is a partially ordered ring with S ¼ fx A R j 0aS xg. These are

also valid for the relationship between ‘‘ordered rings’’ and ‘‘non-negative cones’’.

Remark 2.4. (1) Every non-negative cone of a ring contains the identity

element 1. But, this need not be valid for every non-negative semi-cone.

Indeed, for a non-negative semi-cone S of a ring R, S 0 defined by (a) or (b)

below is a non-negative semi-cone of R satisfying 1 B S 0 HS.

(a) (i) Define S 0 ¼ f0g trivially; or (ii) for an ideal I of R, put S 0 ¼ S V I .

(b) If S C 1, then (i) for m A Z�nf1g, put S 0 ¼ Z�m � 1 ð¼ fnm � 1 j n A Z�gÞ;
or (ii) for a A Snf0g, put S 0 ¼ fx A S j aþ 1aS xgU f0g.

We note that every partially ordered ring ðR;aÞ satisfying S C 1 need not be

an ordered ring (considering any field R of characteristic 0 having a¼aZ ��1Þ.
(2) For any non-negative semi-cone S of a ring R, S d �1 (indeed, suppose

S C �1. Then ð�1Þð�1Þ ¼ 1 A S. Then 1 ¼ 0, a contradiction).

Let A be a subset of a partially ordered ring ðR;aÞ. The symbol a� means

the restriction order on A from a (i.e., for a; b A A, if aa� b, then aa b). We

shall say that the set A is a partially ordered subring of R if (i) A is a subring

of R, and (ii) ðA;a�Þ is a partially ordered ring. Here, we can omit (ii); see

Proposition 2.5(1) below.

For a subset A of a partially ordered ring ðR;aÞ with A C 0, let us also use

the same terminology ‘‘non-negative semi-cone’’ (or ‘‘non-negative cone’’) of A, as

in Definition 2.3. Also, let us set SA ¼ S VA.

Proposition 2.5. Let A be a subset of a partially ordered ring ðR;aÞ. Then
the following hold.

(1) If A is a subring of R, then ðA;a�Þ is a partially ordered subring of R with

aSA
¼a� (hence, SA is a non-negative semi-cone of A).

(2) ðA;a�Þ is an ordered subring of R i¤ A ¼ SA þ ð�SAÞ such that SA is a

non-negative cone of A with SA C 1.

Proof. For (1), since A is a subring of ðR;aÞ, obviously ðA;a�Þ is a

partially ordered ring with aSA
¼a�. Thus, SA is a non-negative semi-cone of

A. For the ‘‘if ’’ part in (2), we show that A ¼ SA þ ð�SAÞ is a subring of R.

Clearly 1 A A. Let x ¼ a� b, y ¼ a 0 � b 0 A A with a; b; a 0; b 0 A SA. Then �x A A.

Also, since SA is a non-negative cone of A, xþ y A A and xy ð¼ ðaa 0 þ bb 0Þ �
ðab 0 þ a 0bÞÞ A A. Thus A is a subring of R. Then aSA

¼a� on A by (1). Thus,

ðA;a�Þ is an ordered ring. For the ‘‘only if ’’ part, sinceaSA
¼a� (by (1)), SA is
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a non-negative cone of A with SA C 1. Since ðA;a�Þ is an ordered subring of R,

obviously AHSA þ ð�SAÞHA, hence A ¼ SA þ ð�SAÞ. r

Remark 2.6. In view of the proof of Proposition 2.5, we have the following:

Let A be a subset of a partially ordered ring ðR;aÞ with SA C 1. Assume (*) SA is

a non-negative semi-cone of A (in particular, A is a subring of R or A is a set

containing S). Then SA þ ð�SAÞ is a partially ordered subring bya�. Concerning

these, we have the following (a) and (b).

(a) SA U ð�SAÞ need not be a subring of R even if A is a subring of R

containing S.

(b) Without the assumption (*), SA þ ð�SAÞ need not be a subring of R,

even if A is a group under addition (or Anf0g is a group under multiplication)

such that A ¼ SA U ð�SAÞ ¼ SA þ ð�SAÞ.
Indeed, for (a), let R ¼ R, S ¼ fx A Q j xb 1gU f0g, and let a¼aS in R.

Let A ¼ Q. Then ðR;aÞ is a partially ordered ring with SA C 1, and A is a sub-

ring of R containing S. But, SA U ð�SAÞ is not a subring of R. For (b), let R ¼ Q

be the usual ordered field. Let A ¼ Zþ 1
2Z. Then A is a desired one, noting�

1
2

�2 ¼ 1
4 B A. For the parenthetic case, let A ¼ f0;G1g, then A is a desired one.

Corollary 2.7. Let ðR;aÞ be a partially ordered ring with S C 1. Let

A ¼ S þ ð�SÞ, and B ¼ S U ð�SÞ. Then the following hold.

(1) ðA;a�Þ is a partially ordered subring of R.

(2) ðB;a�Þ is an ordered subring of R i¤ B ¼ A.

Proof. Since SHA, (1) holds by Remark 2.6. Since SB ¼ S, (2) holds by

means of Proposition 2.5(2). r

We assume that the ring Z has the usual order unless otherwise stated, but

for non-negative semi-cones of Z, consider them under Z being the ring. While,

the set Z�ð¼ NU f0gÞ has the usual order when we consider its order.

Lemma 2.8. For a non-negative semi-cone S of Z, the following hold.

(1) For a A S, aZ� HS, thus S � Z� ¼ S.

(2) SHZ�.

Proof. (1) holds by (b) in Definition 2.3. For (2), let x A Snf0g. Suppose

x < 0. Then �x A N. Thus, ð�xÞx ¼ �ðxxÞ A S V ð�SÞ ¼ f0g, which yields x ¼ 0,

a contradiction. Thus, SHZ�. r
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Proposition 2.9. For a subset S of Z, S is a non-negative semi-cone of Z i¤

S ¼ a1Z
� þ � � � þ anZ

� for some a1; . . . ; an A S ðHZ�Þ.

Proof. The ‘‘if ’’ part is routinely shown. For the ‘‘only if ’’ part, we

consider S in Z� by Lemma 2.8(2). Put a0 ¼ 0 and S0 ¼ a0Z
�. If SnS0 ¼ q, then

S ¼ S0. Otherwise, let a1 ¼ minðSnS0Þ, and S1 ¼ S0 þ a1Z
�. Then a0 < a1 A S1.

When this process proceeds to ai, Si ðib 1Þ, we consider the set SnSi. If

SnSi ¼ q, then S ¼ Si (with Lemma 2.8(1)). Otherwise, let aiþ1 ¼ min SnSi, and

Siþ1 ¼ Si þ aiþ1Z
�. Then a1 < � � � < ai < aiþ1. Further, ak 2 al ðmod a1Þ for any

k; l ð1a k < la i þ 1Þ. Indeed, if ak 1 al ðmod a1Þ for k < l, then there exists

t A N with al ¼ a1tþ ak A Sl�1, a contradiction. We will show this process ends

after a finite steps. Suppose that, for m ¼ a1, SnSm 0q. Let amþ1 ¼ min SnSm,

and Smþ1 ¼ Sm þ amþ1Z
�. Then a1 < � � � < am < amþ1, and ai 2 aj ðmod mÞ for

any i; j ð1a i < jamþ 1Þ. But, for mþ 1 integers a1; . . . ; amþ1, ai 1 aj ðmod mÞ
for some i; j ði < jÞ, a contradiction. Therefore, there exists n A Z� with

SnSn ¼ q, thus S ¼ a1Z
� þ � � � þ anZ

�. r

Remark 2.10. (1) Let S be a non-negative semi-cone of Z with S0 f0g.
Let m ¼ minðSnf0gÞ. Then there exist a1; . . . ; an ðnamÞ in S such that (a) S ¼
a1Z

� þ � � � þ anZ
�, (b) 0< a1 < a2 < � � � < an, and (c) ai A Snða0Z� þ � � � þ ai�1Z

�Þ
(a0 ¼ 0; 1a ia nÞ. Moreover, such integers n, and a1; . . . ; an are determined

uniquely under (a), (b), and (c).

Indeed, there exist such a1; . . . ; an in S by the proof of Proposition 2.9. By

(a) and (b), we can replace (c) by (c 0) ai ¼ min Snða0Z� þ � � � þ ai�1Z
�Þ (a0 ¼ 0;

1a ia nÞ. Thus, for 0 < b1 < � � � < bk in S, if S ¼ b1Z
� þ � � � þ bkZ

�, and

bi A Snðb0Z� þ b1Z
� þ � � � þ bi�1Z

�Þ (b0 ¼ 0), then ai ¼ bi ð1a ia k ¼ nÞ.
(2) Let S ¼ c1Z

� þ � � � þ cnZ
� ð0 < c1 < � � � < cn; nb 2Þ be a non-negative

semi-cone of Z. Then S ¼ cZ� for some c A N i¤ c1jci (i.e., c1 is a divisor of ci)

holds for all ib 2 (indeed, for the ‘‘if ’’ part, put c ¼ c1. For the ‘‘only if ’’ part,

minðSnf0gÞ ¼ c1 ¼ c, and cjci holds for all ib 1).

Corollary 2.11. Let T be a non-negative semi-cone of Z, and let n A N.

Then T H nZ i¤ T ¼ nða1Z� þ � � � þ amZ
�Þ for some a1; . . . ; am A Z�.

Proof. The ‘‘if ’’ part is clear. For the ‘‘only if ’’ part, T ¼
ðk1Z� þ � � � þ kmZ

�Þ for some k1; . . . ; km A Z� by Proposition 2.9. Since T H nZ,

each kiZ
� H nZ, so njki. Put ki ¼ nai, then T ¼ nða1Z� þ � � � þ amZ

�Þ ðai A Z�Þ.
r
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Definition 2.12. (1) We recall that a map f : R ! R 0 is a ring homo-

morphism (abbreviated homomorphism) if f satisfies the following conditions:

(i) f ðxþ yÞ ¼ f ðxÞ þ f ðyÞ; (ii) f ðxyÞ ¼ f ðxÞ f ðyÞ, and (iii) f ð1Þ ¼ 1 0. Also, a

homomorphism is a monomorphism; epimorphism; isomorphism if it is injective;

surjective; bijective, respectively. We shall say that a map f : R ! R 0 is an

additive homomorphism if f satisfies the above condition (i) (hence, f ð0Þ ¼ 0, but

f ð1Þ ¼ 1 0 need not hold). For an additive homomorphism, additive monomor-

phism, etc., are similarly defined.

(2) For partially ordered rings ðR;aÞ and ðR 0;a0Þ, a map f : ðR;aÞ !
ðR 0;a0Þ is order-preserving if f satisfies: if xa y, then f ðxÞa0 f ðyÞ. For an

additive homomorphism f , f is order-preserving i¤ f ðSÞHS 0.

Remark 2.13. (1) Let R be a ring. As is well-known, there exists uniquely a

homomorphism h : Z ! R (actually, given by hðnÞ ¼ n � 1Þ. The homomorphism

h is a monomorphism if there exists an additive monomorphism f : Z ! R

(indeed, for n A Znf0g, f ðnÞ ¼ nf ð1Þ ¼ hðnÞ f ð1Þ0 0, so hðnÞ0 0).

(2) If there exists an order-preserving monomorphism f : Z ! ðR;aÞ, then

the homomorphism h : Z ! ðR;aÞ is an order-preserving monomorphism since

f ðnÞ ¼ hðnÞ for n A Z. However, the map h need not be order-preserving even

if there exists an order-preserving additive monomorphism f : Z ! ðR;aÞ. In-

deed, for a partially ordered ring ðZ;aSÞ, S ¼ 2Z�, define f : Z ! ðZ;aSÞ by

f ðnÞ ¼ 2n. Then f is an order-preserving additive monomorphism, but the map h

is never order-preserving since 0aS 1 doesn’t hold.

We shall say that the ring (resp. the ordered ring) Z is embeddable in R

(resp. ðR;aÞ) if the homomorphism h : Z ! R is a monomorphism (resp. order-

preserving monomorphism), and that the ordered additive group Z is embeddable

in ðR;aÞ if there exists an order-preserving additive monomorphism of Z to R.

We shall say that a partially ordered ring ðR;aÞ is trivial if S ¼ f0g. For

S0 f0g, obviously S is infinite. Every ordered ring is a non-trivial partially

ordered ring, and every non-trivial partially ordered ring is infinite.

Proposition 2.14. For a partially ordered ring ðR;aÞ, the following hold.

(1) ðR;aÞ is trivial i¤ any distinct points in R are incomparable.

(2) ðR;aÞ is non-trivial i¤ the ordered additive group Z is embeddable in ðR;aÞ.

Proof. (1) is obvious. For (2), assume ðR;aÞ is non-trivial, and take a A S

with a0 0. Then a map f : Z ! R defined by f ðmÞ ¼ ma is an order-preserving
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additive monomorphism. Conversely, for an order-preserving additive mono-

morphism g : Z ! R, 0 ¼ gð0Þ < gð1Þ, which implies S0 f0g. r

The following holds in view of the proof of Proposition 2.14(2).

Corollary 2.15. For a partially ordered ring ðR;aÞ, S C 1 i¤ the ordered

ring Z is embeddable in ðR;aÞ. In particular, the ordered ring Z is embeddable in

any ordered ring.

Remark 2.16. The ordered ring Z need not be embeddable in every non-

trivial partially ordered ring by Corollary 2.15 with Remark 2.13(2). While, the

ring Z need not be embeddable in every infinite field K (indeed, let R ¼ Z=mZ

for a prime number m > 1, then R is a field. Let K ¼ RðxÞ be the infinite field of

all rational functions over R in one variable x. Since m1 ¼ 0 in K , the ring Z

is not embeddable in the field K).

Remark 2.17. We can make any ring R to be a trivial partially ordered ring

(putting S ¼ f0g). Also, for a ring R, we can make R to be a non-trivial partially

ordered ring ðR;aÞ i¤ the ring Z is embeddable in R. Indeed, for the ‘‘if ’’ part,

let S 0 ¼ fn1 j n A Z �g, and a¼aS 0 . Then ðR;aÞ is a non-trivial partially ordered

ring. For the ‘‘only if ’’ part, take a A Snf0g. Then for n A N, na0 0, so n10 0.

Thus, the ring Z is embeddable in R (putting a ¼ 1 in the proof of Proposition

2.14(2)).

3. Residue Class Rings and Convex Ideals

For a partially ordered ring ðR;aÞ, let R=I be the residue class ring having

a canonical ordering relation induced bya. As is well-known, the convexity of I

in ðR;aÞ gives a characterization for R=I to be a partially ordered ring. For an

ideal I in ðR;aÞ, we will give characterizations for I to be convex, or R=I to be a

partially ordered ring.

Definition 3.1 ([1]). Let ðR;aÞ be a partially ordered ring. For an ideal I

of ðR;aÞ, let R=I be the residue class ring.

(1) I is convex in ðR;aÞ if whenever 0a xa y and y A I , then x A I .

(2) We induce a canonical ordering relation in R=I as follows: For a A R,

define ½a�ð¼ aþ IÞb 0 in R=I if there exists xb 0 in R with ½a� ¼ ½x� (we use the

same symbol a in R=I without confusion).
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ðR=I ;aÞ need not be a partially ordered ring; see Example 3.10(2) later. We

recall that ðR=I ;aÞ is a partially ordered ring i¤ I is convex ([1], etc.).

(3) Let j : ðR;aÞ ! ðR=I ;aÞ be the natural homomorphism defined by

jðaÞ ¼ ½a�. Then jðSÞ ¼ f½a� A R=I j ½a�b 0g. Also, j is order-preserving (that is,

if aa b, then ½a�a ½b�, here we define ½a�a ½b� by ½b� � ½a�ð¼ ½b� a�Þb 0).

In what follows, we assume that any residue class ring R=I of a partially

ordered ring R has the ordering relation in Definition 3.1(2), unless otherwise

stated. Also, the map j means the natural homomorphism of R to R=I in

Definition 3.1(3).

Remark 3.2. For a partially ordered ring ðR;aÞ, let R=I be a partially

ordered ring. Then the following hold.

(1) There exists no x A I with xb 1 by Remark 2.4(2).

(2) If SnI 0q, then R=I is infinite by Proposition 2.14(2).

In (1) or (2), the assumption that R=I is a partially ordered ring or SnI 0q

is essential; see Example 3.10 later.

Remark 3.3. For a partially ordered ring ðR;aÞ, the following hold.

(1) SH I i¤ R=I is a trivial partially ordered ring (equivalently, for a > 0,

½a� ¼ 0). In particular, put S 0 ¼ S V I , then for a partially ordered ring ðR;aS 0 Þ,
R=I is a trivial partially ordered ring (by aS 0 ).

(2) S V I ¼ f0g i¤ R=I is a partially ordered ring such that for a > 0, ½a� > 0

(equivalently, for a < b, jðaÞ < jðbÞÞ.
(3) I HS U ð�SÞ i¤ I has a total order a� (equivalently, for ½a� ¼ 0 in R=I ,

ab 0 or aa 0). In particular, I ¼ S U ð�SÞ i¤ R=I is a partially ordered ring

such that ½a� ¼ 0 i¤ ab 0 or aa 0.

Indeed, (1) is routinely shown, and (3) are obvious. For (2), the ‘‘if ’’ part is

clear, so we see the ‘‘only if ’’ part. Obviously, for a > 0, ½a� > 0. To see R=I is a

partially ordered ring, it su‰ces to show that ½a�b 0 and ½a�a 0 implies ½a� ¼ 0.

There exist x A S with ½a� ¼ ½x�. Suppose x0 0. Then x > 0, so ½a� ¼ ½x� > 0, a

contradiction. Then x ¼ 0, hence ½a� ¼ 0.

Proposition 3.4. Let S be a non-negative semi-cone of Z. Let I be a non-

zero ideal of Z, so we can put I ¼ nZ ðn > 1Þ. Then the following are equivalent.

(a) I is convex in ðZ;aSÞ.
(b) SH I .

(c) njx holds for all x A S.
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Proof. (b) ) (a) is clear. For (a) ) (b), x A S. Then 0aS xaS nx and

nx A I , thus x A I . Hence, SH I . (b) , (c) is routinely shown. r

Example 3.5. For m A Z�, mZ� and SðmÞ ¼ fn A Z j nbmgU f0g are

non-negative semi-cones of Z. Let I ¼ nZ ðn > 1Þ be an ideal of Z. Then

Proposition 3.4 implies that I is convex in ðZ;amZ � Þ i¤ njm holds, but I is

not convex in ðZ;aSðmÞÞ. In particular, any non-zero ideal of Z is not convex

in Z.

For an ordered integral domain R, let R½x� be the polynomial ring over R

in one variable x. For f ðxÞ A R½x�, let I ¼ ð f ðxÞÞ be the ideal of R½x� generated
by f ðxÞ. We recall two orders on R½x�. For a non-zero polynomial f ðxÞ ¼ a0 þ
a1xþ � � � þ anx

n in R½x�, define 0 <1 f and 0 <2 f as follows.

0 <1 f ðxÞ if the leading coe‰cient an is positive in R.

0 <2 f ðxÞ if the first nonzero coe‰cient ak is positive in R.

Then the rings ðR½x�;a1Þ and ðR½x�;a2Þ are ordered integral domains (as is

well-know). But, for R being an ordered ring, this need not valid by the following

Example 3.6.

Example 3.6. An ordered ring R such that neither ðR½x�;a1Þ nor ðR½x�;a2Þ
is a partially ordered ring.

Indeed, let ðR;aÞ be an ordered ring having elements a, b with ab ¼ 0

ða0 0; b0 0Þ (see [2, Example 1], for example). Since ab ¼ ð�aÞb ¼ að�bÞ ¼
ð�aÞð�bÞ ¼ 0, we can assume a > 0 and b > 0. Put u ¼ ax� 1, v ¼ b, w ¼
�xþ a A R½x�. Then 0 <1 u, 0 <1 v, but uv <1 0. Also, 0 <2 v, 0 <2 w, but

vw <2 0. Hence, neither ðR½x�;a1Þ nor ðR½x�;a2Þ is a partially ordered ring.

Proposition 3.7. Let R be an ordered integral domain. For a non-zero ideal

I ¼ ðhðxÞÞ of R½x�, the following hold.

(1) I is not convex in ðR½x�;a1Þ.
(2) I is convex in ðR½x�;a2Þ i¤ hðxÞ is a monomial with deg hðxÞ > 0, and its

coe‰cient is invertible in R.

Proof. Since I ¼ ðhðxÞÞ ¼ ð�hðxÞÞ, we can assume that the leading coef-

ficient, say a, of hðxÞ is positive in R.

For (1), 0 <1 1 <1 xhðxÞ A I (possibly, hðxÞ ¼ a A R), but 1 B I . Hence, I is

not convex in ðR½x�;a1Þ.
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For (2), assume that I is convex in ðR½x�;a2Þ. Let n ¼ deg hðxÞ. To see

n > 0, suppose n ¼ 0. Then hðxÞ ¼ a A R, and 0 <2 x <2 a A I , but x B I (indeed,

suppose x A I , then agðxÞ ¼ x for some gðxÞ A R½x�, so ab ¼ 1 for some b A R.

Hence 1 A I , a contradiction). Thus, I is not convex in ðR½x�;a2Þ, a contradiction.

Hence, n > 0. To see hðxÞ is a monomial, suppose not. Put hðxÞ ¼ axn þ bxn�1

þ � � � þ cxk ða; b; . . . ; c A R; c0 0; n > kÞ. If 0 < c, then 0 <2 ax
n <2 hðxÞ A I .

Since I is convex in ðR½x�;a2Þ, axn A I , and so axn ¼ hðxÞh1ðxÞ for some

h1ðxÞ A R½x�. Then deg h1ðxÞ ¼ 0. Thus h1ðxÞ ¼ 1, so hðxÞ ¼ axn, a contradiction.

If c < 0, then we have also a contradiction, replacing ‘‘hðxÞ’’ by ‘‘�hðxÞ’’. Hence,

hðxÞ is a monomial; that is, hðxÞ ¼ axn with a > 0. We show the coe‰cient a

is invertible. If a ¼ 1, then this is obvious. If 1 < a, then 0 <2 ða� 1Þxnþ1 <2

axn A I , and so ða� 1Þxnþ1 A I by the convexity of I . Hence, there exists

gðxÞ A R½x� with ða� 1Þxnþ1 ¼ axngðxÞ. Thus a� 1 ¼ ad for some d A R, and so

að1� dÞ ¼ 1. Hence a is invertible in R. If 0 < a < 1, then 0 <2 ð1� aÞxnþ1 <2

axn A I , and so ð1� aÞxnþ1 A I . Thus, similarly a is invertible in R. Hence, the

coe‰cient a is invertible in R. Conversely, assume that hðxÞ is a monomial

with deg hðxÞ > 0, and its coe‰cient a is invertible. Since I ¼ ða�1hðxÞÞ with

deg hðxÞ > 0, we can assume that a ¼ 1. Put hðxÞ ¼ xn ðn > 0Þ. Let 0 <2 f ðxÞ <2

gðxÞ and gðxÞ A I . Since gðxÞ A I , gðxÞ ¼ hðxÞg1ðxÞ for some g1ðxÞ A R½x�. Let

f ðxÞ ¼ xnf1ðxÞ þ rðxÞ ð f1ðxÞ; rðxÞ A R½x�Þ with deg rðxÞ < n. Suppose rðxÞ0 0.

Since 0 <2 f ðxÞ, 0 <2 rðxÞ. But 0 <2 gðxÞ � f ðxÞ ¼ xnðg1ðxÞ � f1ðxÞÞ � rðxÞ <2 0,

a contradiction. Hence rðxÞ ¼ 0, and so f ðxÞ ¼ xnf1ðxÞ A I . Thus I is convex in

ðR½x�;a2Þ. r

Remark 3.8. (1) In Proposition 3.7, put R ¼ Z. Then the non-zero ideal

I ð¼ ðhðxÞÞ is not convex in ðZ½x�;a1Þ. While, I is convex in ðZ½x�;a2Þ i¤

hðxÞ ¼Gxn ðn > 0Þ. Thus, for any integers m > 1 and nb 0, I 0 ¼ ðmxnÞ is not

convex in ðZ½x�;a2Þ.
(2) Any ideal I of Z½x� with I VZ0 ð0Þ is not convex in ðZ½x�;aÞ, where

a¼a1 or a2 (indeed, I VZ ¼ nZ for some integer n > 1. Thus 0 < 1 < n and

n A I , but 1 B I . Then I is not convex in ðZ½x�;aÞÞ. In particular, for a prime

number p, let I ¼ ðp; xÞ be an ideal of Z½x� generated by p, x. Then I is a

maximal ideal of Z½x� (note that I 0 VZ ¼ pZ for any ideal I 0 I I in Z½x�), but I
is not convex in ðZ½x�;aÞ.

The symbol K means an ordered field. As is well-known, the ring K ½x� is a

principal ideal domain. Thus Proposition 3.7 implies the following ([2]).
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Corollary 3.9. Let I be a non-zero ideal of K ½x� (with I 0K ½x�). Then the

following hold.

(1) I is not convex in ðK½x�;a1Þ.
(2) I is convex in ðK ½x�;a2Þ i¤ I is generated by a monomial.

Example 3.10. (1) A partially ordered ring ðR;aÞ and an ideal I IS such

that R=I is a finite partially ordered ring which doesn’t satisfy ½0� < ½1�.
(2) A partially ordered ring ðR;aÞ and an ideal I containing x > 1 such that

R=I is a finite field which is not a partially ordered ring.

(3) In (1) and (2), we can take R=I to be infinite.

Indeed, for (1), let R ¼ Z, I ¼ 2Z, and S ¼ Z� V I . Then ðR;aSÞ and I

satisfy conditions in (1) by Remark 3.3(1). For (2), let R ¼ Z, I ¼ 3Z and

S ¼ 2Z�. Then ðR;aSÞ and I satisfy conditions in (2) by Remark 3.2(1). For

(3), in (1), let R ¼ K ½x� and I ¼ ðxÞ. Then R=I is isomorphic to K , so it is an

infinite field. Let S be the positive part of ðR;a1Þ or ðR;a2Þ, and S 0 ¼ S V I .

Then ðR;aS 0 Þ and I are desired ones by Remark 3.3(1). In (2), let R ¼ K ½x�,
I ¼ ðxÞ. Then ðR;a1Þ and I are desired ones by Corollary 3.9(1) ([2, Example

4(1)]).

The following basic result is routinely shown, referring to the proof of

[1, Theorem 5.2].

Proposition 3.11. Let ðR;aÞ be a partially ordered ring, and I be an ideal

of R. Then the following are equivalent.

(a) I is convex.

(b) ðSnIÞ þ ðSnIÞH ðSnIÞ.
(c) If ½a�b 0 and �½a�b 0, then ½a� ¼ 0

(d) jðSÞV jð�SÞ ¼ f0g.
(e) R=I is a partially ordered ring.

In view of Proposition 3.11, let us give the following review of [2, Lemma 2

and Corollary 1], in terms of the sets S and I in R.

Proposition 3.12. For a partially ordered ring ðR;aÞ, the following hold.

(1) R=I is a partially ordered ring i¤ ðSnIÞ þ ðSnIÞH ðSnIÞ.
(2) R=I is an ordered ring i¤ R ¼ ðS U�SÞ þ I , and ðSnIÞ þ ðSnIÞH ðSnIÞ.
(3) R=I is an ordered integral domain i¤ R ¼ ðS U�SÞ þ I , ðSnIÞ þ ðSnIÞH

ðSnIÞ, and ðSnIÞ � ðSnIÞH ðSnIÞ.
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The following holds by Propositions 2.14 and 3.11 (with Remark 3.3(1)).

Theorem 3.13. Let ðR;aÞ be a partially ordered ring. For an ideal I of R,

R=I is a partially ordered ring i¤ the following case (a) or (b) holds.

(a) I is convex, and the ordered additive subgroup Z is embeddable in R=I .

(b) Any distinct points in R=I are incomparable (equivalently, SH IÞ.

In the following corollary, (1) holds by Theorem 3.13, and (2) is directly

shown by (1), using Proposition 3.11.

Corollary 3.14. Let ðR;aÞ be a partially ordered ring.

(1) The following are equivalent.

(a) R=I is a partially ordered ring in which the ordered additive group Z can’t

be embeddable.

(b) Any distinct points in R=I are incomparable (equivalently, SH I ).

(2) The following are equivalent.

(a) R=I is a partially ordered ring in which the ordered additive group Z is

embeddable.

(b) ðSnIÞ þ ðSnIÞH ðSnIÞ, and SnI 0q.

The following corollary holds by Corollaries 2.11 and 3.14(1).

Corollary 3.15. Let ðZ;aÞ be a partially ordered ring, and I ¼ nZ

ð1 < n A NÞ. Then the following are equivalent.

(a) Z=I is a partially ordered ring.

(b) Any distinct points in Z=I are incomparable.

(c) S ¼ nða1Z� þ � � � þ amZ
�Þ for some a1; . . . ; am A Z�.

4. Order-preserving Isomorphisms

We consider order-preserving isomorphisms between residue class rings which

are partially ordered rings. In this section, the symbols ðR;aÞ and ðR 0;a0Þ mean

partially ordered rings, unless otherwise stated.

Definition 4.1. For an isomorphism s : ðR;aÞ ! ðR 0;a0Þ, let us say that

s is isomorphic as partially ordered rings if s and s�1 are order-preserving

(equivalently, sðSÞ ¼ S 0). If there exists such an isomorphism s, we shall say

that ðR;aÞ is isomorphic to ðR 0;a0Þ as partially ordered rings. When ðR;aÞ and
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ðR 0;a0Þ are ordered rings (or ordered fields, etc.), we say that ðR;aÞ is isomorphic

to ðR 0;a0Þ as ordered rings (or ordered fields, etc.).

Remark 4.2. For an isomorphism s : ðR;aÞ ! ðR 0;a0Þ, let us consider (i)

s is order-preserving; (ii) s�1 is order-preserving. Then (i) need not imply (ii),

and vice versa. Indeed, for the first, consider the identity map s : ðZ;aSÞ ! Z,

S ¼ 2Z�, and for the latter, consider the identity map s 0 ¼ s�1. If ðR;aÞ is an

ordered ring, (i) holds i¤ (ii) holds and ðR 0;a0Þ is an ordered ring (but (ii) need

not imply (i)).

Definition 4.3. For a homomorphism s : ðR;aÞ ! ðR 0;a0Þ, we induce a

homomorphism s; R=I ! R 0=I 0 by sð½a�Þ ¼ ½sðaÞ� under sðIÞH I 0.

We note that s is well-defined i¤ sðIÞH I 0. Thus, we assume sðIÞH I 0 for

the induced homomorphism s.

The following diagram is commutative (i.e., s � j ¼ j 0 � s) for the induced

homomorphism s and the natural homomorphism j, etc.

R ���!s R 0

j

???y j 0

???y
R=I ���!s R 0=I 0

ð�Þ

Let us observe the map s induced by s, and give a characterization for the

map s to be an isomorphism as partially ordered rings.

The following lemma is routinely shown.

Lemma 4.4. Let s : R ! R 0 be a homomorphism, and I ; I 0 be an ideal of

R;R 0 respectively. Then the following hold.

(1) s is an epimorphism i¤ sðRÞ þ I 0 ¼ R 0. In particular, if s is an epi-

morphism, then so is s.

(2) s is a monomorphism i¤ s�1ðI 0ÞH I (equivalently, s�1ðI 0Þ ¼ IÞ.
(3) s is an isomorphism i¤ sðRÞ þ I 0 ¼ R 0 and s�1ðI 0Þ ¼ I .

Theorem 4.5. Let s : ðR;aÞ ! ðR 0;a0Þ be a homomorphism, and I ; I 0 be

convex in R;R 0 respectively. Then the following hold.

(1) s is order-preserving i¤ sðSÞHS 0 þ I 0. In particular, if s is order-

preserving, then so is s.
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(2) s is an order-preserving isomorphism i¤ sðRÞ þ I 0 ¼ R 0, s�1ðI 0Þ ¼ I and

sðSÞHS 0 þ I 0.

(3) s is an isomorphism as partially ordered rings i¤ sðRÞ þ I 0 ¼ R 0,

s�1ðI 0Þ ¼ I and sðSÞ þ I 0 ¼ S 0 þ I 0.

Proof. For (1), noting the commutative diagram ð�Þ,

s is order-preserving , sðjðSÞÞH j 0ðS 0Þ

, j 0ðsðSÞÞH j 0ðS 0Þ , sðSÞHS 0 þ I 0:

Hence (1) holds.

For (2), this is a consequence of (1) and Lemma 4.4(3).

For (3), noting also the commutative diagram ð�Þ, for s being an isomorphism,

the inverse map s�1 : ðR 0=I 0;a0Þ ! ðR=I ;aÞ is order-preserving , s�1ðj 0ðS 0ÞÞ
H jðSÞ , sðs�1ðj 0ðS 0ÞÞÞH sðjðSÞÞ , j 0ðS 0ÞH j 0ðsðSÞÞ , S 0 þ I 0 H sðSÞ þ I 0.

Hence (3) holds by means of (2). r

Remark 4.6. (1) The conditions (i) sðRÞ þ I 0 ¼ R 0, (ii) s�1ðI 0Þ ¼ I and (iii)

sðSÞ þ I 0 ¼ S 0 þ I 0 in Theorem 4.5(3) are independent. Indeed, let s : R ! R 0 be

a monomorphism, but not an epimorphism, between partially ordered rings which

are trivial and let I , I 0 zero ideals. Then (ii) and (iii) hold, but (i) doesn’t hold.

Further, (i) and (ii) (resp. (i) and (iii)) need not imply (iii) (resp. (ii)) by (1) (resp.

(4)) of Example 4.13 later.

(2) The ‘‘if ’’ part of Theorem 4.5(3) holds if the ideal I or I 0 is convex

(indeed, the proof there shows that the conditions (i), (ii) and (iii) in (1) imply

that for the isomorphism s : R=I ! R 0=I 0, sðjðSÞÞ ¼ j 0ðS 0Þ. Thus, I is con-

vex , R=I is a partially ordered ring , R 0=I 0 is a partially ordered ring , I 0 is

convex. Therefore, I and I 0 are convex i¤ so is either I or I 0).

Remark 4.7. Every monomorphism s : ðR;aÞ ! ðR 0;a0Þ need not be an

epimorphism even if s : R=I ! R 0=I 0 is an isomorphism as partially ordered

rings. Indeed, let R ¼ Z, I ¼ ð0Þ; R 0 ¼ Z½x�, I 0 ¼ ðxÞ. Consider the usual ordera

on R, and the order a0 ¼a2 on R 0 given in Proposition 3.7(2). Then I ; I 0 is

convex in R;R 0, respectively. Let s : Z ! Z½x� be the injection (defined by

sðaÞ ¼ aÞ. Then sðZÞ þ I 0 ¼ Z½x�, s�1ðI 0Þ ¼ I , and sðSÞ þ I 0 ¼ S 0 þ I 0. Thus,

s : R=I ! R 0=I 0 is an isomorphism as partially ordered rings by Theorem 4.5(3),

but s is not an epimorphism.
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The following corollary holds by Theorem 4.5.

Corollary 4.8. Let s : ðR;aÞ ! ðR 0;a0Þ be an epimorphism, and I ; I 0 be

convex in R;R 0 respectively. Then s : R=I ! R 0=I 0 is an isomorphism as partially

ordered rings i¤ I ¼ s�1ðI 0Þ and sðSÞ þ I 0 ¼ S 0 þ I 0.

Corollary 4.9. (1) Let s : ðR;aÞ ! ðR 0;a0Þ be an epimorphism with

sðSÞ ¼ S 0. Let I ¼ s�1ðI 0Þ, and assume that I is convex in R, or so is I 0 in R 0.

Then R=I is isomorphic to R 0=I 0 as partially ordered rings.

(2) Let s : ðR;aÞ ! ðR 0;a0Þ be a monomorphism with sðSÞ ¼ S 0 V sðRÞ. Let
I 0 ¼ sðIÞ, and assume that I is convex in R, or so is I 0 in sðRÞ. Then R=I is

isomorphic to sðRÞ=I 0 as partially ordered rings.

Proof. For (1), I ¼ s�1ðI 0Þ. While, sðSÞ þ I 0 ¼ S 0 þ I 0 by sðSÞ ¼ S 0. Thus,

(1) holds by Theorem 4.5(3) with Remark 4.6(2). For (2), sðRÞ is a partially

ordered ring by Proposition 2.5(1). Thus (2) holds by replacing R 0 with sðRÞ in

(1). r

Corollary 4.10. (1) Let s : ðR;aÞ ! ðR 0;a0Þ be an order-preserving epi-

morphism. Let I ¼ s�1ðI 0Þ, and assume that I is convex in R, or so is I 0 in R 0. If

ðR;aÞ is an ordered ring, then R=I is isomorphic to R 0=I 0 as ordered rings.

(2) Let s : ðR;aÞ ! ðR 0;a0Þ be an order-preserving monomorphism. Let I 0 ¼
sðIÞ, and assume that I is convex in R, or so is I 0 in sðRÞ. If ðR;aÞ is an ordered

ring, then R=I is isomorphic to sðRÞ=I 0 as ordered rings.

Proof. (1) is similarly shown as in (2), so we will show (2) holds. Since

ðR;aÞ is an ordered ring and s is order-preserving, then sðRÞ is an ordered ring,

and sðSÞ ¼ S 0 V sðRÞ holds. Then, by Corollary 4.9(2), R=I is isomorphic to

sðRÞ=I 0 as partially ordered rings. But, ðR;aÞ and ðsðRÞ;a0Þ are ordered rings

such that I is convex in R and so is I 0 in sðRÞ (in view of Remark 4.6(2)). Then,

R=I and sðRÞ=I 0 are ordered rings by [2, Theorem 1] (cf. Proposition 3.12(2)).

Hence the corollary holds. r

For a (completely regular) space X , let CðXÞ be the set of all continuous

maps from X to the usual space R of real numbers. Then CðXÞ is a partially

ordered ring (indeed, for f ; g A CðXÞ, define ð f þ gÞðxÞ ¼ f ðxÞ þ gðxÞ, fgðxÞ ¼
f ðxÞgðxÞ; and for r A R, r A CðXÞ is the constant map rðxÞ1 r. Define a partial

order a on CðXÞ by f a g if f ðxÞa gðxÞ for all x A X ).
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Lemma 4.11. (1) For a prime ideal I of CðXÞ, CðXÞ=I is an ordered integral

domain with I convex in CðXÞ.
(2) Every homomorphism H : CðX Þ ! CðYÞ is order-preserving.

Proof. (1) holds in view of [1, Theorem 5.5], here CðXÞ=I is an integral

domain i¤ I is a prime ideal of CðXÞ. For (2), let f b 0, and take g A CðXÞ
with f ¼ g2. Thus, Hð f Þ ¼ Hðg2Þ ¼ ðHðgÞÞ2 b 0. Hence H is order-preserving.

r

Corollary 4.12. For a continuous surjection t : X ! Y , define a homo-

morphism H : CðY Þ ! CðXÞ by HðgÞ ¼ g � t. For a maximal (resp. prime) ideal L

of CðY Þ, let M ¼ HðLÞ. Then CðYÞ=L is isomorphic to HðCðY ÞÞ=M as ordered

fields (resp. ordered integral domains).

Proof. The map H : CðY Þ ! CðXÞ is a monomorphism. Let S ¼
fg A CðYÞ j 0a gg, and S 0 ¼ f f A CðX Þ j 0a f g. Let us show that HðSÞ ¼
S 0 VHðCðY ÞÞ. The homomorphism H is order-preserving by Lemma 4.11(2).

Hence HðSÞHS 0 VHðCðYÞÞ. Let f A S 0 VHðCðYÞÞ, and f ¼ HðgÞ ðg A CðYÞÞ.
Since 0a f , for all x A X , 0a f ðxÞ, thus 0a gðtðxÞÞ. But the map t is surjective,

then 0a gðyÞ for all y in Y , so 0a g. Hence HðgÞ A HðSÞ. Thus, HðSÞ ¼
S 0 VHðCðY ÞÞ. While, the ideal L is convex in CðYÞ by Lemma 4.11(1). Thus,

CðY Þ=L is isomorphic to HðCðYÞÞ=M as partially ordered rings by Corollary

4.9(2). But, for L being maximal (resp. prime) in CðY Þ, CðYÞ=L and HðCðYÞÞ=M
are ordered fields (resp. ordered integral domains), using Lemma 4.11(1). Hence,

Corollary 4.12 holds. r

Example 4.13. Let s : ðR;aÞ ! ðR 0;a0Þ be an epimorphism, I ; I 0 be convex

in R;R 0 respectively, and sðIÞH I 0. Let us consider the following conditions on

s related to Theorem 4.5 (note that the induced homomorphism s is an iso-

morphism as partially ordered rings i¤ (a) and (b) hold (Corollary 4.8)).

(a) s�1ðI 0Þ ¼ I .

(a*) sðIÞ ¼ I 0.

(b) sðSÞ þ I 0 ¼ S 0 þ I 0.

(b*) sðS þ IÞ ¼ S 0 þ I 0.

(c) sðSÞ ¼ S 0.

(c*) sðSÞHS 0.

(c**) s�1ðS 0ÞHS.

Clearly, (a) ) (a*); (c) ) (b); (a*) & (c) ) (b*); and (c*) & (c**) ) (c) hold.
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Obviously, (c) ) (c*) holds, and the reverse holds if ðR;aÞ is an ordered

ring.

Also, (b*) ) (b) holds, and the reverse holds if (a*) holds (indeed, sðSÞH
sðS þ IÞ ¼ S 0 þ I 0, so sðSÞ þ I 0 H sðS þ IÞ ¼ S 0 þ I 0. But, sðS þ IÞ ¼ sðSÞþ
sðIÞH sðSÞ þ I 0. Thus, we have sðSÞ þ I 0 ¼ sðS þ IÞ (which also holds under

(a*)).

However, we have the following examples related to the above.

(1) (a) need not imply (b), (c*) or (c**).

(2) (a), (b*), and (c*) need not imply (c) or (c**).

(3) (a), (b*), and (c**) need not imply (c*).

(4) (a*), (b*), and (c) need not imply (a) or (c**).

(5) (a) and (c*) need not imply (b) or (c**).

(6) (c) (hence (b)) need not imply (a*) or (b*).

Indeed, for (1), let K ¼ QðpÞ, and let ðK ;aÞ; ðK ;�Þ be ordered fields in

[3, Example 3.2], and I ¼ I 0 ¼ ð0Þ. Consider the identity map s of ðK ;aÞ to

ðK ;�Þ. Then sðIÞ ¼ I 0, but neither s nor s�1 is ordered-preserving.

For (2), let R ¼ Z. Let S ¼ 4Z�, and S 0 ¼ 2Z�. Then ðZ;aSÞ and ðZ;aS 0 Þ
are partially ordered rings. Let I ¼ I 0 ¼ 2Z. Then I (resp. I 0) is convex in ðZ;aSÞ
(resp. ðZ;aS 0 ÞÞ by Proposition 3.4. Let s : ðZ;aSÞ ! ðZ;aS 0 Þ be the identity

map. Then s�1ðI 0Þ ¼ I , sðS þ IÞ ¼ S 0 þ I 0, and sðSÞHS 0, but sðSÞ0S 0 (hence,

s�1ðS 0ÞQS).

For (3), consider (2), putting I ¼ 2Z, S ¼ 2Z�; and I 0 ¼ 2Z, S 0 ¼ 4Z�.

For (4), let ðR;aÞ ¼ ðK½x�;a2Þ. Let I ¼ ðx2Þ. Then I is convex in ðR;aÞ by

Corollary 3.9. Let R 0 ¼ K , and s be the map of R to R 0 defined by sð f ðxÞÞ ¼
f ð0Þ. Let I 0 ¼ ð0Þ. Clearly, I 0 is convex in R 0, and s is an epimorphism.

Obviously, sðIÞ ¼ I 0, sðSÞ ¼ S 0 (i.e., S 0 is the non-negative part in K), and

thus sðS þ IÞ ¼ S 0 þ I 0. But, s�1ðI 0Þ ¼ ðxÞ0 I . Also, s�1ðS 0ÞQS, for x2 � x A

s�1ðS 0ÞnS.
For (5), let s : K ½x� ! K ½x� be the identity map. Let S ¼ f0g, S 0 ¼

f f A K ½x� j 0a2 f g, and I ¼ I 0 ¼ ðxÞ. Then ðK ½x�;aSÞ is a partially ordered ring

with I convex, and ðK ½x�;aS 0 Þ is an ordered integral domain with I 0 convex.

Clearly, s�1ðI 0Þ ¼ I and sðSÞHS 0. Obviously, sðSÞ þ I 0 0S 0 þ I 0, and

s�1ðS 0ÞQS.

For (6), let R ¼ R 0 ¼ ðK ½x�;a2Þ. Let S ¼ S 0, and I ¼ ðx2Þ, and I 0 ¼ ðxÞ.
Then I and I 0 are convex in R ¼ R 0 by Corollary 3.9. Let s be the identity map

of R. Clearly, sðSÞ ¼ S 0, but sðIÞ0 I 0. We will show that sðS þ IÞ0S 0 þ I 0.

Since I H I 0, S þ I ¼ sðS þ IÞHS 0 þ I 0. Since �x A I 0 and 0 A S 0, �x A S 0 þ I 0.

But, �x never belongs to S þ I . Because, if �x A S þ I , then �x ¼ f þ g for

56 Yoshimi Kitamura and Yoshio Tanaka



some f A S and some g A I . Let f ¼ a0 þ a1xþ a2x
2 þ � � � þ anx

n. Since �x ¼
f þ g, then a0 ¼ 0, a1 ¼ �1. Thus f B S, a contradiction. Hence, �x B S þ I ,

thus sðS þ IÞ0S 0 þ I 0.

Related to Example 4.13(6), let us consider a question whether (b*) and (c)

imply (a*). We will show that this question is positive under sðIÞ being convex

in R 0, or R being an ordered ring.

Lemma 4.14. Let ðR;aÞ be a partially ordered ring, and I , I 0 be convex in R.

If S þ I ¼ S þ I 0, then I ¼ I 0.

Proof. To see I H I 0, let x A I . Since I HS þ I 0, there exist s A S and a A I 0

with x ¼ sþ a. Since �x A I , there exist t A S and b A I 0 with �x ¼ tþ b. Then

sþ t ¼ �ðaþ bÞ A I 0. Since 0a sa sþ t, s A I 0 by the convexity of I 0. Thus,

x ¼ sþ a A I 0. This shows I H I 0 holds. Similarly, I I I 0 holds. Hence, I ¼ I 0

holds. r

Proposition 4.15. Let s : ðR;aÞ ! ðR 0;a0Þ be an epimorphism, and I ; I 0 be

a convex ideal in R;R 0 respectively. If sðS þ IÞ ¼ S 0 þ I 0 and sðSÞ ¼ S 0, then

sðIÞ ¼ I 0 holds when (i) sðIÞ is convex in ðR 0;a0Þ, or (ii) ðR;aÞ is an ordered ring.

Proof. For case (i), since sðS þ IÞ ¼ sðSÞ þ sðIÞ, S 0 þ sðIÞ ¼ S 0 þ I 0. Since

sðIÞ is convex in R 0, sðIÞ ¼ I 0 by Lemma 4.14. For case (ii), R is an ordered

ring, and s is order-preserving by sðSÞ ¼ S 0. Then, since I is convex in R, so is

sðIÞ in R 0. Thus, sðIÞ ¼ I 0 by case (i). r

Remark 4.16. In Proposition 4.15 (or Lemma 4.14), if the convexity of I 0 is

omitted, then the result need not hold. Indeed, let K be an ordered field, and R ¼
R 0 ¼ ðK ½x�;a2Þ be the ordered integral domain. Let I ¼ ðxÞ and I 0 ¼ ðx2 þ xÞ be

ideals in R. Then I is convex, but I 0 is not convex by Corollary 3.9(2). It is easy

to see that S þ I ¼ S þ I 0, but I 0 I 0. Then the identity map s of R to R is a

desired one.
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