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HOLONOMY GROUPS IN A TOPOLOGICAL

CONNECTION THEORY

By

Kensaku Kitada

Abstract. We study slicing functions, which are called direct con-

nections in the smooth category, and parallel displacements along

sequences in a topological connection theory. We define holonomy

groups for such parallel displacements, and prove a holonomy re-

duction theorem and related results. In particular, we study a

category of principal bundles with parallel displacements over a fixed

base space. Assuming the existence of an initial object of a category

of principal G-bundles, we obtain a classification theorem of to-

pological principal G-bundles in terms of topological group homo-

morphisms. It is shown that a certain object is an initial object if it

is the holonomy reduction of itself with respect to the identifica-

tion topology. The result is applied to the universal bundle over a

countable simplicial complex constructed by Milnor.

1 Introduction

Connection theory has been one of the most important branch in di¤erential

geometry. Recently, various results have been obtained also in gauge theory. On

the other hand, as known in a series of works relevant to collapsing Riemannian

manifolds, the limit space of the Gromov–Hausdor¤ convergence of Riemannian

manifolds is not a manifold in general (see [6, 8, 15]). Thus, it seems to be

convenient to study a topological connection theory which is still e¤ective also in

more general spaces including such limit ones. In a category of certain topological

spaces, generalized or analogous theories of connection theory have been studied.
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For example, N. Abe [1] generalized parallel displacements along piecewise

smooth curves to parallel displacements along admissible paths, defined a hol-

onomy group, and proved a holonomy reduction theorem. A. Asada [3, 4, 5]

generalized connection theory to topological fiber bundles using the Alexander-

Spanier cohomology and obtained various results. A connection in the sense of

Asada is the germ of a slicing function at the diagonal set of the base space of a

G-bundle. Slicing functions have been studied in the theory of fibrations ([2, 9]).

Recently, J. Kubarski and N. Teleman [13, 16] have studied a smooth slicing

function, which they call a linear direct connection in smooth vector bundles,

whose infinitesimal part is shown to be a linear connection ([13, Theorem 3]).

They showed that the Chern character of smooth vector bundles can be rep-

resented as the periodic cyclic homology class of a specific cyclic cycle, man-

ufactured from a direct connection. Direct connections have been used without

systematic study for several constructions in K-theory and cyclic homology

([7, 11]). J. Milnor [14] considered slicing functions defined on any subset of

X � X containing the diagonal set DX , not necessarily a neighborhood of DX . He

constructed a universal bundle over a polyhedron X of a countable connected

simplicial complex K in the weak topology. Moreover, he showed that any

principal bundle over X associates with this universal bundle ([14, Theorem 5.1])

by constructing slicing functions.

The purpose of this paper is to define, in a topological connection theory,

slicing functions, parallel displacements along sequences, and their holonomy

groups as an analogue of those in [1], and study their fundamental properties.

The main results are holonomy reduction theorems (Theorems 6.3 and 7.5), and a

classification theorem (Theorem 8.1).

In Section 2, we recall some properties of topological bundles, especially

principal G-bundles, following mostly Husemoller [10].

In Section 3, we introduce slicing functions in topological bundles, which

induce parallel displacements in our sense in the next section. We also give

examples, some of which indicate that the slicing function is a generalization of

the connection in the smooth category. In particular, it is shown that connections

in the smooth category induce smooth slicing functions. Moreover, we generalize

Theorem 3 in [13] to a smooth principal G-bundle.

In Section 4, we define parallel displacements along admissible sequences as an

analogue of those along admissible paths in [1]. Moreover, we define morphisms

which preserve the parallel displacements and study some properties of them.

In Section 5, we define a holonomy group of the parallel displacement as an

analogue of that of the parallel displacement along admissible paths in [1]. We
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study fundamental properties of the holonomy groups. In particular, a relation

between the holonomy group of a connection in the smooth category and that of

the parallel displacement induced by the smooth slicing function in Section 3 is

studied. Moreover, we define a local holonomy group of the parallel displace-

ment. In the smooth category, the Lie algebra of the holonomy group of a

connection is spanned by the image of the curvature. As an analogue of this

fact, we show that the local holonomy group is generated by a curvature of the

parallel displacement, whose germ is the curvature in the sense of Asada [4, 5]. At

the end of this section, we study a relation between the local holonomy group of

a connection in the smooth category and the local holonomy group of the parallel

displacement induced by the smooth slicing function in Section 3.

In Section 6, we define a holonomy bundle of the parallel displacement as an

analogue of that of the parallel displacement along admissible paths in [1] and

study their fundamental properties. In particular, we obtain a holonomy re-

duction theorem (Theorem 6.3) and related results as in the smooth category

and [1].

In Section 7, we define a strong holonomy group whose topology is the

identification topology induced by a certain monoid homomorphism. Especially,

we introduce a concept of strong holonomy reduction and obtain a strong version

of the holonomy reduction theorem (Theorem 7.5).

Finally, in Section 8, we study a category of principal bundles with parallel

displacements over a fixed base space. We obtain a classification theorem

(Theorem 8.1) in the following sense. If there exists an initial object of a category

of principal G-bundles and parallel displacements, the bundles with parallel

displacements are classified in terms of topological group homomorphisms from

the structure group of the initial object to those of bundles. We obtain a su‰cient

condition for the existence of an initial object. We see that a certain object is

an initial object if it is the strong holonomy reduction of itself. From this fact, it

follows that the universal bundle constructed by Milnor over X together with the

parallel displacement induced by a certain slicing function is an initial object in

the category. In particular, Theorem 5.1 in [14] follows.

2 Preliminaries

At first we prepare notations of maps and some topological facts. Let

f : X ! Y be a map and AHX , BHY such that f ðAÞHB. Then there exists a

unique map k : A! B such that f � iA;X ¼ iB;Y � k, where iA;X is the inclusion.

We denote by Bj f jA the map k. Moreover, we denote by f jA (resp. Bj f ) the map
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Y j f jA (resp. Bj f jX ). If there is no confusion, we denote by f jA or f : A! B the

map Bj f jA as usual. Let f : X ! Y , g : Z !W be maps. We denote the

composition ðgjYVZÞ � ðYVZj f jf �1ðYVZÞÞ simply by g � f . Note that if Y VZ ¼q,

then g � f : q!W . Suppose that X ¼ Z and let d : X ! X � X be a diagonal

map. We denote by f �̂� g the composition ð f � gÞ � d : X ! Y �W . Explicitly,

ð f �̂� gÞðxÞ ¼ ð f ðxÞ; gðxÞÞ for x A X . If X and Y are topological spaces and

f : X ! Y is a continuous map, then Bj f jA is also continuous with respect to

the relative topologies. We call f an identification if the topology of Y is

fU A PðY Þ j f �1ðUÞ A OXg, that is, the identification topology with respect to f ,

where PðYÞ is the power set of Y and OX is the topology of X . Note that a

surjective continuous open map is an identification. The following lemmas are

frequently used in this paper.

Lemma 2.1. A surjective map f : X ! Y is an identification if and only if

f ðAÞj f jA : A! f ðAÞ is also an identification for any open (or closed ) subset AHX

such that f �1ð f ðAÞÞ ¼ A.

Lemma 2.2. A map f : X ! Y is an open map if and only if Aj f jf �1ðAÞ :
f �1ðAÞ ! A is an open map for any subset AHY.

We mostly follow the terminology of [10] with slight changes in notation.

Thus, hereafter in this section, we set up notation for bundles. For a continuous

map p : E ! X , we call the map p : E ! X itself a bundle while usually the triple

x ¼ ðE; p;XÞ or the total space E is referred to as a bundle. Let p : E ! X and

p 0 : E 0 ! X 0 be bundles. For continuous maps h : E ! E 0 and f : X ! X 0, we

call ðh; f Þ : p! p 0 a bundle morphism if p 0 � h ¼ f � p. We denote by Homðp; p 0Þ
(resp. Isoðp; p 0Þ) the set of bundle morphisms (resp. isomorphisms). If X ¼ X 0, we

call ðh; idX Þ : p! p 0 an X -morphism and denote it simply by h. We denote by

HomX ðp; p 0Þ (resp. IsoX ðp; p 0Þ) the set of X -morphisms (resp. X -isomorphisms).

For Y HX , put EdY :¼ p�1ðY Þ and pdY :¼ Y jpjp�1ðY Þ, then we call pdY : EdY
! Y the restricted bundle of p to Y . For a continuous map f : Z ! X , the

induced bundle or pull-back of p is denoted by f �p : f �E ! Z, where

f �E :¼ Z �X E :¼ fðz; uÞ A Z � E j f ðzÞ ¼ pðuÞg

is a fiber product of Z !f X  p E. The canonical bundle map is denoted by ð f ; f Þ.
For topological spaces X and F , a bundle pr1 : X � F ! X is called a product

bundle. If p is X -isomorphic to a product bundle, we say that p is trivial. We say
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that p : E ! X is locally trivial if p is locally V -isomorphic to a product bundle

pr1 : V � F ! V for some open subset V HX . An element of IsoV ðpdV ; pr1Þ is
called a local trivialization.

We recall G-spaces and G-bundles. Let G be a topological group. A right

G-space is a topological space E equipped with a continuous right action

m : E � G ! E. We often denote mðu; aÞ simply by ua. For u A E and a A G,

two maps lu : G ! E and ra : E ! E are given by luðbÞ :¼ ub and raðvÞ :¼ va

respectively. A left G-space is defined in the same way. A G-space is a right

G-space unless otherwise mentioned. We call E a free G-space if the right action

is free. We denote by E=G the orbit space, and by qE
G : E ! E=G the natural

projection, where the topology of E=G is the identification topology (that is, the

quotient topology) induced by qE
G . Note that qE

G is a surjective open map. A

translation function T : E � ! G is a (not necessarily continuous) map such that

uTðu; vÞ ¼ v for any ðu; vÞ A E �, where

E � :¼ fðu; uaÞ A E2 j a A Gg:

Let E be a free G-space. Since for any ðu; vÞ A E � there exists a unique a A G

such that v ¼ ua, a translation function T : E � ! G is given by Tðu; vÞ :¼ a. We

have the following:

(1) For any u A E, Tðu; uÞ ¼ 1G.

(2) For any ðu; vÞ A E � and ða; bÞ A G2, ðua; vbÞ A E � and Tðua; vbÞ ¼
a�1Tðu; vÞb.

(3) For any ðu; v;wÞ A E3 such that ðu; vÞ; ðv;wÞ A E �, Tðu; vÞTðv;wÞ ¼
Tðu;wÞ.

We call E a principal G-space if T is continuous. Let p : E ! X be a bundle such

that E is a G-space. We call p a G-bundle if qE
G and p are isomorphic by ðidE ; f Þ,

where f is a unique continuous map such that f � qE
G ¼ p � idE . We denote by

p=G the map f . The following lemma provides a rather practical condition for a

bundle to be a G-bundle.

Lemma 2.3. Let p be a bundle whose total space is a G-space. Then p is a

G-bundle if and only if the map p=G
is well-defined and a homeomorphism.

Let p (resp. p 0) be a G (resp. G 0)-bundle. For a continuous group homo-

morphism r : G ! G 0 and a bundle morphism ðh; f Þ : p! p 0, we call a triple

ðh; f ; rÞ : ðp;GÞ ! ðp 0;G 0Þ a homomorphism if hðuaÞ ¼ hðuÞrðaÞ for ðu; aÞ A E � G.

If G ¼ G 0, we call ðh; f ; idGÞ a G-morphism and denote it simply by ðh; f Þ.
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We denote by Homððp;GÞ; ðp 0;G 0ÞÞ (resp. HomGððp;GÞ; ðp 0;GÞÞ) the set of

homomorphisms (resp. G-morphisms). If cod p ¼ cod p 0 ¼ X , put

HomX ððp;GÞ; ðp 0;G 0ÞÞ :¼ fðh; rÞ A Homððp;GÞ; ðp 0;G 0ÞÞ j h A HomX ðp; p 0Þg;

HomX ;Gððp;GÞ; ðp 0;GÞÞ :¼ fh A HomX ðp; p 0Þ j ðh; idX Þ A HomGððp;GÞ; ðp 0;GÞÞg:

The set of isomorphisms is obtained by replacing Hom by Iso. We call an

element of HomX ;Gððp;GÞ; ðp 0;GÞÞ an ðX ;GÞ-morphism. We call a G-bundle

p : E ! X a principal G-bundle if E is a principal G-space.

Let p : E ! X be a principal G-bundle. Using Lemma 2.2, we can see that

the restricted bundle pdY is a principal G-bundle. The induced bundle f �p is

a principal G-bundle in the natural way.

Here we recall associated bundles. Let G and G 0 be topological groups,

r : G ! G 0 a continuous group homomorphism, and E a G-space. The product

space E � G 0 is a G-space by a right action ðu; aÞb :¼ ðub; rðbÞ�1aÞ. We denote by

E r the orbit space ðE � G 0Þ=G. The orbit space E r is a G 0-space by a right action

½u; b�c :¼ ½u; bc�. We can see that this action is continuous. We call E r a G 0-space

associated with E. If E is a free G-space, then E r is a free G 0-space. If E is a

principal G-space with the translation function T , then E r is a principal G 0-space

with the translation function given by

T rð½u; a�; ½v; b�Þ :¼ a�1rðTðu; vÞÞb

for ð½u; a�; ½v; b�Þ A ðE rÞ�. Using Lemma 2.2, we can see that T r is continuous.

Let p : E ! X be a principal G-bundle. Let pr : E r ! X be the map such that

pr � qE�G 0
G ¼ p � pr1. We can see that pr is a principal G 0-bundle. We call pr the

principal G 0-bundle associated with p. A map yr : E ! E r is given by

yrðuÞ :¼ ½u; 1G 0 �

for u A E. Then we can see ðyr; rÞ A HomGððp;GÞ; ðpr;G 0ÞÞ. Let p 0 : E 0 ! X be a

principal G 0-bundle and ðh; rÞ A HomX ððp;GÞ; ðp 0;G 0ÞÞ. A map hr : E r ! E 0 is

given by

hrð½u; a�Þ :¼ hðuÞa

for ½u; a� A E r. Then we can see that hr A HomX ;G 0 ððpr;G 0Þ; ðp 0;G 0ÞÞ and h ¼
hr � yr. From Theorem 3.2 and the succeeding observation in [10], Chapter 4,

we have the following lemma.
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Lemma 2.4. If p 0 is a principal G 0-bundle, then hr A IsoX ;G 0 ððpr;G 0Þ; ðp 0;G 0ÞÞ.

Next, we recall local triviality of G-bundles. Let E !p X be a G-bundle.

We say that p is locally G-trivial or simply locally trivial if p is locally ðV ;GÞ-
isomorphic to a product G-bundle pr1 : V � G ! V for some open subset V HX .

An element of IsoV ;GððpdV ;GÞ; ðpr1;GÞÞ is called a local trivialization. For a local

trivialization a : ðpdV ;GÞ ! ðpr1;GÞ, put Ua :¼ V . For local trivializations a and

b, the transition function gab : Ua VUb ! G is given by

gabðxÞ :¼ ðpr2 � a � b�1Þðx; 1GÞ:

Note that a locally trivial G-bundle is a principal G-bundle. For a local trivi-

alization a, let sa : Ua ! EdUa
be the local section given by saðxÞ :¼ a�1ðx; 1GÞ.

Then T � ðsa �̂� sbÞ ¼ gab holds. If p is a locally trivial G-bundle, we can see that

pdY , f �p, pr are locally trivial respectively.

3 Slicing Functions and Several Examples

In this section, we introduce slicing functions in, not necessarily locally

G-trivial, bundles and give several examples. Some of them indicate that the

slicing function is a generalization of the connection in the smooth category. In

Section 4, we shall see that any slicing function induces a parallel displacement in

a natural manner.

Let E !p X be a bundle, DX the diagonal set of X , and U HX 2 such that

DX HU . For i A f0; 1g, let p
ð1Þ
i : X 2 ! X be a projection defined by p

ð1Þ
i ðx1; x0Þ

:¼ xi for ðx1; x0Þ A X 2.

Definition 3.1 (cf. [14]). Let o : ðpð1Þ0 jUÞ
�
E ! E be a continuous map. Put

ox;y :¼ oðx; y; �Þ : Ey ! E for ðx; yÞ A U . We call o a slicing function in p over

U if it satisfies the following conditions:

(1) ðo; pð1Þ1 jUÞ A Homððpð1Þ0 jUÞ
�
p; pÞ.

(2) ox;x ¼ idEx
for any x A X .

Let U be symmetric, that is, ðy; xÞ A U for any ðx; yÞ A U . A slicing function o

is said to be invertible if it satisfies the following condition:

oy;x ¼ o�1x;y for any ðx; yÞ A U .

Let p be a G-bundle. We say that o is G-compatible if

ðo; pð1Þ1 jUÞ A HomGðððpð1Þ0 jUÞ
�p;GÞ; ðp;GÞÞ.
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We denote by SF ðp;UÞ (resp. SFinvðp;UÞ, SF ðp;UÞG) the set of slicing functions

(resp. invertible slicing functions, G-compatible slicing functions) on p over U . Put

SFinvðp;UÞG :¼ SFinvðp;UÞVSF ðp;UÞG:

Note that the definition of invertible G-compatible slicing function coincides

with that of Milnor’s if the G-bundle is locally G-trivial.

Remark 3.1. Let id �Xp : id �XE ! X be the induced bundle of p by idX .

Let ðidX ; idX Þ : id �Xp! p be the canonical bundle map and ðU jd� idE ; U jdÞ : id �Xp
! ðpð1Þ0 jUÞ

�p the bundle map, where d : X ! X 2 is the diagonal map. For a

continuous map o : ðpð1Þ0 jUÞ
�
E ! E, o A SF ðp;UÞ if and only if the following

diagram commutes:

id �XE
idX

E

id �
X
p �

X
idX

X

U

����������!

 ����� �������!U jd�idE o

 
����

��

 
����

��
ðpð1Þ

0
jU Þ

�E�����!
 ����� �������!U jd p

ð1Þ
1
jU 

����
�

ðpð1Þ
0
jU Þ

�p

A preordered set I is said to be pseudodirected set if any finite subset of it is

bounded above. Let I be a pseudodirected set and ðUiÞi A I a system of subsets of

X 2 such that for any i; j A I , DX HUi and if ia j, then Uj HUi. For i; j A I with

ia j, let rji : SF ðp;UiÞ ! SF ðp;UjÞ be the restriction, that is, rjiðoÞ ¼ ojðpð1Þ
0
jUj
Þ�E

for o A SF ðp;UiÞ. Then ðSF ðp;UiÞ; rjiÞði; jÞ A I 2 is an inductive system. We denote

by ½o�I an element of lim�! i
SF ðp;UiÞ. Similarly we have the inductive limits of

SFinvðp;UiÞ, SF ðp;UiÞG, and SFinvðp;UiÞG. For example, let OX 2ðDX Þ denote the

set of open neighborhoods of DX in X 2, partially ordered by U aV if V HU ,

and let a system of subset of X 2 be iO
X 2 ðDX Þ;PðX 2Þ ¼ ðUÞU AO

X 2 ðDX Þ. Then we have

½o�O
X 2 ðDX Þ A lim�!U

SF ðp;UÞ.
We have two types of trivial examples of slicing functions.

Example 3.1. Let pr1 : X � F ! X be the product bundle. Put

oðx; y; ðy; pÞÞ :¼ ðx; pÞ

for ðx; y; ðy; pÞÞ A p
ð1Þ�
0 ðX � F Þ. Then, o A SFinvðpr1;X � X Þ. Let G be a topo-

logical group and F ¼ G. Then o A SFinvðpr1;X � XÞG.
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Example 3.2. Let p : E ! X be a bundle. Put

oðx; x; uÞ :¼ u

for ðx; x; uÞ A ðpð1Þ0 jDX
Þ�E. Then, o A SFinvðp;DX Þ. Let p be a principal G-bundle.

Then o A SFinvðp;DX ÞG and we can see that this o essentially coincides with the

translation function.

The following is a slight generalization of an example in [13].

Example 3.3. Let X ¼ R, G ¼ R� and pr1 : R� R� ! R be the product

bundle, where R� :¼ Rnf0g is a topological group with respect to the multi-

plication. Let U HR2 with DR HU and f : U ! R be a continuous map such

that f ðx; xÞ ¼ 0 for x A R. Put

oðx; y; ðy; aÞÞ :¼ ðx; ae f ðx;yÞÞ

for ðx; y; ðy; aÞÞ A ðpð1Þ0 jUÞ
�ðR� R�Þ. Then o A SF ðpr1;UÞR� . If f satisfies the

condition f ðx; yÞ ¼ �f ðy; xÞ for ðx; yÞ A U , then o is invertible.

On a principal G-bundle satisfying appropriate condition, there exists a slicing

function, which corresponds to a flat connection in the smooth category.

Example 3.4. Let p : E ! X be a locally trivial G-bundle and A a bundle

atlas (a system of local trivializations). Suppose that G is a discrete group and for

any ða; bÞ A A2, Ua VUb is connected. Put UA :¼6
a AA Ua �Ua. For ðx; y; uÞ A

ðpð1Þ0 jUA
Þ�E, if ðx; yÞ A Ua �Ua, put

oAðx; y; uÞ :¼ a�1ðx; ðpr2 � aÞðuÞÞ:

This definition does not depend on the choice of a. In fact, for any b A A and

ðx; y; uÞ A ðpð1Þ0 jUA
Þ�E, we have

b�1ðx; ðpr2 � bÞðuÞÞ ¼ a�1ðx; ðpr2 � a � b�1Þðx; ðpr2 � b � a�1Þðy; ðpr2 � aÞðuÞÞÞÞ

¼ a�1ðx; gabðxÞgbaðyÞðpr2 � aÞðuÞÞÞÞ ¼ a�1ðx; ðpr2 � aÞðuÞÞ:

We can see that oA A SFinvðp;UAÞG. By the definition, we have

ðoAÞx;y � ðoAÞy; z ¼ ðoAÞx; z

for any a A A and x; y; z A Ua.
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In the following example, we shall review the universal bundle constructed by

Milnor and demonstrate a slicing function which plays an important role in the

proof of Theorem 5.1 in [14].

Example 3.5 ([14]). Let X be a polyhedron of a countable connected

simplicial complex K in the weak topology. Put UK :¼6
t AK jtj � jtj, X t :¼

6
nb0

X nþ1 (topological sum), and

SK :¼ fðxn; . . . ; x0Þ A X t j nb 1) Ei A f1; . . . ; ng : ðxi; xi�1Þ A UKg:

An equivalence relation in SK is generated by the relations

ðxn; . . . ; xi; . . . ; x0Þ@ ðxn; . . . ; x̂xi; . . . ; x0Þ

whenever either xi ¼ xi�1 or xiþ1 ¼ xi�1, where the symbol x̂x denotes deletion

of x. We denote by ½xn . . . ; x0� the equivalence class of ðxn; . . . ; x0Þ. Fix a vertex

v0 of K. Put

~SSK :¼ SK=@;

~EEK :¼ f½xn; . . . ; x1; x0� A ~SSK j x0 ¼ v0g;

~GGK :¼ f½xn; . . . ; x1; v0� A ~EEK j xn ¼ v0g;

where a topology of ~SSK is the quotient topology and consider ~EEK and ~GGK as

subspaces. A unary operation �� on ~SSK is defined by

½xn; . . . ; x1; x0�� :¼ ½x0; x1; . . . ; xn�

for ½xn; . . . ; x1; x0� A ~SSK . A partial binary operation on ~SSK is defined by

½xn; . . . ; x0�½ym; . . . ; y0� :¼ ½xn; . . . ; x0; ym; . . . ; y0�

for ð½xn; . . . ; x0�; ½ym; . . . ; y0�Þ A ~SSK � ~SSK such that x0 ¼ ym. We can see that ~GGK

is a topological group with respect to these operations. A bundle ~ppK : ~EEK ! X

is defined by

~ppKð½xn; . . . ; x1; v0�Þ :¼ xn:

We can see that ~ppK is a locally trivial principal ~GGK -bundle and a universal

bundle, that is, ~EEK is y-connected. For ðx; ym; ½ym; . . . ; y1; v0�Þ A ðpð1Þ0 jUÞ
� ~EEK , put

~ooKðx; ym; ½ym; . . . ; y1; v0�Þ :¼ ½x; ym�½ym; . . . ; y1; v0�:

Then ~ooK A SFinvð~ppK ;UÞ ~GGK
.
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In Section 8, we will see that ~ppK together with the parallel displacement

induced by ~ooK is an initial object in a category of principal bundles with parallel

displacements over X .

Example 3.6 ([14]). Let X be a polyhedron of a countable simplicial

complex K in the weak topology and p : E ! X a locally trivial G-bundle. Us-

ing an obstruction argument, Milnor proves that there exists o A SFinvðp;UKÞG,
where UK ¼6

t AK jtj � jtj.

The next example and the succeeding arguments indicate that the slicing

function is a generalization of the connection in the smooth category.

Example 3.7. Let p : E ! X be a smooth principal G-bundle, where G is

a Lie group. A connection (invariant horizontal subbundle) in p is a smooth

subbundle H of TE such that

(1) TuE ¼ Ker p�u lHu for u A E,

(2) ra�uðHuÞ ¼ Hua for ðu; aÞ A E � G,

where p� is the di¤erential of p (for example, [12]) and ra : E ! E is given by

raðvÞ :¼ va (see Section 2). Let H be a connection and c : ½0; 1� ! X a piecewise

smooth curve. For u A E, there exists a unique curve ~cc : I ! E such that ~ccð0Þ ¼ u,

p � ~cc ¼ c, and
d~cc

dt
ðtÞ A H~ccðtÞ for t A I , that is, ~cc is the horizontal lift of c starting

from u. Let X be a Riemannian manifold. A subset V in X is strongly convex if

for any ðx; yÞ A V � V there exists a unique geodesic in V joining y to x, and

such that the length of the geodesic is the distance dðx; yÞ, where the geodesic is

gðtÞ ¼ expy tv such that gð1Þ ¼ x. Fix an open covering V of X which consists of

strongly convex sets. Put UV :¼6
V AV V � V . Let ðx; y; uÞ A ðpð1Þ0 jUV

Þ�E and g

be the geodesic in some V joining y to x. Let ~gg be the horizontal lift of g starting

from u. Put

oHðx; y; uÞ :¼ ~ggð1Þ:

Then we can see that oH A SFinvðp;UVÞG and it is smooth.

In [13, 16], Kubarski and Teleman introduce the notion of direct connections,

which are in fact the smooth slicing functions in smooth vector bundles. They

show that the Chern character of smooth vector bundles can be represented as
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the periodic cyclic homology class of a specific cyclic cycle, manufactured from

a direct connection. Let K A fR;Cg, p : E ! X be a smooth K-vector bundle,

U HX 2 an open neighborhood of DX , and GLðEÞ :¼6ðx;yÞ AX 2 IsoKðEy;ExÞ.
Note that GLðEÞ is a smooth fiber bundle with standard fiber GLðKnÞ. By a

linear direct connection in E they mean a smooth map t : U ! GLðEÞ such that

(1) tðx; yÞ : Ey ! Ex for ðx; yÞ A U ,

(2) tðx; xÞ ¼ idEx
for x A X .

Let DCKðp;UÞ denote the set of linear direct connections. Let LE :¼
6

x AX IsoKðKn;ExÞ be the linear frame bundle and pLE its projection. For

t A DCKðp;UÞ, put

otðx; y; uÞ :¼ tðx; yÞ � u

for ðx; y; uÞ A ðpð1Þ0 jUÞ
�
LE. Then we can see that ot A SF ðpLE ;UÞGLðK nÞ. Con-

versely, for o A SF ðpLE ;UÞGLðK nÞ, put

toðx; yÞ :¼ oðx; y; uÞ � u�1

for ðx; yÞ A U and u A IsoKðKn;EyÞ. Then we can see that this definition does not

depend on the choice of u and that to A DCKðp;UÞ. Since to
t ¼ t and oto ¼ o

for any t A DCKðp;UÞ and o A SF ðpLE ;UÞGLðK nÞ, an element of DCKðp;UÞ
corresponds bijectively to the element of SF ðpLE ;UÞGLðK nÞ.

In [13], they remark that the parallel transport along small geodesics—

defined for a linear connection ‘ in E—produces a direct connection t‘ in E.

Their construction is a special case of that in Example 3.7.

Remark 3.2. In [13], Kubarski and Teleman assume that the base manifold

is endowed with an a‰ne connection. In that situation, we can also construct

smooth slicing function oH by taking a similar covering as in Example 3.7.

On the other hand, Kubarski and Teleman show that a linear direct con-

nection t induces a linear connection ‘t in E. We generalize their construction

to a smooth principal G-bundle.

Proposition 3.1. Let p : E ! X be a smooth principal G-bundle, U HX 2 an

open neighborhood of DX and o A SF ðp;UÞG a smooth map. For u A E, put

Ho
u :¼ foð�; pðuÞ; uÞ�pðuÞðvÞ j v A TpðuÞXg;
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where oð�; pðuÞ; uÞ : p1ððX � fpðuÞgÞVUÞ ! E is a map such that p � ðoð�; pðuÞ; uÞÞ
¼ idp1ððX�fpðuÞgÞVUÞ. Then H o :¼6

u AE H o
u is a connection in E, and if ½o�O

X 2 ðDX Þ
¼ ½o 0�O

X 2 ðDX Þ A lim�!U
SF ðp;UÞG, then Ho ¼ H o 0 . Moreover, if X is a Riemannian

manifold, then H oH ¼ H for any connection H in E.

Proof. We can see that H o is a smooth subbundle of TE. Since

p�u � ðoð�; pðuÞ; uÞ�pðuÞÞ ¼ idTpðuÞX , we have Ker p�u VH o
u ¼ f0g. For W A TuE,

since

p�uðW � oð�; pðuÞ; uÞ�pðuÞðp�uðWÞÞÞ ¼ p�uðWÞ � p�uðWÞ ¼ 0;

we get W � oð�; pðuÞ; uÞ�pðuÞðp�uðWÞÞ A Ker p�u, and consequently TuE ¼ Ker p�u
lHo

u . For a A G, the equality

ra�u � oð�; pðuÞ; uÞ�pðuÞ ¼ oð�; pðuaÞ; uaÞ�pðuaÞ

implies ra�uðHuÞ ¼ H o
ua. Thus, H o is a connection.

Let D be the maximal domain of the exponential map, u A E, and v A

DVTpðuÞX . Put gvðtÞ :¼ exppðuÞ tv for t A ½0; 1� and let ~gg be the horizontal lift of

g starting from u. From the equality gtvðsÞ ¼ gvðstÞ and the uniqueness of the

horizontal lift, we have ~ggtvðsÞ ¼ ~ggvðstÞ. Then we get

oHðgvðtÞ; pðuÞ; uÞ ¼ oHðgtvð1Þ; pðuÞ; uÞ ¼ ~ggtvð1Þ ¼ ~ggvðtÞ:

Thus oHð�; pðuÞ; uÞ�pðuÞðvÞ ¼ _~gg~ggvð0Þ A Hu, and consequently H oH

u HHu. Since

dim HoH

u ¼ dim Hu, we have H oH

u ¼ Hu. r

Note that a smooth slicing function o which is not necessarily invertible

induces a connection H o while a smooth slicing function oH derived from a

connection H is invertible.

In the following example, we give concrete expressions of Ho and oH o

for

o in Example 3.3.

Example 3.8. Let f : U ! R and o A SF ðpr1;UÞR� as in Example 3.3.

Suppose that U is an open set and q1 f exists and is smooth on DR. For

ðy; aÞ A R� R�, since

oð�; y; ðy; aÞÞ�yððq1ÞyÞ ¼ ðq1Þðy;aÞ þ aq1 f ðy; yÞðq2Þðy;aÞ;

we have

Ho
ðy;aÞ ¼ fcðq1Þðy;aÞ þ caq1 f ðy; yÞðq2Þðy;aÞ j c A Rg:
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Let ðx; yÞ A R� R and gðtÞ ¼ ðx� yÞtþ y be the geodesic joining y to x. Then

horizontal lift x of g starting from ðy; aÞ A R� R� is given by

xðtÞ ¼ ððx� yÞtþ y; aeðx�yÞ
Ð t
0
q1 f ððx�yÞsþy; ðx�yÞsþyÞdsÞ:

Thus, oH o

A SFinvðpr1;R� RÞR� is given by

oH oðx; y; ðy; aÞÞ ¼ ðx; ae
Ð x
y
q1 f ðt; tÞdtÞ:

From this expression, it follows that ½oH o �O
R2 ðDRÞ ¼ ½o�OR2 ðDRÞ A lim�!U

SF ðpr1;UÞR�
if and only if f ðx; yÞ ¼

Ð x
y
q1 f ðt; tÞdt for some open neighborhood V HU of DR

and any ðx; yÞ A V .

A connection in the sense of Asada is a germ of slicing functions over

neighborhoods of the diagonal set of the base space of a G-bundle.

Example 3.9 (cf. [3, 4, 5]). Let p : E ! X be a G-bundle and U HX 2 such

that DX HU . We denote by C1ðp;UÞG the set of continuous maps s : E2dU ! G

such that

(1) sðu; uÞ ¼ 1G for u A E,

(2) sðva; ubÞ ¼ a�1sðv; uÞb for ðv; uÞ A E2dU and a; b A G.

Regarding an element ½s�N
X 2 ðDX Þ A lim�!U

C1ðp;UÞG as a connection in p, Asada

generalizes connection theory to a category of topological fiber bundles, where

NX 2ðDX Þ is the set of neighborhoods of DX in X 2. For s A C1ðp;UÞG, a map

os : ðpð1Þ0 jUÞ
�
E ! E is given by

osðx; y; uÞ :¼ vsðv; uÞ

for ðx; y; uÞ A ðpð1Þ0 jUÞ
�
E, where v A Ex. We can see that this definition does not

depend on the choice of v and that os A SF ðp;UÞG. Suppose that p is a principal

G-bundle. For o A SF ðp;UÞG, a map so : E2dU ! G is given by

soðv; uÞ :¼ Tðv;oðpðvÞ; pðuÞ; uÞÞ

for ðv; uÞ A E2dU . By the definition, so A C1ðp;UÞG. We can see that so
s ¼ s and

oso ¼ o for any s A C1ðp;UÞG and o A SF ðp;UÞG. Let U be symmetric and

C1
invðp;UÞG denote the set of s A C 1ðp;UÞG such that sðu; vÞ ¼ sðv; uÞ�1 for

ðv; uÞ A E2dU . Then C1
invðp;UÞG corresponds to SFinvðp;UÞG.
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4 Parallel Displacements along Admissible Sequences

In this section, we introduce parallel displacements along admissible

sequences. First of all, we introduce admissible sequence spaces, which is

topologized so that operations are continuous.

Let X be a topological space and X t :¼6
nb0

X nþ1 the topological sum.

Two maps p0; py : X t ! X are defined by

p0ðxn; . . . ; x0Þ ¼ x0; pyðxn; . . . ; x0Þ ¼ xn

for ðxn; . . . ; x0Þ A X t. A binary operation � on X t is defined by

�ðx; yÞ :¼ x � y :¼ ðxn; . . . ; x1; ym; . . . ; y0Þ

for ðx; yÞ ¼ ððxn; . . . ; x0Þ; ðym; . . . ; y0ÞÞ A X t � X t. Let X t �X X t be a fiber

product of X t !p0 X  py X t. Hereafter in this paper, we denote by the same

symbol � the restriction of the binary operation � to X t �X X t, which is a

partial binary operation on X t. A unary operation �� on X t is defined by

x� :¼ ðx0; x1; . . . ; xnÞ for x ¼ ðxn; . . . ; x1; x0Þ. For x A X t, we say that the length

of x is n if x A X nþ1. For any subset SHX t and nb 0, put SðnÞ :¼ SVX nþ1.

Note that for SHX t, S ¼6
nb0

SðnÞ. We can see that ðX t; �Þ is associative and

generated by X UX 2, and maps p0, py, �, and �� are all continuous.

Definition 4.1. We call a subspace SHX t an admissible sequence space

over X if it satisfies the following conditions:

(a) �ðS2 V ðX t �X X tÞÞHS.

(b) X UDX HS.

(c) fx� j x A SgHS.

We denote by ASðXÞ the set of admissible sequence spaces over X . Let

S A ASðX Þ. We say that X is S-connected if ðpy �̂� p0ÞðSÞ ¼ X 2, that is, for

any ðx; yÞ A X 2, there exists x A S such that p0ðxÞ ¼ y and pyðxÞ ¼ x. For a

subset AHX 2, put

SA :¼ ðpyjS �̂� p0jSÞ
�1ðAÞ:

For ðx; yÞ A X 2, put Sx;y :¼ Sfðx;yÞg and Sx :¼ Sx;x. For a symmetric subspace

U HX 2 such that DX HU , put

hUi :¼ fðxn; . . . ; x0Þ A X t j nb 1) Ei A f1; . . . ; ng : ðxi; xi�1Þ A Ug:
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Note that for x A X , SX�fxg ¼ ðp0jSÞ
�1ðfxgÞ and Sfxg�X ¼ ðpyjSÞ

�1ðfxgÞ.
The condition (a) implies hSð1ÞiHS.

Definition 4.2. Put

SX 2ðDX Þ :¼ fU HX 2 j Ex A X ; bV A OX ðxÞ : V � fxgHUg;

where OX ðxÞ is the set of all open neighborhoods of x.

The following example of admissible sequence space is typical.

Example 4.1 (cf. [14]). Let X be a polyhedron of a countable simplicial

complex K in the weak topology. As we have already seen in Examples 3.5 and

3.6, put UK :¼6
t AK jtj � jtj. Then, DX HUK HX 2 and hUKi A ASðXÞ. Note

that SK ¼ hUKi. For x A X , let VKðxÞ be the open star neighborhood of x in

X . Then, VKðxÞ � fxgHUK and hUKið1Þ ¼ UK A SX 2ðDX Þ. If K is connected as

simplicial complex, then X is hUKi-connected.

We have a su‰cient condition for a pathwise connected space to be S-

connected as follows.

Proposition 4.1. Let X be pathwise connected and S A ASðXÞ with Sð1Þ A

SX 2ðDX Þ. Then, X is hSð1Þi-connected, and consequently S-connected.

Proof. Let ðx; yÞ A X � X . Since X is pathwise connected, there exists a

curve c : ½0; 1� ! X such that cð0Þ ¼ y and cð1Þ ¼ x. For z A X , fix Vz A OX ðzÞ
such that Vz � fzgHSð1Þ. Then, ðc�1ðVzÞÞz AX is a covering of ½0; 1�. Let e > 0

be a Lebesgue number of ðc�1ðVzÞÞz AX . Let ðtiÞi A f0;...;kg be a partition of ½0; 1�
such that 0 ¼ t0 < t1 < � � � < tk ¼ 1 and ti � ti�1 < e for i A f1; . . . ; kg. For

i A f1; . . . ; kg, put wi :¼ cðtiÞ and fix Vzi such that cð½ti�1; ti�ÞHVzi . Then,

ðzi;wi�1Þ A fzig � Vzi HSð1Þ for any i A f2; . . . ; kg and ðwi; ziÞ A Vzi � fzigHSð1Þ
for any i A f1; . . . ; kg. Therefore,

ðx; zk;wk�1; . . . ;w1; z1; yÞ A hSð1ÞiHS

and this completes the proof. r

We prepare the following proposition which will not be needed until the

proof of Theorem 6.3 (Holonomy Reduction Theorem) but being related only

to admissible sequences.
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Proposition 4.2. For S A ASðXÞ, we have the following:

(i) pyjS : S! X is an identification.

(ii) If X is S-connected and Sð1Þ A SX 2ðDX Þ, then pyjSX�fxg
: SX�fxg ! X is

an identification for any x A X.

Proof. Note that pyjSðnÞ ¼ p
ðnÞ
n jSðnÞ for nb 0, where p

ðnÞ
n : X nþ1 ! X is the

projection such that p
ðnÞ
n ðxn; . . . ; x0Þ ¼ xn.

Firstly we show (i). Let V HX such that ðpyjSÞ
�1ðVÞ is an open set in S.

Since

ðpyjSÞ
�1ðVÞ ¼ 6

nb0

ðpðnÞn jSðnÞ Þ
�1ðVÞ;

ðpðnÞn jSðnÞ Þ
�1ðVÞ is an open set in SðnÞ for any nb 0. Equalities Sð0Þ ¼ X and

p
ð0Þ
0 ¼ idX imply that V ¼ ðpð0Þ0 Þ

�1ðVÞ is an open set in X , and we obtain (i).

Secondly, we show (ii). Let V HX such that ðpyjSX�fxg
Þ�1ðVÞ is an open set

in SX�fxg. Since

ðpyjSX�fxg
Þ�1ðVÞ ¼ 6

mb0

ðpðmÞm jðSX�fxgÞðmÞ Þ
�1ðVÞ;

ðpðmÞm jðSX�fxgÞðmÞ Þ
�1ðVÞ is an open set in ðSX�fxgÞðmÞ for any mb 0. Note that

ðpðmÞm jðSX�fxgÞðmÞ Þ
�1ðVÞ ¼ SðmÞ V ðV � Xm�1 � fxgÞ

for any mb 1 and ðpð0Þ0 jðSX�fxgÞð0Þ Þ
�1ðVÞ ¼ V V fxg. Let y A V and ðy; xn�1; . . . ;

x1; xÞ A Sy;x. Then

ðy; y; xn�1; . . . ; xÞ ¼ ðy; yÞ � ðy; xn�1; . . . ; xÞ A ðpðnþ1Þnþ1 jðSX�fxgÞðnþ1Þ Þ
�1ðVÞ:

Let V 0 be an open neighborhood of y in X such that V 0 � fygHSð1Þ. Since

�ðSð1Þ �X SðnÞÞHSðnþ1Þ, we have V 0 � fyg � fxn�1g � � � � � fxgHSðnþ1Þ V

ðX nþ1 � fxgÞ ¼ ðSX�fxgÞðnþ1Þ. On the other hand, since ðpðnþ1Þnþ1 jðSX�fxgÞðnþ1Þ Þ
�1ðVÞ

is an open set in ðSX�fxgÞðnþ1Þ, there exists an open set W in X nþ2 such that

ðpðnþ1Þnþ1 jðSX�fxgÞðnþ1Þ Þ
�1ðVÞ ¼ ðSX�fxgÞðnþ1Þ VW :

Then for i A f0; . . . ; nþ 1g, there exists an open neighborhood Wi of xi in X

such that Wnþ1 � � � � �W0 HW , where x0 ¼ x and xnþ1 ¼ xn ¼ y. Thus

ðV 0 VWnþ1Þ � fyg � fxn�1g � � � � � fxgH ðSX�fxgÞðnþ1Þ VW

¼ ðpðnþ1Þnþ1 jðSX�fxgÞðnþ1Þ Þ
�1ðVÞ:
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Therefore, ðV 0 VWnþ1Þ � fyg � fxn�1g � � � � � fxgHV � X n � fxg. Thus y A

V 0 VWnþ1 HV and V is an open set in X . r

Next we introduce parallel displacements along admissible sequences. Here-

after in this section, let p : E ! X be a bundle and S A ASðXÞ.

Definition 4.3. Let P : ðp0jSÞ
�
E ! E be a continuous map. Put Px :¼

Pðx; �Þ : Ep0ðxÞ ! E for x A S. We call P a parallel displacement along S in p if

it satisfies the following conditions:

(1) ðP; pyjSÞ A Homððp0jSÞ
�p; pÞ.

(2) Pðx;xÞ ¼ idEx
for any ðx; xÞ A Sð1Þ.

(3) Px�y ¼ Px � Py for any ðx; yÞ A S2 V ðX t �X X tÞ.
(4) Px� ¼ P�1x for any x A S.

Let G be a topological group and p a G-bundle. Then, P is said to be G-

compatible if ðP; pyjSÞ A HomGðððp0jSÞ
�p;GÞ; ðp;GÞÞ. We denote by PDðp;SÞ

(resp. PDðp;SÞG) the set of all parallel (resp. G-compatible) displacements along

S in p.

Note that for x A Sð0Þ ¼ X , Px ¼ idEx
. Suppose that there exists P A PDðp;SÞ

and X is S-connected. Let ðx; yÞ A X 2 and x A Sx;y. Then, from the condition

(4), Px : Ey ! Ex is a homeomorphism. Thus p has a standard fiber. A parallel

displacement is induced by a given invertible slicing function in a natural manner

as follows.

Proposition 4.3 (cf. page 283 of [14]). Let o A SFinvðp;UÞ and S ¼ hUi.

Put

Poððxn; . . . ; x0Þ; uÞ :¼ ðoxn;xn�1 � � � � � ox1;x0ÞðuÞ

for ððxn; . . . ; x0Þ; uÞ A ðp0jSÞ
�
E. Then Po APDðp;SÞ. If o is G-compatible, so is Po.

Proof. Since S is the topological sum of SðnÞ with nb 0, we only need to

show that Po is continuous on each SðnÞ. In fact, we can see that Po is written

as a composition of continuous maps on each SðnÞ. The G-compatibility of Po

follows from that of o. r

Let P A PDðp;SÞ. For any nb 0, restricting P to SðnÞ, we obtain a con-

tinuous map Pjðp0jSðnÞ Þ
�E . If n ¼ 1, then Pjðp0jSð1Þ Þ

�E is a invertible slicing function

over Sð1Þ.
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Example 4.2. Let pr1 : X � G ! X , o A SFinvðpr1;X � X ÞG be as in Ex-

ample 3.1. Namely, oðx; y; ðy; pÞÞ ¼ ðx; pÞ for ðx; y; ðy; pÞÞ A p�0 ðX � GÞ. Then

for ððxn; . . . ; x0Þ; ðx0; aÞÞ A p�0 ðX � GÞ, we have

Poððxn; . . . ; x0Þ; ðx0; aÞÞ ¼ ðoxn;xn�1ð� � � ðox2;x1ðox1;x0ðx0; aÞÞÞ � � �Þ

¼ ðoxn;xn�1ð� � � ðox2;x1ðx1; aÞÞ � � �Þ ¼ ðxn; aÞ:

Thus, Po A PDðpr1;X tÞG is a trivial one.

Example 4.3 (cf. [14]). Let ~ppK be the universal bundle which we have

reviewed in Example 3.5. A map ~PPK : ðp0jSK
Þ� ~EEK ! ~EEK is defined by

~PPKððxn; . . . ; x1; ymÞ; ½ym; . . . ; y1; v0�Þ :¼ ½xn; . . . ; x1; ym�½ym; . . . ; y1; v0�

for ððxn; . . . ; x1; ymÞ; ½ym; . . . ; y1; v0�Þ A ðp0jSK
Þ� ~EEK . Then ~PPK A PDð~ppK ;SKÞ ~GGK

. We

call ~PPK the universal parallel displacement on ~ppK . Since

~PPKððxn; . . . ; x1; ymÞ; ½ym; . . . ; y1; v0�Þ ¼ ½xn; . . . ; x1; ym�½ym; . . . ; y1; v0�

¼ ½xn; xn�1� � � � ½x1; ym�½ym; . . . ; y1; v0�

¼ ðfoKoKxn;xn�1 � � � � � foKoKx1; ymÞð½ym; . . . ; y1; v0�Þ

¼ P ~ooK ððxn; . . . ; x1; ymÞ; ½ym; . . . ; y1; v0�Þ

for ððxn; . . . ; x0Þ; ½x0; ym�1; . . . ; y0�Þ A ðp0jSK
Þ� ~EEK , we have ~PPK ¼ P ~ooK .

For any subset AHX 2, restricting P to SA, we obtain a continuous

map Pjð p0jSA
Þ�E . In particular, for any nb 0, we obtain a continuous map

Pjðp0jðSDX
ÞðnÞ
Þ �E . We shall see in Section 5 that Pjðp0jðSDX

Þð3Þ
Þ �E plays a similar role

of curvature in the smooth category and the germ of Po s jð p0jðhUiDX
Þð3Þ
Þ �E is the

curvature of a connection ½s�N
X 2 ðDX Þ A lim�!U

C1
invðp;UÞG in the sense of Asada

[4, 5]. Thus we call Pjðp0jðSDX
Þð3Þ
Þ �E the curvature of P and denote it by RP.

Local trivializations of a bundle are induced by a parallel displacement along

an admissible sequence satisfying an appropriate condition.

Theorem 4.4. (i) Let p : E ! X be a bundle and P A PDðp;SÞ. Suppose

that X is S-connected and Sð1Þ A SX 2ðDX Þ. Then for any x A X , p is a locally

trivial bundle with standard fiber Ex.

(ii) Let G be a topological group, p : E ! X a principal G-bundle, and

P A PDðp;SÞG. Suppose that X is S-connected and Sð1Þ A SX 2ðDX Þ. Then p is a

locally trivial G-bundle.
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Proof. Firstly, we show (i). For y A X , fix cy A Sy;x and a neighborhood Vy

of y in X such that Vy � fygHSð1Þ. A continuous map ay : EdVy
! Vy � Ex is

defined by

ayðvÞ :¼ ðpðvÞ;Pðc�y � ðy; pðvÞÞ; vÞÞ

for v A EdVy
. Then pr1 � ay ¼ pdVy

. On the other hand, a continuous map

ky : Vy � Ex ! EdVy
is defined by

kyðz; pÞ :¼ Pððz; yÞ � cy; pÞ

for ðz; pÞ A Vy � Ex. We can see that ky ¼ ðayÞ�1. Therefore, ay is a local

trivialization.

Secondly, we show (ii). Let u A E. For y A X , fix cy A Sy;pðuÞ and a neigh-

borhood Vy of y in X such that Vy � fygHSð1Þ. A continuous map ay : EdVy
!

Vy � G is defined by

ayðvÞ :¼ ðpðvÞ;Tðu;Pðc�y � ðy; pðvÞÞ; vÞÞÞ

for v A EdVy
. Then pr1 � ay ¼ pdVy

. For ðv; aÞ A EdVy
� G, we have

ayðvaÞ ¼ ðpðvÞ;Tðu;Pðc�y � ðy; pðvÞÞ; vaÞÞÞ

¼ ðpðvÞ;Tðu;Pðc�y � ðy; pðvÞÞ; vÞÞÞa ¼ ayðuÞa:

On the other hand, a continuous map ky : Vy � G ! EdVy
is defined by

kyðz; aÞ :¼ Pððz; yÞ � cy; uaÞ

for ðz; aÞ A Vy � G. Then we can see that ky ¼ ðayÞ�1. Thus, ay is a local

trivialization. r

Next we introduce morphisms preserving parallel displacements. Let X and

X 0 be topological spaces. For a continuous map f : X ! X 0, let f t : X t ! X 0t

be a continuous map such that

f tjX nþ1 ¼ f nþ1 :¼ f � � � � � f : X nþ1 ! X 0nþ1

for nb 0.

Definition 4.4. Let S A ASðX Þ and S 0 A ASðX 0Þ. We say that

f : X ! X 0 preserves S and S 0 if f tðSÞHS 0. Let p : E ! X (resp.
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p 0 : E 0 ! X 0) be a bundle and P A PDðp;SÞ (resp. P 0 A PDðp 0;S 0Þ). Let

ðh; f Þ A Homðp; p 0Þ such that f preserves S and S 0. We say that ðh; f Þ preserves
P and P 0 if

hðPðx; uÞÞ ¼ P 0ð f tðxÞ; hðuÞÞ

for ðx; uÞ A ðp0jSÞ
�
E.

We obtain a category whose objects are bundles with parallel displacement

along admissible sequences and morphisms are bundle morphisms preserving

parallel displacements.

Definition 4.5. Let p (resp. p 0) be a G (resp. G 0)-bundle and P A

PDðp;SÞG (resp. P 0 A PDðp 0;S 0ÞG 0 ). For ðh; f ; rÞ A Homððp;GÞ; ðp 0;G 0ÞÞ, we

say that ðh; f ; rÞ preserves P and P 0 if ðh; f Þ preserves P and P 0 as a bundle

morphism.

Similarly, we obtain a category whose objects are G-bundles with G-

compatible parallel displacement along admissible sequences and morphisms

are homomorphisms preserving G-compatible parallel displacements, where G

runs throughout the whole topological groups and r runs throughout the

whole continuous group homomorphisms. For a map f : X 0 ! X , a map

f � : PðX tÞ ! PðX 0tÞ is defined by

f �A :¼ f �ðAÞ :¼ ð f tÞ�1ðAÞ

for A A PðX tÞ. Let p : E ! X be a bundle and P A PDðp;SÞ. For Y HX , put

SdY :¼ i�Y ;X ðSÞ and

PdY :¼ EdY jPjðp0jSdY Þ�EdY :

We call PdY the restricted parallel displacement. For a continuous map

f : X 0 ! X , an induced parallel displacement f �P : ðp0jf �SÞ
�
f �E ! f �E is

defined by

ð f �PÞððxn; . . . ; x0Þ; ðx0; uÞÞ : ¼ ðxn;Pð f tðxn; . . . ; x0Þ; f ðx0; uÞÞÞ

¼ ðxn;Pð f tðxn; . . . ; x0Þ; uÞÞ

for ððxn; . . . ; x0Þ; ðx0; uÞÞ A ðp0jf �SÞ
�
f �E. The following properties are fundamental

and the proof is straightforward.
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Proposition 4.5. (i) The bundle map ðiEjY ;E ; iY ;X Þ preserves PdY and P.

(ii) The canonical bundle map ð f ; f Þ preserves f �P and P.

(iii) If p is a G-bundle and P is G-compatible, then PdY and f �P are also

G-compatible.

Let p : E ! X be a principal G-bundle, G 0 a topological group, r : G ! G 0

a continuous group homomorphism, and pr the G 0-bundle associated with p.

For P A PDðp;SÞG put

Prðx; ½u; a�Þ :¼ ½Pðx; uÞ; a�

for ðx; ½u; a�Þ A ðp0jSÞ
�
E r.

Proposition 4.6. We have Pr A PDðpr;SÞG 0 .

Proof. We can see

ðidS � qE�G 0
G Þ�1ððp0jSÞ

�
E rÞ ¼ ððp0jSÞ

�
EÞ � G 0:

Then, from Lemma 2.2, q 0 :¼ ðp0jSÞ�E r jðidS � qE�G 0
G Þjððp0jSÞ�EÞ�G 0 is an open map.

Since q 0 is surjective, it is an identification. Thus, the continuity of Pr follows

from the equality Pr � q 0 ¼ qE�G 0
G � ðP� idG 0 Þ. Since

Prðx; ½u; a�bÞ ¼ Prðx; ½u; ab�Þ ¼ ½Pðx; uÞ; ab�

¼ ½Pðx; uÞ; a�b ¼ Prðx; ½u; a�Þb

for ððx; ½u; a�Þ; bÞ A ððp0jSÞ
�
E rÞ � G 0, Pr is G 0-compatible. r

We call Pr a G 0-compatible parallel displacement associated with P. By

straightforward arguments, we obtain the following fundamental propositions,

which will be needed in the proof of Theorem 8.1 (Classification Theorem).

Proposition 4.7. The homomorphism ðyr; rÞ A Homððp;GÞ; ðpr;G 0ÞÞ pre-

serves P and Pr.

Proposition 4.8. Let p : E ! X (resp. p 0 : E 0 ! X ) be a principal G (resp.

G 0)-bundle. Let P A PDðp;SÞG and P 0 A PDðp 0;SÞG 0 . If ðh; rÞ A Homððp;GÞ;
ðp 0;G 0ÞÞ preserves P and P 0, then hr A HomX ;G 0 ððpr;G 0Þ; ðp 0;G 0ÞÞ preserves Pr

and P 0.
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5 A Holonomy Group of the Parallel Displacement

In this section, we define a holonomy group of the parallel displacement and

study its fundamental properties. In particular, a relation between the holonomy

group of a connection in the smooth category and the holonomy group of the

parallel displacement induced by the smooth slicing function in Section 3 is

studied. Moreover, we define a local holonomy group of the parallel displace-

ment. In the smooth category, the Lie algebra of the holonomy group of a

connection is spanned by the image of the curvature at every point of the

holonomy bundle. As an analogue of this fact, we show that the local holonomy

group is generated by the curvature of a parallel displacement. At the end of this

section, we study a relation between the local holonomy group of a connection in

the smooth category and the local holonomy group of the parallel displacement

induced by the smooth slicing function in Section 3.

Let p : E ! X be a principal G-bundle with translation function T (see

Section 2) and P a G-compatible parallel displacement along S in p, that is,

P A PDðp;SÞG. For x A X , we denote by Sx the subset ðpyjS �̂� p0jSÞ
�1ðfðx; xÞgÞ

of S (see Definition 4.1).

Definition 5.1. For u A E, a map Pu : SpðuÞ ! G is defined by

PuðxÞ :¼ Tðu;Pðx; uÞÞ

for x A SpðuÞ. A subgroup

Fu :¼ FuðPÞ :¼ PuðSpðuÞÞ

of G is called the holonomy group of P with reference point u. We assume that

the topology of Fu is the relative topology induced from G.

Note that SpðuÞ is a monoid with identity element pðuÞ and Pu is a monoid

homomorphism. We show in Proposition 5.1 that Fu is in fact a subgroup of G.

The following examples of holonomy groups are typical.

Example 5.1. Let pr1 : X � G ! X , Po A PDGðpr1;X tÞ be as in Example

4.2 and ðx; aÞ A X � G. For ðx; xn�1; . . . ; x1; xÞ A Sx

ðPoÞðx;aÞðx; xn�1; . . . ; x1; xÞ ¼ Tððx; aÞ;Poððx; xn�1; . . . ; x1; xÞ; ðx; aÞÞÞ

¼ Tððx; aÞ; ðx; aÞÞ ¼ a�1a ¼ 1G:

Thus, Fðx;aÞðPoÞ ¼ f1Gg.
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Example 5.2 (cf. [14]). Let ~ppK be the universal bundle which we have

reviewed in Example 3.5, ~PPK the universal parallel displacement as in Example

4.3, and ½v0� A ~EEK . Since

~PP
½v0�
K ðv0; xn�1; . . . ; x1; v0Þ ¼ ~PPKððv0; xn�1; . . . ; x1; v0Þ; ½v0�Þ

¼ ½v0; xn�1; . . . ; x1; v0�

for ½v0; xn�1; . . . ; x1; v0� A ~GGK , we have F½v0�ð ~PPKÞ ¼ ~GGK .

Similar to the holonomy group of a connection in the smooth category, the

following fundamental properties hold (for example, [12]).

Proposition 5.1. (i) For u A E, Fu is a topological subgroup of G.

(ii) For u; v A E and x A S such that Pðx; uÞ ¼ v, we have Fu ¼ Fv.

(iii) For ðu; aÞ A E � G, Fua ¼ a�1Fua.

Proof. Firstly, we show (i). For a ¼ PuðxÞ, b ¼ PuðyÞ A Fu, since

ab ¼ Tðu;Pðx; uÞÞTðu;Pðy; uÞÞ ¼ Tðu;Pðx; uTðu;Pðy; uÞÞÞÞ

¼ Tðu;Pðx;Pðy; uÞÞÞ ¼ Tðu;Pðx � y; uÞÞ

and

aPuðx�Þ ¼ Tðu;Pðx; uÞÞTðu;Pðx�; uÞÞ ¼ Tðu;PxðP�1x ðuÞÞÞ ¼ 1G;

we have ab A Fu and a�1 ¼ Puðx�Þ A Fu. Thus, from the property of the relative

topology, Fu is a topological subgroup of G.

Secondly, we show (ii). For a ¼ PuðyÞ A Fu, since

Pðx � y � x�; vÞ ¼ Pðx;Pðy;Pðx�; vÞÞÞ ¼ Pðx;Pðy; uÞÞ ¼ Pðx; uaÞ ¼ va;

we have a ¼ Pvðx � y � x�Þ and a A Fv. Similarly, we have Fv HFu.

Thirdly, we show (iii). For b ¼ Tðua;Pðy; uaÞÞ A Fua, since

b ¼ Tðua;Pðy; uÞaÞ ¼ a�1Tðu;Pðy; uÞÞa ¼ a�1PuðyÞa;

we have b A a�1Fua, where y A SpðuaÞ ¼ SpðuÞ. Similarly, we have a�1FuaHFua

and this completes the proof. r

Let p : E ! X be a principal G-bundle and u A E. Let I be a pseudodirected

set and ðSiÞi A I A ASðXÞI such that for any i; j A I , if ia j, then Sj HSi. For

i; j A I with ia j, let hji : PDðp;SiÞG ! PDðp;SjÞG (resp. zji : HomððSiÞpðuÞ;GÞ
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! HomððSjÞpðuÞ;GÞ) be the restriction, that is, hjiðPÞ ¼ Pjðp0jSj
Þ�E (resp.

zjið f Þ ¼ f � iðSjÞpðuÞ; ðSiÞpðuÞ ) for P A PDðp;SiÞG (resp. f A HomððSiÞpðuÞ;GÞ),
where HomððSiÞpðuÞ;GÞ is the set of monoid homomorphisms. Then

ðPDðp;SiÞG; hjiÞði; jÞ A I 2 (resp. ðHomððSiÞpðuÞ;GÞ; zjiÞði; jÞ A I 2 ) is an inductive sys-

tem. For i A I , let ji : PDðp;SiÞG ! HomððSiÞpðuÞ;GÞ be a map given by

jiðPÞ :¼ Pu:

Since jj � hji ¼ zji � ji for i; j A I with ia j, a map lim�! i
ji : lim�! i

PDðp;SiÞG
! lim�! i

HomððSiÞpðuÞ;GÞ can be defined. A map XI : lim�! i
HomððSiÞpðuÞ;GÞ !

fG 0HG jG 0 : submonoid of Gg is defined by

XI ð½ f �I Þ :¼ 7
f 0 A ½ f �I

Im f 0:

Put Fu
I :¼ XI � lim�! i

ji. Then Fu
I ð½P�I Þ is a subgroup of G for ½P�I A

lim�! i
PDðp;SiÞG. We call Fu

I ð½P�I Þ the holonomy group of ½P�I . For i A I , let

ci : SFinvðp;UiÞG ! PDðp;SiÞG be a map given by ciðoÞ :¼ Po. Since cj � rji ¼
hji � ci for i; j A I with ia j, a map lim�! i

ci : lim�! i
SFinvðp;UiÞG ! lim�! i

PDðp;SiÞG
can be defined. In particular, we consider Fu

N
X 2 ðDX Þð½P

o�N
X 2 ðDX ÞÞ as a holonomy

group of a topological connection ½o�N
X 2 ðDX Þ A lim�!U

SFinvðp;UÞG in the sense of

Asada, where NX 2ðDX Þ is the set of neighborhoods of DX in X 2.

Definition 5.2. Let p : E ! X be a smooth principal G-bundle, X a

Riemannian manifold, and H a connection in E (see Example 3.7). For any

piecewise smooth curve c : ½0; 1� ! X , let tHc : Ecð0Þ ! Ecð1Þ be the parallel dis-

placement along c derived from H. For u A E, put

Cu
geoðHÞ :¼ fTðu; tHc ðuÞÞ A G j c

is a closed curve consisting of geodesic segmentsg:

The following proposition shows a relation between the holonomy group of a

connection and the holonomy group of the parallel displacement induced by the

smooth slicing function in Example 3.7.

Proposition 5.2. Let p : E ! X be a smooth principal G-bundle, X a

Riemannian manifold, H a connection in E, and oH A SFinvðp;UVÞG as in Ex-

ample 3.7, where V is an open covering of X which consists of strongly convex sets

and UV ¼6
V AV V � V. Then Cu

geoðHÞ ¼ FuðPoH Þ, and consequently Cu
geoðHÞ ¼

Fu
SCðX Þð½PoH �SCðXÞÞ, where SCðXÞ denotes the set of open coverings of X which

consist of strongly convex sets, preordered by VaW if W is a refinement of V.
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Proof. Let ðPoH Þuðxn; . . . ; x1; x0Þ A FuðPoH Þ, where xn ¼ x0 ¼ pðuÞ. Then

there exists a unique family of shortest geodesics ðgi : ½0; 1� ! X Þi A f0;...;n�1g such

that gið0Þ ¼ xi and gið1Þ ¼ xiþ1. Since tHgi ¼ oH
xiþ1xi

for i A f0; . . . ; n� 1g, we have

ðPoH Þuðxn; . . . ; x1; x0Þ ¼ Tðu; ðoH
xnxn�1

� � � � � oH
x1x0
ÞðuÞÞ

¼ Tðu; ðtHgn�1 � � � � � t
H
g0
ÞðuÞÞ ¼ Tðu; tHgn�1���g1g0ðuÞÞ A Cu

geoðHÞ:

Thus FuðPoH ÞHCu
geoðHÞ.

Conversely, let Tðu; tHgn���g1ðuÞÞ A Cu
geoðHÞ, where ðgi : ½0; 1� ! X Þi A f1;...;ng is

a family of geodesics. For i A f1; . . . ; ng, ðg�1i ðVÞÞV AV is an open covering

of ½0; 1�. Let d i > 0 be a Lebesgue’s number of ðg�1i ðVÞÞV AV and 0 ¼ ti0 <

ti1 < � � � < tiki ¼ 1 a partition of ½0; 1� such that tij � tij�1 < d i. Then there exists a

sequence V i
1 ; . . . ;V

i
ki
A V such that gið½tij�1; tij �ÞHVj for j A f1; . . . ; kig. Therefore,

ðgið1Þ; giðtiki�1Þ; . . . ; giðt
i
1Þ; gið0ÞÞ A hUVi. Since

tHgi ¼ tHgi j½t i
ki�1

; 1������gi j½t i
1
; t i
2
��gi j½0; t i

1
�
¼ tHgi j½t i

ki�1
; 1�
� � � � � tHgi j½t i

1
; t i
2
�
� tHgj½0; t i

1
�
;

we have

tHgn���g1 ¼ tHgn � � � � � t
H
g1

¼ ðtHgnj½t n
kn�1

; 1�
� � � � � tHgnj½t n

1
; t n
2
�
� tHgnj½0; t n

1
�
Þ � � � � � ðtHg1j½t1

k1�1
; 1�
� � � � � tHg1j½t1

1
; t1
2
�
� tHg1j½0; t1

1
�
Þ

¼ ðoH
gnð1Þ; gnðt nkn�1Þ

� � � � � oH
gnðt n2 Þ; gnðt

n
1
Þ � oH

gnðt n1 Þ; gnð0Þ
Þ � � � �

� ðoH
g1ð1Þ; g1ðt1k1�1Þ

� � � � � oH
g1ðt12 Þ; g1ðt

1
1
Þ � o

H
g1ðt11 Þ; g1ð0Þ

Þ

¼ PoH

ðgnð1Þ; gnðt nkn�1Þ;...; g1ðt
1
1
Þ; g1ð0ÞÞ

:

Thus,

Tðu; tHgn���g1ðuÞÞ ¼ ðP
oH Þuðgnð1Þ; gnðtnkn�1Þ; . . . ; g1ðt

1
1Þ; g1ð0ÞÞ A FuðPoH Þ

and Cu
geoðHÞHFuðPoH Þ. r

Next we study local holonomy groups for the parallel displacements. For a

symmetric subspace U HX 2 with DX HU and x A X , put

hUi1
x :¼ fðx; xn�1; . . . ; x1; xÞ A hUix j Ek A f1; . . . ; n� 1g : ðxk; xÞ A Ug:

Then hUi1
x is a submonoid of hUix. Let p : E ! X be a principal G-bundle and

P A PDðp;SÞ.
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Definition 5.3. For u A E, we call a subgroup

Fu;1ðPÞ :¼ PuðhSð1Þi1
pðuÞÞ

of FuðPÞ the local holonomy group of P with reference point u.

Let HominvðhUi1
x;GÞ be the set of f A HomðhUi1

x;GÞ such that for

ðxn; xn�1; . . . ; x1; x0Þ A hUi1
x,

f ðxn; xn�1; . . . ; xi; . . . ; x1; x0Þ ¼ f ðxn; xn�1; . . . ; x̂xi; . . . ; x1; x0Þ

if xiþ1 ¼ xi�1 or xi ¼ xi�1 for some i A f1; . . . ; ng, where the symbol x̂x denotes

deletion of x. Note that Im f is a subgroup of G for f A HominvðhUi1
x;GÞ. A

map

Xx;1 : HominvðhUi1
x;GÞ ! fG 0HG jG 0 : subgroup of Gg

is given by

Xx;1ð f Þ :¼ Im f

for f A HominvðhUi1
x;GÞ. A map vu : PDðp;SÞG ! HominvðhSð1Þi1

pðuÞ;GÞ is

given by

vuðPÞ :¼ Pu � ihSð1Þi1
pðuÞ;SpðuÞ

:

Then we can consider Fu;1 as a map PDðp;SÞG ! fG 0HG jG 0 : subgroup of Gg
such that Fu;1 ¼ XpðuÞ;1 � vu.

Let QxðU ;GÞ be the set of continuous maps f : ðhUixÞð3Þ ! G such that

(1) for ðx3; x2; x1; x0Þ A ðhUixÞð3Þ, f ðx3; x2; x1; x0Þ ¼ 1G if xi ¼ xi�1 for some

i A f1; 2; 3g,
(2) f ðx�Þ ¼ f ðxÞ�1 for x A ðhUixÞð3Þ.

Let hhSii denote the subgroup of G generated by a subset SHG. A map

Xx;gen : QxðU ;GÞ ! fG 0HG jG 0 : subgroup of Gg

is given by Xx;genð f Þ :¼ hhIm f ii. We show that there exists a one-to-

one correspondence between HominvðhUi1
x;GÞ and QxðU ;GÞ. Two maps

Q : HominvðhUi1
x;GÞ ! QxðU ;GÞ and s : QxðU ;GÞ ! HominvðhUi1

x;GÞ are given

by

Qð f Þ :¼ f � iðhUixÞð3Þ;hUi1
x
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for f A HominvðhUi1
x;GÞ and

sð f 0Þðxn; xn�1; . . . ; x1; x0Þ

:¼ 1G if n A f0; 1; 2g
f 0ðx; xn�1; xn�2; xÞ � � � f 0ðx; x3; x2; xÞ f 0ðx; x2; x1; xÞ if nb 3

�
for f 0 A QxðU ;GÞ and ðxn; xn�1; . . . ; x1; x0Þ A hUi1

x. For f 0 A QxðU ;GÞ we have

Qðsð f 0ÞÞ ¼ f 0. Conversely, for f A HominvðhUi1
x;GÞ and ðxn; xn�1; . . . ; x1; x0Þ A

hUi1
x, we get

sðQð f ÞÞðxn; xn�1; . . . ; x1; x0Þ ¼ 1G ¼ f ðxn; xn�1; . . . ; x1; x0Þ

if n A f0; 1; 2g, and

sðQð f ÞÞðxn; xn�1; . . . ; x1; x0Þ

¼ Qð f Þðx; xn�1; xn�2; xÞ � � � Qð f Þðx; x3; x2; xÞQð f Þðx; x2; x1; xÞ

¼ f ðx; xn�1; xn�2; xÞ � � � f ðx; x3; x2; xÞ f ðx; x2; x1; xÞ

¼ f ððx; xn�1; xn�2; xÞ � � � � � ðx; x3; x2; xÞ � ðx; x2; x1; xÞÞ

¼ f ðx; xn�1; xn�2; x; . . . ; x; x3; x2; x; x2; x1; xÞ

¼ f ðx; xn�1; xn�2; . . . ; x3; x2; x1; xÞ

if nb 3. Thus s ¼ Q�1. Note that Xx;1 ¼ Xx;gen � Q.
For S A ASðXÞ, we denote by Rðp;SÞ the set of continuous maps

h : ðp0jðSDX
Þð3Þ Þ

�
E ! E such that

(1) ðh; pyjðSDX
Þð3Þ Þ A Homððp0jðSDX

Þð3Þ Þ
�p; pÞ,

(2) for ðx3; x2; x1; x0Þ A ðSx0Þð3Þ, hðx3;x2;x1;x0Þ ¼ idEx0
if xi ¼ xi�1 for some

i A f1; 2; 3g,
(3) hx� ¼ h�1x for x A ðSxÞð3Þ,

where hx :¼ hðx; �Þ : Ex ! Ex for x A ðSxÞð3Þ. For a G-bundle p, we denote by

Rðp;SÞG the set of h A Rðp;SÞ such that ðh; pyjðSDX
Þð3Þ Þ is a G-morphism. A map

% : PDðp;SÞ ! Rðp;SÞ is given by assigning to P A PDðp;SÞ the restriction

Pjðp0jðSDX
Þð3Þ
Þ �E , which we call in Section 4 the curvature of P and denote by RP.

Note that %ðPDðp;SÞGÞHRðp;SÞG. Let p be a principal G-bundle, u A E, and

h A Rðp;SÞG. Then a continuous map hu : ðSpðuÞÞð3Þ ! G is given by

huðxÞ :¼ Tðu; hðx; uÞÞ
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for x A ðSpðuÞÞð3Þ. A map eu : Rðp;SÞG ! QpðuÞðSð1Þ;GÞ is given by

euðhÞ :¼ hu � iðhSð1ÞipðuÞÞð3Þ; ðSpðuÞÞð3Þ :

We have Q � vu ¼ eu � %. Put Wu :¼ XpðuÞ;gen � eu. In the smooth category, the Lie

algebra of the holonomy group of a connection is spanned by the image of the

curvature at every point of the holonomy bundle. We obtain an analogue of

this fact.

Proposition 5.3. For P A PDðp;SÞG, Fu;1ðPÞ ¼ WuðRPÞ.

Proof. Since

XpðuÞ;1 � vu ¼ XpðuÞ;gen � eu � % ¼ XpðuÞ;gen � Q � vu ¼ XpðuÞ;gen � eu � %;

we have the conclusion. r

Let I be a pseudodirected set and ðSiÞi A I A ASðX ÞI such that for any

i; j A I , if ia j, then Sj HSi. For i; j A I with ia j and x A X , let

xji : HominvðhðSiÞð1Þi1
x;GÞ ! HominvðhðSjÞð1Þi1

x;GÞ be the restriction. A map

Xx;1
I : lim�!

i

HominvðhðSiÞð1Þi
1
x;GÞ ! fG 0HG jG 0 : subgroup of Gg

is defined by

Xx;1
I ð½ f �I Þ :¼ 7

f 0 A ½ f �I
Im f 0

for ½ f �I A lim�! i
HominvðhðSiÞð1Þi

1
x;GÞ.

For i; j A I with ia j and x A X , let kji : Q
xððSiÞð1Þ;GÞ ! QxððSjÞð1Þ;GÞ be

the restriction. A map

X
x;gen
I : lim�!

i

QxððSiÞð1Þ;GÞ ! fG 0HG jG 0 : subgroup of Gg

is defined by

X
x;gen
I ð½ f �I Þ :¼ 7

f 0 A ½ f �I
hhIm f 0ii:

For the maps Qi : HominvðhðSiÞð1Þi1
x;GÞ ! QxððSiÞð1Þ;GÞ and si : Q

xððSiÞð1Þ;GÞ
! HominvðhðSiÞð1Þi1

x;GÞ, since si ¼ Q�1i for i A I , lim�! i
si ¼ ðlim�! i

QiÞ�1.
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Proposition 5.4. For ½ f �I A lim�! i
HominvðhðSiÞð1Þi1

x;GÞ, Xx;1
I ð½ f �I Þ ¼

X
x;gen
I ððlim�! i

QiÞð½ f �I ÞÞ.

Proof. Note that Im f ¼ hhIm Qð f Þii. Let a A Xx;1
I ð½ f �I Þ. Then, for any

f 0 A ½ f �I , a A Im f 0. For f 00 A ðlim�! i
QiÞð½ f �I Þ with f 00 A QxððSiÞð1Þ;GÞ, since

sið f 00Þ A ½ f �I , a A hhIm Qiðsið f 00ÞÞii ¼ hhIm f 00ii. Thus a A X
x;gen
I ððlim�! i

QiÞð½ f �I ÞÞ
and Xx;1

I ð½ f �I ÞHX
x;gen
I ððlim�! i

QiÞð½ f �I ÞÞ. By a similar argument, we have

Xx;1
I ð½ f �I ÞIX

x;gen
I ððlim�! i

QiÞð½ f �I ÞÞ. r

For the maps vui : PDðp;SiÞG ! HominvðhðSiÞð1Þi1
pðuÞ;GÞ, since vuj � hji

¼ xji � vi for i; j A I with ia j, a map lim�! i
vui : lim�! i

PDðp;SiÞG !
lim�! i

HominvðhðSiÞð1Þi1
pðuÞ;GÞ can be defined. Put Fu;1

I :¼ X
pðuÞ;1
I � lim�! i

vui . Then

Fu;1
I ð½P�I Þ is a subgroup of Fu

I ð½P�I Þ for ½P�I A lim�! i
PDðp;SiÞG. We call

Fu;1
I ð½P�I Þ the local holonomy group of ½P�I with reference point u.

For i; j A I with ia j, let zji : Rðp;SiÞG ! Rðp;SjÞG be the restriction.

For the maps %i : PDðp;SiÞ ! Rðp;SiÞ, since %j � hji ¼ zji � %i for i; j A I with

ia j, a map lim�! i
%i : lim�! i

PDðp;SiÞ ! lim�! i
Rðp;SiÞ can be defined. We call

ðlim�! i
%iÞð½P�I Þ ¼ ½RP�I the curvature of ½P�I A lim�! i

PDðp;SiÞ. Let p be a G-bundle.

We can also define a map lim�! i
PDðp;SiÞG ! lim�! i

Rðp;SiÞG.
For the maps eui : Rðp;SiÞG ! QpðuÞððSiÞð1Þ;GÞ, since euj � zji ¼ kji � eui for

i; j A I with ia j, a map lim�! i
eui : lim�! i

Rðp;SiÞG ! lim�! i
QpðuÞððSiÞð1Þ;GÞ can be

defined. Put Wu
I :¼ X

pðuÞ;gen
I � lim�! i

eui .

Proposition 5.5. For ½P�I A lim�! i
PDðp;SiÞ, Fu;1

I ð½P�I Þ ¼ Wu
I ð½RP�I Þ.

Proof. Since Qi � vui ¼ eui � %i for any i A I , lim�! i
Qi � lim�! i

vui ¼ lim�! i
eui � lim�! i

%i.

Then, from Proposition 5.4, we get

X
pðuÞ;1
I lim�!

i

vui

 !
ð½P�I Þ

 !
¼ X

pðuÞ;gen
I lim�!

i

Qi

 !
lim�!
i

vui

 !
ð½P�I Þ

 ! !

¼ X
pðuÞ;gen
I lim�!

i

eui

 !
ð½RP�I Þ

 !

and obtain the conclusion. r

For U HX 2 such that DX HU , put

VðE2dUÞ :¼ fðw; v; uÞ A E3 j ðv; uÞ; ðw; uÞ; ðw; vÞ A E2dUg
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We denote by C2ðp;UÞG the set of continuous maps f : VðE2dUÞ ! G such that

(1) f ðw; v; uÞ ¼ 1G if w ¼ v or v ¼ u for ðw; v; uÞ A VðE2dUÞ,
(2) f ðwa; vb; ucÞ ¼ b�1f ðw; v; uÞb for ðw; v; uÞ A VðE2dUÞ and a; b; c A G.

A map d1U : C1ðp;UÞG ! C 2ðp;UÞG is given by

ðd1UsÞðw; v; uÞ :¼ sðv; uÞsðw; uÞ�1sðw; vÞ

for ðw; v; uÞ A VðE2dUÞ. We call d1Us the curvature of s A C1ðp;UÞG.
Let I be a pseudodirected set and ðUiÞi A I a system of subsets of X 2 such

that for any i; j A I , DX HUi, and if ia j, then Uj HUi. We can see that a

map lim�! i
d1Ui

: lim�! i
C 1ðp;UiÞG ! lim�! i

C2ðp;UiÞG is defined. We call ðlim�! i
d1Ui
Þð½s�I Þ

the curvature of ½s�I A lim�! i
C1ðp;UiÞG. In particular, ðlim�!U

d1UÞð½s�N
X 2 ðDX ÞÞ is the

curvature of ½s�N
X 2 ðDX Þ A lim�!U

C1ðp;UÞG in the sense of Asada ([4, 5]).

Put

V uðE2dUÞ :¼ fðu1; u0; u2Þ A VðE2dUÞ j u0 ¼ ug:

We denote by C2;uðp;UÞG the set of continuous maps f : V uðE2dUÞ ! G such

that

(1) f ðu1; u; u2Þ ¼ 1G if u1 ¼ u or u2 ¼ u for ðu1; u; u2Þ A V uðE2dUÞ,
(2) f ðu1a; ub; u2cÞ ¼ b�1f ðu1; u; u2Þb for ðu1; u; u2Þ A V uðE2dU Þ and a; b; c A G.

A map e : C2ðp;UÞG ! C 2;uðp;UÞG is given by

eð f Þ :¼ f � iV uðE 2dU Þ;VðE 2dU Þ

for f A C 2ðp;UÞG. Let C2
invðp;UÞG denote the set of f A C2ðp;UÞG such that for

ðu; v;wÞ A VðE2dUÞ, f ðu; v;wÞ ¼ 1G if u ¼ w, and f ðu; v;wÞ ¼ f ðw; v; uÞ�1. There
is a one-to-one correspondence between C2

invðp;UÞG and Rðp; hUiÞG. Two maps

n : C 2
invðp;UÞG ! Rðp; hUiÞG and l : Rðp; hUiÞG ! C2

invðp;UÞG are defined by

nð f Þððx0; x2; x1; x0Þ; u0Þ :¼ u0 f ðu1; u0; u2Þ

for ððx0; x2; x1; x0Þ; u0Þ A ðp0jðhUiDX Þð3Þ
Þ�E and ui A Exi for i A f1; 2g, and

lð f 0Þðu1; u0; u2Þ :¼ Tðu0; f 0ððpðu0Þ; pðu2Þ; pðu1Þ; pðu0ÞÞ; u0ÞÞ

for ðu1; u0; u2Þ A VðE 2dUÞ. We can see that l ¼ n�1. For the maps

ni : C
2
invðp;UiÞG ! Rðp; hUiiÞG and li : Rðp; hUiiÞG ! C2

invðp;UiÞG, we obtain

the equality lim�! i
li ¼ ðlim�! i

niÞ�1.
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Proposition 5.6. For

½s�I A lim�! i
C1

invðp;UiÞG; Fu;1
I ð½Po s �I Þ ¼ Wuððlim�! i

ni � d1Ui
Þð½s�I ÞÞÞ.

In particular, Fu;1
N

X 2 ðDX Þð½P
o s �N

X 2 ðDX ÞÞ ¼ Wuððlim�!U
nU � d1UÞð½s�N

X 2 ðDX ÞÞÞ for ½s�NX 2 ðDX Þ
A lim�!U

C 1
invðp;UÞG.

Proof. It su‰ces to show that for s A C1
invðp;UÞG, RPo s

¼ nðd1UsÞ. We have

RPo s

ððx0; x2; x1; x0Þ; u0Þ ¼ Po sððx0; x2; x1; x0Þ; u0Þ

¼ os
x0;x2
ðos

x2;x1
ðos

x1;x0
ðu0ÞÞÞ ¼ u0sðu0; u2sðu2; u1sðu1; u0ÞÞÞ

¼ u0sðu0; u2Þsðu1; u2Þ�1sðu1; u0Þ ¼ nðd1UsÞðx0; x2; x1; x0Þ

for ððx0; x2; x1; x0Þ; u0Þ A ðp0jðhUiDX Þð3Þ
Þ�E and ui A Exi for i A f1; 2g. r

Let p : E ! X be a smooth principal G-bundle, X a Riemannian manifold,

and H a connection in E. We denote by Cu
locðHÞ the local holonomy group

of H, that is, Cu
locðHÞ ¼7

U
Cu;0ðHjUÞ, where U runs through all connected

open neighborhoods of pðuÞ, HjU is the connection in EdU induced by H, and

Cu;0ðHjUÞ is the restricted holonomy group of HjU with reference point u.

Proposition 5.7. Under the assumption of Proposition 5.2, we have

Cu
locðHÞVCu

geoðHÞ ¼ Fu;1
SCðXÞð½PoH �SCðXÞÞ for oH A SFinvðp;UVÞG.

Proof. Let a A Fu;1
SCðX Þð½PoH �SCðX ÞÞ and W be a connected open neigh-

borhood of pðuÞ. Let V 0 be the open covering of XnfpðuÞg consists of all strongly
convex sets contained in any element of V. On the other hand, let V A V with

pðuÞ A V and C be an open strongly convex set with pðuÞ A CHW VV . Then

V 00 :¼V 0 U fCg is an open covering of X consists of strongly convex sets and

a refinement of V. In particular, we have a A ImððPoH ÞujhUV 00i
1
pðuÞ
Þ. Then, by a

similar argument as in the proof of Proposition 5.2, there exists ðxn; . . . ; x1; x0Þ A
hUV 00i1

pðuÞ and a unique family of shortest geodesics ðgk : ½0; 1� ! XÞk A f0;...;n�1g such
that gkð0Þ ¼ xk and gkð1Þ ¼ xkþ1, and

a ¼ ðPoH Þuðxn; . . . ; x1; x0Þ ¼ Tðu; tHgn�1���g1g0ðuÞÞ:

Since ðxk; pðuÞÞ A UV 00 for any k A f1; . . . ; n� 1g, we get xk A C and Im gk H
CHW for any k A f0; . . . ; n� 1g. Note that the curve gn�1 � � � g1g0 is homotopic to

the point pðuÞ. Therefore, a A Cu;0ðHjW ÞVCu
geoðHÞ, that is, Fu;1

SCðX Þð½PoH �SCðX ÞÞ
HCu

locðHÞVCu
geoðHÞ.
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Conversely, let a A Cu
locðHÞVCu

geoðHÞ and f A ½ðPoH Þu�SCðX Þ. Then, there

exists W A SCðXÞ such that f jhUWi1
pðuÞ
¼ ðPoH ÞujhUWi1

pðuÞ
. Put W 0 :¼6fV A W j

pðuÞ A Vg. Since W 0 is connected, we get a A Cu;0ðHjW 0 ÞVCu
geoðHÞ. Then,

there exists a family of geodesics ðgk : ½0; 1� !W 0Þk A f1;...;ng such that a ¼
Tðu; tHgn���g1ðuÞÞ. By a similar argument as in the proof of Proposition 5.2, for any

k A f1; . . . ; ng, there exists a partition 0 ¼ tk0 < tk1 < � � � < tkmk
¼ 1 of ½0; 1� such

that gkð½tkl�1; tkl �Þ is contained in some Vl A W with pðuÞ A Vl for l A f1; . . . ;mkg,
and

tHgn���g1 ¼ PoH

ðgnð1Þ; gnðt nmn�1Þ;...; g1ðt
1
1
Þ; g1ð0ÞÞ

:

Then we have

a ¼ Tðu; tHgn���g1ðuÞÞ

¼ ðPoH Þuðgnð1Þ; gnðtnmn�1Þ; . . . ; g1ðt
1
1Þ; g1ð0ÞÞ A ImððPoH ÞujhUWi1

pðuÞ
Þ;

that is, a A Imð f jhUWi1
pðuÞ
ÞH Im f . Therefore, Cu

locðHÞVCu
geoðHÞH

Fu;1
SCðX Þð½PoH �SCðXÞÞ. r

6 A Holonomy Reduction Theorem and Related Results

In this section, we define a holonomy bundle of the parallel displacement

and study its fundamental properties. As in the smooth category and [1], we

obtain a holonomy reduction theorem and related results. In order to clarify the

arguments, we introduce a category C, whose objects are quadruples ðp;G;P; uÞ,
where p is a principal G-bundle, P A PDðp;SÞG is a parallel displacement, and

u A E ¼ dom p.

Let p : E ! X be a principal G-bundle, P A PDðp;SÞG, and u A E.

Definition 6.1. Put

Eu :¼ EuðPÞ :¼ fPðx; uÞ j x A SX�fpðuÞgg:

The bundle pu :¼ pjE u : Eu ! X is called the holonomy bundle of P through u.

We assume that the topology of Eu is the relative topology induced from E.

Note that if X is S-connected, then pu is surjective. Similar to the holonomy

bundle of a connection in the smooth category, the following fundamental pro-

perties hold.
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Proposition 6.1. (i) For u; v A E and x A S such that v ¼ Pðx; uÞ, we have

Eu ¼ Ev.

(ii) For ðu; aÞ A E � G, Eua ¼ raðEuÞ, where ra : E ! E is a map assigning va

to v.

(iii) If X is S-connected, E ¼6
a AG Eua for u A E.

Proof. For w ¼ Pðy; vÞ A Ev, since w ¼ Pðy � x; uÞ A Eu, we have Ev HEu.

Similarly, we have Eu HEv and obtain (i). For w ¼ Pðy; uaÞ A Eua, since w ¼
Pðy; uÞa A raðEuÞ, we have Eua H raðEuÞ. Similarly, we have raðEuÞHEua and

obtain (ii). For v A E and x A SpðvÞ;pðuÞ, since

v ¼ Pðx; uÞTðPðx; uÞ; vÞ ¼ Pðx; uTðPðx; uÞ; vÞÞ;

we have v A Eua, where a :¼ TðPðx; uÞ; vÞ. Since Eua HE for any a A G, we have

6
a AG Eua HE and obtain (iii). r

Let p : E ! X (resp. p 0 : E 0 ! X ) be a G (resp. G 0)-bundle and ðh; rÞ :
ðp 0;G 0Þ ! ðp;GÞ a homomorphism. We call ðh; rÞ a reduction of p to p 0 if h

and r are injective. Let ðh; rÞ be a reduction of p to p 0. For P A PDðp;SÞG and

P 0 A PDG 0 ðp 0;SÞ, if ðh; rÞ preserves P 0 and P, we say that P reduces to P 0

and call P 0 a reduced parallel displacement of P. For clarity, we introduce

the following category C. For a principal G-bundle p : E ! X , P A PDðp;SÞG,
and u A E, we consider a quadruple ðp;G;P; uÞ as an object in C. We denote

by C0 the collection of objects in C. A morphism between ðp;G;P; uÞ and

ðp 0;G 0;P 0; u 0Þ in C is a homomorphism ðh; f ; rÞ : ðp;GÞ ! ðp 0;G 0Þ preserving P

and P 0, and satisfying hðuÞ ¼ u 0. For simplicity, we denote by PdE u the restriction

E u jPjðp0jSÞ�E u . From the property of the relative topology, F u jT jðE uÞ� is continuous.

Thus, once pu is proved to be a Fu-bundle, it is a principal Fu-bundle. Again,

from the property of the relative topology, ðiE u;E ; iF u;GÞ is a reduction of p to pu

and PdE u A PDF uðpu;SÞ is a reduced parallel displacement of P. Then, we define

a holonomy reduction of ðp;G;P; uÞ A C0.

Definition 6.2. For u A E, we call a quadruple ðpu;Fu;PdE u ; uÞ the hol-

onomy reduction of ðp;G;P; uÞ if ðpu;Fu;PdE u ; uÞ A C0.

Suppose that X is S-connected. Then a map su :¼ suðPÞ : X ! Eu=Fu is

defined as follows. For x A X , choose x A Sx;pðuÞ and put

suðxÞ :¼ ½Pðx; uÞ�:
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This definition does not depend on the choice of x as follows. For any y A Sx;pðuÞ,

since

Pðy; uÞ ¼ Pðx; uTðu;Pðx� � y; uÞÞÞ ¼ Pðx; uÞPuðx� � yÞ;

we have ½Pðy; uÞ� ¼ ½Pðx; uÞ�. Note that pu=F u

(see Section 2) is well-defined.

Since

pu=F u

ðsuðxÞÞ ¼ pu=F u

ð½Pðx; uÞ�Þ ¼ puðPðx; uÞÞ ¼ x

for x A X and

suðpu=F u

ð½Pðx; uÞ�ÞÞ ¼ suðpuðPðx; uÞÞÞ ¼ suððpyjSÞðxÞÞ ¼ ½Pðx; uÞ�

for ½Pðx; uÞ� A Eu=Fu, we have su ¼ ðpu=F u

Þ�1. From Lemma 2.3, pu is a Fu-

bundle if and only if pu=F u

is a homeomorphism. Thus, by the Definition 6.2, we

have the following proposition.

Proposition 6.2. For u A E, ðpu;Fu;PdE u ; uÞ is the holonomy reduction of

ðp;G;P; uÞ A C0 if and only if su is continuous.

We have a su‰cient condition for an object to admit the holonomy reduction

as follows.

Theorem 6.3 (Holonomy Reduction Theorem). Let ðp;G;P; uÞ A C0, where

p : E ! X is a principal G-bundle, P A PDðp;SÞG is a parallel displacement, and

u A E. Suppose that X is S-connected and Sð1Þ A SX 2ðDX Þ (Definition 4.2). Then

ðpu;Fu;PdE u ; uÞ is the holonomy reduction of ðp;G;P; uÞ. Moreover, pu is a locally

trivial Fu-bundle.

Proof. Note that the diagram

SX�fpðuÞg
Pð�;uÞ

Eu

pyjSX�fpðuÞg

???y ???yqE u

F u

X
su

E u=Fu

�����!
������! ������

��
p u

commutes. From Proposition 4.2, pyjSX�fpðuÞg
is an identification. Then, from

upper half of the diagram, pu is an identification. Again, from lower half of the
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diagram, su is continuous. Thus from Proposition 6.2, ðpu;Fu;PdE u ; uÞ is the

holonomy reduction of ðp;G;P; uÞ. Then, from Theorem 4.4 (ii), pu is a locally

trivial Fu-bundle. r

Suppose that two objects both admit the holonomy reduction defined in

Definition 6.2. Then a bundle homomorphism between holonomy bundles which

preserves the structure involved induces a continuous group homomorphism

between holonomy groups. Moreover, we obtain a relation between Ker Pu and

Ker P 0u
0
.

Proposition 6.4. Let ðp;G;P; uÞ (resp. ðp 0;G 0;P 0; u 0ÞÞ A C0, where p : E ! X

(resp. p 0 : E 0 ! X 0) is a principal G (resp. G 0)-bundle, P A PDðp;SÞG (resp.

P 0 A PDðp 0;S 0ÞG 0 ) is a parallel displacement, and u A E (resp. u 0 A E 0). Suppose

that X (resp. X 0) is S (resp. S 0)-connected and ðpu;Fu;PdE u ; uÞ (resp. ðp 0u 0 ;Fu 0 ;

P 0dE 0u 0 ; u 0Þ) is the holonomy reduction of ðp;G;P; uÞ (resp. ðp 0;G 0;P 0; u 0Þ). Let

f : X ! X 0 be a continuous map preserving S and S 0, and satisfying f ðpðuÞÞ ¼
p 0ðu 0Þ. Then we have implications (i)) (ii) and (ii)) (iii):

(i) There exists a bundle morphism ðhu 0u; f Þ : pu ! p 0u
0
preserving PdE u and

P 0dE 0u 0 , and satisfying hu 0uðuÞ ¼ u 0.

(ii) There exists a continuous group homomorphism ru 0u : Fu ! Fu 0 such that

ru 0u � Pu ¼ P 0u
0 � f t.

(iii) f tðKer PuÞHKer P 0u
0
.

Proof. Firstly, we show the implication (i)) (ii). Put ru 0u :¼ T 0ðu 0; �Þ �
hu 0u � lu : Fu ! Fu 0 , where T 0 is the continuous translation function of p 0u

0
. Then

we can see that ru 0u satisfies required condition.

Secondly, we show the implication (ii)) (iii). Let x A Ker Pu. Since

PuðxÞ ¼ 1G,

P 0u
0 ð f tðxÞÞ ¼ ru 0uðPuðxÞÞ ¼ ru 0uð1F uÞ ¼ 1

F u 0 :

Thus f tðxÞ A Ker P 0u
0
. r

Note that the bundle morphism (resp. continuous group homomorphism)

satisfying the condition in (i) (resp. (ii)) is unique. For b A G, let Adb be the inner

automorphism of G given by AdbðcÞ :¼ bcb�1 for c A G.

Corollary 6.5. For a 0 A G 0, we have rðu
0a 0Þu ¼ Ada 0�1 � ru 0u.
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Proof. For b ¼ PuðxÞ A Fu, since

rðu
0a 0ÞuðbÞ ¼ rðu

0a 0ÞuðPuðxÞÞ ¼ P 0u
0að f tðxÞÞ ¼ T 0ðu 0a 0;P 0ð f tðxÞ; u 0a 0ÞÞ

¼ a 0�1T 0ðu 0;P 0ð f tðxÞ; u 0ÞÞa 0 ¼ Ada 0�1ðru 0uðbÞÞ;

we have the conclusion. r

The following proposition gives the canonical definition of the bundle

homomorphism satisfying the condition (i) of Proposition 6.4.

Proposition 6.6. Let ðp;G;P; uÞ (resp. ðp 0;G 0;P 0; u 0ÞÞ A C0 and f : X ! X 0

be a continuous map preserving S and S 0, and satisfying f ðpðuÞÞ ¼ p 0ðu 0Þ, where
p : E ! X (resp. p 0 : E 0 ! X 0) is a principal G (resp. G 0)-bundle, P A PDðp;SÞG
(resp. P 0 A PDðp 0;S 0ÞG 0 ) is a parallel displacement, and u A E (resp. u 0 A E 0).

Suppose that X is S-connected and f tðKer PuÞHKer P 0u
0
. Then a map hu 0u :

Eu ! E 0u
0
is defined by

hu 0uðvÞ :¼ P 0ð f tðxÞ; u 0Þ

for v ¼ Pðx; uÞ A Eu. The map hu 0u satisfies the conditions p 0u
0 � hu 0u ¼ f � pu,

hu 0u � PdE u ¼ P 0dE 0u 0 � ð f t � hu 0uÞ, and hu 0uðuÞ ¼ u 0. Moreover, every map sat-

isfying these conditions coincide with hu 0u.

Proof. The definition of hu 0u does not depend on the choice of x as is

shown below. Let y A SpðvÞpðuÞ be any sequence such that v ¼ Pðy; uÞ. Since

Pðy� � x; uÞ ¼ u, we have Puðy� � xÞ ¼ 1F u . By the assumption, since f tðKer PuÞ
HKer P 0u

0
, we have P 0u

0 ð f tðy� � xÞÞ ¼ 1
F u 0 . Then P 0ð f tðxÞ; u 0Þ ¼ P 0ð f tðyÞ; u 0Þ.

We can see that hu 0u satisfies the required conditions. Let k : Eu ! E 0u
0
be any

map satisfying the required conditions. For v ¼ Pðx; uÞ A Eu, since

kðvÞ ¼ kðPdE uðx; uÞÞ ¼ P 0dE 0u 0 ð f tðxÞ; kðuÞÞ ¼ P 0dE 0u 0 ð f tðxÞ; u 0Þ ¼ hu 0uðvÞ;

we have k ¼ hu 0u. r

In this proposition, we do not require that ðpu;Fu;PdE u ; uÞ (resp. ðp 0u 0 ;Fu 0 ;

P 0dE 0u 0 ; u 0Þ) is the holonomy reduction of ðp;G;P; uÞ (resp. ðp 0;G 0;P 0; u 0Þ) or hu 0u

is continuous. Under an appropriate condition, we have the implication (ii)) (i)

in Proposition 6.4.

Proposition 6.7. Under the assumption of Proposition 6.4, suppose further

that X (resp. X 0) is S-connected (resp. S 0-connected), Sð1Þ A SX 2ðDX Þ, and
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S 0ð1Þ A SX 02ðDX 0 Þ. Then for each continuous map f : X ! X 0 preserving S and S 0,

and satisfying f ðpðuÞÞ ¼ p 0ðu 0Þ, conditions (i) and (ii) in Proposition 6.4 are

equivalent.

Proof. From Theorem 6.3, ðpu;Fu;PdE u ; uÞ (resp. ðp 0u 0 ;Fu 0 ;P 0dE 0u 0 ; u 0Þ) is

holonomy reduction of ðp;G;P; uÞ (resp. ðp 0;G 0;P 0; u 0Þ). Thus from Proposition

6.4, (i) implies (ii). Conversely, suppose that (ii) holds. Again from Proposition

6.4, we have f tðKer PuÞHKer P 0u
0
. Let hu 0u : Eu ! E 0u

0
be the map defined in

Proposition 6.6. Let x A X and Vx be an open neighborhood of x in X such that

Vx � fxgHSð1Þ. Fix cx A Sx;pðuÞ and let ax : EdVx
! Vx � G be a local trivial-

ization defined in the proof of Theorem 4.4 (ii). Moreover, let V 0f ðxÞ be an open

neighborhood of f ðxÞ in X 0 such that V 0f ðxÞ � f f ðxÞgHS 0ð1Þ. Put c
0
f ðxÞ :¼ f tðcxÞ A

S 0f ðxÞ; f ðpðuÞÞ and let a 0f ðxÞ : E
0dV 0

f ðxÞ
! V 0f ðxÞ � G 0 be a local trivialization defined in

the proof of Theorem 4.4 (ii). Then, for v ¼ Pðx; uÞ A EudVxV f �1ðV 0
f ðxÞÞ

, we get

ða 0�1f ðxÞ � ð f � ru 0uÞ � axÞðvÞ

¼ P 0ðð f ðpðvÞÞ; f ðxÞÞ � c 0f ðxÞ; lu 0 ðru 0uðTðu;Pðc�x � ðx; pðvÞÞ; vÞÞÞÞÞ

¼ P 0ðð f ðpðvÞÞ; f ðxÞÞ � c 0f ðxÞ; hu 0uðPðc�x � ðx; pðvÞÞ � x; uÞÞÞ

¼ P 0ð f tððpðvÞ; xÞ � cxÞ;P 0ð f tðc�x � ðx; pðvÞÞ � x; u 0ÞÞÞ

¼ P 0ð f tðxÞ; u 0Þ ¼ hu 0uðvÞ:

Thus, hu 0u is continuous. r

Corollary 6.8. Under the assumption of Proposition 6.7, suppose that there

exists a continuous group homomorphism ru 0u : Fu ! Fu 0 such that ru 0u � Pu ¼
P 0u

0 � f t. Then ðhu 0u; f ; ru 0uÞ : ðpu;Fu;PdE u ; uÞ ! ðp 0u 0 ;Fu 0 ;P 0dE 0u 0 ; u 0Þ is a mor-

phism in C.

7 Strong Holonomy Reduction

In this section, we introduce a concept of strong holonomy reduction and

obtain further results applied in the succeeding section. In Proposition 6.6, if

f tðKer PuÞHKer P 0u
0
, the map hu 0u : Eu ! E 0u

0
satisfying the required con-

ditions is uniquely defined. Recall that hu 0u is not necessarily continuous in

general. For the continuity of hu 0u, we introduce the identification topology to

holonomy groups and holonomy bundles, while Fu is no longer a topological
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group in general. For this reason, we consider su‰cient conditions for Fu to be

a topological group with respect to the identification topology. We begin with

the definition of strong holonomy groups and bundles.

Definition 7.1. Let p : E ! X be a principal G-bundle, P A PDðp;SÞG,
and u A E. We call the subgroup Fu ¼ PuðSpðuÞÞ of G the strong holonomy group

of P with reference point u if it is endowed with the identification topology

induced by F u jPu. We call the subbundle pu : Eu ! X the strong holonomy bundle

through u if the topology of Eu is the identification topology induced by

E u jPð�; uÞ.

Note that the binary operation of Fu is not necessarily continuous whereas

unary operation is always continuous. Hereafter in this section, let ðp;G;P; uÞ A
C0, where p is a principal G-bundle, P A PDðp;SÞG, and u A E, and unless

otherwise mentioned, we assume that Fu (resp. pu) is the strong holonomy group

(resp. bundle). Note that since the identification topology is stronger than the

relative topology, iE u;E and iF u;G are continuous.

Definition 7.2. A quadruple ðpu;Fu;PdE u ; uÞ is called the strong holonomy

reduction of ðp;G;P; uÞ if ðpu;Fu;PdE u ; uÞ A C0 when Fu and Eu are endowed

with the identification topology induced by F u jPu and E u jPð�; uÞ respectively,

where C is the category introduced in Section 6.

With the identification topology on Eu, we have the following theorem.

Theorem 7.1. Let ðp;G;P; uÞ (resp. ðp 0;G 0;P 0; u 0ÞÞ A C0, where p : E ! X

(resp. p 0 : E 0 ! X ) is a principal G (resp. G 0)-bundle and P A PDðp;SÞG (resp.

P 0 A PDðp 0;S 0ÞG 0 ) is a parallel displacement. Suppose that X is S-connected and

ðpu;Fu;PdE u ; uÞ is the strong holonomy reduction of ðp;G;P; uÞ. Let f : X ! X 0

be a continuous map preserving S and S 0, and satisfying f ðpðuÞÞ ¼ p 0ðu 0Þ.
If f tðKer PuÞHKer P 0u

0
, then there exists a unique morphism ðhu 0u; f ; ru 0uÞ :

ðpu;Fu;PdE u ; uÞ ! ðp 0;G 0;P 0; u 0Þ in C. In particular, hu 0uðEuÞHE 0u
0

and

ru 0uðFuÞHFu 0 .

Proof. From Proposition 6.6, there exists a unique map ku 0u : Eu ! E 0u
0

such that p 0u
0 � ku 0u ¼ f � pu, ku 0u � PdE u ¼ P 0dE 0u 0 �ð f t � ku 0uÞ, and ku 0uðuÞ ¼ u 0.

Since ku 0u � E u jPð�; uÞ ¼ E 0u 0 jP 0ð�; u 0Þ � f t and E u jPð�; uÞ is an identification, ku 0u is
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continuous. Put hu 0u :¼ iE 0u 0 ;E 0 � ku 0u. Then hu 0u is continuous. A continuous group

homomorphism ru 0u : Fu ! G 0 is defined by ru 0u :¼ T 0ðu 0; �Þ � hu 0u � lu. We can

see that ðhu 0u; f ; ru 0uÞ : ðpu;Fu;PdE u ; uÞ ! ðp 0;G 0;P 0; u 0Þ is a morphism in C.

r

In this context, under an additional assumption we obtain the implication

(iii)) (i) in Proposition 6.4.

Corollary 7.2. Under the assumption of Theorem 7.1, suppose that

ðp 0u 0 ;Fu 0 ;P 0dE 0u 0 ; u 0Þ A C0 with respect to any topology, not necessarily the relative

topology or the identification topology. If f tðKer PuÞHKer P 0u
0
, then there exists

a unique bundle morphism ðhu 0u; f Þ : pu ! p 0u
0
preserving PdE u and P 0dE 0u 0 , and

satisfying hu 0uðuÞ ¼ u 0.

Corollary 7.3. Suppose that ðpu;Fu;PdE u ; uÞ (resp. ðp 0u 0 ;Fu 0 ;P 0dE 0u 0 ; u 0Þ) is
the strong holonomy reduction of ðp;G;P; uÞ (resp. ðp 0;G 0;P 0; u 0Þ). If f : X ! X 0

is a homeomorphism and f tðKer PuÞ ¼ Ker P 0u
0
, then ðpu;Fu;PdE u ; uÞG

ðp 0u 0 ;Fu 0 ;P 0dE 0u 0 ; u 0Þ.

The following proposition is a version of Proposition 6.2 and the proof is

similar to that of Proposition 6.2.

Proposition 7.4. Suppose that Fu is a topological group, Eu is a free Fu-

space with the continuous translation function, that is, a principal Fu-space, and

PdE u is continuous. Then ðpu;Fu;PdE u ; uÞ is the strong holonomy reduction of

ðp;F;P; uÞ if and only if su : X ! Eu=Fu is continuous.

Now, we can state a strong holonomy reduction theorem as a version of

Theorem 6.3 by showing a su‰cient condition for the assumption of Proposition

7.4. We call a covering ðClÞl AL of a topological space X a compact covering if Cl

is a compact subset of X for any l A L.

Theorem 7.5 (Strong Holonomy Reduction Theorem). Let ðp;G;P; uÞ A C0,

where p : E ! X is a principal G-bundle, P A PDðp;SÞG is a parallel displace-

ment, and u A E. Suppose that E and X are Hausdor¤ spaces, X is S-connected

and has the weak topology with respect to a countable compact covering, S is a

closed set in X t, and Sð1Þ A SX 2ðDX Þ. Then ðpu;Fu;PdE u ; uÞ is the strong hol-

onomy reduction of ðp;G;P; uÞ. Moreover, pu is a locally trivial Fu-bundle.
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We prepare some lemmas to prove this theorem. The first two lemmas are

rather elementary, yet we supply a proof for the sake of completeness.

Lemma 7.6. Let X and Y be Hausdor¤ spaces. Suppose that X (resp. Y ) has

the weak topology with respect to a compact covering ðXnÞn AN (resp. ðYmÞm AN).

Then, X � Y has a weak topology with respect to a compact covering

ðXn � YmÞðn;mÞ AN2 .

Proof. Put X 01 :¼ X1 (resp. Y 01 :¼ Y1) and X 0n :¼ X 0n�1 UXn (resp. Y 0n :¼
Y 0n�1 UYn) for any n A Nnf1g. Then, X , Y are k-spaces filtered by ðX 0nÞn AN,
ðY 0mÞm AN respectively. From (6.5) in [17], X � Y is filtered by ðZnÞn AN, where

Zn ¼6
i AN X 0n � Y 0nþ1�i. We will show that X � Y has the weak topology with

respect to ðXn � YmÞðn;mÞ AN2 . Let AHX � Y . Suppose that AV ðXn � YmÞ is a

closed set in Xn � Ym for any ðn;mÞ A N2. Since Xn � Ym is a closed set in

X � Y , AV ðXn � YmÞ is a closed set in X � Y for any ðn;mÞ A N2. Then, since

we have

AVZn ¼ 6
n

i¼1
AV ðXi � Ynþ1�iÞ ¼ 6

n

i¼1
AV ðXi � Ynþ1�iÞ

 !
VZn;

AVZn is a closed set in Zn for any n A N. Thus, A is a closed set in X � Y and

X � Y has the weak topology with respect to ðXn � YmÞðn;mÞ AN2 . Since Xn, Ym are

compact sets of X ;Y respectively for ðn;mÞ A N2, ðXn � YmÞðn;mÞ AN2 is a compact

covering of X � Y . r

Lemma 7.7. Let X and X 0 be Hausdor¤ spaces. Suppose that X (resp. X 0)

has a weak topology with respect to a compact covering ðXnÞn AN (resp. ðX 0mÞm AN).

Then, for any Hausdor¤ spaces Y , Y 0 and identifications f : X ! Y , f 0 : X 0 ! Y ,

the product f � f 0 : X � X 0 ! Y � Y 0 is an identification.

Proof. A map ~ff : ~XX :¼6
n ANðfng � XnÞ ! ~YY :¼6

n ANðfng � YnÞ is defined
by assigning ðn; f ðxÞÞ to ðn; xÞ. Similarly, a map ~ff 0 : ~XX 0 ! ~YY 0 is defined. Since

Xn � X 0m is a compact set and f ðXnÞ � f 0ðXmÞ is a Hausdor¤ space, ð f � f 0ÞjXn�X 0m
is an identification for any ðn;mÞ A N2. Thus, ~ff � ~ff 0 : ~XX � ~XX 0 ! ~YY � ~YY 0 is an

identification. We can see that Y , Y 0 have the weak topology with respect to

compact coverings ð f ðXnÞÞn AN, ð f 0ðX 0nÞÞn AN respectively. Then from Lemma 7.6,

Y � Y 0 has the weak topology with respect to ð f ðXnÞ � f 0ðX 0mÞÞðn;mÞ AN2 . Thus,

a map p : ~YY � ~YY 0 ! Y � Y 0 defined by pððn; y;m; y 0ÞÞ :¼ ðy; y 0Þ is an identifi-
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cation. Therefore, since p � ð ~ff � ~ff 0Þ is an identification and ð f � f 0Þ � q ¼
p � ð ~ff � ~ff 0Þ, f � f 0 is an identification, where q : ~XX � ~XX 0 ! X � X 0 is a map

defined by qðn; x;m; x 0Þ :¼ ðx; x 0Þ. r

Lemma 7.8. Let X be a Hausdor¤ space and S A ASðX Þ. Suppose that X

has the weak topology with respect to a countable compact covering, and S is a

closed set in X t. Then for any x A X , S, SX�fxg, and Sx have the weak topology

with respect to countable compact coverings respectively.

Proof. Let ðXnÞn AN be a countable compact covering of X . For any

nb 0, from Lemma 7.6, X nþ1 has the weak topology with respect to

ðXi0 � � � � � XinÞði0;...; inÞ AN nþ1 . Then, X t ¼6
nb0

X nþ1 has the weak topology

with respect to ðXi0 � � � � � Xik Þði0;...; ikÞ A6nb0 N
nþ1 . Since S is a closed set, S

has the weak topology with respect to a countable compact covering

ðSV ðXi0 � � � � � Xik ÞÞði0;...; ikÞ A6nb0 N
nþ1 . Since X is a Hausdor¤ space, fxg is a

closed set in X and SX�fxg, Sx are closed sets in S. Thus, SX�fxg (resp. Sx)

has the weak topology with respect to a countable compact covering ðSX�fxg V

ðXi0 � � � � � Xik ÞÞði0;...; ikÞ A6nb0 N
nþ1 (resp. ðSx V ðXi0 � � � � � Xik ÞÞði0;...; ikÞ A6nb0 N

nþ1 ).

r

Now we are in a position to prove Theorem 7.5.

Proof of Theorem 7.5. We denote restrictions

E u�XE u jðE u jPð�; uÞÞ2jSX�fpðuÞg�XSX�fpðuÞg

and

S�XE u jðidS � E u jPð�; uÞÞjS�XSX�fpðuÞg

simply by ðE u jPð�; uÞÞ2dE u�XE u and ðidS � E u jPð�; uÞÞdS�XE u respectively.

From Lemma 7.8, S, SX�fpðuÞg, and SpðuÞ have the weak topology with

respect to countable compact coverings respectively. Since SpðuÞ is a closed set

in SX�fpðuÞg and the equality ðE u jPð�; uÞÞ�1ððE u jPð�; uÞÞðSpðuÞÞÞ ¼ SpðuÞ holds,

from Lemma 2.1, E u
pðuÞ
jPð�; uÞjSpðuÞ

is an identification. Let T : E � ! G be the

translation function. Since the equality Tðu; �Þ � E u
pðuÞ
jPð�; uÞjSpðuÞ

¼ F u jPu holds,

Tðu; �Þ : Eu
pðuÞ ! Fu is a homeomorphism. Thus, since Eu

pðuÞ is a Hausdor¤

space, so is Fu. Therefore, from Lemma 7.7, ðE u jPð�; uÞÞ2, idS � E u jPð�; uÞ,
E u jPð�; uÞ � F u jPu, and ðF u jPuÞ2 are identifications. Again, using Lemma 2.1, we
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can see that ðE u jPð�; uÞÞ2dE u�XE u and ðidS � E u jPð�; uÞÞdS�XE u are identifications.

Since

F u jT jE u�XE u � ðE u jPð�; uÞÞ2dE u�XE u ¼ F u jPu � � � ð�� � idSX�fpðuÞg Þ

and ðE u jPð�; uÞÞ2dE u�XE u is an identification, F u jT jE u�XE u is continuous. Let

m : E � G ! E be the right action and n : G � G ! G the multiplication. Since

PdE u � ðidS � E u jPð�; uÞÞdS�XE u ¼ E u jPð�; uÞ � �;

E u jmjE u�F u � ðE u jPð�; uÞ � F u jPuÞ ¼ E u jPð�; uÞ � �;

and

F u jnjF u�F u � ðF u jPuÞ2 ¼ F u jPu � �

hold, maps PdE u , E u jmjE u�F u , and F u jnjF u�F u are continuous. Therefore, Fu is a

topological group and Eu is a free Fu-space with the continuous translation

function F u jT jE u�XE u .

By the same argument as in the proof of Theorem 6.3, su is continuous.

Then, from Proposition 7.4, ðpu;Fu;PdE u ; uÞ is the strong holonomy reduction of

ðp;G;P; uÞ. Moreover, from Theorem 4.4 (ii), pu is locally trivial. r

The following is a typical example of the base space X of p satisfying the

assumption of Theorem 7.5.

Example 7.1. Let X be a polyhedron of a countable simplicial complex K

in the weak topology. Note that jtj is a compact set of X for any t A K. Put

UK :¼6
t AK jtj � jtj and SK :¼ hUKi. As we saw in Example 4.1, ðSKÞð1Þ ¼

UK A SX 2ðDX Þ and X is SK -connected. We can see that SK is a cell subcomplex

of CW-complex X t, thus SK is a closed set.

8 A Classification of Principal Bundles with Parallel Displacements

In this section, we study a subcategory CðX ; x;SÞ of C defined in Section 6,

where ðX ; xÞ is a topological space with base point x and S A ASðX Þ is an

admissible sequence space. Objects in CðX ; x;SÞ are such quadruples ðp;G;P; uÞ,
where p : E ! X is a principal G-bundle, P A PDðp;SÞG is a parallel displace-

ment, and u A Ex, and morphisms in CðX ; x;SÞ are such homomorphisms

ðh; idX ; rÞ : ðp;G;P; uÞ ! ðp 0;G 0;P 0; u 0Þ preserving P and P 0, and satisfying

hðuÞ ¼ u 0. We denote by ðh; rÞ the morphism ðh; idX ; rÞ, and by CðX ; x;SÞ0 (resp.
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CðX ; x;SÞ1) the collection of objects (resp. morphisms) in CðX ; x;SÞ. Assuming

the existence of an initial object in CðX ; x;SÞ, we shall see that objects are

classified in terms of topological group homomorphisms from the structure group

of the initial object to those of bundles. Next we consider a su‰cient condition

for the existence of an initial object in CðX ; x;SÞ. We shall see that a specific

object is an initial object if it is the strong holonomy reduction of itself. From

this fact, we can see that ð~ppK ; ~GGK ; ~PPK ; ½v0�Þ is an initial object in CðjK j; v0;SKÞ,
where K is a countable connected simplicial complex in the weak topology. In

particular, we obtain Theorem 5.1 in [14].

Let G be the category of topological groups. We denote by G0 (resp. G1)

the collection of objects (resp. morphisms). Let ~GG A G0. An equivalence relation

on fr A G1 j dom r ¼ ~GGg is defined as follows. Two morphisms r; r 0 A G1 with

dom r ¼ dom r 0 ¼ ~GG are equivalent if there exists a topological group iso-

morphism t : cod r! cod r 0 such that r 0 ¼ t � r. We denote by ½r� the equiv-

alence class of r. Then we have the following classification theorem.

Theorem 8.1 (Classification Theorem). Let ð~pp; ~GG; ~PP; ~uuÞ be an initial object of

CðX ; x;SÞ with ~pp : ~EE ! X. Two maps

fr A G1 j dom r ¼ ~GGg !L CðX ; x;SÞ0 !
Y fr A G1 j dom r ¼ ~GGg

are defined as follows. For r A G1 with dom r ¼ ~GG, put LðrÞ :¼ ð~ppr; cod r;
~PPr; ½~uu; 1cod r�Þ. For ðp;G;P; uÞ A CðX ; x;SÞ0 with the unique morphism ðh; rÞ :
ð~pp; ~GG; ~PP; ~uuÞ ! ðp;G;P; uÞ in CðX ; x;SÞ, put Yðp;G;P; uÞ :¼ r. Then Y �L ¼ id,

and LðYðp;G;P; uÞÞ and ðp;G;P; uÞ are isomorphic for each ðp;G;P; uÞ A
CðX ; x;SÞ0. Moreover, for r; r 0 A G1 with dom r ¼ dom r 0 ¼ ~GG, r and r 0 are

equivalent if and only if LðrÞ and Lðr 0Þ are isomorphic. Thus, the induced map

�LL : f½r� j r A G1; dom r ¼ ~GGg ! f½ðp;G;P; uÞ� j ðp;G;P; uÞ A CðX ; x;SÞ0g

is bijective, where ½ðp;G;P; uÞ� is the isomorphic class of ðp;G;P; uÞ.

Proof. For ðr : ~GG ! GÞ A G1, let ðyr; rÞ : ð~pp; ~GGÞ ! ð~ppr;GÞ be the homo-

morphism given by yrðvÞ :¼ ½v; 1G� for v A ~EE as in Section 2. From Proposition

4.7, ðyr; rÞ preserves ~PP and ~PPr. Thus ðyr; rÞ : ð~pp; ~GG; ~PP; ~uuÞ ! ð~ppr;G; ~PPr; ½~uu; 1G�Þ is
a morphism in CðX ; x;SÞ. Since ð~pp; ~GG; ~PP; ~uuÞ is an initial object, ðyr; rÞ is

the unique morphism from ð~pp; ~GG; ~PP; ~uuÞ to ð~ppr;G; ~PPr; ½~uu; 1G�Þ. Thus YðLðrÞÞ ¼
Yð~ppr;G; ~PPr; ½~uu; 1G�Þ ¼ r.

Let ðp;G;P; uÞ A CðX ; x;SÞ0 and ðh; rÞ : ð~pp; ~GG; ~PP; ~uuÞ ! ðp;G;P; uÞ be the

unique morphism in CðX ; x;SÞ. Let ðhr; idGÞ : ð~ppr;GÞ ! ðp;GÞ be the ðX ;GÞ-
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morphism given by hrð½v; a�Þ :¼ hðvÞa for ½v; a� A ~EE r as in Section 2. From

Proposition 4.8, ðhr; idGÞ preserves ~PPr and P. Since hr � yr ¼ h, we have

hrð½~uu; 1G�Þ ¼ hð~uuÞ ¼ u. From Corollary 2.4, ðhr; idGÞ is an ðX ;GÞ-isomorphism.

Thus ðhr; idGÞ : LðYðp;G;P; uÞÞ ! ðp;G;P; uÞ is an isomorphism in CðX ; x;SÞ.
Suppose that ½r : ~GG ! G� ¼ ½r 0 : ~GG ! G 0� and let t : G ! G 0 be a topological

group isomorphism such that r 0 ¼ t � r. A map k : ~EE r ! ~EE r 0 is defined by

kð½v; a�Þ :¼ ½v; tðaÞ�0 for ½v; a� A ~EE r. The equalities

½vb; tðrðbÞ�1aÞ� 0 ¼ ½vb; tðrðbÞÞ�1tðaÞ� 0 ¼ ½vb; r 0ðbÞ�1tðaÞ� 0 ¼ ½v; tðaÞ� 0

imply that k is well-defined. Since k � q ~EE�G
~GG
¼ q

~EE�G 0
~GG
� ðid ~EE � tÞ and q

~EE�G
~GG

is an

identification, k is continuous. From the equalities

~ppr 0 � k � q ~EE�G
~GG
¼ ~ppr 0 � q ~EE�G 0

~GG
� ðid ~EE � tÞ ¼ ~pp � pr1 � ðid ~EE � tÞ ¼ ~pp � pr1 ¼ ~ppr � q ~EE�G

~GG
;

we have ~ppr 0 � k ¼ ~ppr, hence, k : ~ppr ! ~ppr 0 is a bundle morphism. Since

kð½v; a�cÞ ¼ kð½v; ac�Þ ¼ ½v; tðacÞ� 0 ¼ ½v; tðaÞ� 0tðcÞ ¼ kð½v; a�ÞtðcÞ

for ð½v; a�; cÞ A ~EE r � G, ðk; tÞ : ð~ppr;GÞ ! ð~ppr 0 ;G 0Þ is a homomorphism. Since the

equalities

kð ~PPrðx; ½v; a�ÞÞ ¼ kð½ ~PPðx; vÞ; a�Þ ¼ ½ ~PPðx; vÞ; tðaÞ� 0

¼ ~PPr 0 ðx; ½v; tðaÞ� 0Þ ¼ ~PPr 0 ðx; kð½v; a�ÞÞ

hold for ðx; ½v; a�Þ A ðp0jSÞ
� ~EE r, ðk; tÞ preserves ~PPr and ~PPr 0 . The equality

kð½~uu; 1G�Þ ¼ ½~uu; 1G 0 � 0 implies that ðk; tÞ : ð~ppr;G; ~PPr; ½~uu; 1G�Þ ! ð~ppr 0 ;G 0; ~PPr 0 ; ½~uu; 1G 0 � 0Þ
is a morphism. By the same argument, a bundle morphism k 0 : ~ppr 0 ! ~ppr is

defined by k 0ð½v; a� 0Þ :¼ ½v; t�1ðaÞ� for ½v; a� 0 A ~EE r 0 and ðk 0; t�1Þ : ð~ppr 0 ;G 0; ~PPr 0 ;

½~uu; 1G 0 � 0Þ ! ð~ppr;G; ~PPr; ½~uu; 1G�Þ is a morphism. We can see that ðk 0; t�1Þ ¼ ðk; tÞ�1.
Thus ð~ppr;G; ~PPr; ½~uu; 1G�Þ and ð~ppr 0 ;G 0; ~PPr 0 ; ½~uu; 1G 0 � 0Þ are isomorphic.

Conversely, suppose that ð~ppr;G; ~PPr; ½~uu; 1G�Þ and ð~ppr 0 ;G 0; ~PPr 0 ; ½~uu; 1G 0 � 0Þ are

isomorphic, and let ðk; tÞ : ð~ppr;G; ~PPr; ½~uu; 1G�Þ ! ð~ppr 0 ;G 0; ~PPr 0 ; ½~uu; 1G 0 � 0Þ be an iso-

morphism. Then ðk � yr; t � rÞ : ð~pp; ~GG; ~PP; ~uuÞ ! ð~ppr 0 ;G 0; ~PPr 0 ; ½~uu; 1G 0 � 0Þ is a morphism.

Since ð~pp; ~GG; ~PP; ~uuÞ is an initial object, uniqueness of the morphism implies

ðk � yr; t � rÞ ¼ ðyr 0 ; r 0Þ. Thus ½r� ¼ ½r 0�. r

In the smooth category, flat principal G-bundles over a fixed base space are

classified by group homomorphisms from the fundamental group of the base

space to G. We can think of Theorem 8.1 as a topological counterpart of the
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classification theorem for flat bundles in the smooth category. Note that our

theorem does not require any kind of flatness of the parallel displacement.

Next we consider a relation between an initial object and its holonomy

reduction.

Proposition 8.2. Let ðp;G;P; uÞ A CðX ; x;SÞ0 with p : E ! X and ðpu;Fu;

PdE u ; uÞ be the holonomy reduction of ðp;G;P; uÞ. If ðp;G;P; uÞ is an initial object,

then ðpu;Fu;PdE u ; uÞ ¼ ðp;G;P; uÞ.

Proof. Since ðp;G;P; uÞ is an initial object, there exists a unique morphism

ðh; rÞ : ðp;G;P; uÞ ! ðpu;Fu;PdE u ; uÞ in CðX ; x;SÞ. Moreover, since ðpu;Fu;

PdE u ; uÞ is a holonomy reduction of ðp;G;P; uÞ, ðiE u;E ; iF u;GÞ : ðpu;Fu;PdE u ; uÞ !
ðp;G;P; uÞ is a morphism in CðX ; x;SÞ. Thus

ðiE u;E � h; iF u;G � rÞ ¼ ðiE u;E ; iF u;GÞ � ðh; rÞ : ðp;G;P; uÞ ! ðp;G;P; uÞ

is a morphism in CðX ; x;SÞ. Since ðidE ; idGÞ : ðp;G;P; uÞ ! ðp;G;P; uÞ is also

a morphism in CðX ; x;SÞ, from the uniqueness of the morphism, we have

ðiE u;E � h; iF u;G � rÞ ¼ ðidE ; idGÞ. Thus iE u;E and iF u;G are surjective, that is,

Eu ¼ E and Fu ¼ G. r

The converse of this proposition does not hold in general. Namely, even if

ðp;G;P; uÞ is the holonomy reduction of itself, it is not necessarily an initial

object. We shall see that if an object is the strong holonomy reduction of itself,

then it is an initial object.

Let ðX ; xÞ be a topological space with base point x, U HX 2 a symmetric

subspace such that DX HU , and S :¼ hUi. An equivalence relation on S is

generated by the relations

ðxn; . . . ; xi; . . . ; x0Þ@ ðxn; . . . ; x̂xi; . . . ; x0Þ

whenever either xi ¼ xi�1 or xiþ1 ¼ xi�1, where the symbol x̂x denotes deletion

of x. We denote by q : S! S=@ the natural projection, and by ½xn . . . ; x0� the
equivalence class of ðxn; . . . ; x0Þ. Put

~SSU :¼ S=@;

~EEU :¼ f½xn; . . . ; x1; x0� A ~SSU j x0 ¼ xg ¼ qððp0jSÞ
�1ðfxgÞÞ;

~GGU :¼ f½xn; . . . ; x1; x� A ~EEU j xn ¼ xg ¼ qðSxÞ;
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where a topology of ~SSU is the quotient topology and consider ~EEU and ~GGU as

subspaces. A map ~ppU : ~EEU ! X is defined by ~ppUð½x�Þ :¼ pyðxÞ. The subset ~GGU

is a group with a binary operation ~nnU given by ~nnU ð½x�; ½y�Þ :¼ ½x � y�, a unary

operation ��1 given by ½x��1 :¼ ½x��, and an identity element ½x�. A right action

~mmU : ~EEU � ~GGU ! ~EEU is defined by ½x�½y� :¼ ½x � y�. If ½x�½y� ¼ ½x� for ð½x�; ½y�Þ A
~EEU � ~GGU , then ½y� ¼ ½x��½x�½y� ¼ ½x��½x� ¼ ½x�. Thus the action ~mmU is free. Since
~GGU is the subspace of ~EEU , l½x� ¼ id ~GGU

: ~GGU ! ð ~EEUÞx ¼ ~GGU is a homeomorphism.

A translation function ~TTU : ~EEU �X
~EEU ! ~GGU is defined by ~TTUð½x�; ½y�Þ :¼ ½x� � y�.

A map ~PPU : S�X
~EEU ! ~EEU is defined by ~PPUðx; ½y�Þ :¼ ½x � y�. For any ðx; ½y�Þ A

S�X
~EEU ,

~PPUðx�; ~PPUðx; ½y�ÞÞ ¼ ½x� � x � y� ¼ ½y�:

Similarly, we have ð ~PPUÞx � ð ~PPUÞx� ¼ idð ~EEU ÞpyðxÞ
, and consequently ð ~PPUÞx� ¼

ðð ~PPUÞxÞ
�1. For ððx; ½y�Þ; ½z�Þ A ðS�X

~EEU Þ � ~GGU , we have

~PPUðx; ½y�½z�ÞÞ ¼ ½x � y � z� ¼ ½x � y�½z� ¼ ~PPUðx; ½y�Þ½z�:

A map ~ppU=
~GGU : ~EEU= ~GGU ! X is defined by ~ppU=

~GGU ð½½x��Þ :¼ ~ppUð½x�Þ (see

Section 2). Since for ð½x�; ½y�Þ A ~EEU � ~GGU ,

~ppU ð½x�½y�Þ ¼ pyðx � yÞ ¼ pyðxÞ ¼ ~ppU ð½x�Þ;

~ppU=
~GGU is well-defined. Suppose further that X is S-connected. A map ~ssU : X

! ~EEU= ~GGU is defined as follows. Let y A X and x A Sy;x. Then put ~ssUðyÞ :¼
½ ~PPUðx; ½x�Þ� ¼ ½½x��. We can see ~ssU ¼ ð~ppU=

~GGU Þ�1. For simplicity, we denote by

qd ~EEU
(resp. qd ~GGU

) the restriction ~EEU
jqjSX�fxg

(resp. ~GGU
jqjSx

). Similarly, we denote

the restrictions

~EEU�X
~EEU
jðqd ~EEU

Þ2jSX�fxg�XSX�fxg

and

S�X
~EEU
jðidS � qd ~EEU

ÞjS�XSX�fxg

simply by ðqd ~EEU
Þ2d ~EEU�X

~EEU
and ðidS � qd ~EEU

ÞdS�X
~EEU

respectively. We have a

su‰cient condition for maps ~ppU , ~nnU , ~mmU , ~TTU , and ~PPU to be continuous.

Proposition 8.3. Suppose that X and ~EEU are Hausdor¤ spaces, X is S-

connected and has the weak topology with respect to a countable compact covering,

and S is a closed set in X t. Then
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qd ~EEU
: ðp0jSÞ

�1ðfxgÞ ! ~EEU ;

qd ~GGU
: Sx ! ~GGU ;

ðqd ~EEU
Þ2d ~EEU�X

~EEU
: SX�fxg �X SX�fxg ! ~EEU �X

~EEU ;

ðidS � qd ~EEU
ÞdS�X

~EEU
: S�X SX�fxg ! S�X

~EEU ;

qd ~EEU
�qd ~GGU

: SX�fxg �Sx ! ~EEU � ~GGU ;

and

ðqd ~GGU
Þ2 : Sx �Sx ! ~GGU � ~GGU

are identifications. In particular, ~GGU is a topological group, and ~ppU , ~mmU , ~TTU , and
~PPU are continuous.

Proof. Since SX�fxg is closed in S and q�1ðqðSX�fxgÞÞ ¼ SX�fxg, from

Lemma 2.1, qd ~EEU
is an identification. Similarly, qd ~GGU

is an identification.

From Lemmas 7.7 and 7.8, ðqd ~EEU
Þ2, idS � qd ~EEU

, qd ~EEU
�qd ~GGU

; and ðqd ~GGU
Þ2 are

identifications. Again, from Lemma 2.1, we can see that ðqd ~EEU
Þ2d ~EEU�X

~EEU
and

ðidS � qd ~EEU
ÞdS�X

~EEU
are identifications. Since ~ppU � qd ~EEU

¼ pyjSX�fxg
, ~ppU is con-

tinuous. Similarly, we can see that ��1, ~mmU , ~TTU , and ~PPU are continuous. r

By a straightforward argument, we have the following lemma.

Lemma 8.4. Let ðp;G;P; uÞ A CðX ; x;SÞ0. Then, the following conditions are

equivalent: (i) pu ¼ p, (ii) Fu ¼ G, and (iii) PdE u ¼ P.

Maps ~ssU , ~ppU , ~mmU , ~TTU , and ~PPU and the quadruple ð~ppU ; ~GGU ; ~PPU ; ½x�Þ have the

following properties.

Proposition 8.5. (i) If U A SX 2ðDX Þ (Definition 4.2), then ~ssU is continuous.

(ii) Suppose that ~GGU is a topological group and ~ppU , ~mmU , ~TTU , and ~PPU are

continuous. Then ð~ppU ; ~GGU ; ~PPU ; ½x�Þ A CðX ; x;SÞ0 if and only if ~ssU is

continuous. In this case, if U A SX 2ðDX Þ, then ~ppU is a locally trivial
~GGU-bundle.

(iii) Suppose that ð~ppU ; ~GGU ; ~PPU ; ½x�Þ A CðX ; x;SÞ0. If qd ~EEU
and qd ~GGU

are

identifications, then ð~ppU ; ~GGU ; ~PPU ; ½x�Þ is the strong holonomy reduction of

itself.
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Proof. Firstly, we show (i) and (ii). If U A SX 2ðDX Þ, from Proposition

4.2, pyjSX�fxg
is an identification. Then, since ~ssU � pyjSX�fxg

¼ q
~EEU

~GGU
� qd ~EEU

, su is

continuous, and we obtain (i). Under the assumption that ~ppU is continuous, ~ssU is

continuous if and only if ~ppU=
~GGU is a homeomorphism. Then, from Lemma 2.3,

we obtain (ii).

Secondly, we show (iii). Note that ~EEU
j ~PPUð�; ½x�Þ ¼ qd ~EEU

and F½x� jð ~PPUÞ½x� ¼
F½x� jðqd ~GGU

Þ. By the definition, if ðð~ppUÞ½x�;F½x�; ~PPUdð ~EEU Þ½x� ; ½x�Þ A CðX ; x;SÞ0, it is

the strong holonomy reduction of ð~ppU ; ~GGU ; ~PPU ; ½x�Þ. For ½x� A ~GGU , since ½x� ¼
~TTUð½x�; ~PPU ð½x�; ½x�Þ A F½x�, we have ~GGU ¼ F½x�. From Lemma 8.4, ðð~ppUÞ½x�;F½x�;
~PPUdð ~EEU Þ½x� ; ½x�Þ ¼ ð~ppU ;

~GGU ; ~PPU ; ½x�Þ and this complete the proof. r

In particular, from the viewpoint of a holonomy reduction, we obtain the

following proposition.

Proposition 8.6 (cf. [14]). Let X be a polyhedron of a countable connected

simplicial complex K in the weak topology and ~ppK the universal bundle. Then,

ð~ppK ; ~GGK ; ~PPK ; ½v0�Þ is the strong holonomy reduction of itself.

Proof. Put UK :¼6
t AK jtj � jtj, and SK :¼ hUKi. Note that X is a

Hausdor¤ space. As we have already seen in Example 7.1, X has the weak

topology with respect to a countable compact covering fjtj j t A Kg, X is

SK -connected, UK A SX 2ðDX Þ, and SK is a closed set in X t. From Lemma

3.2 in [14], ~EEUK
¼ ~EEK is a Hausdor¤ space. Thus, from Proposition 8.3,

~GGUK
¼ ~GGK is a topological group, ~ppUK

¼ ~ppK is a principal ~GGK -bundle, and ~PPK A

PDð~ppK ;SKÞ ~GGK
. Moreover, from (i) in Proposition 8.5, ~ssUK

is continuous.

Then, from (ii) in Proposition 8.5, ð~ppK ; ~GGK ; ~PPK ; ½v0�Þ A CðX ; x;SKÞ0. By using

Lemma 2.1, we can see that qd ~EEK
and qd ~GGK

are identifications. Thus, from

(iii) in Proposition 8.5, ð~ppK ; ~GGK ; ~PPK ; ½v0�Þ is the strong holonomy reduction of

itself. r

As we have already mentioned, an object which is the holonomy reduction of

itself is not necessarily an initial object. While, if the quadruple ð~ppU ; ~GGU ; ~PPU ; ½x�Þ
defined above is the strong holonomy reduction of itself, then it is an initial

object.

Theorem 8.7. If the quadruple ð~ppU ; ~GGU ; ~PPU ; ½x�Þ is the strong holonomy

reduction of itself, then it is an initial object in CðX ; x;SÞ.
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Proof. Let ðp;G;P; uÞ A CðX ; x;SÞ0 and ðx; xn�1; . . . ; x1; xÞ A Kerð ~PPUÞ½x�.
Then,

½x; xn�1; . . . ; x1; x� ¼ ð ~PPUÞ½x�ðx; xn�1; . . . ; x1; xÞ ¼ ½x�;

that is, ðx; xn�1; . . . ; x1; xÞ@ x. By the definition of @, there exists m A NU f0g
and a sequence ðx; xn�1; . . . ; x1; xÞ ¼ x0; x1; . . . ; xm ¼ x such that for any j A

f1; . . . ;mg at least one of the following conditions hold:

(1) there exist k A N and i A f1; . . . ; kg such that

xj�1 ¼ ðyk; . . . ; y1; y0Þ; xj ¼ ðyk; . . . ; ŷyi; . . . ; y1; y0Þ

and yi ¼ yi�1 or yiþ1 ¼ yi�1, or

(2) there exist k A N and i A f1; . . . ; kg such that

xj�1 ¼ ðyk; . . . ; ŷyi; . . . ; y1; y0Þ; xj ¼ ðyk; . . . ; y1; y0Þ

and yi ¼ yi�1 or yiþ1 ¼ yi�1.

In case (1), whether yi ¼ yi�1 or yiþ1 ¼ yi�1, we have

Pðxj�1; uÞ ¼ Pððyk; . . . ; y1; y0Þ; uÞ

¼ ðPðyk ;yk�1Þ � � � � � Pðyiþ1;yiÞ � Pðyi ;yi�1Þ � � � � � Pðy1;y0ÞÞðuÞ

¼ ðPðyk ;yk�1Þ � � � � � Pðyiþ1;yi�1Þ � � � � � Pðy1;y0ÞÞðuÞ

¼ Pððyk; . . . ; ŷyi; . . . ; y1; y0Þ; uÞ ¼ Pðxj; uÞ:

In case (2), we get Pðxj�1; uÞ ¼ Pðxj; uÞ by a similar computation to that of case

(1). Then, we have

Pðx0; uÞ ¼ Pðx1; uÞ ¼ � � � ¼ Pðx; uÞ ¼ u:

Thus ðx; xn�1; . . . ; x1; xÞ A Ker Pu, that is, Kerð ~PPUÞ½x�HKer Pu. Then, from

Theorem 7.1, there exists a unique morphism ðhu½x�; ru½x�Þ : ð~ppU ; ~GGU ; ~PPU ; ½x�Þ !
ðp;G;P; uÞ. r

As a corollary, we obtain Theorem 5.1 in [14].

Corollary 8.8 ([14, Theorem 5.1]). Let X be a polyhedron of a countable

connected simplicial complex K in the weak topology and ~ppK : ~EEK ! X the

universal bundle (principal ~GGK-bundle). Then, for any topological group G, any

locally trivial G-bundle p : E ! X is associated with ~ppK.
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Proof. From Proposition 8.6, ð~ppK ; ~GGK ; ~PPK ; ½v0�Þ is a strong holonomy re-

duction of itself. Thus from Theorem 8.7, ð~ppK ; ~GGK ; ~PPK ; ½v0�Þ is an initial object

in CðX ; v0;SKÞ. On the other hand, from Theorem 5.2 in [14], there exists

o A SF ðp;UKÞG. Then ðp;G;Po; uÞ A CðX ; v0;SKÞ0, where u A Ev0 . Thus there

exists a unique morphism ðh; rÞ : ð~ppK ; ~GGK ; ~PPK ; ½v0�Þ ! ðp;G;Po; uÞ. Therefore p

is associated with ~ppK by r. r
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