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NECESSARY AND SUFFICIENT CONDITIONS FOR
THE SOLVABILITY AND MAXIMAL REGULARITY
OF ABSTRACT DIFFERENTIAL EQUATIONS
OF MIXED TYPE IN UMD SPACES

By

Fatima Zohra MEZEGHRANI

Abstract. In this paper we give some results on some abstract
second order differential elliptic equations with mixed type boundary
conditions. The study is performed in UMD spaces. The main
purpose of this paper is the study of necessary and sufficient con-
ditions on the data for obtaining existence, uniqueness and maximal
regulariy properties of the strict solution. On the other hand, we give
some new examples related to traces results.

1. Introduction

Let us recall, for the reader’s convenience, some basic and known notions
and results to prepare the ground for our work.
Let X be a complex Banach space. We define L?(0,1;X), pe[l,+wx], as:

1 1/p
L?(0,1; X) :{f measurable on (0,1) and (J IfOI% dt) < +oo}.
0
W?2r(0,1; X) are the well-known Sobolev spaces, i.e.:
W2P(0,1;X) = {ue LP(0,1;X) :u',u" € LP(0,1; X)}

where the derivatives of u are within the meaning of the distributions. We
mention also the spaces:

0 dx /p
(Dt X)g,p = {<ﬂ eX: (J IXHAG(X)a)IIﬁ’(;) < +OO}

0
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in the case where A is a closed linear operator and infinitesimal generator of an
analytic semigroup G(x).

Let us recall that a Banach space X is a UMD space if and only if for some
p > 1 (and thus for all p), the Hilbert transform is continuous from L?(R; X) into
itself (see Bourgain [3], Burkholder [4]).

We can give several examples of classic Banach spaces which have UMD

property:
1. All Hilbert spaces are UMD.
2. Any space isomorph to a UMD space, is UMD.
3. Any closed subspace of a UMD space, is UMD.
4. If the spaces X and Y are UMD, then interpolated spaces ((X,Y), , or
[X, Y], ,) are UMD for 1 < p < co.
5. All spaces constructed on L? spaces, are UMD for 1 < p < 0.

Let us consider, in a complex Banach space X, the second order abstract
differential problem

u"(x) + Au(x) = f(x), xe(0,1) (1)
with the Dirichlet-Neumann boundary conditions
u(O) Zd(), u’(l) =ni. (2)

Here dy and n; are given elements in X and A4 is a closed linear operator of
domain D(A4) not necessarily dense in X.
We assume in all this work that A4 verifies the following elliptic hypothesis

-1 . -1
Our study will treat the existence, uniqueness and regularity of the solutions
under assumption (3). Here f belongs to L?(0,1;X), 1 < p < oo and

X is a UMD space. 4)

Note that in this case our assumptions imply that D(4) = X.
Also, we suppose that

{VseR7 (—4)® e L(X) and 3C > 1, 2 €]0,7[: 5)

(=)l ) < Ce*.

(For the class of operators verifying (5), see, Priiss-Sohr [18] for more details).
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The main result in this section affirms that under assumptions (3), (4) and (5),
problem (1)—(2) has a unique strict solution in L?(0,1; X) i.e. a function u such
that

we WP (0,1;X) N L (0, 1; D(4)),

if and only if dy € (D4, X), 5, , and ni € (D4, X))y 2112 -

Note that if ue W?”(0,1;X) then by J. L. Lions theorem of the traces,
ue C'([0,1]; X) and u(0) and u'(1) are well defined.

This work is based fundamentally on explicit representation of the solution
using the square root of —A4 and the Krein’s method see [13]. We then analyze
carefully all the components of the solution by using respectively the Dore-Venni
method [7], the Lions reiteration theorem, see [15] and [21], the semigroup theory
and some techniques applied in [9].

The square root of the operator —A will appear naturally in this paper. When
we have to study equation (1) just with Dirichlet’s boundary conditions, the use
of this square root is not necessary, see Labbas [14].

In the last decades, many researchers have been interested by the resolution
of problem (1). Several of them studied problem (1) as an abstract problem of
elliptic type, i.e. under assumption (3), with different boundary conditions in both
cases f is Holder continuous or f is in L?(0, 1; X) by using fractional powers of
operators or Dunford functional calculus. We cite at first, the pioneer Da Prato
and Grisvard theory on the sum of operators [6]. We also find a complete study
of problem (1) under Dirichlet’s boundary conditions and in variable coefficients
operators case, see Labbas [14]. This author has used the Green’s kernels
techniques.

In a recent work [1] Arendt proved that problem

u"(x) + B(x)u'(x) + A(x)u(x) = f(x), x€(0,0) (6)
with boundary conditions #(0) = x, ¥'(0) = y, has a unique solution u such that
ue W(0,0; X)NLP(0,0; D(A)) and u' e L?(0,5; D(B)),

in the case where D(A4) and D(B) are Banach spaces which embed continuously
and densely into X and f belongs to L?(0,0; X). At last, a new approach based
on the semigroup techniques by Krein [13] and fractional powers of operators,
has been developed by Favini, Labbas, Maingot, Tanabe and Yagi [8], [10] con-
cerning the complete equation

W/ (x) + Bu'(x) + Au(x) = /(x), xe(0,1)
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under Dirichlet boundary conditions. In our work we have been inspired by these
last references.

In this paper, we are interested in the resolution of problem (1) with
Dirichlet-Neumann boundary conditions. We give then necessary and sufficient
conditions on the data to have existence, uniqueness and maximal regularity of
the strict solution. We obtain also some a-priori-estimates. As new applications,
we will give some trace results.

The plan of this paper is as follows.

In Sections 2 and 3, we will recall some basic properties of generalized
analytic semigroups. We also give some technical Lemmas which are useful to
give a precise analysis of the representation of the solution u. Section 4 is devoted
to the existence, uniqueness and maximal regularity of the strict solution. In
section 5 we give some a-priori-estimates.

Finally, section 6 contains two parts. First, we give abstract trace theorems
and then an application to a partial differential equation.

2. Technical Results

We set, in all this paper

REMARK 1.

1. Hypotheses (3) and (4) imply that X is reflexive, thus D(A) is dense in X
(see Haase [12], Proposition 1.1, p. 18).

2. Hypothesis (3) 1mphes that operator (—v/—A) generates an analytic semi-
group noted (e~ )¥>0 on X, see for instance Balakrishnan [2].

3. Hypothesis (5) is equivalent to the following:
3C>1, ael0,n[:VseR, [[(V-A)"| < Ce®?Hl

(see Haase [12], Proposition 2.18. p. 64).
We have the following lemmas:

LEMMA 2. Due to assumptions (3), (4), (5) and the previous remark, for
fel?(0,1;X), 1 <p< oo, we have the assertions:
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I x L(x, ) = B[y e " 9Bf(s) ds e L?(0, 1; X),
2. x L(1—x, f(1 =) = B[l e 69Bf(s) ds e L?(0, 1; X),
3. x> Z(x,[) = B, e’(x“)Bf(s) dse LP(0,1; X).

Proor. The first and second assertions are a consequence of the Dore-Venni
theorem [7].
For assertion 3., one writes, for a.e xe (0,1)

ZL(x, f) = BJ; e~ HIB1(5) ds

X 1
= BJ e~ 9B 2By (s) ds + 672XBBJ e~ —)Bf (s) ds
0

= L(x, e‘z‘Bf) + e_zwL(l —x, f(1-")),

and we apply the first and second assertions. ]
We also have

LemMMA 3. Assume that hypothesis (3) holds. Then we have the assertions:

1. B2e=Bpe L?(0,1;X) if and only if ¢ € (D(4), X)1 2,
2. Be=Bpe Lr(0,1;X) if and only if p e (D(A), X)1 112,

Proor. We recall that if m e N* and C generates an analytic semigroup
then

¢ € (D(Cm)7X)1/mp,pv

if and only if
C"eCpe LF(0,1;X).
In fact
1 0 dx
J HcmexC¢||§/ dx < J me (lfl/mp))cmexC¢||§(;
0 0

< K|¢llpc

m)’}()l/m/z.p7

(see Triebel [21], Theorem p. 96).
From which

B’ Bpe LP(0,1; X)
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if and only if
pe(D(B),X),, = (D(A), X)), -
By the same way
Be BpeL7(0,1;X)
if and only if
pe (D(B)>X)1/p,p-
We conclude by using the reiteration property by Lions-Peetre [15]
(D(4), X)1/2p+1/2,p = (XvD(Bz))1/271/2p,p
= <X7D(B))l—l/p,p

— (D(B), X) n

1/p,p*

REMARK 4. Assume that hypotheses (3), (4) and (5) hold. Then

e (Bl Jl eI (s) 4S> ~e | Bf(s) ds = (1),

0 0

so, from Lemma 2, we get

Ae"B(B_] Jl eBf (s) ds) e LP(0,1; X),

0

and by Lemma 3, we deduce

(& Jl e31(5) ds ) € (DU, X) 1

0

Put

Z =e 2B,

PROPOSITION 5.  Assume that hypothesis (3) holds. Then the operator I —Z
has a bounded inverse and

_ 1 e* _
(I-2) IZ%J B
V#

where y, is a suitable curve in the complex plane.
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PrROOF. Since the imaginary axis is contained in the resolvent set p(—B),
we then can adapt the complete proof of Lunardi [16], p. 59 by choosing an

appropriated curve y, which takes into account the fact that —B generates an
analytic semigroup. |

COROLLARY 6. Under hypothesis (3), the operator (I + Z) has a bounded
inverse.

ProoF. We have
(I—eBYI4e?B)y=1—-e""
then
(I+e )= (I —e By 11 —e?P)
Consequently

I+eB)y ' =(—e*)1-c). m

3. Representation of the Solution

We assume here that hypotheses (3), (4) and (5) hold.
Let us suppose that problem (1)—(2) has a strict solution u and set

u(l) = uy.
Then u is the strict solution of the following problem
u"(x) — B*u(x) = [ (x)

u(0) = dy (7)
u(l) =uy,

and therefore, one has the representation

, L[
u(x) = e B&) + e U Bg EB_I J e_(x_s)Bf(s) ds

1
- %B’l J e~ UIBL(s) ds

where
&= —2)"(do— e Puy)

byt -27 8 ([ ) s [ et )

0
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& =I-2)" (= dy+u)

+-(I-2)"'B"! <J; e 1981 () ds — Jl e~ IH9B1 (5 ds),

0

N —

see [8].
We deduce that

n=u'(l)=—-2(1-2)"Be Bdy+ (I —2)""(I + Z)Bu

_ %e’B(l — Z)_1 (Jl e*SBf(s) ds — Jl e*(zf“wf(s) ds)

0 0

1

4—U—m”C¢¥“m%@w+zj

0 0

e~ 17981 () ds) .

N —

Then

=1 +2)" ' 2e Bdy+ (I —Z)B ')

+I+2)'B! <Jl e IIBf (5) ds — Jol e~ 17981 () ds).

0
Therefore our solution u is given formally by

u(x) = (I +2)"' (e + e @ 95)q,

+ ([ + Z)—l(ef(lfx)B _ e*(l+x)B)Bflnl

1

+%(1 +27)'B! . e~ CHIBL(s) ds
1 g [ ~(2-x+s)B
+§(1+Z) B Oe 'f (s) ds
1 -1 p—1 : —(2+x-s5)B
+§(1+Z) B Oe 'f(s) ds
1 -1 p-1 ! —(2—x—s)B
75(1+Z) B Oe 'f (s) ds

. 1
3 %B—l JO e_<x_S)Bf.(S) dS _ %B—l J e—(.Y—X)Bf(S) dS.
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4. Existence, Uniqueness and Maximal Regularity

The main result in this section is

THEOREM 7. Let feL’(0,1;X), 1 < p < 400, and assume that hypotheses
(3), (4) and (5) hold. Then the following assertions are equivalent

1. Problem (1)—(2) has a unique strict solution u, that is
ue WHP(0,1; X)NLP(0,1; D(A)),

and satisfies (1)—(2).
2. d() € (D(A)7X)l/2pp al’ld n] S (D(A)7X)l/2+l/2pp'

Proor. If u is the strict solution of problem (1)-(2) and dy € (D(4), X), 5, ,
and ny € (D(A4), X))} 5412, then u is given by (9). Let us prove the uniqueness
of the solution.

Set

Lf)(x)==(I+2)"" Jl B le 981 () ds

0

N —

1
(I+Z)71 0 Bflef(foJrs)Bf(s) ds

+

N —

1
([+Z)—l . B*lef(zw‘»xf‘Y)Bf.(s) dS

+

N =

1

1 _
~3 (I+2)" Jo B lem (=981 () ds

X 1
- lj B~ e 9Bf (5) ds — lJ B~ le 6981 () ds.
2 0 2 X

Writing f(x) = Au(x) + u”(x) we obtain

LN =20+ 2 [ B P auts as

0

N =

1
+=(I+ Z)71J B~ e @498 44 (s) ds

0

N —
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| —

1
+-(I+2)" J B7le™ 98 gy (s) ds

0

1
- % I+2z)™! J B e 98 4y(s) ds
0

(" 1!
- EJ B~ le 98 4u(s) ds — EJ B~ le™ 98 4u(s) ds
0 X
1 -1 ! —1 ,—(x+s)B, I
+§(1+Z) B e % () ds
0
1 -1 ! -1 ,—(2—x+s)B, /1
+§(1+Z) B e\ IE () ds
0
1 -1 ] -1 ,—(2+x—s)B, /1
—|—§(I+Z) B eI (s) ds
0
1 —1 ! —1 ~(2-x=5)B 4
—§(I+Z) B e u"(s) ds
0

1
_ %JX B e 9By () ds — %J B le By (s) ds

X

After integrating by parts we have

Ji=5+2)"'B (e "B (1) — e P (0))

N —

(I+2)" (e 198u(1) — e *Pu(0))

N —

+

1
+-(I+2)" J Be 0 H98y(s) ds,

0

N —

Jy==I+2)"'B (e P984/ (1) — e 98y (0))

N =

(I+2)" (e B 9Pu(l) — e C95u(0))

N —

+

1
+=(I+2)" J Be™C=xt3)By(5) ds,

0

N —
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(I+2) ' B (e B/ (1) — "398y (0))

NI —

I+ Z) 7 (e H98y(1) — e +98(0))

m~

1
+-(I+2)" J Be™ =98y (5) ds,
0

N —

Jo=—=I+2)"'B (e 198/ (1) — e =95,/ (0))

(1+2)7 (e 1-98u(1) — &8 0))

[\.)|»—A l\-)|'—‘

1
I+ 2Z) J Be™ =98y (s) ds,
0

l\)l'—‘

0 () — el (0)) 5 (u(x) — ¢ Pu(0)

Js = >

N —

1 .
_EJ Be 798y (s) ds
0

and

Jo = =3B e 09 (1) — u(3)) — 5 e O V(1) ~ ()

The last integral is well defined since u e C'([0, 1]; X).
We deduce that

6 6
Z Z —(I+2Z) (7B + e 2~9B)g,
i=1 i=1

— (I +Z) (e — e (HIBY g1y 4 y(x),

from which we obtain formula (9). Thus
Bu(x) = (I + Z) ' B} (e + e >98)q,

+ (I + Z)—IBZ(e—(l—x)B _ €_(l+x)B)B_1n1

1

(I+2) BJ e~ HIBL(5) ds
0

l\)l'—'

195
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1
I+2)"'B ) e~ IBL () dy

N =

+

1
(1+Z)—1B . 67(2+X7‘Y>Bf'(s) dS

N =

+

1 1
) (I+2)"'B| e @981 (s) ds
0

. 1

B %BJ e‘<x_s)Bf(S) ds — %BJ e_(s—x)Bf<s) ds
0 X

= —Au(x). 1

Therefore, due to (3), (4), (5), lemmas 3 and 2, Aue L?(0,1;X).
As feL?(0,1;X) then u” € L?(0,1; X), from which we deduce

ue W(0,1; X)NLF(0,1; D)
Conversely, let
ue W>r(0,1; X)NL?(0,1; D(A))
then
Au(.) e LP(0,1;X), ae. xe€(0,1)
Using (10) we obtain
B’ *Bdye L7(0,1;X) and Be*Bn; € LP(0,1; X)
and applying lemma 3 we have
|

dye (D(A4),X) and n € (D(4),X)

1/2p,p 1/2+1/2p,p-

5. A-Priori-Estimates

ProproSITION 8. Let f e LP(0,1;X), 1 < p < 400, and assume that hypotheses
(3), (4) and (5) hold, and d, € (D(A),X)I/ZN, and ny € (D(A),X)I/HI/ZP’],. Then
there exists a constant C > 0 such that:
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”uNHL!'(X) + ||Au||L!’(X)

< CUS N rixy + Mol ipeay, xy, -+ Il peay, x) )

1/2p,p 1/241/2p,p

Proor. From formula (9) we have

I 1
J lu” ()|l dx < J I +2)7 (1 + e 2098 de Py |y dx
0 0

1
+| 1+2)" (1 — e >B)Be =98y |2 dx

0
1 1 1 P

+ | s +2)7"'B| e ™981(s) ds|| dx
0ll2 0 bt
1 1 1 P

+ |z +2)7'B| e CtBr(5) ds|| dx
0ll2 0 X
1 1 1 p

+| |z +2)7"'B| e 9B (s) ds|| dx
0ll2 Jo bt
1 1 1 P

+ | FU+2)7"'B| e @ 9Br(s) ds|| dx
0ll2 0 X
1 1 X p

+| = J e IBf(s) ds||  dx
oll2- Jo X
1 1 1 p

+ —BJ e OIBf(s) ds||  dx
0 2 X X

], 1/ ()l dx

:Zl,.

Jj=1

1
I = J (I +2Z)"' (I 4 e 20-98) B2~y |2 dx
0
” 2(1/2p) p2 ,—xB 7 1P dx
<C| |x B e dy ||y —
0 X
< Clldoll (p(s2), x)

1/2p,p

< C”dOH(D(A),X)]/ZN,'

197
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1
b= |+ 2) = ) me O
0

! dt
< CJ t||Be™"Bn, ||§7
0

dt
< cj ¢4 Be P15 %

=< CHan(D(B) X)1)pp C”an i1/
1 1 1 p
L :J g +Z)“BJ e CIBL (s) ds||  dx
0 0 e
! 1 - 7233 ?
< ||FU+ z)"! Be f(s) ds
0 X
1 1 1 »
+ 2(I—&—Z) ! _2YBJ Be 5=9Bf(s) ds|| dx
0 X X

<cf e - e B L dx
0
1
cjnl—f“”ﬂmvum;w
0

1
cﬂnﬂm&w-
0

We treat the terms Iy, Is, Is, I;, Iy and Iy in the same way as Is.
Then we deduce that

1
jwam&wscwmwﬂmm+nm 1A o)

0 1/’+1/2ﬁp

In the same way, we prove that

1
LMWH&W<CWM T lmll

X)12p.p X)1 241/, p

e ry)- H

6. Concrete Applications
6.1. A Trace Result in L7-Case

Here X is a UMD space and A4 is a linear closed densely defined operator
with domain D(A4) < X, satisfying hypotheses (3) and (5).
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We will establish a trace result in relation to this operator for functions in
L?. We set

Tp=Dua; X) 13, p X (Das X) 1211 /2p.p
¥, =W>P((0,1); X)NLP((0,1); D(A4)) where 1 < p < +0

Let us consider the mapping defined by

PROPOSITION 9. The mapping G is linear continuous and bijective.

Proor. It is easy to see that G is linear. Using the main result in the fourth
section we have

ue WAr((0,1); X)ULP((0,1); D(4))
if and only if
dOE(DA,X)l/sz] and n E(DA’X)I/z‘Fl/ZPaP

so the mapping G is well defined and bijective. More, estimate (11) in previous
section proves that G is continuous. Which implies the following result.
|

COROLLARY 10. The mapping T defined by
T~ 7
u = (u(0),u'(1))
is linear continuous and bijective.

Proor. It is a deduction of previous proposition. ]

ExampLE 11. Let X = L?(R). We define operator 4 as follows
{D(A) = H%(R)
Au=u".

As X is a Hilbert space, D(A4) is dense in X, moreover (—A) is a self-adjoint
operator, then

D(V-4) = (Da, X)1p0 = (HZ(R)aLz(R))u;z = H'(R)

see [15]. Using Fourier transformation we prove that A verifies 3 and 5.
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Let us consider the mapping defined by
F:H*0,1;L*(R))NL*(0,1; H*(R)) — H*(R) x H'/*(R)
u = (u(0),'(1))
applying Theorem 10 we have
ProPOSITION 12.  The mapping F is linear continuous and bijective.

ExampLE 13. Let X = LY(R). We define an operator 4 as follows

{D(A) = W24(R)

Au=u".

D(A) is dense in X and (—A4) is a self-adjoint operator, then
D(\/:i) - (DA’X)1/2,2 - (Wzﬁq(R)qu(R))l/z,z = Wl’q(R)

see [15]. Using Fourier transformation we prove that A verifies (3) and (5).
Let us consider the mapping .# defined by

EP? — (Wz’q(R)’Lq(R))uzp,p X (Wz’q(R)aLq(R))l/sz/z,p
' (u(0),u'(1))
where
E?4 = W7(0,1; LY(R)) N L7(0, 1; W>1(R)).
Applying Theorem 10 we have

ProposITION 14.  The mapping 9 is linear continuous and bijective.
Note that the interpolation spaces

(W>I(R),LYR)) 1/, (WHI(R), LIR)), 3015,

coincide respectively with the following well known Besov spaces
B§f1£—1/2p—1/2) (R) = B,},_pl/p(R)v Bi(;_l/zl’)(R) — Bi;,l/"(R),

which are completely described in Grisvard [11] p. 680.
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6.2. Application to PDE
ExampLE 15. Let X = L?(R) and f € L?(0,1; L?(R)), 1 < p < co. Consider

the problem

*u *u
@(xay)—’_ﬁ(x?y):f(xay)v (X,y)E]O,l[XR,

U(O,y) :d()(y), y€R7 (12)

ou
—u(l = R
Sul ) =m(y), veR,

We define the operator 4 as follows

{D(A) = W*’(R),
Au=u",

then problem (12) is equivalent to the abstract problem (1)—(2). D(A) is dense in
LP?(R) and A verifies (3) and (5), moreover

D(V—4) = (W*"(R), L' (R)), , = W''(R)

see Lions-Peetre [15]. We obtain the following result

PROPOSITION 16.  Problem (12) has a unique strict solution u, such that
ue WP(0,1; L?(R)) N LP(0, 1; W>P(R))

if and only if

=

do € (W>P(R),L?(R)), 34172, = W''/PP(R)
up € (Wz"p(R))Lp(R))l/Zp,p = WZil/p’p(R)'
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