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THE QUANDLE COLORING INVARIANT
OF A REDUCIBLE HANDLEBODY-KNOT

By

Atsushi Isan and Kengo KisHIMOTO

Abstract. A handlebody-knot is a handlebody embedded in the
3-sphere. We provide methods to detect the irreducibility of a
handlebody-knot by using the quandle coloring invariant.

1. Introduction

A genus g handlebody-knot [2] is a genus g handlebody embedded in the
3-sphere S3. Two handlebody-knots are equivalent if one can be transformed into
the other by an isotopy of S°. A handlebody-knot H is reducible if there exists a
2-sphere in S? such that the intersection of H and the 2-sphere is an essential disk
properly embedded in H. A handlebody-knot is irreducible if it is not reducible.
In [4], Moriuchi, Suzuki and the authors gave a table of genus two handlebody-
knots up to six crossings, and classified them according to the crossing number
and the irreducibility. In this paper, we provide methods to detect the irredu-
cibility, which were used in [4].

Let By, B, be 3-balls in S? such that By UB, = S> and B, N B, = 0B = 0B;.
Let H; be a genus g; handlebody-knot in B; for i=1,2. When H;NH, is
one disk, H;UH, is a genus g; + g handlebody-knot in S3. We denote it by
H,#H,, where we remark that the handlebody-knot H;#H, depends only on the
handlebody-knots H;, H,. If a handlebody-knot H is reducible, then there exist
handlebody-knots H;, H, such that H = H|#H;. Since the exterior of H is the
boundary connected sum of those of H;, H;, the fundamental group of the
exterior of H is the free product of those of H;, H,. In general, it is not easy to
determine whether or not a given group is the free product of two nontrivial
groups, although some results for particular groups were known (see, for ex-
ample, [6, 7]).

2000 Mathematics Subject Classification. Primary 57M27; Secondary 57M15, 57M25.
Key words and phrases. Handlebody-knot, spatial graph, irreducibility, quandle coloring.
Received December 13, 2010.



132 Atsushi Isunn and Kengo KisHIMOTO

~_
TN

Figure 1: An IH-move

In this paper, we use the quandle coloring invariant defined in [2, 3] to detect
the irreducibility. A quandle coloring for knots is a generalization of the Fox
coloring. To define a quandle coloring on a handlebody-knot diagram, we need
to overcome an obstacle arising from a trivalent vertex. In [2, 3], the quandle
coloring invariant and the quandle cocycle invariant are defined for handlebody-
knots by introducing the notion of a flow. The flow is the key to the methods we
provide in this paper.

A spatial trivalent graph is a finite trivalent graph embedded in S°. Two
spatial trivalent graphs are equivalent if one can be transformed into the other
by an isotopy of S°. When a handlebody-knot H is a regular neighborhood of
a spatial trivalent graph K, we say that H is represented by K. In this paper, a
circle is regarded as a trivalent graph. Then any handlebody-knot can be rep-
resented by some spatial trivalent graph. Suzuki [10] introduced the notion of the
neighborhood equivalence for spatial graphs. The neighborhood equivalence class
of a spatial connected trivalent graph is a handlebody-knot. The J-irreducibility
of the exterior of a spatial graph is investigated in [9, 11], where we note that a
handlebody-knot is irreducible if its exterior is J-irreducible.

A diagram of a handlebody-knot is a diagram of a spatial trivalent graph
which represents the handlebody-knot. An IH-move is a local spatial move on
spatial trivalent graphs as described in Figure 1, where the replacement is applied
in a disk embedded in S3. The following enables us to study handlebody-knots
through their diagrams.

THEOREM 1 ([2]). For spatial trivalent graphs K, and K, the following are
equivalent.
« Ky and K, represent an equivalent handlebody-knot.
« Ky and K, are related by a finite sequence of IH-moves.
« Diagrams of K| and K, are related by a finite sequence of the moves depicted
in Figure 2.

In Section 2, we recall the definition of the quandle coloring invariant for a
handlebody-knot. In Section 3, we show some properties of the quandle coloring
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invariant of a reducible handlebody-knot. In Section 4, we show that some
handlebody-knots are irreducible by using our results.

2. Quandle Colorings

In this section, we introduce a flow of a handlebody-knot and recall the
definition of the quandle coloring invariant defined in [3].

We denote by G(H) the fundamental group of the exterior of a handlebody-
knot H. We denote by Flow(H; 4) the set of homomorphisms from G(H) to an
abelian group 4. We call an element of Flow(H;A4) an A-flow of H.

Let D be a diagram of a handlebody-knot H. We denote by .o/(D) the set
of arcs of D, where an arc is a piece of a curve such that its endpoint is an
undercrossing or a vertex. We denote by (), the set of orientations of an arc
o € o/(D), which consists of two orientations. We represent an orientation o € 0,
by a co-orientation, which is obtained by rotating a usual orientation 7/2
counterclockwise on the diagram D. An A-flow ¢ of H assigns a pair (o,s) €
0, x A to each arc a € o/(D) up to the equivalence relation (o,s) ~ (—o, —s) like
the Wirtinger presentation, where —o is the inverse of an orientation o. Then
the assignment satisfies the conditions shown in Figure 3 at every crossing and
vertex, where an element of A4 is represented with an underline. Conversely, an
assignment satisfying the conditions gives an A-flow. For ¢ € Flow(H;A4) and
o€ .o/(D), we define a map ¢, : O, — A so that (0,¢,(0)) € O, x A is assigned to
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the arc o by the A-flow ¢. Then we have ¢,(—0) = —¢,(0). We define the A-flow
0 so that 0, is the zero map for any arc a € /(D).

An A-flowed handlebody-knot (H,¢) is a pair of a handlebody-knot H and
an A-flow ¢ € Flow(H; A). Two A-flowed handlebody-knots (H,¢) and (H',¢')
are equivalent if H and H' are equivalent with an isotopy f of S° satisfying
o =¢ o f., where f.: G(H)— G(H') is the isomorphism induced by f. Let D
be a diagram of a handlebody-knot H. We denote by (D, ¢) the diagram of an
A-flowed handlebody-knot (H, @), which is obtained by adding the information of
the 4-flow ¢ on the diagram D.

A quandle [5, 8] is a non-empty set X with a binary operation *: X X X — X
satisfying the following axioms.

* For any ae X, axa=a.

+ For any a € X, the map S, : X — X defined by S,(x) = x % a is a bijection.

« For any a,b,ce X, (axb)*xc=(axc)x(bxc).

The type of a quandle X is defined by

type X :=min{i € Z-o | S! =idy for any ae X}.

We set type X := oo if we do not have such a positive integer i. We note that the
type of a finite quandle is finite. For i € Z and a,b € X, we define a «' b := S}(a).
For a quandle X, we set

{Z/(type X)Z if type X is finite,
ZX = .
4 otherwise.

Then a b is well-defined for i e Zy.

Let X be a quandle. Let (D,¢) be a diagram of a Zy-flowed handlebody-
knot. An X-coloring of (D,¢) is a map C: /(D) — X satisfying the following
conditions (Figure 4):

C,. For a crossing y, we have

Clxy) %™ Clxy) = C(1a),
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where y,, x, are the under-arcs at the crossing y such that an orientation
o of the over-arc y, at y points to y,.
C,. For a vertex w, we have

C(wr1) = C(wn) = C(ws),

where w;, w, and w3 are the arcs incident to w.
We note that an X-coloring C does not depend on the choice of the orientation o
of each arc, since the equality in the condition C; is equivalent to the following
equality

C(x2) #00(70) C(xo) = C(n)-

We denote by Colyx(D,¢p) the set of all X-colorings of (D,¢), and denote by
#Coly (D, p) the number of X-colorings in Coly (D, ¢).

THEOREM 2 ([3]). Let X be a quandle. Let H be a handlebody-knot rep-
resented by a diagram D. For diagrams (Dy,p) and (D,¢) of a Zx-flowed
handlebody-knot (H, @), there exists a one-to-one correspondence between
Coly (D1, p) and Colx(Da,p). Then #Coly(D, @) is an invariant of a ZLy-flowed
handlebody-knot (H,@). Furthermore, #Col%(H) is an invariant of a handlebody-
knot H, where #Col%(H) is the multiset defined by

#Colx(H) := {#Colx(D,p) | p € Flow(H;Zx)}.

An X-coloring C is trivial if the map C is a constant map. A handlebody-
knot is trivial if it is equivalent to a handlebody standardly embedded in S3. If D
is a diagram of a trivial handlebody-knot, then any X-coloring C € Coly (D, ¢p) is
trivial for any Zy-flow ¢. When there exist a Zy-flow ¢ € Flow(H;Zy) and a
nontrivial X-coloring C € Colx(D, ¢), we say that H has a nontrivial X-coloring.
The property “H has a nontrivial X-coloring” is preserved under the moves
depicted in Figure 2.

3. Colorings for Reducible Handlebody-knots

In this section, we investigate the quandle coloring invariant of a reducible
handlebody-knot.

Let X be a quandle, and x e X. Let D be a diagram of a handlebody-knot
H, and o€ /(D). For ¢ € Flow(H;Zy), we define

Colx (D, p); :={C € Colx(D, )| C(a) = x}.



136 Atsushi Isunn and Kengo KisHIMOTO

) =

Dy #5, Do

Figure 5

Then we have #Colx(D,¢); =1 if ¢ =0 or if H is a trivial handlebody-knot,
where #S denotes the number of elements in a set S. The subgroup of Aut(X)
generated by {S,|a e X} acts on a quandle X in a natural way. If the action is
transitive, then X is said to be connected.

LemmA 3. Let X be a connected quandle. Let D be a diagram of a
handlebody-knot H, and o € </ (D). For ¢ € Flow(H;Zy) and x,y € X, we have

#Cle(D, (ﬂ)i = #COIX(D7 g”)/yv

Proor. Since X is a connected quandle, there exist ay,...,a, € X such that
((x*ay)*xa)*---)xa,=y. Set x;:=x and x4 :=x;*a; for ie{l,... n}.
Then x,41 = y. We define f;: Colxy(D, ), — Colx(D,p);*' by the equality
(i(ON(P)=C(P)*xa; for fe /(D). The map f; is well-defined, since we
have (a**b)x'c= (ax'c)** (bx'c) for a,b,ce X and s,t€ Zy. Since the map
S, : X — X is bijective, the map f;: Colx(D, ), — Colx(D,p);"" is injective,
Wthh implies #Colx(D,¢)," < #Coly(D,¢),"*'. Thus we have #Colx(D,9p), <
#Colx(D,p)). In the same way, we have #Colyx(D,¢), < #Coly(D,¢),. There-
fore #Colx (D, ), = #Colx(D,p)]. ]

Let X be a quandle. Let D; be a diagram of a handlebody-knot H;, and «;
one of the outermost arcs of D; for i = 1,2. We denote by Di#}! D, the diagram
obtained from D; and D, by attaching an arc zja; between o and oy as shown
in Figure 5. Then D;#7 D, represents the reducible handlebody-knot Hi#H,.
For ¢, € Flow(H,;Zy) and ¢, € Flow(H>;Zy), we define the Zy-flow ¢,#¢p, of
H,#H, by the equalities

(01 #02) 7% =0 and  (p1#0,), = (9:),
for w € o/(D;) and i€ {1,2}. Then we have the bijection

FIOW(Hl; Zx) X FlOW(Hz; Zx) — FlOW(H]#HQ; Zx)
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which sends (¢,9,) to ¢;#p,. Let xe X. For Cje Colx(D1,¢,), and Cye

Coly(Dy,¢,),,, we define the X-coloring Ci#C, of (Di1#] D1, p#¢,) by the
equalities
(C\#C)(am) =x and (Ci#Cy) (o) = Ci(a)
for a e o/(D;) and i€ {l1,2}. Then we have the bijection
Colx (D1, ¢,);, x Colx(D2,9,),, — Colx(D1#D2, 01#¢,)57

which sends (C;, C3) to C#C,. By the equalities

#COZ)Z((Hl#Hz) = {#Colx(Dl#;;Dz,(p) |(p € FlOW(H]#Hz; Z)()}

= {Z #Colx(Dl#:leZ» )oclsv

pe Flow(Hl#Hz,ZX)}
xeX

= {Z #Coly (D1, ¢,); #Colx(D2,9,);,

xeX

¢; € Flow(H;; ZX)},
we have the following lemma.

LeEMMA 4. Let X be a quandle. Let D; be a diagram of a handlebody-knot H;,
and o; one of the outermost arcs of D; for i =1,2. We have

#Col (H\#H>) {ZH#COIX Du(/)z

xeX i

go, € Flow(H; ZX)}

THEOREM 5. Let H = H|#H, be a reducible handlebody-knot, where H; is
a genus g; handlebody-knot. Let X be a finite quandle. Put n; := (type X)? for
i=1,2

(1) If X is a connected quandle, then we have

#Coly(H) = {a-b-#X|ae A,b e A}

for some multisets Ay, A, such that A; consists of n; positive integers
including 1 for i =1,2.

(2) If Hy is a trivial handlebody-knot, then the multiplicity of every element of
the multiset #Col%(H) is divisible by ny.

ProOF. Let D; be a diagram of the handlebody-knot H;, and «; one of the
outermost arcs of D; for i = 1,2. Then Dy#,) D> is a diagram of the handlebody-
knot H. We note that #Flow(H;;Zy) = (#Zx)" = (type X)¥ =n; for i =1,2.
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(1) Fix xo € X. Put A4; := {#Colx(D;,¢,),’ | ¢; € Flow(H;; Zx)} for i=1,2.
By the equality #ColX(D,-,O);:_O =1, we have 1e€4; for i=1,2. By
Lemmas 3 and 4, we have

2
#Col%(H) = {Z [ I #Colx(Di,0);

xeX i=1

o; € Flow(H; ZX)}

2

xeX i=1

*lp; € Flow(H;: zx>}

{Za.b

xeX

ClEAl,beAz}

={a-b-#X|ae A1,be Ar}.

(2) Since H, is a trivial handlebody-knot, we have #Colx(Dy,¢;), =1 for
any ¢, € Flow(H;Zy) and xe X. By Lemma 4, we have

2
#Coly(H) = {Z [T #Coix(Di. )

xeX i=1

@; € Flow(H;; ZX)}

{Z #Colx (D2, 9,),,

xeX

¢, € Flow(H,; Zy),
¢, € Flow(H»; Zy)

= {#COIX(D27(:02)

¢, € Flow(H; Zy),
¢, € Flow(Hy; Zy) |

Hence the multiplicity of every element of the multiset #Col%(H) is
divisible by n;. O

The tunnel number t(H) of a handlebody-knot H is the minimum number
of mutually disjoint 1-handles embedded in the exterior of H such that a trivial
handlebody-knot is obtained from H by attaching the 1-handles. The tunnel
number #(H) of a genus ¢ handlebody-knot H coincides with the Heegaard
genus of the exterior of H minus g. Let H = H;#H, be a reducible genus g
handlebody-knot, where H; is a genus g; handlebody-knot for i=1,2. Then
g = g1 + ¢g>. The exterior of the handlebody-knot H is the boundary connected
sum of those of H;, H,. Since the Heegaard genus is additive under the boundary
connected sum [1], we have t(H) = t(H,) + t(H>).
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PROPOSITION 6. Let H be a reducible handlebody-knot with t(H) = 1. Let X be
a finite quandle. Then the multiplicity of every element of the multiset #Col%(H) is
divisible by type X.

Proor. Let H;, H, be handlebody-knots such that H = H|#H,. By the
equalities #(H))+ t(Hy) =t(H) =1, we have ¢(H,)=0 or t(H,) =0, which
implies that H; or H, is a trivial genus g handlebody-knot. Since g is a positive
integer, by Theorem 5 (2), the multiplicity of every element of the multiset
#Col%(H) is divisible by type X. O

LemMMA 7. Let H = H|#H, be a reducible handlebody-knot. Let X be a
quandle. If Hy\ has a nontrivial X-coloring, then H has a nontrivial X-coloring.

Proor. Let D; be a diagram of the handlebody-knot H;, and «; one of the
outermost arcs of D; for i =1,2. Then D#[!D; is a diagram of the handlebody-
knot H. Since H| has a nontrivial X-coloring, there exists a nontrivial X-coloring
C) € Colx(Dy, ¢,) for some ¢, € Flow(H;;Zy). Let C; € Coly(D>,0) be the trivial
X-coloring defined by C,(a2) = Ci(a1). Since C#C; is a nontrivial X -coloring of
(D1#7 D2, #0), H has a nontrivial X-coloring. O

THEOREM 8. Let H = H\#H, be a reducible handlebody-knot. If H| is a
nontrivial genus one handlebody-knot, then there exists a quandle X such that H
has a nontrivial X-coloring.

Proor. Let K be the nontrivial knot which represents the nontrivial genus
one handlebody-knot H;. Let X be the fundamental quandle of K. Since every
nontrivial knot has a nontrivial coloring by its fundamental quandle [5, 8], H,
has a nontrivial X-coloring. Hence, by Lemma 7, H has a nontrivial X-coloring.

O

If H = H#H, is a nontrivial reducible genus two handlebody-knot, then H;
or H; is a nontrivial genus one handlebody-knot. Hence, by Theorem &, we have
the following corollary.

COROLLARY 9. Let H be a nontrivial reducible genus two handlebody-knot.
Then there exists a quandle X such that H has a nontrivial X-coloring.
4. Applications

In this section, we show that some handlebody-knots are irreducible by using
the results in the previous section.
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Figure 6

ExampLE 10. Let R, be the dihedral quandle, which is the quandle con-
sisting of the set Z/pZ with the binary operation defined by a*b=2b—a.
The type of the dihedral quandle R, is 2. Let (H,p,,) be the Z/2Z-flowed
handlebody-knot represented by the diagram (D, ¢, ,) depicted in Figure 6. Then
we have

#Coly (H) = {#Colr,(D, ) | ¢ € Flow(H;Z/2Z)}
= {#Colg,(D, (pm) |s,teZ/2Z}
={9,3,3,3},

where we note that

9 if s=¢t=1,

#CO[ D7 ) = i
# (D 9s,/) {3 otherwise.

By Theorem 5 (1), if H is reducible, then #Coly (H) = {3,3a,3b,3ab} for some
positive integers @, b. Thus the handlebody-knot H is irreducible. Proposition 6
also implies that H is irreducible, since the tunnel number of the handlebody-knot
H is 1.

ExampLe 11. Let X be a quandle. Let (H',p;,) be the Zy-flowed
handlebody-knot represented by the diagram (D’,¢;,) depicted in Figure 6,
where oy, ..., 0z indicate the arcs of D’. For an X-coloring C of (D’ ,goéy,), we set
¢i:=C(;) e X for i=1,...,8. From the coloring conditions for (D’,¢; ), we

have the following equalities.

C1 *0 Co = (2, Cs5 x5 ) = Cg, (&) *0 Cc5 = (3, C3 *tCS = (4,

s
C7 *" C3 = Cg, C] = C4 = C5, Ce = C7 = Cg.
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By the first and third equalities, we have ¢; = ¢, = ¢3. Then, by the second
equality, we have ¢; = ¢6. Thus we have ¢; = --- = ¢g, which implies that H' has
no nontrivial X-coloring. Therefore, by Corollary 9, H’ is irreducible.
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