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AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION
OF THE SUPREMUM OF A MARKOV-MODULATED
RANDOM WALK*

By

Mikhail SGIBNEV

Abstract. We obtain an asymptotic expansion for the distribution of
the supremum of a Markov-modulated random walk, which takes
into account the influence of the roots of the characteristic equation.
An estimate is given for the remainder term by means of sub-
multiplicative weight functions.

1. Introduction

Let {x,},—, be an irreducible aperiodic Markov chain with finite state space
A ={l1,...,N} and transition matrix P = (p;), where p; = P(x, = j|r,-1 = i),
ijeN, n=12,.... Let = (m,...,ny) denote the stationary distribution of
the chain. In our case, m; >0, ie A" Let {X,(i, )}
dependent identically distributed random variables with distribution Fj. As-
sume that the sequences of random variables {X,,(i, /)}_,, (i,j) € A" x A", and
{Kkn},, are mutually independent. Write Sy =0 and S, = S,_1 + X, (ky_1,%,) for
n > 1. Suppose that M, :=sup,., S, < co a.s. for every initial state of the
chain. This is the case when the expectation of a one-step increment of the

be a sequence of in-

random walk {S,} is negative under the stationary distribution 7 of the chain:
E.S| := Zi].vjzl 7;piEX1(7, j) < 0, which will be assumed without loss of gener-
ality in the context of the present paper.

Let #(x):=min{rn >1:S,>x} and 5(x) := o on the event {M, < x}.
Clearly, {M,, > x} = U}ZI{K”(_\,) = j}. Denote by A the N x N matrix (p;Fj)
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and by W the N x N matrix (Wj), where Wj; is the measure defined on % by the
relations

VV(,‘(()Q OO)) = P(Kﬂ(x) = j|K0 = l)7 X > 07

Wii((=,0)):=0, i, je ./, and W;({0}) := 6y — P(x,0) = j|xo = i), where 6
is the Kronecker delta (the reason for this definition will be clear from (4) below).

The asymptotic behaviour of P(M, > x|xy = i) has already been studied by
K. Arndt [2], P. R. Jelenkovi¢ and A. A. Lazar [5], G. Alsmeyer and M. Sgibnev
[1]. The present paper is a continuation of [12]. We shall obtain an asymptotic
expansion (see Theorem 4 and (6)) for the matrix measure W which takes into
account the influence of roots of the characteristic equation (see (3) below). The
integral estimate [,” ¢(x)|A|(dx) < oo is given for the remainder term A by means
of a submultiplicative weight function ¢(x).

2. Preliminaries

Let ¢(x), x € R, be a submultiplicative function, i.e., ¢(x) is a finite, positive,
Borel measurable function with the following properties:

9(0) =1, o(x+y) <ep(x)p(y) for all x,yeR.
It is well known [3, Section 7.6] that

I 1
—o0 < I’,((ﬂ) = lim M: Supw

X—==® X x<0 X
1 1
< inf 22 ?(x) — lim 2% ?(x) =:ry(p) < 0. (1)
x>0 X X—0 X

Consider the collection S(¢) of all complex-valued measures x defined on the
o-algebra % of Borel subsets of R and such that

Il = jR¢<x>|K|<dx) <.

here |k| stands for the total variation of x. The collection S(p) is a Banach
algebra with norm ||x||, by the usual operations of addition and scalar multi-
plication of measures, the product of two elements v and x of S(¢) is defined as
their convolution vk [3, Section 4.16]. The unit element of S(p) is the Dirac
measure oy, i.e., the atomic measure of unit mass at the origin. Relation (1)
implies that the Laplace transform (s) = [y exp(sx)x(dx) of an element x € S(¢p)
converges absolutely with respect to |x| for all s in the strip

H(p) ={seC:r_(p) <Rs <r(p)}.
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The following theorem of [9] describes the structure of homomorphisms of
S(p) onto C.

THEOREM 1. Let m: S(p) — C be an arbitrary homomorphism. Then the
following representation holds:

m(v) = jm v) exp(Bx)v(dx), ve S(p),

where [ is a real number such that r_(p) < f <ri(p) and the function y(x,v) of
the two variables x e R and v e S(¢) is a generalized character.

We shall not give a complete definition of a generalized character here; in what
follows only one property of a generalized character will be used:

v —esssup |y(x,v)| < 1.
xeR

We shall need the following two theorems [10, Theorems 2 and 3].

THEOREM 2. Let ¢(x), x € R, be a submultiplicative function such that r_(p) <
ri(p). Suppose the function ¢(x)/expl[ri(p)x], x >0, is nondecreasing and the
Sfunction ¢(x)/exp[r—(p)x], x <0, is nonincreasing. Assume v € S(p) and let sy be
an interior point of T(p). Then the function [V(s) — V(s0)]/(s — s0), s € I1(p), is the
Laplace transform of some measure, say T(so)ve S(p).

If 5o lies on the boundary of the strip Il(¢p), the situation becomes more
involved. Nevertheless, the following theorem holds (for the sake of definiteness
we consider the case Rsy) = ro(¢)).

THEOREM 3. Let ¢(x), x € R, be a submultiplicative function. Suppose the func-
tion ¢(x)/explr(p)x], x >0, is nondecreasing and the function ¢(x)/exp[r_(p)x],
x <0, is nonincreasing. Assume that

Jw<1+x>¢<x>|v|<dx><oo or j<1+|x|>so<x>|v|<dx><oo,
0 R

depending on whether r_(p) < ri(p) or r_(¢) =ry(p). Let Rso=ri(p). Then
the function seXl(p), y' <Rs <y, is the Laplace transform of some measure
T(so)v e S(p).

The absolutely continuous component with respect to Lebesgue measure of
an arbitrary distribution F will be denoted by F. and its singular component,
by F: Fy=F — F,, ie. F;=F, + F,, where F; is the discrete component of F
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and F; is the singular component of F in the usual sense. We denote by 0 the
zero matrix whose size will be determined by the context. We agree that all the
operations with matrices and vectors are carried out elementwise. Suppose a
matrix, say B = (B;;), is made up of elements of S(¢). Then we shall denote by
B(s) the matrix whose elements are the Laplace transforms of the elements of B,
ie. B(s) := (Bji(s)). In this case we shall also write B € S(¢). A similar convention
also applies to inequalities involving matrices or vectors.

Let B be a scalar N x N-matrix and o(B) the set of all its eigenvalues. The
number o(B) := max{|4|: A€ d(B)} is called the spectral radius of B. It is well
known that if B >0, then o(B)€o(B) and there exists a nonnegative vector
x>0, x# 0 such that Bx = o(B)x [4, Theorem 8.3.1]. By Perron-Frobenius
theorem [4, Theorem 8.4.4], each nonnegative irreducible matrix B has a positive
eigenvalue of multiplicity 1 equal to o(B) and there exist positive left and right
eigenvectors corresponding to this eigenvalue.

Define the convolution A * B of two matrix measures A = (4;;) and B = (Bj)
as follows: (A xB); := Sl A * By By A* we shall denote the k-fold con-
volution of the matrix measure A, i.e. A=A, A¥ := AxA* D k> 1. Let
§p = MaxXi<p<n Sm, Y(X) = Syy —x and P;(-) =P(-|xo = 1), ie AN

Let A(r) < oo, r>0, and let I be the unit matrix. Choose r’ € (0,r). By
Arndt [2, Proposition 1], the matrix I — A(s) admits the factorization I — A(s) =
A_(5)A,(s), ¥ < Rs <r, with

w0
A (s5)=1- (ZJ e Pi(Sp—1 < Sy € dx, Kk, = j)),

n=1
A =1- (J: ¢*Py(£(0) € d. 1y 0) = j)), @)

where A_, A, € S(r',r) := S(p) with p(x) := max{e"™,e’~}. Moreover, the matrix
measure A _ is invertible in S(+’, r), i.e. there exists a matrix measure A_' € S(+, r)
such that A_+ A~! = A~! « A_ = §yI. Notice that A_ may not be invertible in
S(0,r), which is one of the reasons why we deal with S(+',r), where r’' > 0.

3. Main Result
Let A(r) < co. Consider the characteristic equation
det(I — A(s)) = 0. (3)

Assume that the set, say %, of the nonzero roots of (3) lying in the strip
{se C:0 <Rs <r} is finite. Denote the elements of Z by si,s5,...,5. We do
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not exclude the case & = . We then put /=0 and use the following con-
ventions: Zjl:l :=0 and H/IZI :=1. Let n; be the multiplicity of the root s;.
This means that det(I — A(s)) = (s — 5;)"fi(s), where fi(s;) #0. If se %, then
§€ % and the root § has the same multiplicity as s.

LEMMA 1. Suppose that A(r) < oo for some r > 0. Let & = {s|,...,s;} be the
finite set of the nonzero roots of (3) lying in the strip {se C:0<Rs <r}. Then
there exists one real root q € Z of multiplicity 1 such that $ts; > q for all s; # q.

Proor. Put A(&) := o[A(E)], £€[0,r]. First, let us prove that Rs; >0 for
all j. Suppose the contrary, ie. that there exists s; e Z such that Rs; = 0.
Since A(0) > (|4u(s;)|), it follows by [4, Theorem 8.1.18] that 1= A(0) =
0[A(0)] = o[A(s;)] = 1, and hence o[A(s;)] = 1. Applying [4, Theorem 8.4.5], we
arrive at the following conclusion. There exist real numbers 6y,...,0y such
that A(s;) = DA(0)D™!, where D = diag(e,...,e") (diagonal matrix). We
have AAk/(sj) = ei<9A'*91),éfk/(0), which means that the measure A4y, is concentrated
on the set (Or —0;)/Ss;+ (2n/Ss;)Z, k,I=1,...,N [7, Section 2.1]. Hence
det(I — A(miSs;)) =0, me Z, i.e. miSs; € Z for all m e Z, which contradicts the
assumption that Z is a finite set. Thus Js; > 0 for all j.

Further, suppose that E,S; < 0 is finite. Then 1'(0) = E,S; < 0 [8] and hence
A(&) < 1 for sufficiently small ¢ > 0. Let s; € Z. Then (|d;(sx)|) < A(Rs) and
hence A(Jsx) > 1 [4, Theorem 8.1.18]. By continuity, there exists ¢ € [0, Rsy] such
that A(¢) = 1. The function A(¢) is strictly convex [8, Theorem 2], which implies
the uniqueness of g. To prove that the multiplicity of ¢ is equal to 1, assume
the contrary, ie. det(I—A(s)) = (s — ¢)g(s), where g(g) =0. Choose positive
left and right eigenvectors 1= (/j,...,ly) and r = (ry,.. .,rN)T corresponding to
the eigenvalue 1 of A(q) in such a way that Ir = 1; the superscript T denotes
transposition of matrices. We have 1'(¢) =1A'(¢)r; this is essentially the same
as 2/(0) = E,S; =nA’(0)1 with 1:=(1,...,1)" in [8]. Also, we have 0=
det(I — A(s))/h:q = —cA’(g)r, where ¢ > 0 [11, the proof of Lemma 9]. It follows
that A'(¢) = 0 and hence the strictly convex function A(¢) attains its minimum
A(g) =1 at ¢ = ¢, which contradicts the existence of ¢ > 0 such that A(¢) < 1.
Hence the multiplicity of ¢ must be equal to 1.

Now suppose that E,S; = —co. Let Y, (i, ) := X,(i, j) if X(i,j) >a and
Yn(i,j) :==a if X,(i,j) <a, where a e (—00,0). We have E,Y(xo,x;) is finite
and negative for sufficiently large |¢| and

E exp[¢Y1(i, j)] = E exp[éX1(i, j)] for all &€ (0,r).
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Let 4i1(¢) be the spectral radius of the matrix (p;E exp[¢Yi(i, j)]). Then
A1(&) = A(&) for all & > 0. By the above, 4;(¢) < 1 for sufficiently small & > 0. It
follows that A(¢) < 1 for sufficiently small ¢ > 0 and, by the above arguments,
there exists a unique real root g € & of multiplicity 1. For the sake of defi-
niteness, we put s := gq.

Finally, repeating the reasoning at the beginning of the proof, we establish
that Rs; > ¢ for all j > 2. The proof of Lemma 1 is complete.

We have (see Arndt [2])

0

1 Py =)+ (| P =) = Wo) = A0 A0 (4

0+

In other terms,

W(s) = {[A_(9)] "1 = A()]} A (0) = [T— A(s)] "A_(5)A(0).

Let the coefficients By, k=1,...,n;, be defined by the asymptotic expansion

. "\ (—~1)*B, 1
Wor= /; ((s —)Sj).]f ’ O(S - Sj) s ®)

provided [ [x|"e™~A(dx) < co. This inequality is automatically fulfilled if
fts; <r. Denote by &; the complex-valued measure with density 1y, o,)(x)e™"%,
14(x) being the indicator of A. Its Laplace transform is equal to 1/(s; —s),
R(s — ;) < 0. The desired expansion for W will be of the form

W=
J

B8 + A, (6)

/ nj
=1 k=1

where the remainder A will possess, roughly speaking, the same moments as the
underlying matrix A. If & # ¢, then the main contribution to the asymptotics
of W will be given by the term B;;&), corresponding to the root s; = ¢ of (3)
since, by Lemma 1, Rs; > ¢, j > 1. Therefore, it is appropriate to calculate the
matrix By; in explicit form.

LemMMmA 2. Let det(I— A(g)) = 0. Choose positive left and right eigenvectors
L=(l,....1y) and v = (r1,...,r,)" corresponding to the eigenvalue 1 of A(q) in
such a way that Ir = 1. Then
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Proor. The function det(I — A(s)) is a linear combination of products of N
factors. These factors are the Laplace transforms of elements of the matrix
S0l — A e S(r',r), where r' € (0,q). Consequently, det(I—A(s)) is the Laplace

transform, say d(s), of some measure o in S(+’,r). As s — ¢, we have (M(s) being

the adjugate matrix of I — A(s))

whence

- AWIA- 9. 0 = MO L),

Thus, B} = —M(q)A_(¢)A.(0)/d'(¢). By [11, Lemma 9],

M(g) 1l
#'(q)  1A/(g)r’

which completes the proof of the lemma.

THEOREM 4. Let ¢(x), x€R, be a submultiplicative function such that
p(x) =1 for x <0, r:=ry(p) >0 and the function ¢p(x)/exp(rx), x =0, is non-
decreasing. Suppose that A(r) < 0. Assume that the spectral radius of the matrix
(A"™)2(r) is less than 1 for some integer m > 1. Let 2 = {s,...,s;} be the set of
the roots of (3) lying in the strip {se€ C:0 < Rs <r} and having multiplicities n;,
j=1,...,1 Denote by M the maximal multiplicity of those roots which lie on
{Rs=r} (V=0 means that there are no such roots on this line). Suppose that
fya + x)™9(x)A(dx) < oo. Then the matrix W admits the representation (6),
where the remainder A satisfies the inequality [ ¢(x)|A|(dx) < 0.

Proor. We form the following submultiplicative functions ¢, (x): ¢, (x) :=
(1+x)%p(x) for x>0 and ¢, (x) :=exp(r'x) for x <0, where ' € (0,¢) and
0 < k < 29t. Obviously, ri(p;) =r and r_(¢;) =+ for all k=0,...,29%. More-
over, S(¢;) = S(pr_), k= 1.

Choose a > r and put p = Zjl:l n;. Consider the function

(s — a)? det(I — A(s)) N a)’a(s)
[ (s— )" [T (s—s)"

d(s) ==

LemMMA 3. Under the assumptions of Theorem 4, the function d(s) is the
Laplace transform of some measure D € S(pg;).
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PROOF OF LEMMA 3. The function det(I — A(s)) is a linear combination of
products of N factors. These factors are the Laplace transforms of elements of
the matrix doI — A € S(¢pay;). Consequently, det(I — A(s)) is the Laplace transform
a(s) of some measure o€ S(p,y;). Decomposing rational function into partial

fractions, we have

d &l C}/c
14>y

d(s) =
“ =1 k=1 (s — Sj)k

a(s), (7)

where Cj are constants. Consider the functions fi(s) :=a(s)/(s — s_,»)k, k=
1,...,n;, j=1,...,1. We shall establish that if ®s; < r, then fj(s) is the Laplace
transform of some measure belonging to S(@,y), and if Js; = r, then fi(s) is the
Laplace transform of some measure belonging to S(¢,q_)-

Let ve S(p,,). If Rs; < r, then by Theorem 2 T(s;)v € S(¢,,), and if Rs; =r
and m > 0, then by Theorem 3 T'(s;)v € S(¢,,_;). Therefore, fir(s) = [T(sj)koc]A(s),
k=1,...,n;, j=1,...,1, are the Laplace transforms of some measures belonging
to S(@y) or to S(@.g_r), depending upon whether Rs; is less than or equal to r.
Thus, by (7), a € S(py). The proof of Lemma 3 is complete.

LemMMmA 4. Let the conditions of Theorem 4 be satisfied. Then the element
D € S(pg) is invertible in S(pg).

PrOOF OF LEMMA 4. Let .# be the space of maximal ideals of the Banach
algebra S(py). Each M € .4 induces a homomorphism /i : S(pg;) — C and M is
the kernel of /. Denote by v(M) the value of /& at ve S(py), i.e. v(M) := h(v),
not the value of the measure v on the set M. An element v € S(py;) has an inverse
if and only if v does not belong to any maximal ideal M € .#. In other words, v
is invertible if and only if v(M) # 0 for all M e ..

The space .# is split into two sets: .#; is the set of those maximal ideals
which do not contain the collection L(r',r) of all absolutely continuous measures
from S(pg), and 4> = M\ M. If M € 4, then the homomorphism induced by
M is of the form h(v) = ¥(s), where r' < Rso < r. In this case, M = {v e S(py) :
v(so) =0} [3, Chapter IV, Section 4|. If M e .#,, then v(M)=0 for all
ve L', r).

We now show that D(M) #0 for each M e.#, thus establishing the
existence of D~! € S(py). Actually, if M e .#;, then, for some sy € I1(r',r), we
have D(M) = D(s) # 0. Now let M e .#,. By the multiplicative property of the
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functional v — v(M), v e S(py), we have A(M)" =A™ (M) = (A"™),(M). Let
0 = (0;) := (A"™),. By Theorem 1,

1©,(M)] = URx(x, 0,) exp( )0, (d)

< | exp(pooy(an)
R

for some f e [r',r]. Tt follows that the spectral radius of @(M) does not exceed
that of O(f) = (A"™)2(B). By [6, Corollaries 1 and 2], the function 0[®(1)],
te[0,7], is convex. By assumption, o[@(r)] < 1, Moreover, p[®(0)] <1 which
is implied by ©(0) < A(0)" and by the fact that A(0)" is stochastic (whence
0[A(0)™] = 1). Consequently, o[@(f)] < 1. Thus the spectral radius of A(M)™ is
less than 1 and the spectral radius of A(M), being equal to the m-th root of

that of A(M)", is also less than 1. Since 7'(s;)*« e L(',r) for all j, k, (7) implies
D(M) = a(M) = det(I— A(M)) # 0.

So D(M) # 0 for all M €./. This means that there exists D~ € S(pg,) and the
function 1/d(s), r' <Rs <r, is the Laplace transform of D~!. The proof of
Lemma 4 is complete.

Consider the matrix

AW sell(r, n\2Z.

LEMMA 5. Let the conditions of Theorem 4 be satisfied. Then q(s) is the
Laplace transform of some matrix Q € S(pg).

PrROOF OF LEMMA 5. Denote by M(s) the adjugate matrix of I— A(s).
Then q(s) = [1/d(s)]M(s). Consequently, by Lemma 4, q(s) = Q(s), where Q =
D' xMe S(py) (the elements of Q are the convolutions of D~' with the
corresponding elements of M). The proof of Lemma 5 is complete.

We return to the proof of Theorem 4. We have

W(s) = [I—A(s)]'A A+ = s=a)” & A_(5)A, (0
(s) = [T—A(s)] ()A+(0) TG—5) Q(s)A—(s)A(0)
[ C/k R . .
~1+3 - | QA ()A.(0) (8)
J=1 k=1 (s —s5)
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Define V:=Qx*A_A,(0). Since the elements of A_ are finite measures con-
centrated on (—0,0], A_ € S(py) and hence V € S(pg;). Perform the following
calculations:

V(s) _ V(s)) +V(v — V(s &l Vi

-5 G-9" -9 He-9)

k,+vk1() (9)

where

Vo) = V), v s) = S V0D g
s =5
As before, applying step by step either Theorem 2 or Theorem 3, we establish
that the matrix measure V; ; :== T (sj)iV with Laplace transform v; ;(s) belongs to
S(pg) or S(pg_i), depending on whether ¥s; is less than or equal to r. Sub-
stituting (9) into (8) and collecting similar terms, we obtain, by the uniqueness of
the expansion (5), that

8

j=1 k= ])

n; k ! n
R R J B J
V = V + Z /k + Z Cjka,j(S).
= k=T (5 SJ =1 k=1

Put A:=V + 21'1:1 S CiT(s;)*V. Then A e S(p) and

9-33

j=1 k=1

n; kB]k
+A(s), sell(r,N\Z.
(s — s,
Passing over in this equality from the Laplace transforms to the corresponding
measures, we obtain the representation (6). Theorem 4 is proved.
Let 1 denote the N x 1 column vector with unit elements. It follows from (2)
that A, (0)1 = (P;(M,, = 0)). Summing over j € .4 the probabilities P;( (Kpe) = 1)

we obtain the following result about the asymptotic behaviour of the P;(M,, > x).

THEOREM 5. Under the assumptions of Theorem 4, we have

(F’<M_>X) Zznjkm 0)) + A((x, 0))1,

j=1 k=

where |A((x,0))1] < |A|((x, 0))1 = o(1/p(x))1 as x — 0.

If & # &, then there is no need to use Theorems 2 and 3 in the proof
of Theorem 4. It follows that, in this case, the conditions ¢(x)/exp(rx)T and
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o[A")2(r)] <1 become superfluous. Thus, Theorem 4 of the present paper
generalizes the sufficiency part of [12, Theorem 5.

(10]
(1]

(12]
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