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PROPAGATION OF ANALYTICITY IN THE C~
SOLUTIONS OF QUASI-LINEAR WEAKLY
HYPERBOLIC WAVE EQUATIONS

By

R. MANFRIN

Abstract. We study the propagation of the analytic regularity of
the C* solutions of the quasi-linear, weakly hyperbolic wave
equation u, — a(u)uy, = 0, where a(u) is a bounded, nonnegative
analytic function.

1. Introduction

The question of the propagation of analyticity in the C* solutions of analytic
nonlinear strictly hyperbolic equations (or systems) was satisfactorily solved in [2],
[18]. In the context of weakly hyperbolic equations only partial results are known.

The first results in this direction were proved by Spagnolo [29, 30] for the
analytic semi-linear weakly hyperbolic equation

otu — Z O (ay(x, 0)0u) = f(u), (x,0)eR" x[0,T), (1.1)

i,j=1

under one of the following additional conditions:

a) the coeflicients a; have the form a;(x,t) = b(1)aj(x);

b) the solution u(x,t) is a priori assumed in a Gevrey class of order s < 2.

Afterwards, the problem of the analytic regularity of C* solutions was
considered, among the others, in [5], [6, 7, 8], [21, 22], [14], [19] for suitable
classes of nonlinear weakly hyperbolic equations and systems. In all this papers
the solution u(x, ¢) was a priori assumed to belong to a space X = C* where the
Cauchy problem for the linearized differential operator is well posed.
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Here we consider a situation in which the linearized equation (see (1.8)—(1.9)
below) may present phenomena of non existence or non-uniqueness. Namely, we
investigate the propagation of analyticity in the C* solutions of the Cauchy
problem

uy —a(uy,, =0, (x,1)eRx[0,T), (1.2)
u(x,0) =up(x), u(x,0)=u(x), (1.3)
where a: R — [0,00) is merely a bounded analytic function, i.e.,
ae/(R) and 0<a(s) <l (seR), (1.4)
for a suitable 1 > 0. Given T € (0,+0o0] and
u:Rx[0,T)— R, (1.5)

a C® solution of (1.2), (1.3), we prove the following:

THEOREM 1.1. Let a:R — [0,00) satisfy (1.4). If uy, uy are analytic in
(X, — & X, + &), for some x, € R and ¢ >0, then u(x,t) is analytic in

D={(x1):|x—x| <e—ViL0<t< T} (1.6)

In particular, u(x,t) is analytic in R x [0, T) if uy, uy are analytic in R.

To demonstrate Theorem 1.1 we combine energy estimates in influence
domains with the results of [23, 24] (cf. Theorem 9.1, Corollary 9.2) of local well-
posedness and representation of solutions of weakly hyperbolic equations of type
(1.2):

if, for instance, a : R — [0, o) satisfies (1.4), a(0) =0, a(s) > 0 for s # 0, and
ug,u; € C°, then problem (1.2), (1.3) has a unique solution ue C* (R x [0,T)), for
some T = T(up,u1) > 0. Furthermore, there exist g,he C* s.t.

u(x, 1) = g(x, Huo(x) + h(x, )uy(x) in Rx[0,T), (1.7)

with (in some sense) g~ 1 and h=t.

Then, using the representation (1.7), we can apply suitable energy estimates
proving, in this way, that the analyticity of Cauchy data propagates according to
the geometry of influence domains. This argument circumvents the difficulties due
to the fact that the linearization of the operator

e Fu™)|y oy © 02u— a(u)ou, (1.8)
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at a generic C* function, say #, gives the linear operator P =3, _,, CF (7(")p%,

ou(®
urts 0%u — a(it)o2u — (a'(it)iie)u, (1.9)

where the coefficient a(i) is almost an arbitrary nonnegative C* function (since
a(-) is analytic and nonnegative, a(#) may be, at least locally, the square of
an arbitrary C* function). Indeed, even the Cauchy problem for a linear weakly
hyperbolic equation such as wu, — k(H)uy, =0 (with ke C*, k() = 0) is, in
general, not locally well-posed in C®, as the classical examples of [9], [10] show.

RemaArk 1.2. By the nonlinear Cauchy-Kowalewski theorem we know that
if a(s), uo(x), uj(x) are analytic then problem (1.2), (1.3) has a unique analytic
solution, say u*(x, ), for ¢ small and this statement is true without any hyperbolic
assumption.

Hence, it is natural to ask if the result of Theorem 1.1 can be proved as a
consequence of the Cauchy-Kowalewski theorem assuming, merely, a(s) analytic
and u(x,t) a C* complex-valued solution in R x [0,7) with analytic data for
t = 0. Without additional information this seems to be difficult for many reasons:

i) First of all, the step-by-step reasoning could not be used directly, if we
wished to prove the existence in large of the analytic solution u*(x,¢), that is for
any (x,?) € D, because the size of each step (with respect to #) in the argument
depends on the radius of convergence of the Cauchy data obtained by the
previous step. See [26, §1], [20].

As a matter of fact, given any kowalewskian linear equation with analytic
coefficients, a necessary condition for the global well-posedness in the space of
real analytic functions is the weak hyperbolicity, i.e. the reality of the charac-
teristic roots. See [27], [28]. On the other hand, by the Bony-Schapira’s theorem
(3, 4] the Cauchy problem for /inear weakly hyperbolic equations is globally well-
posed in the space of real analytic functions, provided the coefficients of the
equations are analytic. See also [12, 13].

ii) Secondly, to prove the analyticity of the given C® solution u, we need
some kind of uniqueness, i.e. we need to know that u(x,?) = u*(x, ) where both
the solutions are defined. But an example of nonuniqueness for the analytic
nonlinear Cauchy problem due to Métivier [25], see also Hormander [16], shows
that Holmgren’s uniqueness theorem does not extend in general to higher order
nonlinear equations, nor systems (for first order scalar equation uniqueness is
known, see [25] and the references therein). For instance, uniqueness fails for the
following equation

(0 + 02)(07u + 03u — dyu+ (6u)* + (0su)* — (yu)*) =0, (1.10)
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which is a semilinear analytic equation of kowalewskian type, whose principal
part is (0, + 0.)(07 + 82 — 6;) and {r =0} is non characteristic.

iii) Finally, since (1.2) is quasi-linear, we can also recall the result of [17],
where it was proved that well posed Cauchy problems for complex nonlinear
equations must be semilinear. More precisely, given Q < R", T =« C x C" (n > 2)
open sets, G : Q x I' — C depending smoothly on x € Q and holomorphically on

((,&) e, let us consider the first order, complex nonlinear equation
G(x,v,Vv) =0, xeQ, (1.11)

where v: Q — C is an unknown function. Then, studying the solvability of the
non characteristic Cauchy problem for equation (1.11), in [17, Theorem 1] it is
proved that the existence of a unique local C* solution for all complex data close
to a given one, implies that equation (1.11) is locally equivalent to a hyperbolic,
semilinear equation, i.e., locally in (x,{,&) € Q x I there exist smooth functions
f(x,0), w;(x) such that

GULE =0 & S u(E+ f(n0) =0, (112)
=

and the functions p;(x) are real.

In conclusion, the considerations above indicate that in order to prove the
propagation of the analytic regularity in the C® solutions of the quasi-linear
equation (1.2) it is natural to consider real-valued solutions and that we need also
some hyperbolic assumption, such as a(s) >0 for all s R. Namely, equation
(1.2) must be weakly hyperbolic.

REMARK 1.3. Finally, we observe that Theorem 1.1 could be easily extended
to higher space dimensions. Namely, it is possible to prove a similar statement for
the equation

uy —a(w)Au=0, (x,1)eR" x[0,T), (1.13)

assuming that a(-) satisfies (1.4). Here we confine ourselves to the one dimen-
sional case to reduce the technicalities of the proof.

2. Notation
2.1. Main Notation

In what follows C, A (or, occasionally, Cy, Ci, Cy,... and Ay, A;...) will
stand for generic nonnegative constants.
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Given a,beR, we use the symbol avb for max{a,b}; anb denotes
min{a, b}.
We use the standard multi-index notation: a multi-index o = (o, ...0,) is a

n-tuple of integers o; >0, i.e. a e (Z%)" with Z* ={0,1,2,...}. As usual
al =oq!-o,l, a| =0 4+ 4y, (2.1)

Given o, e (Z7)", we say that f <o if f; <o; for 1 <i<n. We also say that
B <oif p<o and |B| <|«|. For a,fe (Z*)" with B <o, we set

(Z) B (oc—ai}f)'ﬂ' (2.2)

In this work we always consider multi-indices o = (o1, %) € (Z*)* and write
def A
"= 9Mon. (2.3)

Let 7/ = R be an open interval. Given f : I — R, we write f e AC(I) if f is
absolutely continuous in /.

Given Q < R x R and ¢ : Q — R, we say that g is analytic in Q if there exists
an open set Q > Q and §:Q — R analytic such that

gla =19 (2.4)

Furthermore, if ¢ is analytic in Q, we say that g is uniformly analytic if there exist
constants C,A > 0 such that, for all x e (Z*)?,

|0%G(x,1)] < CAPa! in Q. (2.5)

2.2. Notation for Influence Domains
Given T >0 and 71,7, € [0, T), with 71 < 1, let
702 [, = R (2.6)
be C! functions such that
1) <), y3(1) <0 <9i(r) for te(r,72). (2.7)
For ¢ € [11,12], we introduce the domains:
BE {xeR:p() <x<pn(), (28)
LY ((x,s):xeB, 11 <s< 1}, (2.9)

rer,. (2.10)
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Let v: R x [0,7) — R be a sufficiently regular function. Then, for ¢ € [1, o]
and o e (Z*)?, we set

o o def o
10%ll, = lo*o(D)l, = 0%6(, )l os, for 1€ [r1,72), (2.11)

where 0*v(-, 1) = (0%v)(-,t). Besides, given je Z", we also define

; ; def Ao
67ll, = llo7e(0)ll, = Y lo*v(0)]l, for 1€ [z, 7). (2.12)
o=/

3. Energy Estimates in a Influence Domain

Let u(x, ) be a C* solution of (1.2) in R x [0, T'). Besides, let ' « R x [0, T)
be defined according to (2.6)—(2.10) above. From now on we assume the fol-
lowing:

AssuMPTION 3.1.  The functions y,(t), y,(t) and a(u(x,t)) satisfy the con-
ditions:

D) a(u(y;(1),0) <y(t)* for all telt,) and i=1,2;

ii) there exists Cy = C1(I') = 0 such that 0,a(u) < Cia(u) in T.

ReMark 3.2, If (1.2) is strictly hyperbolic (that is a(-) > # > 0), condition
ii) is always verified. Besides, condition ii) holds if ¢ = apa; with a; : R — [0, o0)
(i=0,1) differentiable functions such that:
min_ ao(u(x, 1)) >0,
(x,0)el (31)
Oy (u(x, 1)) < Cay(u(x,t)) in I.

Proor. If a = apa;, we have d,a(u) = ap(u)0,a,(u) + a;(u)d.a0(u). Then (3.1)
implies that ii) is verified with C; = C + |maxr a;(u)u,|(minr ao(u)) ™! ]

DerFINITION 3.3.  Given j > 1, we introduce the j-th energies of the solution
u(x, 1) by setting, for o€ (Z*)?, |o| =j—1,

def

E,(1) :J (a()|0%us? + |0%u® + 210%u®} dx, 1€ [r1,1) (3.2)
B,

and then
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VEOE Y VEQ, (3.3)

|o=j—1

B0 B0+ [ B (34)

7]

LemMa 3.4. Let ue C* be a solution of (1.2) in R x [0,T). Besides, let us
suppose that Assumption 3.1 holds. Then \JE, € AC(t1,71;) and there exists C >0
such that

d 12
E\/Eac <(C+ jHVE,+ (J |G,)? dx) ae. in (11,12), (3.5)
B
for all ae(Z*)?, with
Gy X 0% (a(u)ury) — a(u) 0y (3.6)

Proor. Differentiating E,, for 7; <t < 1, we find

d o 2
_Ea = * X
; J [ 0,a(u)|6 U, | dx

+ 2J {a(u)0"uy0"uy, + 0% u, 0% uy + jzé’“ué“u,} dx
B,
+ {a(u)|0*ul* + |0"u|* + j2|aau‘2}|(72(t),t)yé(t)

—{a()|o*ul® + 10%u|* + 720" ul*}H ;, 1.0 71 (O)- (3.7)

Integrating by parts, we have

J a(u)0%uy0%uy, dx = —J a(u)0 Uy 0% u; dx — J 0xa(u)0%uy0u; dx

t t B[
+ a(u) 0" ux0”uy () o — a() 0" ux0"ui, () - (3.8)
Noting that
)] = Y2 fa(wl*uf? + 0%, (3.9

and using i) of Assumption 3.1, it follows that in (3.7) the total contribution of
the boundary terms is < 0. Then, since

0"y — a(u)0™uy, = Gy, (3.10)



20 R. MANFRIN
it follows that

d o 2
_ < (
tha < Ll 0ra(u)|0%uy|” dx
+ ZJ {jzﬁ‘“u@“u, — 0ya(u)0®u0"u, } dx

+2J G,0"u, dx. (3.11)

Furthermore, since a(u(x,¢)) >0 in Rx [0,7) and '« R x [0,T) is com-
pact, using the Gleaser inequality [15] it is easy to see that there exists C; >0
such that

|0xa(u)| < Cov/a(u) for (x,1)eT. (3.12)

Hence, we have
[0xa(u)0%uyd*u;| < Con/a(u)|0%uy| |0%u;|
< 271 Co{a(u)|0%u]* + |0%us|*}. (3.13)

Then, using also ii) of Assumption 3.1, we obtain that

d
G < (G CZ)J {a()|0"us|? + 0|} dx
B,

1/2 1/2
—|—2j(J |0%u,|* dx) (J 7210%u? dx)
B, B,
1/2 1/2
+2(J |Ga|2dx) (J |6“u,|2dx>
B B

<2(Cs + j)Ey +2VE, (J

1/2
|Gy)? dx> , (3.14)
B,

with C3 =1(Cy + C,). This gives (3.5) when E, > 0. To conclude, we apply
Lemma 8.1 (§8.1, Appendix A) and observe that (vE,)' =0 ae. in
{te(t1,12) : E, = 0}. ]

Setting

G = > (J |Gy, 1) dx)m, (3.15)
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from the definitions of E; and F; we easily have:

COROLLARY 3.5. Under the assumptions of Lemma 3.4, \/E;, \/F;e
AC(t1,712) and their derivatives satisfy

WE) < (C+)VE + G, (3.16)
/ |
(VF) S(C+§+J)\/FJ+GJ (3.17)
a.e. in (11,72), where C =0 is the same constant of (3.5).

Proor. From (3.5) and the definition of E; we immediately have

WE)'= Y (VE)

Ja=j—1
\/_ ) 1/2
= CH+)(VE)+ G,|* dx
\“;1( J)( ) \a|:zj—l (JB, | | )
= (C+)VE+ G, (3.18)

a.e. in (71,72). By Definition 3.3 it is clear that F; € AC(7y,7,). Besides, a.e. in
{E; > 0}, we have the inequality

E+E E /E E
( /F~>l= J — J 4 J
T a/E 2JEJE 2JF

1
s(c+§+j)\/E+Gj. (3.19)

Finally, applying Lemma 8.1 (§8.1, Appendix A), and noting that (\/17])/ =0 a.e.
in {E; =0}, we obtain the inequality (3.17) a.e. in (71, 72). O
4. Estimate of the Terms G;

Using the analyticity of a : R — [0, c0), we will estimate, for j > 5, the terms
G; defined in (3.15). To begin with, for |x|=j—1>2, we write

AP
Go: = Z <:u>a ﬂa(u)aﬂuxx = Ioz + Jotv (41)

<o

where
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LY ¥ ( 8 )aﬁa(u)a“-ﬁum 4.2)
B<a, |Bl=1

o —

A (“) 0" a(u) 0"ty (4.3)

p<a ju=|al—2

Estimate of the terms I,.
For |o)=j—1 and g <o, |f| =1, one has

(ﬁﬂ) <j-1. (4.4)

Besides, applying condition ii) of Assumption 3.1 (in the case ¢ = ¢,) and the
inequality (3.12) (if 8 = d.) we deduce that there exists C = C(C}, C;) > 0 such
that

0Pa(u)| < C\/a(u) in T, (4.5)
for |f| = 1. This means that
|I,| < Cj Z Va()| oy, (4.6)
B<w,|pl=1
where 0 = 0., i.e. e; = (1,0). Hence, we have

> (era) <o x 3 vEw

|o=j—1 a=j-1p<a, |fl=1

<2G > VE.=2GVE, (4.7)

le|=j—1

Estimate of the terms J,.

To estimate >, 1 [/a]l,2(5), we will suppose that:

ASSUMPTION 4.1.  There exist C, M > 0 such that, for all integers v > 0, one
has

laV(s)| < CM"W! for all seu(T), (4.8)

where u(I') = {s|s=u(x,t) with (x,t) eT'}.

REMARK 4.2. In view of the analyticity of the function a(s), it is not re-
strictive to assume that Assumption 4.1 holds.
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For ae (Z*)?, |o| > 4 (that is j > 5) we can write

J,=H,+ K, + L,, (4.9)
where

def Ay
H, = "a(u)uyy, (4.10)
LY T (u>6“”a(u)6”uxx, (4.11)

p<a =1
LY ¥ (a)ﬁ“_/’a(u)a"uxx. (4.12)

2<iu<lul-2 \H

H=o

Then, by Leibniz’ formula (§8.2, Appendix A), we have

Z ||H7||2 < ||uxx|| Z ||(’)“ ||2

loj=j—1 lof=j1
~ [l o! ‘
coy Sl 3 oo,
lo|=j—1 v= vt Pr+-+B, 9{ v
B =1
Jj—1
S S DIV DR
la|=j—1 v=1 Prt++B,=u
[Bil=1
- ol
=Cy M >y mﬁ'||aff1u---aﬁvu|2, (4.13)
v=1 le|=j—1p1++5, = v
B;]=1
where, according to (2.11), ||+ ||, = || - [[14(s,, for ¢ € [l,+c0]. Now, the function
B By
der || 071w - - 0%vul],
o(py,.-p)="———= (4.14)
! BB
is nonnegative and symmetric with respect to f,..., ﬂve(Z+)2. Besides, for

every fixed we (Z*)?, |o| > v, the set {(By,....5,): B+ - +B, = |f| > 1} is
also symmetric. Hence, we can easily see that

Yooy Y 4 (4.15)

Pitp,=a Prtetp,=a
Bi| =1 L<|Bi| <8,
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Furthermore, changing the order of summation, we also have

D X = > D> >4 (4.16)

lof=j—1B1++B,= ht-th=j=11p|=h  |B,|=h
1<|ﬁ\<\ﬁ| L<h <h,

See §8.3, Appendix A. Thus, noting that f, +--- + f, = « implies

o |ox|!
= :
Bilt- BT B B!

after some calculations, we may write

> i, H2<CZM vy Y .Of!.ﬁ!Ha/j‘u---&ﬂ"u

lo|=j—1 lo|=j—1f1+--+B, 0<
L<|Bi|<IA)]

(4.17)

B

j-1 (J
) J=DU
SCE My Z Z"'pr |ﬂ|v”al”“
— hitthy=j=1|B|=h Bil=hy 1

1<hi<h,
- B,
[P 0Pl

j—1

<CG-DDy My N T 'Z

v=1 i+ +h;—] 1 /31| h
1<hi<h,

R Gt S

By_1|=hv1 By|=hy

i—1
J ”

. v ufl .
=1 Iyt hy=j—1 I
1<h;<h,

hy_ v
18" ull,, 19"l
hy_1! h!

(4.18)

where, according to the notation (2.11)-(2.12), 35, ||8ﬁu||q = ||(')hu||q.
In the same way, we can estimate ),
u <o with |yl =1, we have

o Jo|! .
< ——<j—1, 4.19
(u) ot = ! ]! (*.19)

d=j1 1Kxll5. In fact, since |of = j—1,

and
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YooKl <G =1 N, Y 0%a@),
|o=j—1 lul=1 |Bl=j-2

=1 Y lofa@)l,. (4.20)

1Bl=j-2

Then, as in the previous estimates, from (4.10) to (4.18), with j — 2 instead of
J—1, we obtain that the quantity >, . [|Ky[|, is majorized by

Jj—2 ahv,l ahr
L, ol Rl
1<hi<h,
Finally, we estimate }_,_. | [/Ls[l,. We have
o o—u
Sz S (41 rawetl,
o= -1 jal=—1 2=l = -2
H=a
o\ !
ey Y ()
lo|=j—12<|ul<j-3 H v=1
H=o
x Z (OC ) ||@/31 a/j‘vua'a“xxnz
Bittf =0 uﬂl
|Bil=1
j-3
ccSwy Y

v=1 lel=j=1 Br+-+p,tn=c

1Bil=1,2<ul<j=3

ol
[0P1u- - Prudtu,. (4.22)

Xﬂ ﬂll

Now, we observe that f; +---+f, +u=a and |u| =2 = |p;| < j— 3. Hence,
setting u = f,,;, we easily have the inequality

||a/)’| aﬁ"ué/‘umHz

1!
Prt+tB = ﬁl ﬂ
Bi>1,2<ul < j-3

o!
e

it AP =a
1<gl</-3

v+1

11007 ul + 0P u) (4.23)
i=1

2



26 R. MANFRIN

Thus, we may conclude that

Z||L||2<CZMVIZ Z ﬂl'ﬁl

(|0ﬁ'u| + |a‘[5’ uw‘

|o|=j—1 |oa|=j—1 B1+-+B,= 2
1<|B;|<j-3
-2
scy-npLuv Y%
v=2 |o|=j—1 PrttB,=a
I<Ipi<IBiI<IB,I<j-3
v—1 B B B, B,
107 ull o + 110" 1| o ) 107 ully + (0% uxxll
X , (4.24)
(H B! IAL

where, noting that v > 2, we have applied the argument (4.14)—(4.15) twice. From
this we obtain that the quantity »:,_; ,[|Ls[/, is majorized by

Jj=2 hi hi
ci-my MY (HIIa ul\m+||a ll, )

v=2 hyt-A-hy=j—1 i=1
I<h <hi<h,<j-3

h hy
o™ ully + (107l
I,

(4.25)
5. Analytic Energy

To proceed further, we make the following assumption:

ASSUMPTION 5.1. There exist C >0 and p e N such that, for all integers
h >0,

||6h CZ \/F/7+, for lE ‘L'1,‘L'2) (5.1)

REMARK 5.2. In applying our estimates, in the final part of the paper (see
Lemma 7.2), we will verify that (5.1) holds with a constant C independent of
h>0.

Let k be a fixed integer, such that

k> p+4, (5.2)
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and let p:[r1,72] — R be a C! function (which will be defined in Lemma 6.2)
such that

) e (0,1, p'()<0 in [r1,7l. (5.3)

DEFINITION 5.3. For N >k + 1 we introduce the energy-functions

ey p+ Z P i jk\/_ Sor tet1,12). (5.4)

Jj=k+1

Then, deriving &y, from Corollary 3.5 we find

/ / - pj ! P]k /
éaN:P‘i'Z 1),J —P\/7+Z I

Jretl Vi k=711

N k-l T
gp’+; p._l)!jk[]jk ]\/“JrZ—./ L (5.9)

k=j+1

where, by the relations (3.15), (4.1) and (4.7),

N j—k —
M kG < D DN A R VATS
=k I it ! lal=j—1
N ‘_ _
Z ,/k\F+ N Wl (5:6)

Jj=k+1 ! lo|=j—1

Recalling (4.9), we have J, = H, + K, + L,. Therefore, we must estimate the
quantities:

Hy < Z JC IH, (5.7)

Jj=k+1 ! Jo|=j—1
def p’
Ky = Z —Jk > Kl (5.8)
J=k+1 ! le|=j—1
def P
Ly = Z j* Z [l Ll (5.9)
J=k+1 ! Jo|=j—1

To this aim, we set:
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DEFINITION 5.4.

wr | 21k if 1<j<k (5.10)
L= j—k .
LA NN A Y
Thus, we have
N
Ev = _n;. (5.11)
=1
Besides, we suppose that:
ASSUMPTION 5.5.
1"u(n)],. < €, [o"u()ll, < C, (5.12)

for tety, 1) and h <k+ 1.

It is clear that Assumption 5.5 is always verified if we suppose u(x, f) of class
C” in Rx[0,7) and 0 <71 <15 < T.
Estimate of Hy.

From (4.18) we have

N ) j—1 ah] ahv,| ah\,
Hy < Z p_/—kjk—l Z M’y Z H u”oc L H u'”% || qu ) (513)

! |
j=k+1 V=1 Iyt =j—1 ! hyr! hy!
1<h;i<h,
Then, to estimate Hy, we can write
Hy < Hy 1+ Hy 1, (5.14)

where Hy ; groups the terms, in the right-hand side of (5.13), in which
hy, < k; Hy y groups the terms with s, > k. From (5.12), for 1 <v<j—1, we
have

h hy_ hy
o™l - 110%™ ull s 0™ ully _ 1
hy4-thy=j—1 hl' hv—l! hv' Iyt e 1 h1| . hvl
1<hi<h<k 0<h<j—1
j-1 VS '
—C V <C (j ) < Cvejil, (515)

G-pt=— G-
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Hence, provided p > 0 is small enough, we can easily see that, VN >k + 1

HN1<epZ pe’klklz:MC"v<C4p7 (5.16)

j=k+1 v=1

with C4 > 0 a constant independent of N. For instance, (5.16) holds if

1

Let us estimate Hy j, where h, > k. Using Assumption 5.1, we have

— A/ F

kook—1 h+1

Hy o < E Pk E My E | I( T E . /1,+r>

Jj=k+1 h+-+h=j—1 i=1 it
1<hi<hy,h,>k

N j-1
< ij—lZMva—l . ; 1H<hlZ\/Fh+r>
1 h=j-1 i=

Jj=k+1 y=1
V<hi<h,h,>k
ik VB (5.18)
P (hy + 1) '

where, since p <k —4 <h, —4, the terms h; + r satisfy

h,'+VShl'+PSh,’+hV—4SN. (519)
Now, by Assumption 5.5 and Definition 5.4 for 4,r > 1 we have
h (h+r)(h+1) .
’2—'1 /Fuir < Mjperp™™ ( (11 - r()k ) it hdr>k, (5.20)
p—h«/F <1 K it h+r<k (5.21)
Il h+r —’7/1+r P A = . .
Since k> p+4 and 0 < p(r) < 1, we certainly have:
(5.22)

h
%«/Fhw <Cn,, forall h>1,1<r<p,

with C > 0 a suitable constant. Hence, we obtain

+1)*

V

N -1
Hyn<C Z J! ZMVCV Z H(Z’?lz+r> Mhl (5.23)

Jj=k+1 v=1 hy+-+h=j—1 i= r=
1<hi<hy,hy,>k
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Noting that

and recalling (5.11), changing the order of summation over the indices j, v, A,
and using the inequality (8.11) of §8.3, Appendix A, we have

v—1 V4
msey Sared ¥ B3,
r=1

j=k+1v= hy++hy=j— 1 i=1
1<hi<h,,hy>k
N-1 , N Jj—v Mhoi1 v=1/p
SCZM‘C‘ ¢ Z I ‘_'_121_‘[ Mhptr
v=1 J=A+ 1)V (k+1) hy=k "V {} i=1 \r=1
N-1 N—v Mot N v—1 P
vk vt
ceY e Y s S (S,
v=1 hy=k"" Jj=hAtv {x} i=1 \r=1
N—-1 N—vy Mot
vk vt v—1 pv—1
<CY M'C" Zh e
v=1 hy=k """
N—l —hy
Z MrCVEprleyt (5.24)
h.: v=1

where (v+1)v(k+1)=max{v+1,k+ 1} and {x} denotes the set of con-
ditions:

h+-thor=j—-1-=h,

(5.25)
1 <h <h,.
If, for instance, |6n| < —-— pMC’ then we have
N N
(6 =@, (&) Z (5.26)
purd J=k+
where @;(-) is the analytic function
def k v—1 ' 1 1
C M 'C"v fi 5.27
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Summarizing up the estimates (5.16), (5.26) we obtain that, VN >k + 1,

N .
Hy < Cp+®y(6n) 3 2, (5.28)
J=k+1
provided |&y| < W
Estimate of K.
From (4.21) we have

h h,— h,
k1 ) 0" ull,, 10" "ull,, [10™ull,
Ky < § pikj § My N R Iy (5.29)

j=k+1 Byl = j=2
1<hi <h,

The estimate of Ky is similar to that of Hy and we finally obtain that,
VN >k+1,

N
n; 1
Ky < - .
v < Cp+ p®;(&y) _Z L &y < —— SMC (5.30)
Jj=k+1
Estimate of Ly.
For brevity, we will denote with {+} the set of conditions:
hi+-thy=j—1, 1<h<h<h<j-3. (531)
From (4.25) we have
h; hi+2
Ly<CY pr S ZZ<HH6 ull, +||a ul, )
Jj=k+1 v=2
10" ully + []0"*ul
: ol . (5.32)

As above we write
Ly <Ly +Ly,

where L}, groups the terms, in the right-hand side of (5.32), in which %, < k and
L} the terms with A, > k. If p > 0 is sufficiently small, using Assumption 5.5 and
the same arguments of the estimate of Hy ;, we obtain that

L]/V < C5p, (533)

with Cs > 0 independent of N.
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To continue, we can write Ly = Ly o+ Ly , where

v—=1 hi hi+2
L, =C Y it IZMV S <H|a u||oo+hi|!|a . uuw)

Jj=k+1 «} hy >k \i=1
2

hy+i
M uly g 10,2, (5.34)
hy!
By Assumption 5.1, we have

p+2

10"ull., + 110" 2ull, < €Y~ V/Epes. (5.35)
i=1

Thus, L]’(,ﬁo can be estimated as Hy, j; because k > p + 2. To estimate LJ,\//, 5, using
(5.35), we can write

N j-2 /,, p+2
osey o Swer s ([nSv)

J=k+1 v=2 (), =k
phiti=k VFi+3 , (5.36)
hy!(hy, + 3)
where, by (5.2),
hi+r<h+p+2<N. (5.37)
Hence
Ly,<Lys+Ly,+Lys, (5.38)

where LY ; groups the terms, in the right-hand side of (5.36), in which A > 3;
Ly 4 groups the terms with /; =2 and Ly s the terms with /2 = 1.
Since k > p+4, by (5.20), (5.21) we easily have

h
%«/FH,. < CpPyy, forall h>3,1<r<p+2. (5.39)

Thus, noting that (4, + 3)v > j, we obtain

/1[7‘*'2
D SV S VRN 1 (5 o =

j=k+1 V=2 (6}, >3, b, >k

h+l—k _V Fin13

K Iy + 3)
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N j— 77h v—1 p+2
<C Z Z M C"'y? Z = (H ’7h,~+r>

k2
f| v=2 (b =3m =k (v +3) i=1 =1
N j- v—1 p+2
scy Swett S g, ( S ) (5.40)
J= v= {x},h =3,h, >k i=1 r=1

After some calculations, similar to those of (5.24), this leads to the inequality

1

N
Ll . < ®y(& in. for |& -

=kt

(5.41)

where ®,(-) is a suitable analytic function.
To continue, let us estimate Ly ,. In this case from Assumption 5.5 we
deduce that

hl p+2

hl' Z V E11+r < Cp ) (542)

because /; + p+2 = p+4 < k. Hence, we obtain

h,P+2
LK;4—CZ‘]kIZMC"12 Z <H Z /Fh+l>

j=k+1 v=2 {+},m=2,h, >k

htl—k V F}l"+3

K hl(hy + 3)

ey sy ([5Svas)

j=k+1 hy+-+hy=j-3
2<h; <hy,hy>k

b3k _V Fh3 (5.43)

P (- 3)

Then, from (5.20), (5.21), and noting that (A, + 3)v > j, we find that

v—1 p+2
Ly, <cC Z ZM CVEE ST (3 <H2n11,.+r>- (5.44)

Jj=k+1 v=2 hy+-+hy=j-3 i=2 r=1
2<hi<hy, h,>k
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After some calculations, similar to those of (5.24), we obtain that YN >k + 1

1

N
LY, <®3(& i, for |&y| < ————
N,4 = 3( N) Z]ﬂ] or | N|— (p—‘rZ)MC’

Jj=k+1

(5.45)

with ®@3(-) a suitable analytic function.
Thus, it remains to estimate L/’\//A,s’ where h; = 1. Since hy +---+h,=j—1
and hy, < j—3, in the terms of Ly s we must have v > 3. Then

y—1 +2
Lo=cy o Sare Y (H zr)

Jj=k+1 V= o+ 4hy=j-3
1<hi<h,,hy,>k

h2—k _V Fi13

P +3)

N j—2 vflphi p+2
cy ey s (RS v
h;!
j= haFeethy=j—3 7 !
1<hy<hi<h,,hy>k

het2—k _V Fht3 (5.46)

W £ 3)

Hence, we may write Ly s < Ly ¢+ Ly 5, where Ly ¢ groups the terms in the
right of (5.46) in which &, = 1 and L} ; those with /1; > 2 respectively. Operating
as above, we easily obtain that

/1 +r>

[ M“

" -1 =13 T7
tomc S gare y (MRS
+ V= oty =
= 1;/1,<l1. h\]>k

ph,<+3—k V43

h\(hy 4 3)
N j=2 M3 y—1 p+2
Mm'ch? bt ( M, ) (5.47)
; ; D3+ +Zh—] 3 (hv + 3 (hy +3)%2 HIZ +

1<hi<h,h >k

While, applying (5.20), (5.21) as in the estimate of Ly 4, recalling that k > p +4,
we obtain
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Fy, +r>

I M'ﬁ

EET WD LTS Sl |1
j=k+1 v= hy+-+h,=j-3 :2
2<hy<hi<hy,h,>k

42—k _V Fi, 13

p

(7 + 3)
S D o > e
vaflv3 h,
f—
Jj=k+ y=3 Dyl =j—3 (//lv =+ 3) 2

2<hy<hi<hy, h,>k

v—1 p+2
(Hznh ) (5.45)

=3 r=

Thus, we conclude that VN >k + 1

1

N
LY LY 5 < D4 i, for |6 —
N,6)=N,7 = 4( N) Z];//] or | N|<(p+2)MC’

J=k+1

(5.49)

with ®4(-) a suitable analytic function.
Summarizing up, we have proved the following:

LEMMA 5.6. Let u be a C* solution of (1.2) in R x [0, T) and let Assumptions
3.1, 4.1, 5.1, 5.5 hold. Then there exist constants p € (0,1] and E,C>0 st

J—h—1 i—k , =
G+t Y f;_l),jk[’jp +Cp] V. (5.50)
/k+l

for all N>k+1, ae. in (t1,12), provided 0 < p(t) < p and 0 < &y(t) < 6.
Proor. It is sufficient to collect the estimates from (5.5) to (5.49). O

6. Some Consequences of Lemma 5.6

Given u: R x [0,T) — R, with T > 0, a C* solution of (1.2), let us suppose
that u(-, 1), u,(-,71) be uniformly analytic in the interval B;,. Namely, we assume
that:

ASSUMPTION 6.1.  There exist C,Ag > 0 such that, for all integers j > 0, one
has

07u,(x,71)], |02u(x, 71)| < CAJj!, VxeB,. (6.1)
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Then, applying Lemma 5.6, we have:

LemMMmA 6.2. Under the Assumptions 3.1, 4.1, 5.1, 5.5, 6.1, there exist
0€(0,p), >0 such that putting

p() = g~ (6.2)
into Definition 5.3, then the energies En(t) satisfy:

En(t) < én(t)) <& for telr, ), YN > k+ 1. (6.3)

PrROOF. As it is known (for instance from the arguments of proof of the
classical Cauchy-Kowalewski theorem) Assumptions 4.1, 6.1 and the fact that
u(x,1) is a C* solution of equation (1.2) imply that

|0%u(x,1)| < CAPa!  for x e B, (6.4)

for all o € (Z*)*, with C, A > 0 suitable constants. Furthermore, from Definition
3.3, it easily follows that

Fi(t1) < CA/j! for all j > 0. (6.5)

Thus, Definition 5.3 gives

N
En(n) <p(t) +C > plr) *Aj* < €/2, YN =k+1, (6.6)

k=j+1
provided p(z;) is small, say p(r;) < ¢ for a suitable g > 0. Hence, we choose
o =min{g,p} and then we define p(z) as the solution of the Cauchy problem

/

p
k+1

+Cp=0, plu)=o (6.7)

Namely, we take p(7) = ge~ ™), with ¢ = C(k + 1). Since p(r) < in [t1, 00),
from (5.50) it immediately follows that &y (1) <0 a.e. in (71,72), as long as
&n(1) < &. Therefore, the initial condition (6.6) easily gives

g]v(l) < 6@1\[(‘[1) (68)

in the whole interval [z;,72), VN > k+ 1. Thus (6.3) holds. O

COROLLARY 6.3. Under the Assumptions 3.1, 4.1, 5.1, 5.5, 6.1, the solution
u(x,t) is uniformly analytic in T, i.e. there exist constants C,A >0 such that

sup [0%u(x, 1)| < CAPla!  for all o e (Z+)*. (6.9)
r
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Proor. From (6.2), (6.3) we deduce that for all j >k +1

VE@ < Ep(0 Ik in [r1,7), (6.10)

where p(f) = ge~°"™). Hence, Assumption 5.1 and condition (5.2) imply that

P .
[07u@ll, < €D\ Frurlt) < CEp(1) 71 (6.11)
r=1

for all j>k+1 and 7€ [r],12). Since
p(t) = 00" ) in [z, 1, (6.12)

we easily see that (6.9) holds. In fact, setting j = |«|, we have ;! < 2/*a! for all
ae (Z*)?. Then, from (6.11)—(6.12), we obtain

_ [ 2e(2—11) lo
[0%u(x, 1)] < Cé"() ol (6.13)
0
for all (x,f) e . Hence, u(x,t) is uniformly analytic in T. O

7. Proof of the Main Result

Let u: R x [0,7) — R, with 7 > 0, be a given C* solution of equation (1.2).
Besides, let us suppose that a: R — [0, c0) satisfies (1.4).

Given x, € R and ¢ > 0, we will prove that if u(x,0), u,(x,0) are uniformly
analytic in Sy = [x, — J,x, + ], then u(x, ) is uniformly analytic in the compact

domains
D & {(x, 1) |x— x,| <6 - Va0 <1 < 1}, (7.1)
for all 7€ (07min<T, %)) To this aim, defining
75 & min(7,0/v/7), (7.2)
S, fx iy — x| <6—Vir} (0<t<d/V), (7.3)

we first establish two preliminary lemmas.

LemMa 7.1. Given t €0, Ts), let us suppose that:
1) u(x,0), u,(x,0) are uniformly analytic in Sp, if ©=0;
2) u(x,t) is uniformly analytic in D., if © > 0.

Then u(x,t) is uniformly analytic in D, for some 1’ € (t, Ty).
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PrOOF. In both cases, by the umique continuation principle for analytic
functions, there exist an open set Q., S; = Q, = Ry, and vy, v : Q; — R analytic
functions such that vy(x) = u(x,7), vi(x) = w,(x,7) for all x € S;. Then, applying
the Cauchy-Kowalewski theorem, we can solve (locally) the problem

vy — a(v)vyy =0, (7.4)
U(X, T) = Uo(X), U[(X, T) = vl(x)a (75)
obtaining a unique analytic solution v(x,f) in an open neighborhood U, of

S: x {r} in R, x R,. On the other hand, since v(x,7) = u(x,1), v,(x,7) = u,(x,7)
for x € S;, by Theorems 9.1, 9.3 (b) (cf. Appendix B) we must have

v(x, 1) =u(x,1) in {(x,0):|x—x,| <o— Vit <r<7'}, (7.6)

for some t’ € (7, Ts). Hence, using again the unique continuation principle, it
follows that u(x, ) is uniformly analytic in D, for some 7’ € (t, Ty). O

LemMa 7.2. Given T € (0,Ty), let u(x,t) be uniformly analytic in D, for
t< 7. Let us suppose that for all X e Sy there exist 7€ (0,v/4] and 7€ [0,7)
such that Assumption 3.1 is verified if we set

NG =x=p7 —1t), nO)=x+37 -1, (1.7)

A

1=1 T2=

in (2.6)—(2.10). Then u(x,t) is uniformly analytic in Dg.

ProorF. Given X € Sy, let ' =T(X) be the domain defined in (2.6)—(2.10)
with 7;, y; (i=1,2) as in (7.7). Assumptions 3.1, 4.1 are clearly verified. Since
I' is a triangle, by well known embedding theorems for Sobolev spaces (see

[1]), there exists C > 0 such that for every sufficiently regular function v(x, ¢) one
has

1Bl <2

1
[o(, D)~ < C(Z (GBI Iaﬂvllmr,)), (7.8)
=0

for all 7€ [z,7). Then, for he Z*, from (2.11)—(2.12) and (3.2)-(3.4) it follows
that
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1
1" u(-, D)l < € j{: (j{:”ai@“u(nt)HLz-+ > Haﬂﬁ“uHLqu)

J=0 1B1=2

2
<CY | Y0 Ieut 0l + D I0%ull
i=0 \ |a|=h+i lo|=h+i
2 [ ‘ 12
E, (1) 1
< CZ Z + Z (J 5 (8) ds)
=0 _\oc|:h+zh titl h+itl e
5 M 1/2
< CZ Eh+z+1([) 5) ds
B i=0 h+i+1 h+l oc| h+1

1/2

IA
Q

2
i Eh+'+l 9{(s) ds
—0 h+l+1 h+l+ Hthl
i Eh+,+1 1 (J Eh 1( ) d )l/z
- h+z+1 T\,

i h+1+1 (7'9)
= Vh+i+1

IA
Q

I/\

for all € [7,7). Thus, Assumption 5.1 holds with p = 3. Besides, taking k =7
n (5.2), also Assumption 5.5 is verified, because u € C*. Finally, with 7 =7,
Assumption 6.1 is satisfied because 7 € (0,v/4] and u(x,?) is uniformly analytic
in D, for 7 €0, ). Hence, we can apply Corollary 6.3 which implies that u(x, ?)
is uniformly analytic in ' = I'(%). In particular, for all o« (Z*)* and ¢ € [z, 7],
we have

|0%u(%,1)| < CA"a! for z<t1< T, (7.10)

for suitable constants C,A > 0. Thanks to the unique continuation principle for
analytic functions, (7.10) implies that for all & € (0, A™") the exists C,, A, > 0 such
that

|0%u(x,1)| < C,AMa! for all o e (Z27)? (7.11)

and for all (x,7) € G,, where

def
e [’

G, Y ({Ix—% <e} x[£,7))NDy. (7.12)
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Now, since u(x,) € C*, it is clear that the inequalities (7.11) continue to hold
in the closure of the G; namely in ({|x — %| <¢} x [7,7]) N Ds. Finally, since
X e Sy is arbitrary and Sz is compact, we conclude that u(x,f) is uniformly
analytic in Ds. ]

REMARK 7.3. Let consider the statement of Lemma 7.2. Given X € S, if we
further suppose that

a(u(x, 7)) = 0, (7.13)

then i) of Assumption 3.1 is automatically satisfied provided 7 € [7 —¢,7) with
¢ > 0 sufficiently small. Indeed, given any 7 > 0, by (7.13) we have a(u(x, 1)) < 7*
in a neighborhood of (X,7). Thus, in order to apply Lemma 7.2, we need only
to show that there exits 7 € (0,v/A], 7€ [0,.7) such that ii) of Assumption 3.1
holds.

7.1. Conclusion of the Proof of Theorem 1.1
Assuming u(x,0), u,(x,0) uniformly analytic in Sy, from now on we define:
7Y sup{7 € (0, Ts) | u(x, ¢) is uniformly analytic in D,}. (7.14)

Our aim is to prove that 7 = Ty.

By Lemma 7.1 we have 0 < . < Ts. To see that J = T;, we argue by
contradiction. Namely, assuming 7 < T5, we prove that u(x,¢) is uniformly
analytic in Ds. Therefore, applying Lemma 7.1 once again, u(x, ) is uniformly
analytic in D, for some 7€ (7, Ty).

In view of Lemma 7.2, it is enough to show that for any

xeSs (7.15)

there exist 7 € (0,v/Z] and 7 € [0,.7) such that, setting 7, = 7, 7, = .7 and defining
71(8), 7,(¢) as in (7.7), the conditions i), ii) of Assumption 3.1 are verified.
To do this, we distinguish different cases:
(1) Case a(u(¥,7)) > 0. We set 7 =+/2 and then we take 7€ [0,7) such
that

inf a(u(x,t)) >0, (7.16)
(x,0)el’
where I' is the triangle
C={(x0):|x—%<VAUT —1),t<t< T} (7.17)

Then the conditions i), ii) of Assumption 3.1 are clearly verified. See Remark 3.2.
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(2) Case a(u(x,7)) =0. By Remark 7.3, we have only to find 7 e (0,v/4]
and 7 €[0,7) such that ii) of Assumption 3.1 holds. For simplicity, we suppose

u(x,7) =0, a(0)=0 (7.18)

(the general case, i.e. u(x,7 )=z with a(z) =0, is only formally more com-
plicated; see Remark 7.4 below). Then, since a : R — [0, c0) satisfies (1.4) we may
assume

2 with ag(s) =n for |s| <e, (7.19)

where ap:R — [0,00) is analytic, /> 1 is an integer; &# >0 are suitable
constants.
To continue let us fix y € Ci°(R) such that:

2x)=1 in |[x—x,| <d+1; x(x)=0 for |x—x,|=d+2. (7.20)

Then, for 7, €[0,7), we consider the Cauchy problem
vy —a(v)vyy =0, (x,7) € R X [t,4, 0), (7.21)
(X, 7a) = x(X)u(x, Ta),  0i(X, Ta) = 2(X)us(x, Ta)- (7.22)

By Corollary 9.2 and Theorem 9.3 (a) (cf. Appendix B), we may select
7, €[0v (7 —1),7) such that (7.21), (7.22) has a unique local C* solution

v:Rx[1,,7) =R, (7.23)

with 7 € (7,T), and there exist C* functions g,4 : R x [t,,7) — R such that

v(x, 1) = g(x, Ox(x)u(x,t,) + h(x, Oy (X)u(x,7,) in Rx[z,,T), (7.24)
g(x,t0) =1, gi(x,7,) =0, h(x,7,) =0, h(x,7,)=1, xeR, (7.25)
lg:(x, )|, [he(x, 1) — 1] < 1/4 in R x [, 7). (7.26)
In particular, we have

v(x, 1) = g(x, Du(x, 74) + h(x, Hu(x,7,) in So x [t4,T), (7.27)

and, by Theorem 9.3 (b),
v(x,0) = u(x, ) in {|x —x,| < - VAt — 1), ta <t < T}. (7.28)

Then, we consider the following subcases:

(2a) u(x,7,) #0, (2b) u(x,7,) =0. (7.29)
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(2a) We may suppose u(x,7,) >0 (if u(x,7,) <0 the argument is similar).
Then u(x,7) =0 and (7.24)—(7.28) imply

(%, 70) = —Zgi i;; u(%, 10) < —Hu(f, %)
3
< —mu(x, Ta)s (7.30)

because 7, € [0v (7 —1),7). It follows that

ou(xX, 7) = g,(x, T )u(x,t,) + h(X, T )u, (X, 74)

< G—%)u(x, 7,) < 0. (7.31)

Since du(x,7) <0, there exists
0¥ {x—5 <o} x{|t— 7| <o}, (7.32)
with a; € (0,0) and &, € (0,(7 — 1) A (T — 7)), such that
ou(x,t) <0 in Q (7.33)
and, by the implicit function theorem,

{(x,0) u(x,1) =0}NQ (7.34)

is the graph of a C* function, say f : [¥ —o1,X+01] — [T — 02,7 + 03], such
that

f®=7. (7.35)
Now, we take 7 e (0,+/4] such that

1
y < min — 7.36
7 X€[X—01,X+01] 1+ |f/(x)| ( )

and then we define y,(¢), 7,(¢) as in (7.7). In this way
{x=x<pT -0, t<T7}NQ<{(x,t): t < f(x),xe[X—o1,x+0a]}. (7.37)
Finally, since u(x,7) = a(u(x, 7)) =0, we may select T € [7 — 05,7 ) such that

I'={(x,0):|x—x* <t<J}cQ (7.38)

Ll

< ?(g. - Z)7
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and
max_a(u(x, 1)) <7, (7.39)
(x,n)el’
u(x, ) € [—¢¢ for (x,1)el, (7.40)

where ¢ > 0 is the constant of (7.19). Then condition i) of Assumption 3.1 is
verified. While, from (7.33)—(7.37), it immediately follows that

ou* <0 inT. (7.41)

Hence, by (7.19) and Remark 3.2, condition ii) of Assumption 3.1 holds.
(2b) Since u(x,7,) = u(x,7) =0, by (7.26) we must have
u(%,74) = 0. (7.42)
Hence, we further distinguish two cases:
2by) u(-,7,) =0 or wu(-,7,) =0 near X,
(2b1) u(-,74) «(+7a) (7.43)
(2by) u(-,7,) #0 and u(-,7,) #0 near X.

(2b;) Conditions i), ii) of Assumption 3.1 are easily verified with 7 = /4
and 7 € [t,,7) sufficiently close to 7. In fact, if u,(-,7,) =0, (7.26) and (7.27)
give

Qe )] = lguCe )] o, 20)| < e, )], (7.4

3
ju(x, )l = lg(x, O Julx, @a)| = Zlulx, 7a)l, (7.45)
for ¢ € [t4,.7) and |x — %| small enough. Thus |d,u(x, )| < Llu(x, t)| where (7.44),
(7.45) hold. Conversely, if u(-,7,) =0 in a neighborhood of X, then we have

t_
ju(x, 1)) > —

|t (x,74)], (7.46)
for t€[t,,7) and |x — %| small enough. While

[0u(x, 0)| = |h(x, 0)| |us(x,74)| < §|u,(x, 7). (7.47)
Hence, we have

Gl 1)] <

lu(x, 1), (7.48)

g —1,

Tt T
2

provided e [*2>=, 7] and |x— %| is sufficiently small.
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In conclusion, in both cases we obtain that
o < Cu” in T, (7.49)

provided we take 7 € [t,,.7) close enough to J. By Remark 3.2 it follows that
condition ii) of Assumption 3.1 holds.

(2by) u(-,74) # 0 and u,(-,7,) # 0 near X. Since u(-,7,), u/(-,7,) are analytic
in a neighborhood of X, it follows that

u(x, ) = wi(xX)(x =)™, w(x,74) = wa(x)(x — X)", (7.50)
with m,n > 1 integers and w;(x), wa(x) analytic and such that

wi(X) #0, wy(x) #0. (7.51)
Hence,

u(x, 1) = g(x, Hwi(x)(x — )" + h(t, x)wa(x) (x — X)", (7.52)

provided |x — x| is sufficiently small and ¢ € [7,, 7).
Then we have two possibilities:

m#n, m=n. (7.53)

Case m # n. If m #n, we set 5 =+/A, so that i) of Assumption 3.1 holds.
Condition ii) is easily verified provide we take 7 € [7,,7 ) sufficiently close to 7.
In fact, if |x — | < VA(Z —t) and ¢ is sufficiently close to .7, there exists C > 0
such that

lu(x, )] > Clx — x| if m <n, (7.54)

lu(x,7)| > C|lx — x|" if m>n. (7.55)
Following almost the same argument of (2b;), we obtain that
ou* <Cu® in T, (7.56)

for a suitable constant C > 0, provided 7 is close enough to 7. Then we may
conclude recalling Remark 3.2.
Case m = n. Finally, if m =n, we have

u(x, 1) = (x = X)"[g(x, w1 (x) + (2, x)wa(x)]. (7.57)
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Then, if

g(xX, T )wi1(X) + h(X, 7 )w2(X) # 0, (7.58)
we can operate as in the case (1) above, where a(u(X,7)) # 0. Otherwise, if
g(x, T )wi1(X) + h(X, T )wa2(X) =0, (7.59)

noting that w;(X) # 0, we can follow almost the same proof of the case (2a) (with
a(u(x,7)) =0, u(x,7,) #0) which was discussed earlier.

ReMArRk 7.4. 1If) in case (2), a(u(x,7)) =0 with u(x,7) =z #0, we use
Theorem 9.1 which gives a local representation of the solution u(x, ) near the
point (X,7). Indeed, since a(z) =0, we have

a(s) = ai(s)(s — 2)%,  with ay(s) >y for |s—z| <e, (7.60)

where a;: R — [0,00) is analytic, />1 is an integer; ¢, >0 are suitable
constants. Then, using (7.60) and the local representation (9.4)—(9.6), the rest of
the proof proceeds in a similar fashion.

8. Appendix A

8.1. Square Root of Absolutely Continuous Functions

Let 7 <R be an open interval and let f:I — [0,00) be absolutely con-

tinuous. The following holds:

LemMMa 8.1. IfL is integrable in the open set {xe€I:f >0}, then \/f is
absolutely continuous in I and (\/f) =0 ae. in the set {xel: f =0}.

Proor. It is clear that \/]7 is absolutely continuous in every close interval
J = {f > 0}. Moreover, (1/f)’ =/ ae in J. Setting

2Vf
gz{iﬁ f>0, (8.1)
0 if f=0,

it easily follows that g e L' (1) and that [\/f(t) — \/f(s)| < [!|g| dx for all s, € I,
s < t. This means that \/f is absolutely continuous in / and that (\/}7 )" exists a.e.
In particular, we must have (y/f)" =0 a.e. in the close set {f = 0}. O
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8.2. Leibniz’ Formula for Composite Functions

Let m>1 and let g: Rf — R, f:R— R be C™" functions. Then, for every
multi-index o e (Z)", with 1 < |x| < m, the following identity holds:

63{ y
Zf S e alab). (82)
ﬁﬁwﬁ%

where ;€ (Z7)".

Proor. To verify (8.2) we may suppose f of class C™*!. By Taylor’s
formula with integral remainder, given a e (Z%)", 1 <|a| <m, and 5,5€ R, we
have:

a (s—s)”+ai||jf<|“+1>(z)(s_z)“' dz. (8.3)
=1 ! )5

The remainder R(s,3) = ﬁfgf(‘““)(z)(s — 2)" dz satisfies

ak

6s—kR( s =0 for 0 <k < |af. (8.4)

Therefore, putting s = g(y), § = g(J) into (8.3) and deriving with respect to y, the
usual Leibniz’ formula gives the identity

“ lo Y ol -
- § DY ﬁ <Hafi(g(y) B g(y))>
: vt o\i=1

Prtetpy=o

+ 0, R(g(»),9(3))- (8.5)

Finally, setting y =7 in (8.5), formula (8.2) easily follows. Indeed, (8.4) gives

OR(9(1),9(9),—y =0 for |B] <al. (8.6)
U

8.3. Some Other Identities
1) Let n,v > 1 be positive integers and let
¢:((Z7)")" =R
(ie. ¢ =¢(By,...,B,) with B;e(Z")") be a given function.
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Then, for all £k > v, we easily have the following identity:

S B BY=D0 D Y BB (87)

o=k pi+-+p,=a |h|=k |Bi[=h1  |B,I=hy
i =1 hi>1
1

where he (Z")" is the multi-index 4 = (hy,...,h,).

Moreover, if we suppose ¢(f,...,f,) =0 and symmetric with respect to the
variables f,...,B, € (Z)", we also have
Z Z ¢(ﬂ17'~'7ﬁ\!)£v Z Z Z ¢ﬁ1"" v (88)
b=k |Bi|=h  |B,[=h =k |Bil=m |B,|=h
hi>1 1<h;<h,

2) Given ;€ R for 1 <i< N, let us consider the sum

& = .Z”"' (8.9)

Then, for all integer v > 1, one has

vN

5'722 Z My = M- (8.10)

j=v hl+...+h‘,:j
I<hi<N

Besides, if we suppose #; >0 for 1 <i< N, then given any integer p, 0 <
p <N —1, the following inequality holds:

v(N-p)
OIS H(Znh+,>_ +1)"6". (8.11)

J=v  h+-+h=j i= r=0
1<h;<N-p

9. Appendix B: Well-Posedness in C* and Local Representation

We recall here the results of [23, Th. 1.1], [24, Th. 1.1, 2.3] of well-posedness
in C* and local representation of solutions of the Cauchy problem:

vy —a(v)vey =0, (x,7) e R x [0, 00), (9.1)
v(x, 0) = ¢(X), Ut(x7 0) = lﬁ(x), (92)

where a: R — [0, 0) is a bounded analytic function.
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THEOREM 9.1 ([24, Th. 1.1]). Let a:R —[0,00) satisfy (1.4) and let
¢,y e CF, then (9.1), (9.2) has a unique solution ve C*(R x[0,Tyy,)), with
Ty >0, Tyy — o0 as ¢,y — 0 in C°. Given any z € [min ¢, max ¢| s.t. a(z) =0,
there exists an open neighborhood Q. < R of {x: ¢(x) =z} and C* functions

g,h: Q. x[0,Ty) — R (9.3)
such that:
o(x, 1) = 2+ g(x, )[P(x) — 2] + h(x, DWW (x) in Q. x [0, Tyy), (9.4)
g(x,0) =1, 8,gi(x,0)=0, h(x,00=0, dh(x,0)=1, xeQ. (9.5
0ig(x, 1)] 0h(x, 1) — 1] < 1/4 in Q. x [0, Tyy). (9.6)

COROLLARY 9.2.  Under the assumptions of Theorem 9.1, if we suppose that
a(0)=0 and a(s) >0 for se [min ¢, max ¢]\{0}, (9.7

then there exist C* functions g,h: R x [0, T4;,) — R such that:
v(x, 1) = g(x, )p(x) + h(x, ) (x) in R x [0, Tyy), (9.8)
g(x,0) =1, ¢,(x,0)=0, #h(x,0)=0, #h(x,00=1, xeR, (9.9
lg:(x, 0)|, |he(x,8) = 1| < 1/4 in R x [0, Tyy). (9.10)

Moreover, by direct inspection of the proofs of [24] it is easily seen that:

THEOREM 9.3. Let a: R — [0, 00) satisfy (1.4). Then the following facts hold:
(@) If ¢ — ¢ and Y. — y in C as k — +oo, then

liminf Ty, > 0. (9.11)

(b) Given x, €R, 6 >0, let U be an open neighborhood of [x, —J,x, + 9] x
{0} in Rx[0,00). Let vj,v,: U— R be C* solutions of (9.1) in U such that

v1(x,0) = v2(x,0), Jwi1(x,0) = 0w2(x,0) for |x —x,| <. (9.12)
Then there exists ¢ >0 such that
vi(x, 1) = va(x,7) in D, (9.13)

with D, = {(x,1) : |[x —x,| <6 —VAt,0<t<e} c U.
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Sketch of the proof of (b). The statement is obvious in the strictly hyperbolic
case, i.e. if

a(vi(x,0)) >0 for |x —x| <o, i=1,2. (9.14)
Indeed, the function
w=uv — 0 (9.15)
is a C* solution in U of the linear, homogeneous equation
Wi — a(v))Wyx + b(v1, 02)w = 0, (9.16)

where the coefficient b(v;,v;) is the C* function
1

b(vi, 1) = =2y Jo a'(vy + s(va — vy)) ds. (9.17)

Now, by (9.14), infp, a(v;) > 0 provided ¢ > 0 is small enough. Thus, (9.16) is
strictly hyperbolic in D, for ¢ > 0 small. Then, since w(x,0) = d,w(x,0) =0 for
|x —xo| <0 and a(v;) < 4, by standard arguments it easily follows that w =0
in D,.

When (9.14) does not hold, by the same arguments of [24, Proposition 2.2],
we can restrict ourselves to the following particular situation:

a(s) = a(s)s”, (9.18)

with /> 1 integer, a: R — [0, 00) analytic s.t. a(v;) =% >0 in U, for i =1,2.
Then, taking y € C;°(R) s.t.

x(x)=1 for |x —x,| <9, supp{y}x{0}<cU, (9.19)

we consider the Cauchy problem
v — a(W)o?v =0, (x,1) eR x [0, 0), (9.20)
0(x,0) = 2(x)01(x,0) £ $(x),  0,(x,0) = £(x)0,01(x,0) = y(x).  (9.21)

Since ¢,y € Ci°, by Corollary 9.2 problem (9.20)—(9.21) has a unique C* local
solution v in R x [0, Tyy), with Ty, > 0. As a above, the difference

u=0v-—1u (9.22)

is a C* solution, in a neighborhood U of [x, —d,x, + 9] x {0} in R x [0, 0), of
the linear homogeneous equation

wuy — a(v)v¥ug + b(v,v))u =0, (9.23)
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with b(v,v;) defined as in (9.17). Now, using the representation (9.8)—(9.10), we
can apply to u a suitable variant of the energy estimates of [24, Sections 5, 6].
More precisely, denoting with

Y Q¢¢ — R, quw = {X : |¢| + |lp| > 0}, (924)

the separating curve introduced in [24, Section 4], we set

7(x) & min{y(x),5_|x7\/z_xo|}7 xeQyy. (9.25)

Then we consider the energies:

E(7) &f J " (u? + alVu* +u?)|,_, dx, (9.26)
7(x)>7
where {y(x) >t} ={xe Qg : 7(x) > 7}, 0 R is a suitable constant;

Fr) ¥ e"”JJN e"u? dxdt, (9.27)
G,

where f€R is a constant, G, is the open set

G, = {(x, 1) € Quy x (0,00) 1 p(x) <t < min(r,HcT;xo> } (9.28)

Since
u(x,0) =0, u(x,0)=0 for |x— x,| <9, (9.29)

operating as in the estimates of [24, Lemmas 5.1, 5.2, Prop. 6.1] (see also [11,
Lemmas 2, 3]), we deduce that there exists ¢ >0 s.t. ¥ =0 in the set

{(x,0) : x€Quy,|x = x,| <6 —Vit,0< 1< e} c U. (9.30)

On the other hand, since v(x,#) =0 for x ¢ Qgy, t€[0,T,y), from (9.23), (9.29)
we have u(x,t) =0 for x ¢ Qyy, [x —x,| <6 and 0 <t <e¢. Hence, we obtain
that u =0 in D,. Finally, considering the difference

ut=v-—u, (9.31)

one can easily see that the situation is exactly the same. Therefore, u* = 0 in D,,
for some & > 0. In conclusion, v; = v, in D, with ¢ = min(ej, &). O
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