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ON SOME CLASSES OF SPECTRAL POSETS

By

Tomoo YoOKOYAMA

Abstract. This paper deals with sufficient conditions on a poset in
order to get it spectral. A motivating question is the following (p. 833
[LO76]): “If X is a height 1 poset such that for all x # ye X, TxN 1y
and |xN ]y are finite, is X spectral?” We obtain the some sufficient
conditions for such a poset X to be spectral. In particular, we prove
that either if there is a finite subset F' = X such that |F = Min X, or
if diam X < 2, then the poset X is spectral.

1. Introduction and Preliminaries

W. J. Lewis and J. Ohm showed the following result [LO76]: An ordered
disjoint union X of spectral posets (X;), 4 € A is spectral. In the same paper, they
also showed that if a height 1 poset X satisfies that for all xe X, TxN{y=
and |xN ]y = ¢ for all but finite many y € X, then X is spectral. Moreover, they
asked the following analogous two questions: (1) If a spectral poset X is the
ordered disjoint union of posets (X;), A€ A, are the X, also spectral? (2) If a
height 1 poset X satisfies that for all x # y e X, TxNTy and |xN |y are finite, is
X spectral? In [BEO4], Belaid and Echi studied the both question. For the second
question, several authors contributed to the question (e.g. [BF81], [DFP80], [F79],
and [LO76]). The first question was answered negatively in [AZ04]. In par-
ticular, M. E. Adams and van der Zypen constructed a negative example (i.e., an
example which is not a spectral poset but can be embedded in some spectral
poset). Note that there is a non-spectral poset which can not be embedded as a
connected component in any spectral poset (see Example 3.3). On the other hand,
the second was also answered negatively in [Y09]. In particular, one showed that
there are height 1 countable non-spectral posets X with diameter > 3 such that
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for all x # ye X, TxNTy and |xN ]y are finite subsets. In contrast, we consider
the sufficient conditions for a height 1 poset to be spectral, which are similar to
the condition in the second question.

Recall that a poset (X, <) is said to be spectral or representable if there
is a commutative ring R with unit such that X is order isomorphic to the set
Spec(R) of its prime ideals with the inclusion order. Define the height of X is
the supremum of lengths of chains in X. For an element x of a poset X,
Tx:={yeX|x<y}and |x:={ye X |y < x} are called the saturation of x and
the cosaturation of x respectively. Note that Tx (resp. |x) is also called the set of
generalization (resp. specialization) of x.

For a subset Y € X, 1Y := UerTy and |Y := Uyeyiy are called the
saturation of Y and the cosaturation of Y respectively. A subset Y < X is called
a saturation or a upset if ¥ =71Y. Similarly a subset ¥ < X is also called a
cosaturation or a downset if ¥ =Y.

Define the diameter diam X of a poset X as the minimal number 7 such that
there is x € X such that either (1])*x=X or (|1)*x =X whenever n = 2k is
even, and either (Tl)ka =X or l(Tl)kx = X whenever n =2k + 1 is odd. Here,
by induction, we mean that (T])x=1(lx)={ye X |ye 1z for some z e |x},
L(1)x = 1(1(1x)) = {ye X | y e L= for some z e 11x}, (11)%x = 1(L(1(1x))), and
so on. In general, (lT)kx and (Ti)kx are different even if £ = 1 and the height
of X is one.

For a subset Y < X, denote by Min Y (resp. Max Y) the set of minimal
(resp. maximal) elements of Y with respect to the restricted order. The connected
component or the order component of X containing an element x € X is the
subset S of X of all elements y which have a path y=y; < y; >y, <--->x
from y to x. If X has only one component, then X is said to be connected.

A topological space X is said to be spectral if there is a commutative ring R
with unit such that X is homeomorphic to the set Spec(R) of its prime ideals with
the Zariski topology.

In [H69], Hochster showed that a topological space X is spectral if and only
if X is Tj, sober and compact, and has a compact open basis closed under finite
intersections.

Let (X, T) be a topological space and < a partial order on X. The topology
T is said to be order compatible with <, if {7} = |x, for each x € X. One can
obviously see that (X, <) is spectral if and only if there exists an order com-
patible spectral topology on X.

A poset (X,<) with an order compatible topology is called a CTOD (or
Priestley) space if X is compact and is totally order-disconnected in the sense
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that, given y £ x € X, there exists a clopen downset U such that xe U, y ¢ U.
By the results in [S37] and [P94], it is shown that a poset X is spectral if and only
if X has a CTOD-topology. Note that a poset (X, <) is spectral if and only if the
poset (X,>) with the opposite order is spectral.

We obtain the following result, which is a generalization of Corollary (p. 166
[BF81]).

THEOREM 1.1. Let (X,<) be a height 1 connected poset. Suppose that
[IxN]y| < oo for any elements x # y of X. If there is a finite subset F = X such
that |F 2 Min X, then X is a spectral poset. In particular, if either Max X or
Min X is finite, then X is spectral.

By the well-known fact that for a spectral poset (X, <) the set (X,>) with
the reverse order is spectral, the dual statement of the above result holds.

Because any height 1 poset X with diameter < 2 has an element x € X such
that either Tx 2 Max X or |x 2 Min X, the poset X satisfies the conditions in the
above theorem or the dual statement. The following corollary is induced.

COROLLARY 1.2. Any height 1 poset X with diameter <2 and with
[TxNTy| + |IxN1y| < co for any distinct elements x # y € X is spectral.

This result is in stark contrast to the existence of non-spectral height 1 poset
with diameter 3 satisfying the finiteness condition in the above corollary. We will
show the following corollary in the next section.

COROLLARY 1.3. Let (X, <) be a height 1 poset with connected components
X;, i e I. Suppose that ||xN]y| < oo for any elements x # y of X. If there are
finite subsets F; = X for all i€l such that ), ; |Fi 2 {xe X : ||x|+[1x] = o0},
then X is spectral.

2. Proofs of Results

In this section, we show Theorem 1.1 and Corollary 1.3.

PrOOF OF THEOREM 1.1. Let wy,...,w, be finitely many elements of X
such that (', |w;2MinX. Let ¥ =X —J", [w;=MaxX — {wy,...,w,}.

Since |yN|w; for any ye Y and any i=1,...,n is finite, this implies that
lyNMin X = Ul.":i(Ly N |w;) is finite. Thus |y is finite for any element y € Y. Let
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W= Ui oy JwiN|w;. Since any intersection of cosaturation of two distinct ele-
ments is finite, W is finite. Define an order compatible topology 7" of X by the
closed subbasis Zy = {|F: F = X is finite}U{X - S:S < Y}.

CLAam 2.1. Fy is the set of all closed subsets.

Indeed, put % :={|F : F = X is finite} and % := (J{X —S§:S < Y}. For
Ce %, there are L<{l,...,n} and a finite downset F < X — {wy,...,w,}
such that C =), IlwiUF. For Ci,...,C,e Fy, if there is ie{l,...,n}
such that C; € %, then Ul":l C; € 7. Otherwise Cy,...,C, € %, and so there are
L<{l,...,n} and a finite downset F = X — {w,...,w,} such that (J' Ci=
Uie L AwiUF € #5. Thus Fy is closed under finite unions. Therefore it suffices
to show that Zy is closed under arbitrary intersections. For {C;},_, € Zy, if
{Ci},ca €71 then (), _, C, e Z1. Replacing {C;}, A NFy by ({C,|C, e F,
e A}, we may assume that |{C;}, A NZ| < 1. If there is a unique element
C € #, then either {C;},_, consists of exactly a single element C or there is some
C,e ZoN{C)},.A- Thus we may assume that there is some Cj € ZN{C,}, 7.
Then there are L = {1,...,n} and a finite downset F = X — {wy,...,w,} such
that CNC; = UieL Iw;UF € %. Replacing C by CNC;, we may assume that
{Ci},ca € Zo. Since each intersection |xN|x’ for any distinct elements x #

x" € X is finite, by the forms of elements of %, there are L = {1,...,n} and
a finite downset F = X — {wi,...,w,} such that (), _, C; =/, IwiUF € Z.

Thus Zx is closed under arbitrary intersections.

For L= {1,...,n}, denote U, = X — Uie]_ lw;. Then there is an open basis
B = RByUB,, where By ={VNUL:V is a cofinite upset in X,L = {l,...,n}},
%) ={U < Y : finite}. Notice that Zy={X —C|Ce %} and % ={X — C|
C e 71}. Hence 4 is the set of all open subsets. We will show that % consists of
compact subsets. It suffices to show the following claim:

CLam 2.2. For L<{l,...,n} and a cofinite upset V = X, the open subset
U=V\U,., lwi is compact.

Indeed, let L; = {1,...,n} — {i}. Since U, < YU UiéLlwi, Y < U, and
Iw\W < Uy, these imply that U \W < Ui¢L Ur,. Since Up 2 Ui$L Ur, and W
is finite, we have that U\ W is cofinite in Ui¢L Ur,. Let U as in Claim 2.2. Since
U :=U\W < U \W is open and cofinite in Ul.¢L Uy, the finiteness of W
implies that U’ N Uy, is cofinite in Uy, for any i¢ L. Since all nonempty open
subset in Uy, is cofinite in Uy, we obtain that U’ N Uy, is compact for any i ¢ L.
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Hence U’ = Uiu(Ulﬂ Uy,) is compact. Since W is finite, U= U'U(UNW) is
compact.

In particular, Claim 2.2 implies that X is compact. Therefore the following
claim completes this proof.

CLamM 2.3. X is sober.

Indeed, let F be a closed subset. Then F is either a cosaturation F = Ui]:l 1xi
of a finite subset or F = X — S where S < Y is a upset. It suffices to show that
F is reducible or has a generic point. Therefore we may assume that F = X — S.
If S# Y, then there is an element x € Y\S < Max X such that |x < F and
F—x=X-({x}usS) are closed. Thus F is reducible or |x = F. Otherwise
S=7Y.Then F =], |w.If n=1, then F has a generic point w;. Otherwise F
is reducible. U

ProoOF OF COROLLARY 1.3. Since any ordered disjoint union of spectral
posets is spectral, we may assume that X is connected. Suppose that there is
a finite subset {w,...,w,} =X such that |J, |w; 2 {xe X : |Tx|+ ||x| = oo}
Let Z =], Tlw;and Y = Min X\Z. Notice that for any y € Y, |1y + || y| < 0.
Since Ui":l lw; 2 Min Z, Theorem 1.1 implies that Z is a spectral poset. Since
Max X\Z has height 0 and so is a spectral poset, the order disjoint union
Z':=Max X\Z)UZ is a spectral poset. Note that Y is a downset and
X =Z"UY. To apply Theorem 5.8 [LO76] to X; = Y and X, = Z’, it is enough
to show that, for any x e Z’ and for any ye Y, |[xNY and TyNZ’ are finite.
For x e Z, the definition of Z implies that |[xNY is finite. For xe Z' — Z,
[IxNY| <|lx| <oo. For any ye Y, |1yNZ'| <|1y| < oo. Hence Theorem 5.8
[LO76] implies that X is spectral. O

3. Examples

We describe some spectral posets.

ExampLE 3.1. Let Xo = {¢i};cz  U{w} be a set and X; = {b;},., U{a} a
set. Define a poset X = Xy U X; with an order < as follows: ¢; < a, w < b; and
¢; < b; for any i. Then Theorem 1.1 implies that X is spectral.

ExampLE 3.2. Let X as in Example 3.1. Define a poset ¥ = X U{wi};.7
with an extension order <y of < by w,wy <y wy and wy;, wp; 12 <y wy;y for any
i€ Z-y. Then Corollary 1.3 implies that X is spectral.
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The following example is a non-spectral poset which can not be embedded as
a connected component in any spectral poset. Recall that the topology on a poset
X which is generated by the closed base {|F|F = X is finite} is called the upper
topology on X.

ExaMpLE 3.3. Let Xo=7Z.; and X; = Spec Z — {(0)} ={(2),(3),(5),...}.
For ne Z.,, define X, := {(p) € X1| p < n}. Define a poset X, = Xy Ul X}, with
an order < as follows: m < (p) if and only if m/p € Z. Then the dual statement
of Corollary 1.3 implies that X, is spectral. However the colimit X = X, U X; of
X, is not spectral and can not be embedded as a connected component in any

spectral poset. Indeed, since ﬂ(p) L(p) =, l(p) is closed but not compact

EXI
with respect to the upper topology. Thus X is not compact with respect to the
upper topology. Since any order compatible spectral topology contains the upper
topology, X can not be embedded as a connected component in any spectral

poset.

The following example which is a non-spectral poset X with diameter 2
shows that the finiteness condition (i.e. ||[x N |y| < co for any elements x # y € X)
in Theorem 1.1 and Corollary 1.2 can not be dropped entirely.

ExampLE 3.4. Let Xo={y;|i€Zso} be a set and X; = {z;]i€ Z>o} a set.
Define a poset X = Xy U X; with an order < as follows: y; <z; if and only

if i <jeZso. Then X is a non-spectral poset with diameter 2. Indeed, for any
elements z;,z; € X with i < j, |z;N]z; = {y |k € Z>;} and thus ||z;N|z]| = 0.
Since 7|zo = X, diam X = 2. Since |z; are closed and ﬂi>0 lzi = &, this implies
that |z is closed but not compact with respect to the upp_er topology. Thus X is
not compact with respect to the upper topology. Since any order compatible
spectral topology contains the upper topology, there is no spectral topology on X.
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