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BERNOULLI-TYPE RELATIONS

IN SOME NONCOMMUTATIVE POLYNOMIAL RING

By

Shunsuke Murata

Abstract. We find particular relations which we call ‘‘Bernoulli-

type’’ in some noncommutative polynomial ring with a single non-

trivial relation. More precisely, our ring is isomorphic to the uni-

versal enveloping algebra of a two-dimensional non-abelian Lie

algebra. From these Bernoulli-type relations in our ring, we can

obtain a representation on a certain left ideal with the Bernoulli

numbers as structure constants.

1. Introduction

Bernoulli numbers are rational numbers with connections to many branches

of mathematics. Especially, they are closely related to the values of the Riemann

zeta function at negative integers [1], [2]. In this paper, we show a certain

connection between some noncommutative polynomial ring and Bernoulli num-

bers. We let K ½x; y� be a noncommutative polynomial ring in two indeterminates

x, y over a field K of characteristic zero. Now, we define I ¼ hxy� yx� xi to

be the ideal of K½x; y� generated by xy� yx� x, and let A be K ½x; y�=I , the

quotient of K ½x; y� by I . Again we use x, y as x ¼ xþ I , y ¼ yþ I respectively

(if there is no confusion). We note that A is isomorphic to the universal

enveloping algebra of a two-dimensional non-abelian Lie algebra (cf. Remark

4.1). Then, our main result is the following:

Theorem (Bernoulli-type relations). Let A be as above. We put

wk;l ¼ ðxyk � ykxÞxl A A ðkb 1; lb 0Þ:

Then, the following relations hold.
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xwk;l ¼
Xk
i¼1

k

i

� �
wi;lþ1

ywk;l ¼
k

k þ 1
wkþ1;l �

Xk
i¼1

1

k þ 1

k þ 1

i

� �
Bkþ1�iwi;l r

Here, Bkþ1�i are Bernoulli numbers defined in Definition 2.1. Hence, we call

the above relations ‘‘Bernoulli-type relations’’. Put W ¼ 0
mb1;nb0

Kxmyn JA,

which is a direct sum by PBW theorem. Then W becomes a two-sided ideal of A.

Using the Bernoulli-type relations, we see that W is generated by fwk;lgkb1;lb0.

We can also see that fwk;lgkb1;lb0 is a basis of W .

To start with our motivation, we will explain Bernoulli-type relations in terms

of Lie algebras. We began this study from [3] on some factorizations in universal

enveloping algebras. In [3], they deal with universal enveloping algebras of three-

dimensional Lie algebras. Then they obtained certain general relations. Let L

be a three-dimensional Lie algebra over K and denote by UðLÞ the universal

enveloping algebra of L. Assume that L is generated by two elements x, y. Then,

the general relations in UðLÞ are given as follows:

ðAkÞ yxyk 1
k

k þ 1
xykþ1 þ 1

k þ 1
ykþ1x ðmod UkÞ;

ðBkÞ ykxy1
1

k þ 1
xykþ1 þ k

k þ 1
ykþ1x ðmod UkÞ;

ðCkÞ yUk JUkþ1; UkyJUkþ1; where

Uk ¼
X

0amak

ðKxym þ Kymxþ KymÞ ðkb 0Þ: r

The remainder terms, u ¼
P

1ap;q; rak apxy
p þ bqy

qxþ cry
r þ dx A Uk with

ap; bq; cr; d A K , of ðAkÞ, ðBkÞ are determined by the generators x, y and types of

L. In the paper [3], they determine some exact forms of u along with a clas-

sification of L in Jacobson’s book [6].

Here we introduce a rough classification. We put L ¼ KelKf lKg with its

basis ðe; f ; gÞ. Let L 0 be the derived ideal of L and C be the center of L. Then

our classification is given as follows:

(a) If L 0 ¼ 0, L is abelian.

(b) If dim L 0 ¼ 1 and L 0 JC, the multiplication table of the basis is

½e; f � ¼ g; ½e; g� ¼ ½ f ; g� ¼ 0:
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(c) If dim L 0 ¼ 1 and L 0 UC, the multiplication table of the basis is

½e; f � ¼ e; ½e; g� ¼ ½ f ; g� ¼ 0:

(d) If dim L 0 ¼ 2, the multiplication tables of the basis are

ðdÞ-ðaÞ ½e; f � ¼ 0; ½e; g� ¼ e; ½ f ; g� ¼ af ;

ðdÞ-ðþÞ ½e; f � ¼ 0; ½e; g� ¼ eþ f ; ½ f ; g� ¼ f ;

where a in K�. Di¤erent choices of a give di¤erent algebras unless

aa 0 ¼ 1.

(e) dim L 0 ¼ 3, the multiplication table of the basis is

½e; f � ¼ g; ½g; e� ¼ 2e; ½g; f � ¼ �2f :

In the type (d) or (e), we suppose that K is algebraically closed ( just for

our rough explanation). As it is well-known, the type (b) gives a Heisenberg Lie

algebra HK and the type (e) gives a special linear Lie algebra sl2ðKÞ. In the paper

[3], they determined the exact forms of u for HF or sl2ðFÞ with the above

generators e, f including the case if F is a field of characteristic zero. They also

showed that L can not be two generated if L is the type (a) or the type (d)-

(a ¼ 1). Hence, we were interested in determining the forms in Uk for the

remaining type of L. For our purpose, we explain some results in the author’s

master thesis [10] written in Japanese. In [10], we obtained some properties

between u and the types of L, and determined the exact forms of u if L is the

type (d)-(þ). The properties between u and the types of L are given as follows:

� We always have u ¼ 0 regardless of the choice of generators if L is the type

(b).
� We always have u0 0 regardless of the choice of generators if L is the type

(e).
� We can get u ¼ 0 by some special generators if L is the type (c) or (d). (We

also get u0 0 by another generators.)

The exact forms of u are determined if L is the type (d)-(þ) with the

generators e and g. The formulas in UðLÞ are given as follows:

ðPkÞ gegk ¼ k

k þ 1
egkþ1 þ 1

k þ 1
gkþ1e� egk þ 1

k þ 1

Xk
i¼0

k þ 1

i

� �
gie;

ðQkÞ gkeg ¼ 1

k þ 1
egkþ1 þ k

k þ 1
gkþ1eþ 1

k þ 1

Xk
i¼0

ð�1Þkþ1�i k þ 1

i

� �
egi þ gke:

r
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These are a brief summary of [10]. After we obtained these results, we could

establish the formulas if L is the type (c) with the generators eþ g and f þ g in

the above classification. Then we noticed that our formulas can be reduced to the

two-dimensional case. That is, we put L ¼ KxlKy as a two-dimensional Lie

algebra satisfying ½x; y� ¼ x and denote by UðLÞ the universal enveloping algebra

of L. Then, the formulas in UðLÞ are given as follows:

ðPkÞ yxyk ¼ k

k þ 1
xykþ1 þ 1

k þ 1
ykþ1x

� 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�ixy

i þ 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�iy

ix;

ðQkÞ ykxy ¼ 1

k þ 1
xykþ1 þ k

k þ 1
ykþ1x

þ 1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�ixy

i

� 1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�iy

ix: r

At first these formulas were shown without the Bernoulli-type relations. But

using the Bernoulli-type relations, we could simplify their proofs as in Proposition

4.2.

We will review the Bernoulli numbers Bn with B1 ¼ 1=2 in Section 2. In

Section 3, we will show the Bernoulli-type relations and study W introduced

before. In Section 4, we will show the above formulas and explain a connection

to Lie algebras. We also mention that UðLÞ is isomorphic to A, and that

A ¼ 0
m;nb0

Kxmyn by PBW theorem.

2. Preliminaries

In this paper, K is a field of characteristic zero. We denote a left hand side

(resp: right hand side) by (LHS) (resp: (RHS)). We also denote by Bn the

Bernoulli numbers.

In this section, we review the Bernoulli numbers with B1 ¼ 1=2. We

aim a self-contained explanation in this paper. Thus we confirm our setting

here.
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Definition 2.1 (The Bernoulli numbers). We define the Bernoulli numbers Bn

recursively as follows:

Xn
i¼0

nþ 1

i

� �
Bi ¼ nþ 1: r

Remark 2.2. In general, the Bernoulli numbers are also given by a gen-

erating function. The generating function in our condition is given as follows:

tet

et � 1
¼
Xy
n¼0

Bn
tn

n!
: r

Here we describe the Bernoulli numbers up to n ¼ 10.

Figure 1 The Bernoulli numbers

n 0 1 2 3 4 5 6 7 8 9 10

Bn 1 1
2

1
6 0 � 1

30 0 1
42 0 � 1

30 0 5
66

As well known, there are the other definition of the Bernoulli numbers. If

we denote by B̂Bn the Bernoulli numbers with B̂B1 ¼ �1=2, then B̂Bn are given by

ð�1ÞnBn for nb 0.

Remark 2.3. In the first half of eighteenth century, the Bernoulli numbers

were discovered around the same time by Jacob Bernoulli and Kowa Seki inde-

pendently. At first, both Bernoulli and Seki took B1 ¼ 1=2. Hence, historically,

our definition is an original version. r

3. Bernoulli-Type Relations and the Ideal W

In this section, we show the main theorem and some corollaries. Now, we set

A ¼ K ½x; y�=I , where K ½x; y� is a noncommutative polynomial ring in two inde-

terminates x, y and I ¼ hxy� yx� xi is the two-sided ideal of K ½x; y� generated
by xy� yx� x. At first, we confirm several elementary formulas for proving the

main theorem.

Proposition 3.1. (i) For integers kb ib jb 0, we have

k

i

� �
i

j

� �
¼ k

j

� �
k � j

i � j

� �
:
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(ii) Let A be as above. Then the following formula holds.

xyk ¼
Xk
i¼0

k

i

� �
yix

(iii) Let A be as above. Then the following formula holds.

ykx ¼
Xk
i¼0

ð�1Þk�i k

i

� �
xyi

Proof. (i) We can calculate

k

i

� �
i

j

� �
¼ k!

ðk � iÞ!i!
i!

ði � jÞ!j!

¼ k!

ðk � jÞ!j!
ðk � jÞ!

fðk � jÞ � ði � jÞg!ði � jÞ!

¼ k

j

� �
k � j

i � j

� �
:

(ii) Since xy ¼ yxþ x ¼ yðxþ 1Þ,

xyk ¼ ðyxþ xÞyk�1 ¼ ðyþ 1Þxyk�1

¼ � � �

¼ ðyþ 1Þkx ¼
Xk
i¼0

k

i

� �
yix:

(iii) Since yx ¼ xy� x ¼ xðy� 1Þ,

ykx ¼ yk�1ðxy� xÞ ¼ yk�1xðy� 1Þ

¼ � � �

¼ xðy� 1Þk ¼
Xk
i¼0

ð�1Þk�i k

i

� �
xyi:

Therefore, we obtain the desired results. r

Now, we prove the main theorem.

Theorem 3.2. Let A be as above. We take

wk;l ¼ ðxyk � ykxÞxl A A ðkb 1; lb 0Þ:

Then, the following relations hold.
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ðBR1Þ xwk;l ¼
Xk
i¼1

k

i

� �
wi;lþ1

ðBR2Þ ywk;l ¼
k

k þ 1
wkþ1;l �

1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�iwi;l

Proof. At first, we show (BR1). Using Proposition 3.1 (ii), we can compute

xwk;l ¼ xðxyk � ykxÞxl

¼ fxðxykÞ � ðxykÞxgxl

¼ x
Xk
i¼0

k

i

� �
yix

 !
�

Xk
i¼0

k

i

� �
yix

 !
x

( )
xl

¼
Xk
i¼0

k

i

� �
xyi �

Xk
i¼0

k

i

� �
yix

( )
xlþ1

¼
Xk
i¼0

k

i

� �
ðxyi � yixÞxlþ1

¼
Xk
i¼0

k

i

� �
wi;lþ1:

Next, we show (BR2) by computing from (RHS) to (LHS). Using Proposition 3.1

(ii), we can compute

ðRHSÞ ¼ k

k þ 1
wkþ1;l �

1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�iwi;l

¼ k

k þ 1
ðxykþ1 � ykþ1xÞxl � 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�iðxyi � yixÞxl

¼ k

k þ 1

Xkþ1

i¼0

k þ 1

i

� �
yix� ykþ1x

( )
xl

� 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�i

Xi

j¼0

i

j

� �
y jx� yix

( )
xl

¼ k

k þ 1

Xk
i¼0

k þ 1

i

� �
yixlþ1 � 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�i

Xi�1

j¼0

i

j

� �
y jxlþ1:
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We divide (RHS) into three terms such as xlþ1 and ykxlþ1 and otherwise. Then

we have

ðRHSÞ ¼ k

k þ 1

k þ 1

k

� �
ykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

þ k

k þ 1

k þ 1

0

� �
y0xlþ1 � 1

k þ 1

Xk
i¼2

k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

i

j

� �
y jxlþ1

� 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�i

i

0

� �
y0xlþ1:

Since we can replace Bkþ1�i with Bi in the last term, we have

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1 þ k

k þ 1
xlþ1

� 1

k þ 1

Xk
i¼2

k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

i

j

� �
y jxlþ1 � 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bix

lþ1

¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk
i¼2

k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

i

j

� �
y jxlþ1 þ k

k þ 1
xlþ1

� 1

k þ 1

Xk
i¼0

k þ 1

i

� �
Bix

lþ1 þ 1

k þ 1

k þ 1

0

� �
xlþ1:

In the fifth term, using Definition 2.1, we get

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk
i¼2

k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

i

j

� �
y jxlþ1

þ k

k þ 1
xlþ1 � 1

k þ 1
ðk þ 1Þxlþ1 þ 1

k þ 1
xlþ1:
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¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk
i¼2

k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

i

j

� �
y jxlþ1:

Replacing the index i with i þ 1 in the third term, we obtain

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk�1

i¼1

k þ 1

i þ 1

� �
Bk�i

Xi

j¼1

i þ 1

j

� �
y jxlþ1:

Then, changing addition method in the third term, we obtain

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk�1

j¼1

Xk�1

i¼j

k þ 1

i þ 1

� �
i þ 1

j

� �
Bk�i

( )
y jxlþ1:

In the third term, using Proposition 3.1 (i), we get

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk�1

j¼1

Xk�1

i¼j

k þ 1

j

� �
k þ 1� j

i þ 1� j

� �
Bk�i

( )
y jxlþ1:

Then, replacing the index i þ 1� j with i, we get

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk�1

j¼1

Xk�j

i¼1

k þ 1

j

� �
k þ 1� j

i

� �
Bk�ðiþj�1Þ

( )
y jxlþ1

¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk�1

j¼1

Xk�j

i¼1

k þ 1

j

� �
k � j þ 1

i

� �
Bk�jþ1�i

( )
y jxlþ1:
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Since we have k�jþ1
i

� �
¼ k�jþ1

k�jþ1�i

� �
, we can replace Bk�jþ1�i with Bi. Hence we

have

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk�1

j¼1

k þ 1

j

� � Xk�j

i¼1

k � j þ 1

i

� �
Bi

( )
y jxlþ1

¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk�1

j¼1

k þ 1

j

� � Xk�j

i¼0

k � j þ 1

i

� �
Bi �

k � j þ 1

0

� �
B0

( )
y jxlþ1:

In the third term, using Definition 2.1, we get

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1

� 1

k þ 1

Xk�1

j¼1

k þ 1

j

� �
fðk � j þ 1Þ � 1gy jxlþ1:

Then, replacing the index j with i in the third term, we have

ðRHSÞ ¼ kykxlþ1 þ k

k þ 1

Xk�1

i¼1

k þ 1

i

� �
yixlþ1 � 1

k þ 1

Xk�1

i¼1

k þ 1

i

� �
ðk � iÞyixlþ1

¼ kykxlþ1 þ 1

k þ 1

Xk�1

i¼1

k
k þ 1

i

� �
yixlþ1 � 1

k þ 1

Xk�1

i¼1

k þ 1

i

� �
ðk � iÞyixlþ1

¼ kykxlþ1 þ 1

k þ 1

Xk�1

i¼1

i
k þ 1

i

� �
yixlþ1

¼ k

k � 1

� �
ykxlþ1 þ

Xk�1

i¼1

k

i � 1

� �
yixlþ1

¼
Xk
i¼1

k

i � 1

� �
yixlþ1:

106 Shunsuke Murata



Replacing the index i with i þ 1, we get

ðRHSÞ ¼
Xk�1

i¼0

k

i

� �
yiþ1xlþ1:

Regarding yiþ1xlþ1 as yðyixlþ1Þ, we have

ðRHSÞ ¼ y
Xk�1

i¼0

k

i

� �
yixlþ1

¼ y
Xk
i¼0

k

i

� �
yixlþ1 � ykxlþ1

 !

¼ y
Xk
i¼0

k

i

� �
yix� yix

 !
xl

¼ yðxyk � ykxÞxl

¼ ywk;l ¼ ðLHSÞ:

Therefore, we obtain desired results. r

From the theorem, we can get some corollaries. As has been mentioned in

the introduction, A is isomorphic to the universal enveloping algebra of a two-

dimensional non-abelian Lie algebra. Thus, using PBW theorem, we can put

W ¼ 0
mb1;nb0

Kxmyn:

Here we put

W 0 ¼
X
k;l

ck;lwk;l

����kb 1; lb 0; ck;l A K ;

ck;l ¼ 0 for all but finitely many pairs ðk; lÞ

( )
:

Then, the following statements hold.

Corollary 3.3. Notation is as above. Then, W 0 is a two-sided ideal of A. In

particular, W ¼ W 0.

Proof. From Theorem 3.2, it is clear that W 0 becomes a left ideal of A.

Again using Theorem 3.2, we can see

W 0 ¼ Aw1;0 ¼ Ax:

107Bernoulli-type relations in some noncommutative polynomial ring



Then, we have

W 0x ¼ ðAxÞxJW 0

and

W 0y ¼ ðAxÞy ¼ AðxyÞ ¼ Aðyxþ xÞ ¼ Aðyþ 1ÞxJW 0:

Hence, W 0 is a two-sided ideal of A. Using Proposition 3.1, we can obtain

xmyn ¼ xm�1ðxynÞ ¼ xm�1
Xn
i¼0

n

i

� �
yi

 !
x;

which implies W ¼ Ax and W ¼ W 0. Therefore, we obtain the desired result.

r

Next, we see that fwk;lgkb1;lb0 is a basis of W 0.

Corollary 3.4. Notation is as above. Then, fwk;lgkb1;lb0 is a basis of W ,

that is, W ¼ 0
kb1;lb0

Kwk;l.

Proof. We show fwk;lgkb1;lb0 are linearly independent. We assume

Xn
l¼1

Xm
k¼1

ck;lðxyk � ykxÞxl ¼ 0 ðm; n < yÞ

with ck;l A K . From Proposition 3.1 (ii), we obtain

ðLHSÞ ¼
Xn
l¼1

Xm
k¼1

ck;lðxyk � ykxÞxl

¼
Xn
l¼1

Xm
k¼1

ck;l
Xk�1

i¼0

k

i

� �
yixlþ1:

Hence, we have

ðLHSÞ ¼
Xn
l¼1

cm;l

Xm�1

i¼0

m

i

� �
yixlþ1 þ

Xn
l¼1

Xm�1

k¼1

ck;l
Xk�1

i¼0

k

i

� �
yixlþ1

¼
Xn
l¼1

cm;l
m

m� 1

� �
ym�1xlþ1 þ

Xn
l¼1

cm;l

Xm�2

i¼0

m

i

� �
yixlþ1

þ
Xn
l¼1

Xm�1

k¼1

ck;l
Xk�1

i¼0

k

i

� �
yixlþ1:
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Then, the term ym�1xlþ1 appears only in the first term. Using PBW theorem, we

get cm;l ¼ 0 for all l. Hence, the second term vanishes. That is, we have

ðLHSÞ ¼
Xn
l¼1

Xm�1

k¼1

ck;l
Xk�1

i¼0

k

i

� �
yixlþ1:

Continuing this operation, we get ck;l ¼ 0 for all k. Namely, we get ck;l ¼ 0

for all k and l. Hence, fwk;lgkb1;lb0 is a basis of W . r

Next, we show a variation of the Bernoulli-type relations.

Corollary 3.5. Let A be as above. We take

wk ¼ xyk � ykx A A ðkb 1Þ:

Then, the following relations hold.

ðSBR1Þ ywk ¼
k

k þ 1
wkþ1 �

1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�iwi

ðSBR2Þ wky ¼ k

k þ 1
wkþ1 �

1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�iwi

Proof. In Theorem 3.2, if we take l ¼ 0, then (SBR1) holds.

Next, we show (BR2) by computing from (RHS) to (LHS). Using Propo-

sition 3.1 (iii), we can compute

ðRHSÞ ¼ k

k þ 1
wkþ1 �

1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�iwi

¼ k

k þ 1
ðxykþ1 � ykþ1xÞ � 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�iðxyi � yixÞ:

¼ k

k þ 1
xykþ1 �

Xkþ1

i¼0

ð�1Þkþ1�i k þ 1

i

� �
xyi

 !

� 1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�i xyi �

Xi

j¼0

ð�1Þ i�j i

j

� �
xy j

 !
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¼ k

k þ 1

Xk
i¼0

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�i

Xi�1

j¼0

ð�1Þ i�1�j i

j

� �
xy j :

We divide (RHS) into three terms such as x and ykx and otherwise. Then we

have

ðRHSÞ ¼ ð�1Þk�k
k

k þ 1

k þ 1

k

� �
xyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

þ ð�1Þk�0

k þ 1

k þ 1

0

� �
xy0

� 1

k þ 1

Xk
i¼2

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

ð�1Þ i�1�j i

j

� �
xy j

� 1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�ið�1Þ i�1�0 i

0

� �
xy0:

Since we can replace Bkþ1�i with Bi in the last term, we have

ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi þ ð�1Þk

k þ 1
x

� 1

k þ 1

Xk
i¼2

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

ð�1Þ i�1�j i

j

� �
xy j

� ð�1Þk

k þ 1

Xk
i¼1

k þ 1

i

� �
Bix

¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk
i¼2

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

ð�1Þ i�1�j i

j

� �
xy j

þ ð�1Þk

k þ 1
x� ð�1Þk

k þ 1

Xk
i¼0

k þ 1

i

� �
Bix� ð�1Þk

k þ 1

k þ 1

0

� �
B0x:
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In the fifth term, using Definition 2.1, we get

ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk
i¼2

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

ð�1Þ i�1�j i

j

� �
xy j

þ ð�1Þk

k þ 1
x� ð�1Þk

k þ 1
ðk þ 1Þx� ð�1Þk

k þ 1
x

¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk
i¼2

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�i

Xi�1

j¼1

ð�1Þ i�1�j i

j

� �
xy j:

Replacing the index i with i þ 1 in the third term, we obtain

ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i þ 1

� �
Bk�i

Xi

j¼1

ð�1Þ i�j i þ 1

j

� �
xy j:

Then, changing addition method in the third term, we obtain

ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

j¼1

Xk�1

i¼j

ð�1Þk�j k þ 1

i þ 1

� �
i þ 1

j

� �
Bk�i

( )
xy j:

In the third term, using Proposition 3.1 (i), we get

ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

j¼1

Xk�1

i¼j

ð�1Þk�j k þ 1

j

� �
k þ 1� j

i þ 1� j

� �
Bk�i

( )
xy j:
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Then, replacing the index i þ 1� j with i, we get

ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

j¼1

Xk�j

i¼1

ð�1Þk�j k þ 1

j

� �
k þ 1� j

i

� �
Bk�ðiþj�1Þ

( )
xy j

¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

j¼1

Xk�j

i¼1

ð�1Þk�j k þ 1

j

� �
k � j þ 1

i

� �
Bk�jþ1�i

( )
xy j:

Since we have k�jþ1
i

� �
¼ k�jþ1

k�jþ1�i

� �
, we can replace Bk�jþ1�i with Bi. Hence we

have

ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

j¼1

ð�1Þk�j k þ 1

j

� � Xk�j

i¼1

k � j þ 1

i

� �
Bi

( )
xy j

¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

j¼1

ð�1Þk�j k þ 1

j

� � Xk�j

i¼0

k � j þ 1

i

� �
Bi �

k � j þ 1

0

� �
B0

( )
xy j:

In the third term, using Definition 2.1, we get

ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

j¼1

ð�1Þk�j k þ 1

j

� �
fðk � j þ 1Þ � 1gxy j:

Then, replacing the index j with i in the third term, we have
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ðRHSÞ ¼ kxyk þ k

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

i¼1

ð�1Þk�i k þ 1

i

� �
ðk � iÞxy j

¼ kxyk þ 1

k þ 1

Xk�1

i¼1

ð�1Þk�i
k

k þ 1

i

� �
xyi

� 1

k þ 1

Xk�1

i¼1

ð�1Þk�iðk � iÞ k þ 1

i

� �
xy j

¼ kxyk þ 1

k þ 1

Xk�1

i¼1

ð�1Þk�i
i

k þ 1

i

� �
xyi

¼ k

k � 1

� �
xyk þ

Xk�1

i¼1

ð�1Þk�i k

i � 1

� �
xyi

¼
Xk
i¼1

ð�1Þk�i k

i � 1

� �
xyi:

Replacing the index i with i þ 1, we get

ðRHSÞ ¼
Xk�1

i¼0

ð�1Þkþ1�i k

i

� �
xyiþ1:

Regarding yiþ1xlþ1 as yðyixlþ1, we have

ðRHSÞ ¼
Xk�1

i¼0

ð�1Þkþ1�i k

i

� �
xyi

 !
y

¼ xyk �
Xk
i¼0

ð�1Þk�i k

i

� �
xyi

 !
y

¼ ðxyk � ykxÞy

¼ wky ¼ ðLHSÞ:

Therefore, we obtain desired results. r

We can easily see that wk is wk;0 in Theorem 3.2. We will investigate

connections between Bernoulli-type relations and Lie algebras in the next sec-
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tion. Using Corollary 3.5, we will show the formulas with respect to Lie

algebras.

4. A Connection between Bernoulli-Type Relations and Lie Algebras

In this section, we consider a connection between the Bernoulli-type relations

and Lie algebras. In the introduction, we roughly reviewed the classification of

three-dimensional Lie algebras. We let L be a three-dimensional Lie algebra over

a field K of characteristic zero and denote by UðLÞ the universal enveloping

algebra of L. Then we also explain that if L is the type (c), we have a two-

dimensional Lie subalgebra L of L. Then, L is a non-abelian two-dimensional Lie

algebra. That is, we can write L ¼ KxlKy with ½x; y� ¼ x.

Now, we recall our settings in Section 3. We let K ½x; y� be a noncommutative

polynomial ring generated by x, y and define I ¼ hxy� yx� xi to be the

ideal of K ½x; y� generated by xy� yx� x. We let A be K ½x; y�=I . Then, if we

denote by UðLÞ the universal enveloping algebra of L, then we can see the

following:

Remark 4.1. Notation is as above. Then we have AGUðLÞ. r

From Remark 4.1, we can use the Bernoulli-type relations for UðLÞ.
Conversely, it is the reason that we can use PBW theorem in A. Using the

relations in Section 3, we will show the next formulas in UðLÞ.

Proposition 4.2. Let L be as above. Then in UðLÞ, we have

ðPkÞ yxyk ¼ k

k þ 1
xykþ1 þ 1

k þ 1
xkþ1x

� 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�ixy

i þ 1

k þ 1

Xk
i¼1

k þ 1

i

� �
Bkþ1�iy

ix;

ðQkÞ ykxy ¼ 1

k þ 1
xykþ1 þ k

k þ 1
ykþ1x

þ 1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�ixy

i

� 1

k þ 1

Xk
i¼1

ð�1Þkþ1�i k þ 1

i

� �
Bkþ1�iy

ix:
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Proof. Using the Corollary 3.5, we see that (SBR1) implies ðPkÞ and

(SBR2) implies ðQkÞ. r

Remark 4.3. The above formulas ðPkÞ and ðQkÞ completely give the

remaining terms of ðAkÞ and ðBkÞ in case of the type (c) if we replace x, y by

eþ g, f þ g respectively.

Remark 4.4. Using the theory of linear algebras, we can establish two-

dimensional Lie algebras as follows:

Let V be a vector space over K , and EndðVÞ be its endmorphism ring. Put

g ¼ EndðVÞlV , and we define

½ f1 þ v1; f2 þ v2� ¼ ð f1 f2 � f2 f1Þ þ ð f1ðv2Þ � f2ðv1ÞÞ

for all f1; f2 A EndðVÞ and v1; v2 A V . Then g becomes a Lie algebra. Suppose

that f A EndðVÞ and v A V satisfy f ðvÞ ¼ cv for some c A K . Put a ¼ Kf lKv as

a Lie subalgebra of g. Then, we have

a is abelian ðif c ¼ 0Þ;
aGL ðif c0 0Þ:

�

Remark 4.5. If K is algebraically closed, then three-dimensional Lie

algebras of type (d) corresponding to
�
1 b
0 1

�
in Jacobson’s book [6], on page 12,

are not according to b. Hence, in this paper, we introduce the exact one type as

(d)-(þ) at the introduction.

Remark 4.6. The following equation is pointed out by Mitsuhiro Takeuchi:

yfðyþ 1Þk � ykg ¼ k

k þ 1
fðyþ 1Þkþ1 � ykþ1g

�
Xk
i¼1

1

k þ 1

k þ 1

i

� �
Bkþ1�ifðyþ 1Þ i � yig;

which gives another proof of (BR2) in Theorem 3.2.
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