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ON SOME MATRIX DIOPHANTINE EQUATIONS1

By

Aleksander Grytczuk and Izabela KurzydŁo

Abstract. Let A A MnðCÞ; nb 2 be the matrix which has at least

one real eigenvalue a A ð0; 1Þ: If the matrix equation

Ax þ Ay þ Az ¼ Aw ð1Þ

is satisfied in positive integers x, y, z, w, then maxfx� w; y� w;

z� wgb 1: If suppose that the matrix A has at least one real

eigenvalue a >
ffiffiffi
2

p
and the equation (1) is satisfied in positive in-

tegers x, y, z and w, then maxfx� w; y� w; z� wg ¼ �1. Moveover,

we investigate the solvability of the matrix equations (1) and

Ax þ Ay ¼ Az ð2Þ

for the non-negative real n� n matrices, where jdet Aj > 1, in posi-

tive integers x, y, z, w for (1) and x, y, z for (2). Using the well-

known theorem of Perron-Frobenius we obtain some informations

concerning solvability these equations.

1. Introduction

We give necessary conditions for solvability of the equation (1) in some

positive integers x, y, z, w under some restrictions for A A MnðCÞ, nb 2 con-

cerning eigenvalues of the matrix A.

A. Grytczuk proved in [7] that if the matrix A A MnðCÞ, nb 2 has at least

one real eigenvalue a >
ffiffiffi
2

p
and the equation (2) is satisfied in positive integers x,

y, z, then maxfx� z; y� zg ¼ �1. In [6] A. Grytczuk and J. Grytczuk found

necessary and su‰cient conditions for A A MnðZÞ, nb 2 to satisfy the equation
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(2) for some positive integers x, y, z. Earlier M. Le and C. Li [12] remarked that

if A is an integral 2� 2 matrix, then the equation (2) has a solution for x ¼ mr,

y ¼ ms, z ¼ mt, where m > 2, r, s, t are positive integers, if and only if A is a

nilpotent matrix or det A ¼ Tr A ¼ 1. Another proof of this result is given by A.

Grytczuk in [8].

We note that for X ¼ Ar, Y ¼ As, Z ¼ At we obtain from (2) the Fermat’s

equation

X m þ Ym ¼ Zm: ð3Þ

In 1966 R. Z. Domiaty [4] discovered that the equation (3) has infinitely many

solutions in M2ðZÞ for m ¼ 4. Some results relating to the equation of Fermat in

the set of matrices have been described by P. Ribenboim in monograph [15]. In

1995 A. Wiles [19], R. Taylor and A. Wiles [17] proved that (3) has no solu-

tions in nonzero integers X , Y , Z if m > 2. An important problem is to give a

necessary and su‰cient condition for solvability the equation (3) in the set of

matrices. The solvability of (3) in GL2ðZÞ was first investigated by L. N.

Vaserestein [18]. A. Khazanov in [11] gave necessary and su‰cient conditions for

solvability (3) for X , Y , Z belonging to SL2ðZÞ; SL3ðZÞ; GL3ðZÞ: A. Gryczuk

[9] proved some necessary condition to satisfy (3) in integral 2� 2 matrices X ,

Y , Z, and in [5] he gave an extension of this result. Studies connected with

Khazanov’s results e¤ected H. Qin [14]. In [2] Z. Cao and A. Grytczuk inves-

tigated the Fermat’s equation (3) for X ;Y ;Z A Gðk;G1Þ; where

Gðk;G1Þ ¼ r s

ks r

� �
: r; s A Z; det

r s

ks r

� �
¼G1

� �
;

k is a fixed square-free positive integer and for X ;Y ;Z A Gðk; aÞ, where

Gðk; aÞ ¼ r s

ks r

� �
: r; s A Z; det

r s

ks r

� �
¼ a

� �
;

k is a fixed positive integer and a is a fixed integer. Moveover, they proved [2]

that an equation X m þ Y m þ Zm ¼ Wm, where X ;Y ;Z;W A Gðk; aÞ; k > 1 is a

fixed square-free integer, does not hold, except when X þ Y ¼ 0 or Y þ Z ¼ 0 or

Z þ X ¼ 0 and ðm; 2Þ ¼ 1. In [3] Z. Cao and A. Grytczuk gave a necessary and

su‰cient condition for solvability (3) for X ;Y ;Z A SL2ðZÞ: Z. Patay and A.

Szakacs [13] studied the equation of Fermat (3) in SL3ðZÞ and in irreducible

elements of the rings M2ðZÞ and M3ðZÞ.
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2. Basic Lemmas

Lemma 1 (Schur [1]). Let A be an n� n complex matrix. Then there is a

unitary matrix P such that

P�AP ¼

l1 b12 � � � b1n

l2
..
.

. .
.

0 ln

0
BBBBB@

1
CCCCCA

where l1; l2; . . . ; ln are the eigenvalues of the matrix A.

Lemma 2. Let A be an n� n complex matrix with jdet Aj > 1 and let

aðAÞ ¼ max
1ajan

jajj, where aj are the eigenvalues of A for j ¼ 1; 2; . . . ; n. Then

aðAÞ > 1þ logjdet Aj
n

:

The proof of this Lemma is given by A. Grytczuk and M. Szałkowski in

[10].

3. Results

Theorem 1. Let A A MnðCÞ, nb 2. Suppose that the matrix A has at least

one real eigenvalue a A ð0; 1Þ. If the equation

Ax þ Ay þ Az ¼ Aw ð1Þ

has a solution in positive integers x, y, z and w, then maxfx� w; y� w;

z� wgb 1.

Proof. By Lemma 1 there exist a unitary matrix P such that

A ¼ P�TP; ð4Þ

where T is the upper triangular matrix with the eigenvalues of the matrix A on

main diagonal.

Let a ¼ as, where 1a sa n, be real eigenvalue of A such that as A ð0; 1Þ.
From (4) by induction follows that Ak ¼ P�T kP, where T k is the upper

triangular matrix having on main diagonal eigenvalues ak
j , j ¼ 1; 2; . . . ; n. Hence
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for arbitrary integers x, y, z, w we have

Ax ¼ P�T xP; Ay ¼ P�T yP; Az ¼ P�T zP; Aw ¼ P�TwP ð5Þ

Suppose that the equation (1) has a solution in some positive integers.

From (5) and (1) we obtain

T x þ T y þ T z ¼ T w:

Comparing the elements on the main diagonals we get

ax
j þ a

y
j þ az

j ¼ aw
j ; j ¼ 1; 2; . . . ; n: ð6Þ

From (6) we have

ax�w
j þ a

y�w
j þ az�w

j ¼ 1: ð7Þ

Since as A ð0; 1Þ and we assume that (7) holds, then exponents x� w, y� w, z� w

must be positive. If x� w < 1, then we would have to consider two cases:

x� w ¼ 0 or x� w < 0. If x� w ¼ 0, then by (7) follows that ay�w
s þ az�w

s ¼ 0,

which is impossible.

Let x� w ¼ �t, where t is a positive integer. Then ax�w
s b 1 and the equation

(7) does not hold.

Therefore maxfx� w; y� w; z� wgb 1 and the proof of Theorem 1 is

complete. r

Theorem 2. Let A A MnðCÞ, nb 2. Suppose that the matrix A has at least

one real eigenvalue a >
ffiffiffi
2

p
. If the equation (1) is satisfied in positive integers x, y,

z, w, then maxfx� w; y� w; z� wg ¼ �1.

Proof. Supposing that a ¼ as >
ffiffiffi
2

p
; where 1a sa n is a real eigenvalue

of the matrix A, and using Schur’s Lemma, we obtain the equation (7). Since

as >
ffiffiffi
2

p
> 1, then exponents x� w, y� w, z� w must be negative. Moveover, we

have a�2
s < 1

2 . Therefore two exponents can be less than or equal to �2, and one

exponent must be equal �1. Thus x� w ¼ �1 or y� w ¼ �1 or z� w ¼ �1,

which complete the proof. r

Theorem 3. Let A A MnðRÞ be a non-negative matrix and jdet Aj > 1. If the

equation (2) has a solution in positive integers x, y, z, then

1þ logjdet Aj
n

� �x�z

þ 1þ logjdet Aj
n

� �y�z

< 1:
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Proof. Using Lemma 1, we obtain the following equation

ax
j þ a

y
j ¼ az

j ð8Þ

where aj are the eigenvalues of the matrix A, j ¼ 1; 2; . . . ; n.

Let aðAÞ ¼ max
1ajan

jaj j. By the theorem of Perron-Frobenius aðAÞ is the

characteristic root of A. From (8) we have

ðaðAÞÞx�z þ ðaðAÞÞy�z ¼ 1:

Hence, by Lemma 2 it follows that

ðaðAÞÞx�z þ ðaðAÞÞy�z > 1þ logjdet Aj
n

� �x�z

þ 1þ logjdet Aj
n

� �y�z

:

Therefore

1þ logjdet Aj
n

� �x�z

þ 1þ logjdet Aj
n

� �y�z

< 1:

The proof of the Theorem 3 is complete. r

In similar way we can prove the following Theorem:

Theorem 4. Let A A MnðRÞ be a non-negative matrix and jdet Aj > 1. If the

equation (1) is satisfield for positive integers x, y, z, w, then

1þ logjdet Aj
n

� �x�w

þ 1þ logjdet Aj
n

� �y�w

þ 1þ logjdet Aj
n

� �z�w

< 1:

Immediately, from Theorem 3 we get the following Corollary:

Corollary 1. Let A A MnðRÞ be the non-negative matrix with jdet Aj > 1. If

the equation (2) has a solution in positive integers x, y, z, then maxfx; yg < z.
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