
TOKYO J. MATH.
VOL. 41, NO. 2, 2018
DOI: 10.3836/tjm/1502179279

Algebraic Structure of the Lorentz and of the Poincaré Lie Algebras

Pablo ALBERCA BJERREGAARD, Dolores MARTÍN BARQUERO,
Cándido MARTÍN GONZÁLEZ and Daouda NDOYE*

University of Málaga and *University Cheikh Anta Diop of Dakar

(Communicated by Y. Gomi)

Abstract. We start with the Lorentz algebra L = oR(1, 3) over the reals and find a suitable basis B such that

the structure constants relative to it are integers. Thus we consider the Z-algebra LZ which is free as a Z-module

of which B is Z-basis. This allows us to define the Lorentz type algebra LK := LZ ⊗Z K over any field K. In a
similar way, we consider Poincaré type algebras over any field K.

In this paper we study the ideal structure of Lorentz and of Poincaré type algebras over different fields. It turns
out that Lorentz type algebras are simple if and only if the ground field has no square root of −1. Thus, they are
simple over the reals but not over the complex. Also, if the ground field is of characteristic 2 then Lorentz and
Poincaré type algebras are neither simple nor semisimple. We extend the study of simplicity of the Lorentz algebra
to the case of a ring of scalars where we have to use the notion of m-simplicity (relative to a maximal ideal m of
the ground ring of scalars).

The Lorentz type algebras over a finite field Fq where q = pn and p is odd are simple if and only if n is
odd and p of the form p = 4k + 3. In case p = 2 then the Lorentz type algebras are not simple. Once we
know the ideal structure of the algebras, we get some information of their automorphism groups. For the Lorentz
type algebras (except in the case of characteristic 2) we describe the affine group scheme of automorphisms and the
derivation algebras. For the Poincaré algebras we restrict this program to the case of an algebraically closed field of
characteristic other than 2.

1. Introduction

The algebraic structure of Lie algebras g of semi-simple algebraic groups G over an
algebraically closed field of prime characteristic is the main task of the paper [13]. As the
author explains in that work, the focus is centered in deviations of these algebraic objects
from the characteristic zero case. In the second part of [13], the structure of Aut(g) when G

is almost-simple is determined. As one can see from the latter study, the absence of simplicity
in g is rather moderate. For instance, the lack of simplicity in the exceptional cases is only
present when g is of type G2 with p = 3, of type F4 with p = 2, of type E6 with p = 3 and
of type E7 with p = 2. In the cases G2 and F4 there is a unique proper nonzero ideal and the
structure of the algebra modulo the ideal is described in [1] and [2] respectively.
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One of the properties that one would like to have in the affine group scheme of auto-
morphisms of a finite-dimensional algebra is that of smoothness. If Φ is an arbitrary field of
characteristic zero then it is well known that any affine group scheme over Φ is smooth. If
Φ is of characteristic other than 2, the automorphism group scheme of split Lie algebras of
type Ar (r ≥ 2), Br (r ≥ 2), Cr (r ≥ 2) and Dr (r = 3 or r ≥ 5) is smooth (see [11, p. 75,
ff.]). If Φ is of characteristic p �= 2, 3, the automorphism group scheme of an algebra of type
G2 is smooth ([11, p.145-146]). The previous result is also true for p = 3 since Der(L) has
dimension 14 for L of type G2 and Aut(L) is also 14-dimensional (one can compute at once
the dimension of Der(L) over the field of three elements, F3, by using Magma). For p = 2
we have dim(Der(L)) = 21 (again Magma), hence the group scheme Aut(L) is not smooth.
For the Lie algebras L of type F4 with the characteristic p �= 2 of the ground field Φ, the
automorphism group scheme of L is smooth ([11, p. 196]). For p = 2 the scheme Aut(L) is
still smooth because dim(Der(L)) = 52 as one learns, for instance, from Magma by putting
Φ = F2 the field of two elements. For the Chevalley algebras of types E6, E7 and E8, it is
known that all derivations are inner except in the cases:

1. E6 with p = 3,
2. E7 with p = 2.

So, except in the above cases, we have smoothness of the automorphism group scheme.
In this work we depart from the semisimple scenario since we consider two algebras

which are not in general semisimple. As we will see, the Poincaré algebra has a 4-dimensional
radical and the Lorentz algebra in characteristic two is not semisimple. We will consider the
Lie algebras of Lorentz and Poincaré groups defined over general fields, and even on general
rings. We call these algebras, Lorentz type algebras or Poincaré type algebras. The main
motivation of this seeming obstinacy to work over general rings (instead of over fields) comes
from one of our objectives: that of describing the algebraic group of automorphism of the
Lorentz and Poincaré type algebras. Since we adhere to the idea of studying algebraic groups
from the viewpoint of affine groups schemes, this implies the necessity of considering the
groups AutR(LR) of automorphisms of the scalar extensions LR where R in an associative
commutative algebra over a fixed field Φ.

It is known that the Lorentz algebra LR is simple while its complexification LC is not.
In the case in which a given algebra A is not simple, the group of automorphisms G acts
on the set S of ideals of A. So G acts as a permutation group on S and this provides a
certain information on G (roughly speaking, the group would be a semidirect product of a
permutation group times automorphisms groups of the ideals). Thus, the ideal structure of the
algebra directly influences the automorphism group of it.

In this way we arrive at the two main topics of the work: ideal structure and automor-
phism group. It should be mentioned that the study of the automorphism group is almost
mandatory for some tasks: for instance, to classify all the possible gradings on the algebra
under scope. It was in this way that we were motivated to the study of the automorphism
group scheme. However the task is interesting in itself and moves a series of algebraic results,
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some of them linear algebra of course, but some others are of very different nature.
The study of orthogonal groups in prime characteristic is not recent. As far as we know

there are papers on this matter at the end of the XIX century. One of the relevant related
works that we would like to mention is that of Dickson ([9]) who, as early as in 1899, makes
a detailed study of groups defined by quadratic forms in prime characteristic. As a by-product
of his research, he identifies the Icosahedral group as a subgroup of a Lorentz group in char-
acteristic 2.

The interest on physical applications of discrete Lorentz groups comes from the middle
of the last century. Some scientists considered the idea of a finite Minkowski space, that is a
four-dimensional space over a finite field Fp endowed with a suitable quadratic form. The idea
is to have a Relativity Theory over a finite field such that the Theory of Special Relativity (as
we know it today) arises as a limit when p → ∞. In this finite theory, the Lorentz group plays
an essential role. The papers [4], [5], [8] go in this direction. This poses the question on how
we can relate a finite Lorentz group with the real Lorentz group. Some people have studied
this question and two key words emerge: approximation and local isomorphism. Perhaps the
more recent work in this line is the one by [12], dealing with approximation results of the
Lorentz groups with its finite counterpart (defined over finite fields).

Some recent developments on applications of finite Lorentz groups to Signal and Image
Processing, seem to be under research.

To end this introduction we give an idea of the organization of this work.
Section 1. We give some motivations for this work. We summarize some known results

about ideal structure and smoothness of the affine group scheme of automorphisms of Lie
algebras. In our study we want to initiate an exploration of non-semisimple algebras (as the
Poincaré algebra turns out to be) but still with an eye in its group of automorphisms, seen as
an affine group scheme.

Section 2. We introduce a categorical language that we will use all through the paper.
When one speaks, for instance, about the algebra of n × n zero-trace matrices over rings of
scalars it might be convenient to have a functor sln from the category of rings (or a suitable
subcategory of this) to the category of Lie algebras. So, for any ring R we may apply the
functor and consider the Lie algebra sln(R). These algebra functors allow us to use notions
of category theory such as natural transformations, isomorphisms and others. We put, also in
this section, some results that are known in case the ground ring of scalars is a field. However
we need them in the more general setting of algebras over a ring.

Section 3. In order to study ideal structure of algebras over rings one must rule out
those ideals of the algebra coming from ideals of the ring of scalars. These ideals are not
present (except for the trivial ideal and the whole algebra) when the ground ring is a field.
We introduce some notions to handle this situation. Roughly speaking, in Proposition 2 we
prove that the unique algebra functors of type opq which are not simple are o13 and o22. This
suggests focusing our attention on the Lorentz type algebra o13. Theorem 2 says in particular
that a 6-dimensional perfect Lie algebra over a field has not ideals of dimension 4 or 5. Of
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course this is the case of the Lorentz type algebras and in fact, we detect 3-dimensional ideals
in Proposition 4 and Theorem 3.

Section 4. In this section we consider the possibility of decomposing the Lie algebra
sl2(R) × sl2(R) as a direct sum of ideals. We provide a more general result: If we have an
algebra functor g from a category of rings to a category of algebras, any decomposition of the
ring of scalars as a direct sum of ideals, induces a decomposition of g(R). In Theorem 5 we
study the converse.

Section 5. We prove that if R is a commutative associative unital algebra with a square
root of −1 and such that 1/2 ∈ R, the Lorentz type algebra LR is isomorphic to sl2(R) ⊕
sl2(R). We investigate also the case

√−1 /∈ R.
Section 6. This is a brief incursion in the case of a ground field of scalars of characteristic

two. Here the Lorentz type algebra behaves in a very different way as in other characteristics:
it has an ideal which as an algebra in itself, is abelian and the quotient of the algebra modulo
the ideal is simple and isomorphic to the orthogonal algebra o3.

Section 7. We deal with the case in which the ground field of scalars Fq is finite and give
a full account of the simpleness of the Lorentz type algebra in terms of q .

Section 8. We study the automorphism group of Lorentz type algebra applying results of
G. Benkart and E. Neher ([6, Corollary 2.28 (b)]), to obtain group scheme-theoretic versions
of them. Thus we describe the group scheme of automorphisms of Lorentz type algebras.

Section 9 and 10 deal with automorphisms and derivations in the case of characteristic
2. We prove non-smoothness of the automorphism group scheme in this case.

Section 11. We focus on the Poincaré algebra and study its ideal structure.
Section 12. We prove that the derivation algebra of Poincaré algebras fits in the middle

term of a certain short exact sequence. From this, we are able to describe the algebra of
derivations of Poincaré type algebras.

Section 13. We consider the description of automorphisms and of the affine group
scheme of automorphisms of Poincaré type algebras.

Section 14. Paraphrasing N. Jacobson [15, p. 185], in many connections in which Lie
algebras arise naturally, one encounters in the prime characteristic case, structures that are
somewhat richer than that of ordinary Lie algebras. This is the case of restricted Lie algebras.
We discuss briefly, restricted Lorentz and Poincaré type algebras in this section.

2. Preliminary definitions

2.1. Category language. All through this paper Φ will denote an associative, com-
mutative ring with unit and algΦ the category whose objects are the associative, commutative
and unital Φ-algebras. On the other hand, LieΦ will denote the category of Lie Φ-algebras.
We will have the occasion to deal with (covariant) functors F : algΦ → LieΦ . These func-
tors will be called Lie algebra functors since they take values in LieΦ . Given two Lie algebra
functors F ,G : algΦ → LieΦ a homomorphism η : F → G is a natural transformation from
F to G, that is, a family {ηR} where:
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1. R ranges in the class of objects of algΦ ,
2. ηR : F(R) → G(R) is a homomorphism of Lie Φ-algebras.
3. For any two objects R and S in algΦ and any homomorphism of Φ-algebras α : R → S,

the following squares commute:

F(R) G(R)

F(S) G(S) .

ηR ��

F(α)
��

G(α)
��

ηS

��

We will say that F is isomorphic to G if all the ηR are isomorphisms (in this case we will use

any of the notations η : F ∼= G, F
η∼= G or F ∼= G).

DEFINITION 1. Consider next the full subcategory
√−1Φ of algΦ whose objects are

the Φ-algebras R such that
√−1 ∈ R. Denote by I the inclusion functor I : √−1Φ → algΦ .

2.2. The Lorentz functor. The Lorentz algebra over the reals, denoted by o(1, 3), is
the Lie algebra of the orthogonal Lie group O(1, 3):

o(1, 3) = Lie(O(1, 3)) = {M ∈ gl4(R) : MI13 + I13M
t = 0} ,

where Mt denotes matrix transposition of M and I13 = diag(−1, 1, 1, 1) (some authors take
I13 = diag(1, 1, 1,−1) which is equivalent). A straightforward computation reveals that a
generic element of o(1, 3) is of the form⎛

⎜⎜⎝
0 x1 x2 x3

x1 0 x4 x5

x2 −x4 0 x6

x3 −x5 −x6 0

⎞
⎟⎟⎠

and then denoting by eij the elementary matrix with 1 in the entry (i, j) and 0 elsewhere we
have a basis of o(1, 3) given by B = {s12, s13, s14, a23, a24, a34} where sij := eij + eji and

[ , ] s12 s13 s14 a23 a24 a34

s12 0 a23 a24 s13 s14 0
s13 −a23 0 a34 −s12 0 s14

s14 −a24 −a34 0 0 −s12 −s13

a23 −s13 s12 0 0 −a34 a24

a24 −s14 0 s12 a34 0 −a23

a34 0 −s14 s13 −a24 a23 0

FIGURE 1. Multiplication table of o(1, 3).
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aij = eij − eji . Relative to this basis the structure constants are 0, 1 or −1. Thus we can
construct the Z-algebraLZ := Zs12⊕Zs13⊕Zs14⊕Za23⊕Za24⊕Za34 whose multiplication
table is given in Figure 1. Fix now an associative, commutative and unital ring Φ and consider
the category algΦ defined above.

Then for any object R in algΦ we may define the Lorentz type algebra LR := LZ ⊗Z R.
This is nothing but the free R-module with basis s12, s13, s14, a23, a24 and a34, enriched with
an R-algebra structure by the multiplication table as in Figure 1. As a free R-module we have

dimLR = 6 .

Of course if we take R = R then LR
∼= o(1, 3), the Lorentz algebra. If R = C then LR is the

complexified Lorentz algebra. If R and S are objects in algΦ and f : R → S a Φ-algebras
homomorphism, then we may define a Lie Φ-algebras homomorphism Lf : LR → LS in an
obvious way. Thus we have defined a covariant functor L : algΦ → LieΦ (where LieΦ is the
category of Lie Φ-algebras).

Let O(n) be the orthogonal Lie group over the reals: the group of all matrices M in
GLn(R) such that MMt = 1n. Then, its Lie algebra o(n) consists of all matrices M in gln(R)

such that M + Mt = 0. This is generated (as a vector space) by the matrices eij − eji where
i < j with i, j ∈ {1, . . . , n} and the structure constants relative to the basis of these elements
are again 0 or ±1. Thus, we can consider as before theZ-algebra o(n;Z) := ⊕i<jZ(eij −eji).
Fix as before a ring Φ and then, for any algebra R in algΦ we may define the scalar extension
o(n; R) := o(n;Z) ⊗Z R. So, this is the Lie R-algebra with basis eij − eji as before and
multiplication table as the one for o(n) in the corresponding basis.

Thus we have dimR(o(n; R)) = n(n − 1)/2 and we have again a functor

o(n) : algΦ → LieΦ

such that R �→ o(n; R). If f : R → S is a homomorphism of algebras in algΦ then we will
denote by o(n; f ) : o(n; R) → o(n; S) the homomorphism of Lie algebras o(n; f ) := 1⊗f .
Along this work, the alternative notation on(R) (meaning o(n; R)) will be used eventually.

REMARK 1. If Φ is a ring agreeing with its 2-torsion, that is, 1 + 1 = 0, then for any
Φ-algebra R in algΦ , the Lie algebra o(4; R) agrees with the Lorentz type Lie algebra LR . In
particular this is the case for a field K of characteristic two: LK = o(4;K). A more general
result is the following.

LEMMA 1. For any Φ, the functors L ◦ I and o(4) ◦ I : √−1Φ → LieΦ are iso-

morphic. More precisely (i) for any algebra R in algΦ such that the equation x2 + 1 = 0
has a solution in R, there is an isomorphism ηR : LR

∼= o(4; R); (ii) If f : R → S is a
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homomorphism of Φ-algebras and
√−1 ∈ R, the following diagram commutes:

LR o(4; R)

LS o(4; S) .

ηR��

Lf
��

o(4;f )
��

ηS

��

PROOF. Take � ∈ R such that �
2 = −1. Starting from the standard basis B of LR ,

we define a new basis C = {a′
ij : i, j ∈ {1, 2, 3, 4}, i < j } where a′

12 := �s12, a′
13 := �s13,

a′
14 := �s14 and a′

ij := aij for the remaining elements. Then the isomorphism LR → o(4; R)

is the induced by a′
ij �→ eij − eji for i < j . On the other hand, the commutativity of the

square above is straightforward. �

For any object R of algΦ , the Lie algebra of the linear special group, sl2(R), is defined
by sl2(R) = {A ∈ gl2(R) : Tr(A) = 0}, where Tr denotes the matrix trace. The system
{h := e11 − e22, e := e12, f := e21}, where eij is the elementary matrix with 1 in the position
(i, j) and 0 in the others, is a basis of sl2(R) and their elements satisfy the following identities:

[h, f ] = −2f, [h, e] = 2e, [e, f ] = h . (1)

Consider now algebras R and S in the category algΦ such that R is a subalgebra of S.
Denote by sl2(S) the Lie algebra of 2 × 2 matrices with entries in S of zero trace. Any
α ∈ AutR(S) induces an automorphism α̂ ∈ AutR(sl2(S)) by applying α componentwise.
Also for any P ∈ GL2(R) the map M → PMP−1 gives an automorphism of sl2(S) which
is denoted by Ad(P ). More generally, for any P in a linear algebraic group G, the adjoint
action of G on its Lie algebra g will be denoted Ad : G → Aut(g), so that for any M ∈ g we

have Ad(P )M := PMP−1.

LEMMA 2. Under the condition in the above paragraph if Ad(P ) = α̂, then α = 1
and consequently Ad(P ) = 1.

PROOF. We know that PMP−1 = α̂(M) for any M ∈ sl2(S), in particular since R ⊂
S we may take M ∈ sl2(R) and so PMP−1 = M hence PM = MP for any M ∈ sl2(R).
This implies P = k id for some invertible k ∈ R. Thus Ad(P ) = 1 which implies α̂ = 1. �

LEMMA 3. For any algebra R in algΦ , if β : o(4; R) → R4 is an R-linear map such
that β([M,M ′]) = β(M)M ′ − β(M ′)M for any M,M ′ ∈ o(4; R), then there is a unique

v ∈ R4 such that β(M) = vM for any M ∈ o(4; R).

PROOF. When R is a field, this is a cohomological result (a version of Whitehead’s
lemma). It is well-known in characteristic zero and in prime characteristic may be seen as a
consequence of [10, Theorem 1]. We include here a proof for a general algebra in algΦ .

Fix the basis of o(4; R) given above (see Figure 1) and consider the coordinate map

χ : o(4; R) → R6 such that the components of χ(M) are the coordinates of M relative to
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the fixed basis. Since β is R-linear there is a 6 × 4 matrix L with entries in R such that
β(M) = χ(M)L. Now, one can see that the conditions β([M,M ′]) = β(M)M ′ − β(M ′)M
for any M,M ′ ∈ o(4;K) imply that there are only 4 free (independent) parameters in L.
Indeed, L is of the form:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a b 0 0
c 0 b 0
g 0 0 b

0 c −a 0
0 g 0 −a

0 0 g −c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, it is immediate to check that defining v = (b,−a,−c, g), one has χ(M)L = vM

for any M ∈ o(4; R). Thus β(M) = vM for any M ∈ o(4; R). �

3. Simplicity results

We would like to study under what conditions the Lorentz functor L : algΦ → LieΦ

produces simple Lie algebras. The hidden motivation for this study is that when LR is not
simple, under suitable conditions, we can decomposeLR as a certain direct sum of two ideals.
These ideals are very special and our expectation on them is that the automorphisms of LR

either fix the ideals or swap them. Thus, a knowledgement of the ideal structure of LR

immediately produces information about the affine group scheme R �→ aut(LR).
To shorten the notations, we write b1 := a12, b2 := a13, b3 := a14, b4 := s23, b5 := s24,

b6 := s34 so that the basis B of LR is now B = {bi}6
1 and has the multiplication table given

in Figure 2. Also for any R in algΦ we will denote by Max(R) the maximal spectrum of R

(the set of maximal ideals of R).
In this section we study the simplicity of Lorentz type algebras LR where R is an algebra

in algΦ . Since any ideal I of R induces trivially an ideal ILR of LR we will pay no attention
to this class of ideals. One way to rule out such ideals is to rule out the ideals contained in
those of the kind mLR , where m ∈ Max(R) is a maximal ideal of R (since any proper ideal
of R is contained in some maximal one). The ideals contained in some mLR will be termed
m-null ideals (we will define them formally later). Other class of ideals, that we shall exclude
of our study, are the m-total ideals (the ideals which agree with LR/mLR when passing to
the quotient).

We start by considering an algebra R in algΦ and an R-module M . For any maximal
ideal m ∈ Max(R) we may consider the epimorphism φ : M → M ⊗R K =: MK where K is
the field K := R/m. Then MK is a vector space over K and ker φ = mM (see [18, Lemma 5,
p.215]), so that M/mM ∼= MK.

DEFINITION 2. A collection of elements m1, . . . ,mn ∈ M is said to be m-free if for
any r1, . . . , rn ∈ R the equality

∑
i rimi ∈ mM implies ri ∈ m for all i. An R-module M is

said to have an m-free part of cardinal n is there is an m-free subset {m1, . . . ,mn} ⊂ M .
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If R happens to be a field, then m = 0 and a set is m-free if and only if it is linearly
independent. In general, a set {m1, . . . ,mn} ⊂ M is m-free if and only if the set of equiva-
lence classes {m1, . . . ,mn} ⊂ M/mM is a linearly independent subset of the K-vector space
M/mM .

Fix a ring Φ and a Lie Φ-algebra V . For any associative commutative and unital Φ-
algebra R denote by VR the scalar extension VR := V ⊗Φ R. If S is another algebra in algΦ

and S is an R-algebra we may consider also the scalar extension VS := V ⊗Φ S. The reader
can easily check the existence of an isomorphism

VR ⊗R S ∼= VS

such that (v ⊗Φ r) ⊗R s �→ v ⊗Φ rs.
Furthermore, if m ∈ Max(R) is a maximal ideal and I a submodule of VR with an m-free

part of cardinal n, then its image φ(I) under the canonical epimorphism φ : VR → VR ⊗R K

(where K = R/m) contains a linearly independent set of cardinal n hence dimK φ(I) ≥ n.

DEFINITION 3. An ideal I � VR such that its image under the epimorphism φ : VR →
VK (as above) is the whole VK is said to be m-total. An ideal I � VR such that φ(I) = 0
(equivalently I ⊂ mVR) is said to be m-null. The algebra VR is said to be m-simple if

V 2
R �⊂ mVR and its unique ideals are the m-null and the m-total ones.

Again, when R is a field m = 0 and so LR is m-simple if and only if it is simple in the
usual sense. Thus, in our study on the simplicity of Lorentz type algebras, we will replace
simplicity with m-simplicity.

As an example of m-total ideal consider the Lorentz algebra LZ, the ideal m := 3Z of Z
and define I := Z(b1 +b6)+Z(b1 −b6)+Z(b2 +b5)+Z(b2 −b5)+Z(b3 +b4)+Z(b3 −b4).
This is an ideal of LZ. It is proper since b1 �∈ I but its image in LK (where K = Z/3Z) is the
whole algebra. The reader can check that 2LZ is also an m-total ideal of LZ and that 3LZ is
an m-null ideal of LZ.

Consider an algebra U over a ring Φ (commutative and unital) and assume that U is a

free Φ-module with basis {ui}. Let γ k
ij be the structure constants relative to the previous basis.

So uiuj = γ k
ij uk (using Einstein sum convention). If we are lucky, the ideal of Φ generated

by the structure constants might be the whole Φ but of course this is not the general case.
However there are many interesting circumstances in which this is true.

LEMMA 4. If U is a Φ-algebra which is free as Φ-module and if U2 = U , then the
ideal generated by the structure constant relative to any basis of U , is Φ.

PROOF. Take a basis {ui} so that uiuj = γ k
ijuk . For any ui in the basis we have

ui ∈ U2 so ui = λpqupuq for some λpq ∈ Φ. Thus ui = λpqγ k
pquk hence 1 = λpqγ i

pq and

so 1 is in the ideal generated by the structure constants. �

The condition V 2
R �⊂ mVR in the definition of m-simplicity is automatically satisfied

under certain mild circumstances:
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LEMMA 5. Consider an algebra U over a ring Φ (commutative and unital) and as-
sume that U is a free Φ-module with basis {ui}. Assume also that the ideal generated by the
structure constants is Φ. Take anyΦ-algebraR in algΦ and any maximal idealm ∈ Max(R).

Then U2
R �⊂ mUR . In particular if Φ is a field and U2 �= 0, for any R in algΦ and

m ∈ Max(R) we have again U2
R �⊂ mUR .

PROOF. We have a basis {ui ⊗ 1} of UR = U ⊗ R as R-algebra, and the structure

constants are γ k
ij ⊗ 1 which we identity with γ k

ij . The ideal of R generated by the structure

constants is R. If we had U2
R ⊂ mUR , then γ k

ij ∈ m for any i, j, k. Thus m = (1) which is

a contradiction. �

3.1. On the m-simplicity of certain algebra functors. Consider an algebra U over
a commutative unitary ring Φ. Take on the one hand the category algΦ , and on the other
AlgΦ , the category of Φ-algebras where no special identity (or unit element) is required to
exist. For any R in algΦ we may define the Φ-algebra UR := UΦ ⊗ R. This enables us to
define a Φ-functor UΦ : algΦ → AlgΦ given by UΦ(R) := UR where UR = UΦ ⊗ R. In
some cases we will drop the index Φ and so we will speak of the algebra functor U associated
to U .

PROPOSITION 1. Let U be an algebra over a field Φ with U2 �= 0. Assume that for
any field extension K of Φ, the K-algebra UΦ(K) = UK is simple. Then for any algebra R

in algΦ the R-algebra UΦ(R) = UR ism-simple for anym ∈ Max(R).

PROOF. Take any algebra R in algΦ and any maximal ideal m ∈ Max(R). To prove

that UR is m-simple, the first thing we need to prove is that U2
R �⊂ mUR , but this is given by

Lemma 5. Denote by K the residue field K := R/m. As in previous case we use the canonical
isomorphism φ : UK

∼= UR/mUR to identify both algebras. By the hypothesis, UK is simple
so for any ideal I � UR the ideal p(I) = 0 or p(I) = UR/mUR being p : UR → UR/mUR

the canonical projection. In the first case I is m-null and in the second is m-total. �

Now we apply the results above to a specific kind of algebras. Consider the real orthogo-
nal group O(p, q) of all matrices M in GLn(R) (being n = p + q) such that MIpqMt = Ipq .
Here

Ipq = diag(

p︷ ︸︸ ︷
−1, . . . ,−1,

q︷ ︸︸ ︷
1, . . . , 1) .

Its Lie algebra is o(p, q) the orthogonal Lie algebra, given by all matrices M such that MIpq+
IpqMt = 0. As in previous section we can consider this algebra over any commutative unitary
ring Φ and denote it by op,q(Φ). Of course the ideal generated by the structure constants in
Φ is the whole Φ. Also we have a functor op,q : algΦ → LieΦ such that op,q(R) is the scalar
extension of op,q(Φ) to R. We will use the notation on( ) to denote on,0( ).

PROPOSITION 2. Let Φ be a field and R any algebra in algΦ . Take anym ∈ Max(R).
Then if p + q �= 2, 4, the Lie algebra op,q(R) ism-simple.



LORENTZ AND POINCARÉ TYPE ALGEBRAS 315

PROOF. We may take the algebraic closure K of Φ and apply the results in [13] or in
[14]. Alternatively it is an easy exercise that if n > 4 or n = 3, the algebra on(K) is simple.
For n = 2 the algebra o2(K) is one-dimensional. Since the scalar extension op,q(Φ) ⊗ K ∼=
op,q(K) ∼= on(K), and this is simple for n �= 2, 4, we conclude that op,q(Φ) is simple if
p + q �= 2, 4. The isomorphism op,q(K) ∼= on(K) is given by α : op,q(K) → on(K) such

that α(M) := PMP−1 where P = diag(i, p). . ., i, 1, q). . ., 1) being i2 = −1. �

This results justifies that, from a structural viewpoint, the unique algebras which may
present some nontrivial ideal structure are the given by the functors o1,3 and o2,2.

3.2. On m-null and m-total ideals. Consider any Φ-algebra V , and an algebra R

in algΦ . In special cases, it is easy to describe those ideals of VR which are m-total for any
m ∈ Max(R):

PROPOSITION 3. Assume that V is a perfect algebra over Φ, that is, V 2 = V . Assume
that R in algΦ is artinian. Then I �VR ism-total for anym ∈ Max(R) if and only if I = VR .

PROOF. For any m ∈ Max(R) we have VR = I + mVR. Since V = V 2, the same
holds for VR. If we take two ideals m1,m2 ∈ Max(R), we have VR = I + m1VR =
I + m2VR by the uniform m-totality of I when m ∈ Max(R). Thus VR = V 2

R = I +
m1m2VR. Consequently, for any finite subset {m1, . . . ,mn} ⊂ Max(R) we have VR =
I + m1 · · ·mnVR. Since R is artinian it has only a finite number of maximal ideals (see [3,
Proposition 8.3, p. 89]). Thus VR = I + rad(R)VR (where rad(·) denotes Jacobson’s radical)
and since V is perfect we get VR = I +rad(R)kVR for any positive integer k. Also the artinian
character of R implies that rad(R) is nilpotent (take into account also that every prime ideal
is maximal and so the Jacobson radical agrees with the nilradical, [3, p.89]). So, for some k

one has rad(R)k = 0 implying VR = I . �

REMARK 2. It is standard result that if A is a free R-algebra and {Iα} a collection of
ideals of the ring of scalars R, then (∩αIα)A = ∩α(IαA). It is easy to see that if an ideal
I � VR is m-null for any m ∈ Max(R), then I ⊂ ∩

m
(mVR) = (∩

m
m)VR = rad(R)VR . Thus in

the case in which the Jacobson radical of R is null, the unique ideal which is m-null for every
m ∈ Max(R) is the 0 ideal.

As a consequence of Proposition 3 and of the previous paragraph we can state:

THEOREM 1. Assume as before that V is a perfect algebra over Φ, R is an artinian
algebra in algΦ , and VR is free as an R-module. Then the following are equivalent:

1. VR ism-simple for anym ∈ Max(R).
2. Any proper nonzero ideal I of VR satisfies some of the following:

(a) I ⊂ rad(R)VR .

(b) The maximal spectrum (which agrees with the prime spectrum and is finite) is
not Zariski connected: There is a partition of Max(R) into two closed nonempty
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subsets S1 and S2 where S1 = {m : I ⊂ mVR} and S2 = {m : VR = I + mVR}
such that defining i := ∩m∈S1m, j := ∩m∈S2m, one has VR = iVR + jVR , with
i ∩ j = rad(R) and I ⊂ iVR .

In particular if rad(R) = 0 the second item reduces to the assertion that any proper
nonzero ideal I of VR is of the form I = iVR where i is a product of maximal ideals
i = mi1 · · ·mik ,miq ∈ Max(R). Furthermore, VR splits in the form VR = I ⊕J where
J = jVR and j = mj1 · · ·mjq where each factor mjr ∈ Max(R), and Max(R) is the
disjoint union of {mi1 , . . . ,mik } and {mj1, . . . ,mjq }.

PROOF. Take I � VR which is nonzero and proper. Since VR is m-simple for any
m, then it may not happen that I is m-total for any m (see Proposition 3). If I happens
to be m-null for every m ∈ Max(R), then I ⊂ ∩mmVR = (∩m)VR = rad(R)VR . So
assume that I is not m-null (for every m). Then we may decompose Max(R) as a disjoint
union of nonempty subsets Max(R) = S1∪̇S2 where S1 := {m ∈ Max(R) : I is m-null } and
S2 := {m ∈ Max(R) : I is m-total }. Of course m ∈ S1 if and only if I ⊂ mVR and m ∈ S2

if and only if VR = I + mVR. Also recall that Max(R) is finite. Now, for any m,m′ ∈ S2

with m �= m′ we have VR = I + mVR = I + m′VR and by the perfection of V we have
VR = I + mm′VR . So we conclude that

VR = I +
∏
m∈S2

mVR .

If j = ∏
m∈S2

m = ∩m∈S2m, then VR = I + jVR . On the other hand, I ⊂ ∩m∈S1(mVR) =
(∩m∈S1m)VR = iVR where i := ∩m∈S1m = ∏

m∈S1
m. Then i ∩ j = (∩m∈S1m) ∩

(∩m∈S2m) = rad(R). Thus VR = iVR + jVR.
In case rad(R) = 0 everything follows from what we have already proved. But in this

case we can show that I = iVR (we already had I ⊂ iVR). Take z ∈ iVR , since VR = I ⊕ jVR

we have z = i + w where i ∈ I and w ∈ jVR . Then w = z − i ∈ jVR ∩ iVR = 0. Thus
z = i ∈ I which completes the proof. �

LEMMA 6. For R in algΦ such that 1
2 ∈ R, we consider the Lie R-algebra sl2(R). Let

I be a proper nonzero ideal of the Lie ring sl2(R) (so we do not assume RI ⊂ I ). Then I is
of the form i sl2(R) for a nonzero proper ideal i of R. Consequently: (1) any ideal of the Lie
ring sl2(R) is an R-algebra ideal, and (2) any nonzero proper ideal of sl2(R) is m-null for
some maximal idealm ∈ Max(R).

PROOF. This is a consequence of [13] or of [14] (if 3 is not a zero divisor in R).
However a simple selfcontained proof can be given. Take 0 �= I � sl2(R). We consider the
usual basis {h, e, f } of the free R-module sl2(R) such that [h, e] = 2e, [h, f ] = −2f and
[e, f ] = h. It is easy to check that for any scalar x ∈ R we have xh ∈ I ⇔ xe ∈ I ⇔ xf ∈ I .
Then we may define i := {x ∈ R : xh ∈ I } which is an ideal of R and I = i sl2(R) = sl2(i).
Now if i = R, then I = sl2(R) contradicting the fact that I is proper. Thus i �= R and there



LORENTZ AND POINCARÉ TYPE ALGEBRAS 317

is a maximal ideal m ∈ Max(R) such that i ⊂ m. Consequently I ⊂ m sl2(R) hence I is
m-null. �

REMARK 3. Take as before m ∈ Max(R) where R is in algΦ and let I � LR be an
ideal of the Lorentz type algebra LR . Then I is not m-null if and only if it has an m-free
subset of cardinal ≥ 1.

THEOREM 2. Let V be a Lie Φ-algebra which is a free Φ-module of dimension 6
and satisfies [V, V ] = V . Take R to be an algebra in algΦ and m ∈ Max(R). Denote by
K := R/m the residue field. Let φ : VR → VK := VR ⊗R K be the canonical epimorphism

x �→ x ⊗ 1̄ whose kernel is mVR. Assume that I is an R-submodule with an m-free part of
cardinal 4 or 5. Then either φ(I) = VK or I is not an ideal of VR. In particular, if V is a
Lie algebra over a field K and [V, V ] = V with dim V = 6, then V does not have ideals of
dimension 4 or 5.

PROOF. First we prove the particular case. So we take V to be a perfect Lie algebra
over a field K and prove that V has no ideal of dimension 5 or 4 . Assume that I is a 5-
dimensional ideal, then V/I has dimension 1 hence it is abelian. Thus [V, V ] ⊂ I but since
[V, V ] = V , we conclude that V = I a contradiction. Next we prove that V has no ideal of
dimension 4. If J is such an ideal, there is a maximal ideal M of V such that J ⊂ M . We
know that M is not 5-dimensional hence J = M . Thus taking into account the maximality
of M , we conclude that V/M is a simple Lie algebra of dimension 2. This is a contradiction
because no simple Lie algebra can be 2-dimensional.

Now we prove the result for a general R in algΦ . Assume that I is an ideal of VR with
an m-free part of cardinal 4 or 5. Consider the R-algebra K := R/m which is a field. Thus
φ(I) is a K-vector subspace of VK and if φ(I) �= VK, then dimK φ(I) ∈ {4, 5}. So φ(I) is
not an ideal (hence I is not an ideal given the epimorphic character of φ). �

COROLLARY 1. For any field K, the Lorentz type algebraLK has no ideals of dimen-
sion 4 or 5.

Next we recall an elementary result on field theory: assume K to be a field such that√−1 ∈ K. Then putting x := √−1 and y = 1 one has x2 + y2 = 0 where x, y �= 0.
Reciprocally if K is a field such that there are nonzero elements x, y ∈ K such that x2 +y2 =
0, then (y/x)2 = −1 and so

√−1 ∈ K. Thus for a field K the following assertions are
equivalent:

1. K has a square root of −1.

2. There are nonzero elements x, y ∈ K such that x2 + y2 = 0.

DEFINITION 4. We say that a field K is 2-formally real if for any x, y ∈ K, the equality

x2 + y2 = 0 implies x = y = 0. More generally for an ideal i of a ring R we say that R is

i-2-formally real if for any x, y ∈ R, the fact x2 + y2 ∈ i implies x, y ∈ i.
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For instance Q, R and Zp := Z/pZ (with p a prime of the form p = 4k + 3) are 2-
formally real while C and Zp (with p a prime of the form p = 4k+1) are not. We will devote
a section to finite fields and there, we will test the 2-formally real character of these fields.
On the other hand, if D is a product of 2-formally real fields, then the ring D is m-2-formally
real for any maximal ideal m � D. We will see that in this case the Lorentz type algebra LD

is m-simple for every maximal ideal.

Consider now the basis {bi : i = 1, . . . , 6} of LR such that b1 = s12, b2 = s13, b3 = s14,
b4 = a23, b5 = a24 and b6 = a35. The multiplication table of LR relative to this basis is the
transcription of the one in Figure 1:

[ , ] b1 b2 b3 b4 b5 b6

b1 0 b4 b5 b2 b3 0
b2 −b4 0 b6 −b1 0 b3

b3 −b5 −b6 0 0 −b1 −b2

b4 −b2 b1 0 0 −b6 b5

b5 −b3 0 b1 b6 0 −b4

b6 0 −b3 b2 −b5 b4 0

FIGURE 2. Second version of table in Figure 1.

PROPOSITION 4. Let R be a commutative unitary Φ-algebra and m ∈ max(R) such

that R is not m-2-formally real, that is, there are x, y ∈ R satisfying x2 + y2 ∈ m but
x, y �∈ m. Define the elements ⎧⎪⎪⎨

⎪⎪⎩
a1 := xb1 + yb6,

a2 := xb2 − yb5,

a3 := xb3 + yb4

of LR , then I := Ra1 + Ra2 + Ra3 + mLR is a nontrivial nontotal ideal of LR with an
m-free part of cardinal 3. ConsequentlyLR is notm-simple in this case.

PROOF. Since x �∈ m and R/m is a field, there is an x ′ ∈ R such that xx ′ ∈ 1 + m.
Next we compute the products [a1, bi] using the symbol ≡ for the relation of congruence
module the ideal mLR:

• [a1, b1] = 0.
• [a1, b2] = xb4 −yb3 ≡ x(b4 −x ′yb3) and since y2 ≡ −x2, then x ′y2 ≡ −x ′x2 ≡ −x.

Thus [a1, b2] ≡ x(b4−x ′yb3) ≡ xy ′(yb4−x ′y2b3) ≡ xy ′(yb4 +x ′x2b3) ≡ xy ′(yb4+
xb3). So [a1, b2] ∈ Ra3 + mLR . Similarly:

• [a1, b3] ∈ Ra2 + mLR , [a1, b4] = a2, [a1, b5] = a3 and [a1, b6] = 0.
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So far we have proved [a1,LR] ⊂ I and using the same type of computations we can also
prove that [ai,LR] ⊂ I for i = 2, 3. Thus, I is a nonzero ideal of LR. To prove that
I is nontotal consider the epimorphism φ : LR → LR ⊗R R/m. Let K := R/m be the
corresponding field, then LR ⊗R R/m = LK and φ(I) ⊂ K(a1 ⊗1)+K(a2 ⊗1)+K(a3 ⊗1)

so that dimK φ(I) ≤ 3 hence I is nontotal. Finally we prove that {a1, a2, a3} is a m-free part:
assume that

∑
riai ∈ m (we must prove that each ri ∈ m). Then r1(xb1 + yb6) + r2(xb2 −

yb5) + r3(xb3 + yb4) ∈ mLR and so there are mi ∈ m such that r1(xb1 + yb6) + r2(xb2 −
yb5) + r3(xb3 + yb4) = ∑

mibi . Thus r1x ∈ m and m being a maximal ideal it is prime.
Since x �∈ m then r1 ∈ m. Similarly the remaining rj ’s are in m. �

To finish this section we establish the dichotomy theorem

THEOREM 3. Let m ∈ Max(R) be a maximal ideal. Then the Lorentz type algebra
LR is m-simple if and only if R ism-2-formally real. In particular, the Lorentz type algebra
LK over a field K is simple if and only if K is 2-formally real (equivalently, if and only if√−1 /∈ K).

PROOF. If R is not m-2-formally real, we have seen in Proposition 4 that LR is not m-
simple. Next we prove that in case that R is m-2-formally real, then the Lorentz type algebra
LR is m-simple. For that, we start with the simpler case when R is a field K. Under the

hypothesis in the theorem we know that
√−1 �∈ K. Take the basis B = {bi} of LK defined in

the introduction, and an arbitrary nonzero element g = ∑
λibi where λi ∈ K. Let I = (g) be

the ideal generated by g . It is easy to see that I � z := g − [[g, b1], b1] = xb1 + yb6 where
x = λ1 and y = λ6.

• Assume that x or y is nonzero. Then, if we compute the matrix whose rows are the
coordinates of [z, bi] for i = 1, . . . , 6, we get (removing the null rows) the matrix⎛

⎜⎝
0 0 −y x 0 0
0 y 0 0 x 0
0 x 0 0 −y 0
0 0 x y 0 0

⎞
⎟⎠, and since

∣∣∣∣∣∣∣
0 −y x 0
y 0 0 x

x 0 0 −y

0 x y 0

∣∣∣∣∣∣∣ = (x2 + y2)2 �= 0

we get that the dimension of the image of ad(z) is 4 and taking into account Theorem 2,
we have that I is the whole algebra.

• If x = y = 0, then g = ∑5
i=2 λibi . One can see that defining now z := [g, b2] =

xb1 + yb6 where x = λ4 and y = −λ3, and repeating the argument above, we get that
the ideal I is the whole algebra or x = y = 0. In this last case g = λ2b2 + λ5b5. But
defining now z := [g, b3] = xb1 + yb6 for x = λ5 and y = λ2 we get that again the
ideal I is the whole algebra or x = y = 0 which is a contradiction since g �= 0.

This proves the simplicity of the Lorentz algebra if R is a field. In the general case, take an
ideal I � LR . Consider as usual the homomorphism φ : LR → LK for K := R/m and φ(I),

which is an ideal of LK. Since
√−1 �∈ K the K-algebra LK is simple and so φ(I) = 0 or

φ(I) = LK. Thus I is either m-null or m-total. This finishes the proof. �
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REMARK 4. Any field K of characteristic two has a square root of −1 = 1. Therefore,
the Lorentz type algebras over fields of characteristic two are not simple.

To finish this section we would like to describe those semisimple algebras R in algΦ

such that the Lorentz type algebra LR is m-simple for any m ∈ Max(R). Here “semisimple”
means rad(R) = 0 where rad(·) denotes the Jacobson radical. Applying Theorem 3 the
necessary and sufficient condition for this is that R must be m-2-formally real for any m ∈
Max(R). Since there is a monomorphism j : R → ∏

m∈Max(R) R/m mapping any x to

(x + m)m∈Max(R), we have that R is a subalgebra of a product of fields Km := R/m which
are 2-formally real. This is of course the usual description of R as a subdirect product of fields∏

m Km, but each factor Km is 2-formally real. However not every subdirect product R of
2-formally real fields gives a Lorentz type algebra LR with the property that this algebra is
m-simple for every m. We need a further property that we explain in the following result:

THEOREM 4. Let R be an algebra in algΦ with Jacobson radical rad(R) = 0. Then
LR is m-simple for any m ∈ Max(R) if and only if R ⊂ ∏

i∈I Ki is a subdirect product
of 2-formally real field {Ki}i∈I and for any m ∈ Max(R) there is some j ∈ I such that
πj (m) = 0, being πj : ∏i∈I Ki → Kj the canonical projection onto the field Kj .

PROOF. If LR is m-simple for every m, we take {Ki}i∈I = {R/m}m∈Max(R) and the
property is satisfied. Reciprocally assume R ⊂ ∏

i Ki is a subdirect product of {Ki} with
the additional property on the maximal ideals m. Let us prove that R is m-2-formally real

for each m ∈ Max(R). If we assume x2 + y2 ∈ m then, since there is some j such that
πj (m) = 0, we have πj (x)2 + πj (y)2 = 0 in the field Kj which is 2-formally real. So
πj (x), πj (y) = 0 and x, y ∈ ker πj = m. �

REMARK 5. When R turns out to be a field the above necessary and sufficient condi-
tion is that R must be 2-formally real.

4. Decomposability of sl2(R) × sl2(R)

In this section we consider the possibility of decomposing the Lie algebra sl2(R) ×
sl2(R) as a direct sum of ideals which are m-simple algebras for any m ∈ Max(R). Define

R2 := R×R with componentwise operations. We will identify sl2(R2) with sl2(R)×sl2(R)

in the standard way.

LEMMA 7. Let I be an ideal of the Lie ring sl2(R2), that is, I + I ⊂ I and

[I, sl2(R2)] ⊂ I . Assume that 1
2 ∈ R. Then there are ideals i, j � R such that I =

sl2(i) × sl2(j).

PROOF. Identifying sl2(R2) with sl2(R) × sl2(R), we may take I1 := {x ∈ sl2(R) :
(x, 0) ∈ I } and I2 := {x ∈ sl2(R) : (0, x) ∈ I }. Then these are ideals of sl2(R) hence by
Lemma 6 there are ideals i, j�R such that I1 = i sl2(R) and I2 = j sl2(R). It is easy to see that
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sl2(i)×sl2(j) ⊂ I . Assume now that (a, b) ∈ I , then [(a, b), sl2(R)×0] = [a, sl2(R)]×0 ⊂
I hence [a, sl2(R)] ⊂ i. From this, we can prove that a ∈ i in the following manner: write
a = r1h + r2e + r3f where {h, e, f } is the standard basis of sl2(R) such that [h, e] = 2e,
[h, f ] = −2f and [e, f ] = h. Then I � [[e, [a, h]], f ] = [[e,−2r2e + 2r3f ], f ] =
2r3[h, f ] = −4r3f . Thus r3f ∈ I . With similar arguments we prove r2e, r1h ∈ I . Thus
a ∈ i. Dually, b ∈ j and so I ⊂ sl2(i) × sl2(j). �

LEMMA 8. Let Φ be a ring and g a Φ-algebra (not necessarily a Lie algebra) which
is free as Φ-module. Let R be an algebra in algΦ that decomposes as a direct sum of two
ideals R = a ⊕ b. We write g(R) = g ⊗Φ R and g ⊗Φ a = g(a) for any ideal a � R.

Define I = g(a) × g(b) and J = g(b) × g(a). Then I and J are ideals of g(R)2 such that
g(R2) = I ⊕ J and:

1. AnnR(I) = {0} = AnnR(J ), and
2. if m ∈ Max(R) is a maximal ideal of R for which g(R) is a simple R/m-algebra, then

I and J arem-simple.

PROOF. Everything is straightforward but we will explicit the last assertion for the
ideal I :

I/mI ∼= g(a) × g(b)

mg(a) × mg(b)
∼= g(a)

mg(a)
× g(b)

mg(b)
∼=

(
g

mg
⊗ a) × (

g

mg
⊗ b) ∼= g

mg
⊗ R ∼= g(R)

mg(R)

and since g(R) is m-simple, the R/m-algebra g(R)
mg(R)

is simple. �

THEOREM 5. Let Φ be a ring, g a perfect Φ-algebra, which is free as Φ-module, and
R in algΦ such that every perfect ideal I of g(R) has the form g(a) for some ideal a � R.

Assume g(R2) = I ⊕ J where I, J � g(R2) such that AnnR(I) = AnnR(J ) = 0. Then there
exist ideals a, b � R such that R = a ⊕ b, I = g(a) × g(b) and J = g(b) × g(a).

PROOF. Since g2 = g then the algebras g(R) and g(R2) are also perfect. Then from

the decomposition g(R2) = I ⊕ J we get that I and J are perfect ideals and from here
I = I ∩ (g(R) × 0) + I ∩ (0 × g(R)) and similarly for J . From the assumption on the perfect
ideals of g(R) we get the existence of ideals a, b, c, d � R such that I = g(a) × g(b) and
J = g(c) × g(d). But since IJ = 0, then g(a)g(c) = 0 and g(b)g(d) = 0, which implies
ac = 0 and bd = 0. From here it is easy to see that ann(a) = c, ann(c) = a, ann(b) = d and
ann(d) = b. On the other hand, R = a ⊕ c = b ⊕ d. Also 0 = ann(I) = ann(a) ∩ ann(b) =
c ∩ d and similarly 0 = ann(J ) = ann(c) ∩ ann(d) = a ∩ b. Thus cd = 0 and ab = 0
implying c ⊂ ann(d) = b and b ⊂ ann(a) = c hence c = b and symmetrically a = d. So
I = g(a) × g(b) and J = g(b) × g(a) being R = a ⊕ b. �
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REMARK 6. Along the ideas in the proof of Theorem 5, it is easy to prove the follow-

ing result: If R2 splits in form R2 = I ⊕J where I, J �R2 such that annR(I) = annR(J ) = 0,
then there are ideals a, b � R such that R = a ⊕ b, I = a × b and J = b × a. The ideals
a and b are necessarily unique. It is also clear that we can apply Lemma 8 to sl2(Φ) and
then, any decomposition of R = a ⊕ b as s direct sum of ideals produces a decomposition

sl2(R2) = I ⊕ J also as a direct sum of ideals I = sl2(a)× sl2(b), J = sl2(b) × sl2(a) with
AnnR(I) = AnnR(J ) = 0 and I and J being m-simple for any m ∈ Max(R) (taking into

account Lemma 6). Reciprocally, applying Theorem 5, if sl2(R2) = I ⊕ J for some ideals
with AnnR(I) = AnnR(J ) = 0, then there is a decomposition of R as a direct sum of ideals
R = a ⊕ b such that I = sl2(a) × sl2(b) and J = sl2(b) × sl2(a).

5. Lorentz type algebra over rings of characteristic other than 2

In the first part of this section we consider an algebra R in algΦ such that 1/2 ∈ R and

also
√−1 ∈ R. We have seen in Lemma 1 that under these hypothesis, the Lorentz type

algebra over R is isomorphic to o(4; R). We have proved also in Lemma 6 that the R-algebra
sl2(R) is basically simple. We have also the following:

LEMMA 9. Let 1
2 ∈ R and J � sl2(R) an ideal. Assume x ∈ sl2(R) satisfies

[x, sl2(R)] ⊂ J . Then x ∈ J .

PROOF. Let x = r1h + r2e + r3f where {h, e, f } is the standard basis of the free R-
algebra sl2(R). Then [x, h] = −2r2e + 2r3f ∈ J and J � [e, [x, h]] = 2r3h hence r3h ∈ J

implying r3f ∈ J . With similar arguments r2e ∈ J and r1h ∈ J . Consequently x ∈ J . �

The following result is standard over algebraically closed fields of characteristic other
than 2.

PROPOSITION 5. LetR be an algebra with a square root of−1 and such that 1/2 ∈ R.
Then for the Lorentz type algebraLR we have:

LR
∼= sl2(R) ⊕ sl2(R) .

PROOF. Consider the Lie algebra sl2(R) with its usual basis {h := e11 − e22, e :=
e12, f := e21}, which satisfies [h, f ] = −2f , [h, e] = 2e and [e, f ] = h. Now, for i, j ∈
{1, 2, 3, 4} with i �= j , define in o(4) the elements

hα = −�
(
a1,2 + a3,4

)
, hβ = �

(
a1,2 − a3,4

)
,

vα = 1

2
(a1,3 − a2,4) + �

2
(a1,4 + a2,3), vβ = 1

2

(−a1,3 − a2,4
)+ �

2

(−a1,4 + a2,3
)
,

v−α = 1

2

(−a1,3 + a2,4
)+ �

2

(
a1,4 + a2,3

)
, v−β = 1

2

(
a1,3 + a2,4

)+ �

2

(−a1,4 + a2,3
)

,

where ai,j := eij − eji . These elements verify

[hα, vα] = 2vα, [hα, v−α] = −2v−α, [vα, v−α] = hα , (2)



LORENTZ AND POINCARÉ TYPE ALGEBRAS 323

that is to say, the identities (1). The isomorphism is now clear:

α : sl2(R) −→ I = 〈hα, vα, v−α〉
h �−→ hα

e �−→ vα

f �−→ v−α

We do the same to prove that J = 〈hβ, vβ, v−β 〉 is also isomorphic to sl2(R). Thus, any of
the 3-dimensional R-submodules 〈hα, vα, v−α〉 and 〈hβ, vβ, v−β 〉 is a subalgebra isomorphic
to sl2(R) and they satisfy [x, y] = 0 for any x ∈ 〈hα, vα, v−α〉 and any y ∈ 〈hβ, vβ, v−β 〉.
Thus, we have o(4) = I ⊕ J and I, J � o(4) (ideals of o(4)). Moreover, I ∼= sl2(R) ∼= J

and so we have proved the proposition. �

REMARK 7. For a complex vector space V we are denoting by V R its “reallification”,

that is the underlying real vector space of V . If A is a complex algebra, by AR we denote the
underlying real algebra of A. An easy observation is that simplicity of the complex algebra

A implies simplicity of the real algebra AR. In a more general fashion assume that R is an
algebra in algΦ . If S is an algebra in algΦ and R a subalgebra of S, then for any S-algebra V

we will denote by V R the restriction of scalars algebra of V .

For any algebra R in algΦ , we may construct R̄ := R × R where the product in R̄ is
given by

(x, y)(u, v) := (xu − yv, xv + yu) . (3)

We have a canonical monomorphism R → R̄ such that r �→ (r, 0). Regardless of the fact

that
√−1 ∈ R or not, in the new algebra R̄ we always have

√−1 ∈ R̄. Note that if 1
2 ∈ R

and the starting algebra R has a square root of −1 then R̄ ∼= R × R where R × R is the
R-algebra with componentwise product (in fact the isomorphism R̄ → R × R is (a, b) �→
(a + √−1 b, a − √−1 b).

At this point we will need to use the (algebraic) groups μn. For any algebra R in the
category algΦ , the group μn(R) is nothing but the group of elements x ∈ R such that xn = 1
(so x ∈ R×). However for future reference we must introduce this as an algebraic group in
the sense of affine group schemes. Thus, denoting by Grp the category of groups, the affine
group scheme μn : algΦ → Grp is defined as the one such that for any algebra R in algΦ ,
we have R �→ μn(R) := {x ∈ R× : xn = 1}. It is an algebraic group whose representing
Hopf algebra is Φ[x]/(xn − 1).

LEMMA 10. If 1
2 ∈ R the automorphism group AutR(R̄) is isomorphic to μ2(R) (the

group of order-two elements in R). The isomorphism θR : AutR(R̄) ∼= μ2(R) may be chosen
to be natural in R: for any homomorphism of Φ-algebras f : R → S there is a commutative
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diagram

AutR(R̄) μ2(R)

AutS(S̄) μ2(S)

θR

��

θS ��

f ∗
��

f∗

��

where f∗ is the restriction of f from μ2(R) to μ2(S) and f ∗ maps any R-automorphism α of

R̄ to the S-automorphism β of S̄ such that β(0, 1) = (f (x), f (y)) where α(0, 1) = (x, y).

PROOF. Let α ∈ AutR(R̄), then α(0, 1) = (a, b) such that a2 − b2 = −1 and ab = 0.
Then α−1(0, 1) = (c, d) where c2 − d2 = −1 and cd = 0. Since α−1α = 1 we have
(0, 1) = α−1(a, b) = (a, 0) + b(c, d) = (a + bc, bd). Thus b, d ∈ R× and since ab = 0, we
have a = 0 and b2 = 1. Thus any automorphism α acts in the form α(0, 1) = (0, b) where

b2 = 1. So the map AutR(R̄) → μ2(R) such that α �→ b is a group isomorphism that we can
denote by θR . The assertion on the naturality of θR is straightforward. �

REMARK 8. In the language of group schemes, the above lemma says that there is an
isomorphism of affine group schemes θ : Aut(Φ̄) ∼= μ2.

LEMMA 11. If 1
2 ∈ R the ideals of the R-algebra sl2(R̄)R are exactly the ideals of the

R̄-algebra sl2(R̄).

PROOF. We have to prove that if I � sl2(R̄)R then �I ⊂ I where � = (0, 1). Take
x ∈ I , then x = αh + βe + γf for some α, β, γ ∈ R̄. So I � [x, �h] = −2β�e + 2γ �f and
also I � [e, [x, �h]] = 2γ �h hence I � [f, [e, [x, �h]]] = 4γ �f and so �γf ∈ I . �

THEOREM 6. Let R be an algebra in algΦ with 1
2 ∈ R. Take as before R̄ and consider

sl2(R̄). Then

LR
∼= sl2(R̄)R .

In particular, the (real) Lorentz algebraLR is isomorphic to the reallification of sl2(C).

PROOF. One of the square roots of −1 in R̄ is � = (0, 1) and indeed R̄ = R ⊕ �R

(as R-modules). Then also sl2(R̄) = sl2(R) ⊕ � sl2(R) as R-modules. Thus, the system

{h, e, f, �h, �e, �f } is a basis of sl2(R̄)R .

We can define now a new basis in the Lie algebra LR , denoted by B = {xi}6
i=1, as

follows:

x1 := −2(α + β + w), x2 := 2(α + v), x3 := α − u ,

x4 := 2(α − u + v), x5 := 2(β + w), x6 := γ + w , (4)
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where {α, β, γ, u, v,w} is the obvious basis obtained from the generic expression of an ele-
ment in o(1, 3):

α = e12 + e21, β = e13 + e31, γ = e14 + e41 ,

u = e23 − e32, v = e24 − e42, w = e34 − e43 . (5)

We can verify now that denoting h′ := �h, e′ := �e, f ′ := �f , the multiplication table in
sl2(R̄)R is

h e f h′ e′ f ′
h 0 2e −2f 0 2e′ −2f ′
e −2e 0 h −2e′ 0 h′
f 2f −h 0 2f ′ −h′ 0
h′ 0 2e′ −2f ′ 0 −2e 2f

e′ −2e′ 0 h′ 2e 0 −h

f ′ 2f ′ −h′ 0 −2f h 0

and the new one in LR, with the new basis, is

x1 x2 x3 x4 x5 x6

x1 0 2x2 −2x3 0 2x5 −2x6

x2 −2x2 0 x1 −2x5 0 x4

x3 2x3 −x1 0 2x6 −x4 0
x4 0 2x5 −2x6 0 −2x2 2x3

x5 −2x5 0 x4 2x2 0 −x1

x6 2x6 −x4 0 −2x3 x1 0

It is clear then that sl2(R̄)R ∼= LR . �

6. Structure of Lorentz type algebras in characteristic two

In order to study Lorentz type algebras in characteristic two we recall the functor
o(3) : algΦ → LieΦ such that, for any algebra R in algΦ , we define o(3; R) as the free
R-module o(3; R) = R(e12 − e21) ⊕ R(e13 − e31) ⊕ R(e23 − e32) with the Lie algebra struc-
ture induced by [e12 − e21, e13 − e31] = −(e23 − e32), [e12 − e21, e23 − e32] = e13 − e31 and
[e13 − e31, e23 − e32] = −(e12 − e21). We will call this, the o(3)-type functor.

LEMMA 12. For a field K of characteristic 2, the derivation algebra of o(3,K) is
isomorphic to the Lie algebra of symmetric 3 × 3 matrices of zero trace with entries in K.
Hence dim Dero(3,K) = 5.

PROOF. The basis b1 := e12 + e21, b2 = e13 + e31 and b3 = e23 + e32 of o(3,K)

multiplies according to the rule [bi, bj ] = bk (where i, j, k ∈ {1, 2, 3} cyclically). Taking
d ∈ Dero(3,K) and writing d(bi) = ∑

xij bj , the equations d([bi, bj ]) = [d(bi), bj ] +
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[bi, d(bj )] give:

xij = xji, (i �= j),
∑

xii = 0 .

�

PROPOSITION 6. We consider now the Lorentz algebra L := LK over fields K of
characteristic two. Then L is not simple: it has a three dimensional ideal I which is minimal
and maximal, satisfies [I, I ] = 0 and L/I ∼= o(3;K) which is a simple Lie algebra. This
ideal is unique.

PROOF. We consider the system {eij + eji} such that 1 ≤ i �= j ≤ 4, basis of L and
denote by b1 := s12 := e12 + e21, b2 := s13 := e13 + e31, . . . , b6 := s34 := e34 + e43. We
take I = 〈x1, x2, x3〉, where x1 = b1 + b6, x2 = b2 + b5 and x3 = b3 + b4. It is easy to check
that I satisfies the following conditions:

• [I, I ] = 0.
• [I,L] ⊂ I

Then I is an ideal of L. To prove that I is minimal we will prove that the ideal generated by
any element g ∈ I is I itself. This is trivial if g = x1, x2 or x3. So we take a generic element
0 �= g = ∑

i λixi ∈ I . Denote the ideal generated by g as (g). We have [[g, b1], b3] = λ3x1.
So if λ3 �= 0 we have x1 ∈ (g) and therefore I = (x1) ⊂ (g) hence (g) = I . If on the
contrary λ3 = 0, then we consider the relation [[g, b1], b2] = λ2x1. Thus, if λ2 �= 0 we have
x1 ∈ (g) and again I = (x1) ⊂ (g) implying (g) = I . If λ2 = 0, then g = λ1x1 �= 0, and
so (x1) = (g) = I . Summarizing: the ideal generated by any nonzero element in I is I itself.
So I is minimal. Let us prove now that I is also maximal. For this, we will prove that the
quotient algebra L/I is simple. Let us denote by x̄ the class of x ∈ L module I . Then a basis

of the quotient algebra is {b̄1, b̄2, b̄3} and the multiplication table of this algebra is

b̄1 b̄2 b̄3

b̄1 0 b̄3 b̄2

b̄2 0 b̄1

b̄3 0

On the other hand, the Lie algebra o(3;K), as a vector space is the three-dimensional span
o(3;K) = 〈e12 + e21, e13 + e31, e23 + e32〉 and if we make the multiplication table of o(3;K)

relative to the specified basis we will see immediately the isomorphism L/I ∼= o(3;K).
Since o(3;K) is simple we have also the maximality of the ideal I . To prove that I is unique,
assume that J is a different ideal satisfying the same properties as I . Then J is also minimal
and maximal, so that L = I ⊕ J . Consequently

[L,L] = [I + J, I + J ] = [I, I ] + [I, J ] + [J, J ] = 0

which is a contradiction. �
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7. Lorentz algebra over finite fields

In this section we investigate the simplicity of o(1, 3) over a finite field Fq . Specifically,
we consider the Lie algebra

L := LFq =

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

0 x y z

x 0 s t

y −s 0 u

z −t −u 0

⎞
⎟⎟⎠ : x, y, z, s, t, u ∈ Fq

⎫⎪⎪⎬
⎪⎪⎭ .

We know that q must be a power q = pn of some prime number p (and n > 0). Since we
have already studied the Lorentz type algebra over fields of characteristic 2 we assume that
p is odd. By Theorem 3 the simplicity of L is equivalent to the fact that the field Fq has no
square root of −1.

We start this subsection investigating under what conditions a finite field Fq (of charac-
teristic other than 2) has a square root of −1. This is included here only for selfcontainedness
reasons.

LEMMA 13. If q is a positive integer, the factorization xq − x = (x2 + 1)(xq−2 −
xq−4 + · · · + x3 − x) is only possible when q is of the form q = 4n + 1.

PROOF. If q = 4n + 1 we can define the polynomial

2n∑
k=1

(−1)k+1xq−2k = xq−2 − xq−4 + · · · + x3 − x

and the factorization holds (observe that we have used the fact that q is of the form 4n+1). On
the other hand, if xq −x is divisible by x2 +1, then the quotient is xq−2 −xq−4 +· · ·+x3 −x,

so that the different summands are (−1)k+1xq−2k. Equating (−1)k+1xq−2k = −x we get that
k must be an even number k = 2n and q − 2k = 1. Hence q = 4n + 1. �

PROPOSITION 7. Let q = pn where p is an odd prime number, then Fq contains a
square root of −1 if and only if q is of the form q = 4n + 1.

PROOF. Recall that Fq is the splitting field of xq − x over Zp . Thus all the elements
in Fq satisfy xq − x = 0. If q = 4n + 1 the factorization in Lemma 13 holds and so there is

a square root of −1 in the field. Reciprocally, if
√−1 ∈ Fq then there is an element q ∈ F×

q

of order 4 (of course q = √−1). Therefore the order of the group F×
q is a multiple of 4. But

this order is q − 1 whence q is of the form 4n + 1. �

COROLLARY 2. The Lorentz type algebra LZp over the field Zp is simple if and only
if p is odd and of the form p = 4k + 3.

Finally we investigate when is an odd prime power pn of the form 4n + 1.
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PROPOSITION 8. Let p be an odd prime number. Then:

• If p = 4k + 1, then pn is also of the form 4m + 1.
• If p = 4k + 3, then pn is of the form 4m + 1 if and only if n is even.

PROOF. Define A to be the positive integers of the form 4n+1 and B those of the form
4n + 3. Since A is closed under multiplication the first assertion is trivial. On the other hand
BB ⊂ A and AB ⊂ B hence multiplying an even number of elements of B we get an element
of A:

2k︷ ︸︸ ︷
B · · ·B ⊂ A, and

2k+1︷ ︸︸ ︷
B · · · B ⊂ B .

�

COROLLARY 3. Consider the Lorentz type algebra LFq over a finite field Fq where

q = pn and p is odd. ThenLFq is simple if and only if n is odd and p of the form p = 4k+3.

8. Automorphisms and derivations of the Lorentz type algebra LR if 1
2 ∈ R

In this section we pursue to describe the algebraic group Aut(LΦ) when 1
2 ∈ Φ. So

consider the category of groups Grp and the group functor Aut(LΦ) : algΦ → Grp such
that R �→ AutR(LR). By section 5, Theorem 6, we know that LR can be identified with

sl2(R̄)R. Now there are two possibilities for R̄: if
√−1 ∈ R then R̄ ∼= R2 = R × R with

componentwise product. In this case LR can be identified with sl2(R2)R ∼= sl2(R)2 (as

R-algebra). If
√−1 /∈ R then R̄ is an R-algebra with

√−1 ∈ R̄. In any case

LR = sl2(R̄)R ∼= sl2(R) ⊗R R̄ (6)

and we would like to describe AutR(LR) in terms of the automorphism group AutR̄(sl2(R̄))

(automorphisms of R̄-algebras) and of AutR(R̄). In order to do that we may get inspired by
the result :

THEOREM 7 ([6, Corollary 2.28 (b)]). Let A be a perfect, central algebra over a field
Φ and B be a unital commutative associative Φ-algebra. Then, after identifying AutΦ(B)

with a subgroup of AutΦ(A ⊗Φ B) via g �→ id ⊗ g , we have AutΦ(A ⊗Φ B) = AutB(A ⊗Φ

B) � AutΦ(B) (semidirect product).

But since our aim is the description of the algebraic group Aut(LΦ), we need to trans-
late the mentioned result of [6] to the setting of algebraic groups (in affine group schemes
ambient).

8.1. On a result of G. Benkart and E. Neher for algebraic groups. In this subsec-
tion we give a version of the result of G. Benkart and E. Neher ([6, Corollary 2.28 (b)]) for
algebraic groups. Let Φ be a field, A a Φ-algebra and B an algebra in algΦ . We consider the
following group functors:
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1. AutΦ(A ⊗ B) : algΦ → Grp such that R �→ AutR(A ⊗ B ⊗ R) = AutR(ARB ), where
⊗ denotes ⊗Φ .

2. AutΦ(B) : algΦ → Grp such that R �→ AutR(BR) = AutR(RB).
3. AutB(A ⊗ B) : algB → Grp such that S �→ AutS((A ⊗ B) ⊗B S).
4. Composing the functor algΦ → algB such that R �→ R ⊗ B with AutB(A ⊗ B), we

get a group functor R : algΦ → Grp such that R(R) = AutRB ((A⊗B)⊗B RB). This
is a corestriction functor R = RB/Φ(AutB(A ⊗ B)) (see [16, p. 329]). Taking into
account that there is a canonical isomorphism AB ⊗B RB

∼= ARB of RB -algebras, we
may assume that under the suitable identification, R(R) = AutRB (ARB ).

Of course we have a monomorphism of group functors j : AutΦ(B) → AutΦ(A ⊗ B) such
that for any R in algΦ , the map jR : AutR(BR) → AutR(A ⊗ BR) is given by z �→ 1 ⊗ z.
There is also a homomorphism of group functors i : R → AutΦ(A ⊗ B) such that for any
R in algΦ , we have iR : AutRB (ARB ) → AutR(ARB ) where for any RB-automorphism f

of ARB , we have iR(f ) = f considered as an R-automorphism of ARB . Since i is also
a monomorphism of group functors we have two subgroups AutΦ(B) (identified with the
image of j ) and i(R) of AutΦ(A ⊗ B).

LEMMA 14. For any R in algΦ we have im(iR) ∩ im(jR) = 1.

PROOF. Assume 1 ⊗ f ∈ AutR(ABR) ∩ AutRB (ARB ) where f ∈ AutR(BR). Then,
since 1 ⊗ f ∈ AutRB (ARB ) we have

(1 ⊗ f )(a ⊗ r ⊗ b) = (1 ⊗ f )[(r ⊗ b)(a ⊗ 1 ⊗ 1)] = (r ⊗ b)(1 ⊗ f )(a ⊗ 1 ⊗ 1)

(r ⊗ b)(a ⊗ 1 ⊗ 1) = a ⊗ r ⊗ b .

�

For any algebra R in algΦ , there is an action of im(jR) on im(iR) by automorphisms. To
be more precise we may define ϕ : im(jR) → Aut(im(iR)) such that for any f ∈ AutR(BR),

we have ϕ(1 ⊗ f ) : im(iR) → im(iR) given by ϕ(1 ⊗ f )(g) = (1 ⊗ f )g(1 ⊗ f −1) for
any g ∈ AutRB (ARB ). It is not difficult to realize that this map is well defined. So we may
consider the semidirect product

im(jR) � im(iR)

with multiplication

(g1, 1 ⊗ f1)(g2, 1 ⊗ f2) = (g1(1 ⊗ f1)g2(1 ⊗ f −1
1 ), 1 ⊗ f1f2) ,

and the map ΩR : im(jR) � im(iR) → AutR(ARB ) such that (g, 1 ⊗ f ) �→ g(1 ⊗ f ). This
map is a group homomorphism and a monomorphism by Lemma 14. So we have a group
monomorphism Ω . If we want to make of ΩR an epimorphism, we need extra hypothesis.
So assume that A is perfect and central (see [6, Subsection 2.1] for definitions). We must
also take into account item (b) of [6, Corollary 2.23] according to which, the centralizer
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of the tensor product A ⊗ RB is RB
∼= BR . Thus, assume h ∈ AutR(ARB ), then this h

induces an automorphism of the centralizer C(ARB ) of ARB as Φ-algebra. Indeed, the induced

automorphism is h̄ : C(ARB ) → C(ARB ) where h̄(T ) = hT h−1 for any T ∈ C(ARB ). Since

C(ARB ) ∼= BR we may consider h̄ ∈ AutR(BR). On the other hand h is h̄-semilinear in

the sense that h(T · a) = h̄(T ) · h(a) for any a ∈ A and T ∈ C(ARB ). Since 1 ⊗ h̄−1 is

h̄−1 semilinear, the composition g := h(1 ⊗ h̄−1) is an RB-linear automorphism of ARB .

Moreover, ΩR(g, 1 ⊗ h̄) = h. Summarizing:

PROPOSITION 9. Let A be a central perfect Lie algebra over a field Φ. If R and B

are algebras in algΦ then there is a group isomorphism ΩR : AutR(BR) � AutRB (ARB ) →
AutR(ARB ) which is natural in R.

Now we interpret this result in terms of an isomorphism of group functors. More pre-
cisely we consider the group functors AutΦ(A ⊗ B), AutΦ(B) and the corestriction group
functor R previously defined. Define

Ω : AutΦ(B) �R → AutΦ(A ⊗ B)

where for each algebra R in algΦ , the map ΩR is the previously defined. Then, this is an iso-
morphism of group functors (and if B is a finite-dimensional Φ-algebra, Ω is an isomorphism
of algebraic groups in the sense of affine group schemes with finitely generated representing
Hopf algebra).

Now we are willing to apply the isomorphism

Ω : AutΦ(B) �R ∼= AutΦ(A ⊗ B) (7)

taking B = Φ̄ (recall 3)) and A = sl2(Φ). Thus we get

THEOREM 8. For the algebraic group of the Lorentz type algebraLΦ we have

AutΦ(LΦ) ∼= AutΦ(sl2(Φ̄
Φ) ∼= AutΦ(sl2(Φ) ⊗ Φ̄) ∼= AutΦ(Φ̄) �R . (8)

Thus the description of the algebraic group Aut(LΦ) will be fully achieved once we
study:

1. The algebraic group AutΦ(Φ̄) : algΦ → Grp, such that R �→ AutR(R̄). This has been
described in Lemma 10 and turns out to be isomorphic to μ2.

2. The corestriction group functor R : algΦ → Grp such that for any R in algΦ , we have

R �→ AutRB (ARB ). Since B = Φ̄ we have RB
∼= R̄ and so ARB

∼= AutR̄(sl2(R̄)). So

we may take the corestriction functor to be R : R �→ AutR̄(sl2(R̄)).

Consequently we must focus on AutR(sl2(R)) for any R in algΦ (so the conclusions of

this description will be applied to AutR̄(sl2(R̄))). Our philosophy is that the natural ambient
to study AutR(sl2(R)) is that of the algebraic group Aut(sl2(Φ)) : algΦ → Grp which is the
affine group scheme R �→ AutR(sl2(R)). For this we will need the paraphernalia in the next
paragraph.
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Consider as before, the category of groups Grp and the affine group scheme

PGLn : algΦ → Grp

such that PGLn := GLn / Gm (see [11, Appendix A.2, p. 307]), where Gm(R) := R× is

the affine group scheme whose associated Hopf algebra is Φ[x, x−1] (Laurent polynomials
in x) and GLn the general linear affine group scheme. Following [11], we have a morphism
Ad : GLn → GL(Mn(Φ)) whose kernel is Gm and its image PGLn. Composing the in-
jection PGLn → GL(Mn(Φ)) with the canonical morphism GL(M2(Φ)) → Aut(sl2(Φ))

we have a morphism PGL2 → Aut(sl2(Φ)) which by abuse of notation we also denote by
Ad : PGL2 → Aut(sl2(Φ)). The following result is a consequence of [11, Theorem 3.9,
p.77] and, as we have been informed, can be traced to a 1961 paper by Steinberg ([19]).

LEMMA 15. If Φ is a field of characteristic other than 2, the adjoint map Ad is an
isomorphism of algebraic group schemes PGL2 → Aut(sl2(Φ)).

PROOF. We know that dim Aut(sl2(Φ)) = 3 hence this is a smooth affine group
scheme. We know that the differential ad : pgl2(Φ) → Der(sl2(Φ)) of Ad is an isomor-
phism (under the hypothesis in the Lemma pgl2(Φ) ∼= sl2(Φ)). If K is the algebraic closure
of Φ, applying [19, 4.6, 4.7, p. 1123] and [16, Proposition (22.5), p. 340] we get the required
isomorphism. �

As a corollary Aut(sl2(R)) ∼= PGL2(R) for any algebra R in algΦ and in particular:
Aut(sl2(Φ)) ∼= PGL2(Φ) for a field of characteristic other than 2, and Der(sl2(Φ)) ∼= sl2(Φ)

applying the Lie functor. Of course this allows us to explicit the group of automorphisms of
the Lorentz algebra over fields of characteristic not two.

Recalling the isomorphism

AutΦ(LΦ) ∼= AutΦ(Φ̄) �R ∼= μ2 �R
given in (8) of Theorem 8, we get AutR(LR) ∼= AutR(R̄)�AutR̄(sl2(R̄)), for any R in algΦ .

Taking into account Lemma 15 and Lemma 10, we get AutR(LR) ∼= PGL2(R̄) � μ2(R).

Now, if
√−1 ∈ Φ we know that R̄ ∼= R2 and so PGL(R̄) ∼= PGL(R)2 which allows us to

write

AutR(LR) ∼= PGL2(R)2 � μ2(R) .

Summarizing these comments we have

THEOREM 9. For a field Φ with 1
2 ,

√−1 ∈ Φ we have

AutΦ(LΦ) ∼= PGL2
2 �μ2 .

In particular the group of Φ-points of Aut(LΦ) is PGL2(Φ)2 � μ2(Φ). The derivation

algebra of the Lorentz type algebraLΦ is isomorphic to sl2(Φ)2. Thus the derivations ofLΦ
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are inner. The automorphisms of LΦ are inner, more precisely if we identify LΦ with I ⊕ J

where I = J = sl2(Φ), any φ ∈ Aut(LΦ) fixing I and J is of the form(
x 0
0 y

)
�→

(
pxp−1 0

0 qyq−1

)
=
(

p 0
0 q

)(
x 0
0 y

)(
p−1 0

0 q−1

)
,

and any φ ∈ Aut(LΦ) swapping I and J is of the form(
x 0
0 y

)
�→

(
pyp−1 0

0 qxq−1

)
=
(

0 p

q 0

)(
x 0
0 y

)(
0 q−1

p−1 0

)
,

for some p, q ∈ GL2(Φ).

In this paragraph we use the finite constant group (see [20, 2.3, p. 16]) Z2. This is the

affine group scheme whose representing Hopf algebra is Φ2 := Φ × Φ with componentwise
product and Hopf algebra structure define in the reference above. Thus, for R in algΦ we

have Z2(R) := homΦ(Φ2, R) and so any element f ∈ Z2(R) is completely determined by
e1 := f (1, 0) and e2 := f (0, 1) which are orthogonal idempotents in R. This produces a
decomposition R = Re1 ⊕ Re2 as a direct sum of two ideals and reciprocally any set {e1, e2}
of orthogonal idempotents of R, whose sum is 1, gives a decomposition R = Re1 ⊕ Re2,

hence produces a homomorphism f : Φ2 → R such that f (1, 0) = e1 and f (0, 1) = e2. Of
course, if R has no idempotents others than 0 and 1, the abstract group of Z2(R) is isomorphic
to the group Z2 of integers module 2. The set Z2(R) is in one-to-one correspondence with the
set of decompositions of R as a direct sum of ideals.

REMARK 9. It is a standard result that if 1
2 ∈ Φ, there is an isomorphism of affine

group schemes Z2
∼= μ2.

To finish this section we apply Theorem 8 to the case in which 1
2 ∈ Φ but

√−1 /∈
Φ. Observe that the correstriction functor R in this case is R(R) = AutR̄(sl2(R̄)). Since

Aut(Φ̄) ∼= μ2 (Remark 8), we have:

THEOREM 10. Let Φ be a field with 1
2 ∈ Φ and with no square root of −1. Then

the affine group scheme Aut(Lφ) is R � Z2 and so for any algebra R in algΦ we have

AutR(LR) ∼= PGL2(R̄)�Z2(R). In particular, the automorphism group of the (real) Lorentz
algebra is PGL2(C) � μ2(R).

COROLLARY 4. If Φ is a field of characteristic other than 2, dim(Aut(LΦ)) = 6. The
affine group scheme Aut(LΦ) is smooth.

PROOF. If
√−1 ∈ Φ we apply Theorem 9 and then Aut(LΦ) ∼= PGL2

2 �Z2 hence

dim Aut(LΦ) = dim PGL2
2 = 6 since dim Z2 = 0. If

√−1 �∈ Φ we apply Theorem 10
and so Aut(LΦ) ∼= R � Z2. Thus dim Aut(LΦ) = dimR where R is the corestriction
functor R = RΦ̄/Φ(AutΦ̄(sl2(Φ̄))). Applying now [16, (21.7) Proposition, p.337] we have
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dimR = [Φ̄ : Φ] · dim(AutΦ̄ (sl2(Φ̄))) = 2 · 3 = 6. Since the derivation algebra Der(LΦ) is
also 6-dimensional we get the required smoothness. �

9. Automorphisms of LK in the case of characteristic 2

In this section the ring of scalars Φ is taken to be a field K, algebraically closed of
characteristic 2 and the Lie K-algebra o(3;K) (as introduced at the beginning of section 6),
will be denoted simply by o(3) if the reference to the field is not crucial . Also the notation
O(3) will stand for the algebraic group of 3 × 3 matrices M ∈ GL3(K) such that MMt = 1.

PROPOSITION 10. The algebraic group O(3) is connected and of dimension 3.

PROOF. First of all, note that O(3) is a connected algebraic group. In fact, M ∈ O(3)

if and only if

M =
⎛
⎝ a b 1 + a + b

s t 1 + s + t

1 + a + s 1 + b + t 1 + a + b + s + t

⎞
⎠ ,

where 1 + a + b + s + t + at + bs = 0. Thus, as an affine variety the representing Hopf
algebra of the affine group scheme whose group of K-points is O(3) is H := K[a, b, s, t]/I
where I is the ideal generated by 1 + a + b + s + t + at + bs. But since the ideal I is prime
H has no idempotents other that 0 and 1. Thus, taking into account [17, Proposition 3.2 and
Definition 3.3, p. 208], O(3) is connected. Also by using this algebraic geometry ideas we
recognize the fact that

dim O(3) = 3 . (9)

Indeed, the set S = {a, b, s} satisfies that K[S] is a polynomial algebra and H is finitely
generated as a K[S]-module. (see [17, 16.1 (a)]). �

Consider the three-dimensional ideal I = 〈x1, x2, x3〉 of LK (see Proposition 6) and
f : LK → LK an automorphism. Then f (I) = I and we can consider the induced map

f̄ : LK/I → LK/I . Since LK/I ∼= o(3) we may identify these algebras and consider

f̄ : o(3) → o(3). It is routinary to prove that f̄ ∈ Aut(o(3)) ∼= O(3). Thus we have a map
φ : Aut(LK) → O(3) such that φ(f ) is the image of f̄ in O(3) and it is straightforward to
see that φ is a group homomorphism. We want to prove that φ is an epimorphism.

PROPOSITION 11. φ is an epimorphism.

PROOF. Consider the 3-dimensional K-vector space V := K3 endowed with the cross-
product, that is x ∧ y = (s2t3 + s3t2, s1t3 + s3t1, s1t2 + s2t1) where x = (s1, s2, s3), y =
(t1, t2, t3). We will have the occasion to use also the inner product 〈x, y〉 := s1t1 + s2t2 + s3t3.
We know that V is a Lie algebra relative to the product ∧. Furthermore, V ×V is a Lie algebra
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relative to

[(x, y), (z, t)] := (x ∧ z, x ∧ z + x ∧ t + y ∧ z),∀x, y, z, t ∈ V .

It is easy to see that V × V ∼= LK where 0 × V corresponds to the 3-dimensional ideal I of
LK. More precisely, if we denote by i, j, k the vectors of the canonical basis of V , then the
isomorphism acts in the form

(i, 0) �→ b1,

(j, 0) �→ b2,

(k, 0) �→ b3,

(0, i) �→ x1,

(0, j) �→ x2,

(0, k) �→ x3 . (10)

So take now an automorphism g : o(3) → o(3). We know that relative to the basis
{b1, b2, b3} of o(3) such that [bi, bj ] = bk (cyclically), the matrix of g is orthogonal. So the
rows of the matrix of g relative to the mentioned basis are three vectors ai ∈ V , i = 1, 2, 3
such that ai ∧ aj = ak (cyclically) and 〈ai, ai〉 = 1 (also 〈ai, aj 〉 = 0 if i �= j ). Now define
f : V × V → V × V such that

f (i, 0) = (a1, α1a1), where α1 ∈ K×,

f (j, 0) = (a2, α2a2), where α2 ∈ K×,

f (k, 0) = (a3, α3a3), where α3 ∈ K× , (11)

and the scalars satisfy α1 + α2 + α3 �= 1 (this choice is possible since K is an infinite field).
Next take α0 = α1 + α2 + α3 + 1 �= 0 and define

f (0, i) = (0, α0a1),

f (0, j) = (0, α0a2),

f (0, k) = (0, α0a3) . (12)

Now it can be proved that f induces an automorphism of LK
∼= V ×V and that φ(f ) = f̄ =

g . Thus φ is an epimorphism. �

Thus φ is an epimorphism and we define G := ker(φ). So, we have a short exact
sequence

1 → G → Aut(LK) → O(3) → 1 (13)

and we would like to find out more about the group G. The elements f ∈ G verify that

f (bi) = bi + x(i) where each x(i) ∈ I (i = 1, 2, 3). If we assume that f (xi) = ∑
j aij xj and

take into account the conditions [xi, bi] = 0 and [xi, bj ] = xk (this last assertion meaning
that i �= j and k ∈ {1, 2, 3} \ {i, j }), then we find that aij = 0 for i �= j and a11 = a22 = a33.
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Thus, the matrix of f in the basis {x1, x2, x3, b1, b2, b3} is of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0
0 a11 0 0
0 0 a11

1 0 0
∗ 0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We assume now that x(i) = ∑
j λij xj . Then, since [b1, b2] = b3, applying f we have

[b1 + x(1), b2 + x(2)] = b3 + x(3). Thus, [b1, x
(2)] + [b2, x

(1)] = x(3) and from here we get⎧⎪⎪⎨
⎪⎪⎩

λ31 = λ13,

λ32 = λ23,

λ33 = λ11 + λ22 .

Similarly applying f to [b2, b3] = b1 we get⎧⎪⎪⎨
⎪⎪⎩

λ12 = λ21,

λ13 = λ31,

λ11 = λ22 + λ33 ,

and so cyclically we conclude that the matrix of f is⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0
0 a11 0 0
0 0 a11

λ11 λ12 λ13 1 0 0
λ12 λ22 λ23 0 1 0
λ13 λ23 λ11 + λ22 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

So using 3 × 3 blocks we see that G =
{(

a · 13 0
M 13

)
: a ∈ K×,Mt = M, tr(M) = 0

}
.

Thus, taking into account equation (9), since dim(G) = 6, from the existence of the short
exact sequence (13), we conclude that

dim(Aut(LK)) = 9 .

This fact is in contrast with the results for characteristic �= 2, where as a consequence of
Corollary 4, the dimension of the automorphism group of Lorentz type algebras is 6.

THEOREM 11. The algebraic group Aut(LK) is connected and 9-dimensional.

PROOF. We already know that dim Aut(LK) = 9. For the connectedness property
we will apply [17, Proposition 3.11, p. 210] to the above short exact sequence (13). We
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need to show that G is connected. But, G ∼= K× × E where E is a vector space (regarded
as an affine variety). Concretely, E is the space of traceless symmetric matrices. Thus E is
connected and so is G. Consequently [17, Proposition 3.11, p. 210] implies the connectedness
of Aut(LK). �

10. Derivation algebra of LK in characteristic two

In this section, we will consider the identification of LK with V × V as in the previous
section.

THEOREM 12. For a field K of characteristic 2 we have:

dim(Der(LK)) = 12 .

PROOF. Let d ∈ Der(LK) where K is a field of characteristic 2, so d : V × V →
V × V . There are four linear maps α, β, γ, δ such that d(x, 0) = (α(x), β(x)) and d(0, x) =
(γ (x), δ(x)). Taking in to account that d is a derivation, we get the following set of identities

1. x ∧ α(y) + α(x) ∧ y + α(x ∧ y) + γ (x ∧ y) = 0
2. x ∧ α(y) + α(x) ∧ y + x ∧ β(y) + β(x) ∧ y + β(x ∧ y) + δ(x ∧ y) = 0,
3. x ∧ γ (y) + γ (x ∧ y) = 0,
4. α(x) ∧ y + x ∧ γ (y) + x ∧ δ(y) + δ(x ∧ y) = 0,
5. x ∧ γ (y) + γ (x) ∧ y = 0.

A straightforward computation reveals that the identity (5) implies the existence of a
scalar λ ∈ K such that γ (x) = λx for all x ∈ V . As a consequence the identity (3) is
automatically satisfied. Now, since we now γ , we may determine α using equation (1). From
this, we get that the matrix of α, in canonical basis, is⎛

⎝ b1,1 b1,2 b1,3

b1,2 b2,2 b2,3

b1,3 b2,3 λ + b1,1 + b2,2

⎞
⎠ .

From the equation (4) we obtain that the matrix of δ is of the form:⎛
⎝ c1,1 b1,2 b1,3

b1,2 b1,1 + b2,2 + c1,1 b2,3

b1,3 b2,3 λ + c1,1 + b2,2

⎞
⎠ .

Finally, equation (2) gives that the matrix of β is of the form:⎛
⎝ f1,1 f1,2 f1,3

f1,2 f2,2 f2,3

f1,3 f2,3 λ + b1,1 + c1,1 + f1,1 + f2,2

⎞
⎠ .

So the free parameters appearing in d are:

λ, b11, b22, b12, b13, b23, c11, f11, f22, f12, f13, f23 ,
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hence

dim(Der(LK)) = 12 .

�

10.1. Non-smoothness of Aut(LΦ) in characteristic 2. Consider now the affine
group scheme Aut(LΦ) : algΦ → Grp, where Φ is a field of characteristic 2. The dimension
of this algebraic group is dim Aut(LK) where K is the algebraic closure of Φ. As we have
proved in previous sections dim Aut(LK) = 9 hence dim(Aut(LΦ)) = 9. Of course, we have
Lie(Aut(LΦ)) = Der(LΦ) and dim(Lie(Aut(LΦ))) = dim(Der(LΦ)) = dim(Der(LK)) =
12 by Theorem 12. Thus we have

dim(Lie(Aut(LΦ))) = 12

and so the affine group scheme Aut(LΦ) is not smooth.

11. Structure of the Poincaré algebra

The Poincaré group is the inhomogeneous Lorentz group, that is, the group generated by
the Lorentz group plus translations. Similarly the Poincaré algebra p over the field K is the

inhomogeneous Lorentz algebra. We can define it as the direct sum p =
(

0 K4

0 LK

)
but since

in this section we assume the ground field K to be algebraically closed and of characteristic
other than 2, we identify LK with o4(K) all through the section (see Lemma 1). Thus, the
Poincaré algebra p is the direct sum

p =
(

0 K4

0 o4(K)

)
,

with the product in this Lie algebra

[(
0 v

0 M

)
,

(
0 v′
0 M ′

)]
=
(

0 vM ′ − v′M
0 [M,M ′]

)
for any

v, v′ ∈ K4, M,M ′ ∈ o4(K). Moreover, r =
(

0 K4

0 0

)
is an abelian ideal (in fact the

radical of p). The first result we need to prove is:

LEMMA 16. The ideal r is minimal.

PROOF. The group O4(K) of orthogonal matrices acts by conjugation on its Lie alge-

bra o4(K) of skew-symmetric matrices. Also O4(K) acts naturally on K4 and if two vec-
tors v1, v2 ∈ K4 are in the same orbit under the action of O4(K) (so v2 = v1P for some

P ∈ O4(K)), then the ideals of p generated by

(
0 vi

0 0

)
, (i = 1.2) are conjugated by the
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automorphism Ω ∈ Aut(p) given by

Ω

[(
0 v

0 M

)]
:=
(

0 vP

0 P−1MP

)
.

Consequently, when studying the ideal generated by an element x =
(

0 v

0 0

)
up to isomor-

phism, we may replace v with any vector in its orbit under the action of O4(K). To prove that
r is minimal, we show that the ideal generated by any nonzero element in r is r. Thus, take

x =
(

0 v

0 0

)
∈ r \ {0}. There are two possibilities to analyze:

1. Assume first that v ∈ K4 is nonisotropic relative to the quadratic form q(x, y, z, t) :=
x2 + y2 + z2 + t2 of K4. We may take q(v) = 1 since the ideal generated by x is the
same that the ideal generated by any nonzero scalar multiple of x. In this case, applying
Witt’s Theorem, v is in the same orbit as (1, 0, 0, 0) under the action of the orthogonal
group. Hence without loss in generality we may take v to be (1, 0, 0, 0). But then, it is
easy to prove that the ideal generated by x is the radical r.

2. Let us assume now that v is isotropic. Again by Witt’s theorem, any two isotropic
vectors are in the same orbit under the action of O4(K). So we may take v to be
v = (1, i, 0, 0). In this case, the ideal generated by x contains all the elements(

0 vM

0 0

)
with M ∈ o4(K). But the subspace vM is 3-dimensional hence it con-

tains a nonisotropic vector (the Witt index of q is 2). Thus the ideal generated by x

contains an element

(
0 w

0 0

)
with w nonisotropic. Hence this ideal is r.

�

We know that p/r ∼= o4(K) and by Lemma 1 and Proposition 5, this algebra is a direct
sum o4(K) = I ⊕ J of two isomorphic ideals I ∼= J ∼= sl2(K). Thus we have seven-
dimensional ideals

i =
(

0 K4

0 I

)
, j =

(
0 K4

0 J

)
,

such that i + j = p and i ∩ j = r. Furthermore, p/i ∼= sl2(K) ∼= p/j so i and j are maximal
ideals of p. We may represent this by

p

i j

r

��� ���

���
���

LEMMA 17. If K is an ideal of p such that [K, p] ⊂ r, then K = 0 or K = r.
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PROOF. If K �= 0 take a nonzero element x0 =
(

0 v0

0 M0

)
∈ K . Then for any element

x =
(

0 v

0 M

)
∈ p we have [x0, x] =

(
0 v0M − vM0

0 [M0,M]
)

∈ r hence M0 is in the center of

o4(K) which is null. Thus x0 ∈ r and we have proved K ⊂ r. Finally the minimality of r
implies K = r. �

LEMMA 18. The only ideals of p are: 0, r, i, j and p.

PROOF. Let K � p such that K �∈ {0, r, i, j, p}. Observe that by maximality of i we
must have either K � i or K + i = p (and similarly K � j or K + j = p). Thus we have four
possibilities:

1. K � i, K � j.
2. K � i, K + j = p.
3. K + i = p, K � j.
4. K + i = p, K + j = p.

Since r is minimal K ∩ r = r or K ∩ r = 0. In the first case r ⊂ K , and r ⊂ K ∩ i ⊂ i

implying K ∩ i = r or K ∩ i = i. Similarly K ∩ j = r or K ∩ j = j.

• If K ∩ i = i, then i ⊂ K and by maximality of i we have K = i or K = p, a
contradiction.

• If K ∩ j = j, then we get as above a contradiction.
• If K ∩ i = r = K ∩ j, we analyze the compatibility of this conditions with (1)-(4). In

case that (1) or (2) holds, we have r ⊂ K � i which implies K = r a contradiction. If
(3) holds, then r ⊂ K � j implying K = r a contradiction again. So the situation now
is: K + i = K + j = p and K ∩ i = K ∩ j = r. But then [K, p] ⊂ [K, i] + [K, j] ⊂
(K ∩ i)+ (K ∩ j) ⊂ r and by Lemma 17 we get K = 0 or K = r a contradiction again.

Now we must analyze the case K∩r = 0. If K �= 0, take a nonzero element x0 =
(

0 v0

0 M0

)
∈

K . Consider now any v ∈ K4 and x =
(

0 v

0 M0

)
. Then [x0, x] =

(
0 (v0 − v)M0

0 0

)
∈

K ∩ r = 0. So (v0 − v)M0 = 0 for any v which implies M0 = 0, a contradiction. �

COROLLARY 5. The Poincaré algebra p is centerless.

11.1. Some properties of the Poincaré algebra over rings. Fix an algebraically
closed field Φ of characteristic other than 2 and consider, as in previous sections, the functor
p : algΦ → LieΦ such that p(R) := pR. Thus we have

pR =
(

0 rR

0 o4(R)

)
.
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Some properties of these algebras pR can be given. For instance any abelian ideal of pR is
contained in rR. Indeed if I � pR is abelian, we may define the ideal J of o4(R) whose
elements are all the m ∈ o4(R) such that there is some v ∈ rR with

(
0 v
0 m

) ∈ I . But being I

abelian, J is an abelian ideal in o4(R) and we know (as a consequence of Proposition 5) that
then J = 0 hence I ⊂ rR. Since rR is abelian we conclude that rR is the maximum abelian
ideal of pR .

REMARK 10. Take R to be an algebra in algΦ and f ∈ Aut(pR) any automorphism.
Since rR is the maximum abelian ideal of pR we have f (rR) = rR , that is, rR is fixed by any
automorphism of pR.

12. Derivation algebra of p

We analyze in this section the Lie algebra Der(p) of derivations of the Poincaré algebra.
The ground field K is supposed to be algebraically closed and of characteristic other than
2. First of all since Z(p) = 0 the map ad : p → Der(p) is a monomorphism and the ideal
of inner derivations is 10-dimensional. We have a linear map q : Der(p) → Der(o4(K))

defined by q(d) = πdi where i : o4(K) → p is the natural injection M �→
(

0 0
0 M

)
, and

π : p → o4(K) the map

(
0 v

0 M

)
�→ M which is an epimorphism of Lie algebras.

LEMMA 19. The linear map q is an epimorphism of Lie algebras whose kernel is
isomorphic to the Lie algebra K × K4 with product given by [(λ, v0), (λ

′, v′
0)] := (0, λv′

0 −
λ′v0). Thus Der(p) fits in a short exact sequence

0 → K × K4 → Der(p)
q→ Der(o4(K)) → 0

and therefore dim Der(p) = 11.

PROOF. The proof that q is a Lie algebra homomorphism is easy if we take into ac-
count that the radical r of p is d-invariant for any derivation d of p (see [7]). Next we prove
that q is an epimorphism. Let α ∈ Der(o4(K), since the derivations of o4(K) are inner
(see Theorem 9), there is some x0 ∈ o4(K) such that α = ad(x0). Then define d : p → p such
that

d

[(
0 v

0 x

)]
:=
(

0 −vx0

0 α(x)

)
.

It is easy to check that d ∈ Der(p) and q(d) = α. In order to determine the kernel of q ,

assume that q(d) = 0 for a derivation d . Then d

[(
0 0
0 x

)]
=
(

0 β(x)

0 0

)
for some linear

map β : o4(K) → K4 which must satisfy the hypothesis on Lemma 3. Therefore there is an

element v0 ∈ K4 such that β(x) = v0x for any x ∈ o4(K). Since any derivation preserves
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the radical r of p (again [7]), we also must have d

[(
0 v

0 0

)]
=
(

0 α(v)

0 0

)
for some linear

map α : K4 → K4. So there is a matrix P ∈ M4(K) such that α(v) = vP for any v. Then

d

[(
0 v

0 x

)]
=
(

0 vP + v0x

0 0

)
and imposing the condition that d to be a derivation we get

that P must commute with any element in o4(K) but this implies that P = λ14 where λ ∈ K

and 14 denotes de identity matrix 4 × 4. Summarizing: d

[(
0 v

0 x

)]
=
(

0 λv + v0x

0 0

)
and

the scalar λ as well as the vector v0 are uniquely determined by d . Thus the map ker(q) →
K × K4 such that d �→ (λ, v0) is a Lie algebras homomorphism where K × K4 is provided
with a Lie algebra structure whose product is [(λ, v0), (λ

′, v′
0)] := (0, λv′

0 − λ′v0). Thus, the
exact sequence of Lie algebras

0 → K × K4 → Der(p)
q→ Der(o4(K)) → 0 (14)

exists and dim Der(p)) = 11. �

DEFINITION 5. For (λ, v0) ∈ K × K4 define the derivation dλ,v0 ∈ ker(q) by

dλ,v0

[(
0 v

0 x

)]
=
(

0 λv + v0x

0 0

)
.

PROPOSITION 12. The short exact sequence (14) is split: there is a monomorphism

j : Der(o4(K)) → Der(p)

such that for α ∈ Der(o4(K)) one has j (α) :
(

0 v

0 x

)
�→

(
0 −vx0

0 α(x)

)
being α = ad(x0).

This map satisfies qj = 1. Consequently any derivation d ∈ Der(p) can be uniquely written
as a sum j (α) + dλ,v . Furthermore:

1. K × K4 ∼= {dλ,v : (λ, v) ∈ K × K4} is the radical r := r(Der(p)).

2. Der(p) = r ⊕ j (Der(o4(K))) ∼= r ⊕ sl2(K)2.

PROOF. It is straightforward to check that j is a monomorphism and that qj = 1. So
Der(p) = j (Der(o4(K)))⊕ker(q). To finish the proof, it only remains to check that ker(q) ∼=
K × K4 is the radical of Der(p). By the definition of the product of the Lie algebra K × K4

we see that it is solvable and so ker(q) is a solvable ideal and Der(p)/ ker(q) ∼= sl2(K)2 is
semisimple (take into account Lemma 1 and Proposition 5). Thus, ker(q) is the radical of
Der(p). �

13. Automorphism group of p

The ground field K is supposed to be algebraically closed and of characteristic other
than 2. Consider the group homomorphism Q : Aut(p) → Aut(o4(K)) such that Q(f ) =
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πf i where π and i have been defined at the beginning of the previous section. Given θ ∈
Aut(o4(K)) there is an x0 ∈ GL4(K) such that θ = Ad(x0). The map f : p → p such that

f :
(

0 v

0 x

)
�→

(
0 vx−1

0
0 θ(x)

)
is an automorphism of p and Q(f ) = θ . Therefore Q is an

epimorphism whose kernel is described in the following

LEMMA 20. The kernel ker(Q) is the subgroup of automorphisms fλ,v0 where λ ∈ K×

and v0 ∈ K4; such that

fλ,v0 :
(

0 v

0 x

)
�→

(
0 λv + v0x

0 x

)
.

PROOF. Let f ∈ Aut(p), since r is f -invariant, we have

f

[(
0 v

0 x

)]
=
(

0 μ(v) + α(x)

0 β(x)

)

for some linear maps μ : K4 → K4, α : o4(K) → K4, β : o4(K) → o4(K). If we assume
that f ∈ ker(Q) then πf i = 1 and this implies β = 1. Now imposing the condition that f is
a Lie algebra homomorphism, we get:

1. α([x, y]) = α(x)y − α(y)x for any x, y ∈ o4(K).

2. μ(vx) = μ(v)x for any v ∈ K4 and x ∈ o4(K).

Applying Lemma 3 to α, there is some v0 ∈ K4 such that α(x) = vx for any x. Also, since
μ is linear there must be a matrix P such that μ(v) = vP for any v. But imposing the
condition in the second item above we find that P must be a scalar multiple of the identity.

So μ(v) = λv for any v ∈ K4. Finally the fact that f is injective implies λ �= 0. �

Thus ker(Q) ∼= K× × K4 with multiplication (λ, v0)(μ,w0) := (λμ, λw0 + v0). Con-
sequently Aut(p) fits in a exact sequence

1 → K× × K4 → Aut(p)
Q→ Aut(o4(K)) → 1 (15)

which is also split: the map J : Aut(o4(K)) → Aut(p) such that J (θ) :
(

0 v

0 x

)
�→(

0 vx−1
0

0 θ(x)

)
for any automorphism θ = Ad(x0) of o4(K), is a monomorphism and QJ = 1.

As a corollary of this, we have

dim Aut(p) = 11

since dim Aut(o4(K)) = 6 (see Lemma 1 and Corollary (4)).

PROPOSITION 13. The automorphism group Aut(p) agrees with the group

Aut(p) = {fλ,v0,x0 : λ ∈ K×, v0 ∈ K4,Ad(x0) ∈ Aut(o4(K)}
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where

fλ,v0,x0

[(
0 v

0 x

)]
:=
(

0 λvx−1
0 + v0x0xx−1

0
0 x0xx−1

0

)
.

Some multiplicative relations of these elements are:

fλ,v0,x0fμ,v1,x1 = f
λμ,λv1x

−1
0 +v0,x0x1

,

f −1
λ,v0,x0

= f
λ−1,−λ−1v0x0,x

−1
0 .

PROOF. Since the exact sequence (15) is split, any automorphism of p is of the form
fλ,v0J (θ) and this gives the description of Aut(p) claimed in the statement of the Proposition.
The multiplicative relations are straightforward to check. �

13.1. Translation to affine groups. In this section we extend some of the previous
results on automorphisms of p to the algebraic group algΦ(p) where Φ is an algebraically
closed field of characteristic not two. Thus AutΦ(p) : algΦ → LieΦ is the affine group
scheme such that R �→ AutR(pR) (we will drop the index R in AutR( ) in the cases in which
no ambiguity is possible). If we denote by i : o4(R) → pR the natural injection M �→ (

0 0
0 M

)
,

and by π : pR → o4(R) the map
(

0 v
0 M

) �→ M (which is an epimorphism of Lie algebras),
we can as before define a group homomorphism QR : Aut(pR) → Aut(o4(R)) given by
f �→ πf i. This enables us to define a homomorphism of algebraic groups Q : AutΦ(p) →
AutΦ(o4(Φ)) such that Q(R) := QR .

LEMMA 21. The homomorphism Q is surjective.

PROOF. By Lemma 1, o4(Φ) ∼= LΦ and by Corollary 4 the algebraic group Aut(LΦ)

is smooth. Taking into account that QΦ is the epimorphism Q introduced in the first paragraph
of Section 13, applying [16, Proposition (22.3), p. 339] we get that Q is surjective. �

Next we compute the kernel ker(Q). In order to do this, we describe ker(QR). This is
formed by all the automorphisms f of pR of the form(

0 v

0 x

)
�→

(
0 μ(v) + α(x)

0 x

)

for some R-linear maps μ : R4 → R4, α : o4(R) → R4, β : o4(R) → o4(R), which must
satisfy :

1. α([x, y]) = α(x)y − α(y)x for any x, y ∈ o4(R).
2. μ(vx) = μ(v)x for any v ∈ R4 and x ∈ o4(R).

But μ must be invertible since it is the restriction of f to rR . So there is an invertible matrix
P ∈ GL4(R) such that μ(v) = vP for any v. Now, condition (2) implies that P = λ1 for
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some λ ∈ R×. On the other hand, Lemma 3 applied to α gives that there is a v ∈ R4 such that

α(x) = vx for any x. Thus we can describe ker(QR) as before, ker(QR) = R× × R4 with
multiplication (λ, v0)(μ,w0) := (λμ, λw0 + v0). So we define the algebraic group ker(Q)

such that R �→ R× × R4, and there is a sequence

1 → ker(Q) → AutΦ(p)
Q→ Aut(o4(Φ)) → 1 (16)

which is not a priori exact. But applying [16, Proposition 22.10, p. 341], we have the exact-
ness of the sequence (16).

REMARK 11. As a corollary of the exact sequence (16) and the previous results on
derivations, under the assumptions of this section on the ground field, the group AutΦ(p) is
smooth.

14. Restricted Lorentz and Poincaré algebras

In this section we consider fields Φ of prime characteristic and add some information
about the restricted Lie algebras LΦ and pΦ . So assume that Φ is a field of prime charac-
teristic p �= 2. Then LΦ coincides with the Lie algebra of matrices M ∈ gl4(Φ) such that

MI13+I13M
t = 0. So, if M ∈ LΦ we have M2I13+MI13M

t = 0 or M2I13−I13(M
2)t = 0.

More generally it is easy to check that

MkI13 + (−1)k+1I13(M
k)t = 0

for any natural number k. In particular MpI13 + I13(M
p)t = 0 hence Mp ∈ LΦ . Con-

sequently, LΦ is a restricted Lie algebra relative to the p-operation LΦ → LΦ such that
M �→ Mp.

By Theorem 3, we know that � ∈ Φ if and only if the Lorentz type algebra L is
not simple. Therefore we must consider the nonsimple case: � ∈ Φ. Under this hypoth-
esis we identify LΦ with o4(Φ). To study the p-structure of LΦ we consider the basis
{hα, vα, v−α, hβ, vβ, v−β } defined in the proof of Proposition 5. We know that LΦ = I ⊕ J

where I is the subspace generated by {hα, vα, v−α} and J the one generated by {hβ, vβ, v−β }.
Moreover, these are ideals of LΦ and I ∼= J ∼= sl2(Φ). Now, we must check if these two
ideals are p-ideals, that is, Ip ⊂ I and Jp ⊂ J . But this is easy because if we take, for
instance, a generic element g = xhα + yvα + zv−α in I , then for any natural n we have{

g2n = (x2 + yz)nI

g2n+1 = (x2 + yz)ng ,

where I denotes the identity 4 × 4 matrix. In particular gp ∈ I hence Ip ⊂ I and similarly
Jp ⊂ J . Thus, the restricted algebra structure of LΦ agrees with its algebra structure.

We would like also to comment that sl2(Φ) is simple and a restricted Lie algebra whose
p-operation is again x �→ xp. So, sl2(Φ)⊕sl2(Φ) is a restricted algebra relative to (x, y) �→
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(xp, yp). The unique nonzero proper ideals of sl2(Φ)⊕sl2(Φ) are sl2(Φ)⊕0 and 0⊕sl2(Φ)

and of course these are p-ideals. Moreover, the isomorphism LΦ
∼= sl2(Φ) ⊕ sl2(Φ) is an

isomorphism of restricted Lie algebras (which amounts to the same work as proving that the
ideals I and J above are p-ideals). Thus, we identify in the sequel the ideal I with the one
generated by {hα, vα, v−α} and J with the one generated by {hβ, vβ, v−β }.

Consider now the Poincaré algebra pΦ =
(

0 Φ4

0 LΦ

)
. For any element in this algebra and

any natural n, we have (
0 v

0 x

)n

=
(

0 vxn−1

0 xn

)
. (17)

The p-operation is again given by pΦ → pΦ such that m �→ mp. We know by Lemma 18

that the unique proper and nonzero ideals of pΦ are its radical r =
(

0 Φ4
0 0

)
, i =

(
0 Φ4
0 I

)
and

j =
(

0 Φ4
0 J

)
. So the formula (17) proves that all of them are p-ideals. Again the restricted

algebra structure of pΦ coincides with its algebra structure.
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