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Abstract. It is known that wave operators for three dimensional Schrödinger operators −Δ+V with threshold

singularities are bounded in Lp(R3) for 1 < p < 3 in general and, for 1 < p < ∞ if and only if zero energy

resonances are absent and all zero energy eigenfunctions φ of −Δ + V satisfy
∫
V (x)xαφ(x)dx = 0 for |α| ≤

1. We prove here that they are bounded in L1(R3) if and only if zero energy resonances are absent. We also

show that they are bounded in L∞(R3) if no resonances are present and all zero energy eigenfunctions φ(x) satisfy
∫

R3 x
αV (x)φ(x)dx = 0 for 0 ≤ |α| ≤ 2. This fills the unknown parts of the Lp-boundedness problem for wave

operators of three dimensional Schrödinger operators.

1. Introduction

Let H0 : = −Δ be the free Schrödinger operator on the Hilbert space H : = L2(Rm)
with domain D(H0) = {u ∈ H : ∂αu ∈ H, |α| ≤ 2} and H : = H0 + V , V being the

multiplication with real measurable functionV (x) such that |V (x)| ≤ C〈x〉−δ for some δ > 2,

〈x〉 = (1 + |x|2) 1
2 . Then, H and H0 are selfadjoint in H, the spectrum of H consists of

absolutely continuous part [0,∞) and a finite number of non-positive eigenvalues of finite
multiplicities and, wave operatorsW± defined by the strong limits

W± : = lim
t→±∞ e

itH e−itH0 (1.1)

exist and complete: they are unitary from H to the absolutely continuous subspace Hac(H)

of H for H (see e.g. [16]). They enjoy the intertwining property and

f (H)Pac(H) = W±f (H0)W
∗± (1.2)

for any Borel functions f on R1, where Pac(H) is the orthogonal projection onto Hac(H).
The intertwining property reduces the mapping properties of f (H)Pac(H) to those of f (H0)

provided that corresponding properties of W± are established. Thus, the Lp-boundedness
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of W± has attracted interest of various authors and following results have been obtained un-
der various conditions on V . We remark that that the Lp-boundedness almost automatically
implies the Wk,p-boundedness for 0 ≤ k ≤ 2, see e.g. [24].

We write L2
σ (R

m) : = L2(Rm, 〈x〉2σ dx) for σ ∈ R and define for 1/2 < s < δ − 1/2
that

N : = {u ∈ L2−s (Rm) : −Δu+ V u = 0} .
The space N is independent of s, N ∩ L2(Rm) is the eigenspace of H with eigenvalue 0

and, u ∈ N \ L2(Rm) is called (threshold) resonance of H . If m ≥ 3, we have N = {u ∈
L2−s (Rm) : u+ (−Δ)−1V u = 0} and, u ∈ N satisfies as |x| → ∞ that

lim|x|→∞ |x|m−2u(x) = Cm〈V, u〉 where 〈V, u〉 : =
∫

Rm
V (x)u(x)dx .

It follows that, if m ≥ 5, N ⊂ L2(Rm) and resonances are absent and, if m = 3 and m = 4,
u ∈ N is an eigenfunction of H if and only if 〈V, u〉 = 0. We say H is of generic type if
N = {0} and of exceptional type otherwise. For a Banach space X, B(X) is the Banach space
of bounded operators in X. Following results have been obtained by various authors.

(1) IfH is of generic type,W± ∈ B(Lp(Rm)) for all 1 ≤ p ≤ ∞ ifm ≥ 3 ([20, 21, 3]), for
1 < p < ∞ if m = 1 ([19, 2, 5]) and m = 2 ([22, 12]). If m = 1, W± are unbounded

in L1 or L∞ ([19, 5]). It is unknown if W± is bounded or not in L1 or L∞ if m = 2.
(2) SupposeH is of exceptional type, then:

(2a) If m = 1, W± ∈ B(Lp(Rm)) for all 1 < p < ∞ but not for p = 1 or p = ∞
([19, 2, 5]).

(2b) Ifm = 3,W± are bounded in Lp(Rm) for 1 < p < 3 in general and, for 1 < p <
∞ if and only if all u ∈ N satisfy 〈V, xαu〉 = 0 for |α| ≤ 1 ([24]).

(2c) If m = 4 and if all u ∈ N satisfy 〈V, u〉 = 0, viz. if resonances are absent, then
W± ∈ B(Lp(Rm)) for 1 ≤ p < 4, for 1 ≤ p < ∞ if 〈V, xαu〉 = 0 for |α| ≤ 1
and, also for p = ∞ if 〈V, xαu〉 = 0 for |α| ≤ 2 ([13, 9]).

(2d) If m ≥ 5, W± ∈ B(Lp(Rm)) for 1 ≤ p < m/2 in general, for 1 ≤ p < m if and
only if all u ∈ N satisfy 〈V, u〉 = 0, for 1 ≤ p < ∞ if and only if all u ∈ N
satisfy 〈V, xαu〉 = 0 for |α| ≤ 1 and also for p = ∞ if 〈V, xαu〉 = 0 for |α| ≤ 2
([8, 6, 23]).

When m = 2 and N �= {0} or when m = 4 and resonances are present, nothing is known and
the problem is still open. (See, however, Note added in proof which appears at the end of the
paper.)

In this paper, when m = 3 and N �= {0}, we prove in particular that W± are bounded in

L1(R3) if and only if N ⊂ L2. More precisely we prove the following theorem:
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THEOREM 1.1. Suppose that |V (x)| ≤ C〈x〉−7−ε and H is of exceptional type. Then,
W± are bounded in L1(R3) if and only if zero energy resonances are absent from H , or all

u ∈ N satisfy 〈V, u〉 = 0. In this case W± are bounded in Lp(R3) for 1 ≤ p < 3 in general
and, for 1 ≤ p < ∞ if and only if all u ∈ N satisfy 〈V, xαu〉 = 0 for |α| ≤ 1. If all u ∈ N
further satisfy 〈V, xαu〉 = 0 for |α| = 2, then W± are bounded in L∞.

For 1 < p < ∞, the theorem is known and we present here the proof of the if part which
is different from the one given previously in [24]. We also take advantage of this occasion to
correct the incomplete and partly wrong proof of Lemma 4.1 (3) and Lemma 4.4 (4) in [24]
on the unboundedness of W± in L1(R3).

We refer readers more about the Lp boundedness of wave operators to the literature
mentioned above and, jump into the proof of the theorem immediately. We think that the decay
assumption on V is unnecessarily too strong, however, we do not pursue better conditions
here. We shall often use Schur’s lemma that the integral operator

Ku(x) =
∫

Y

K(x, y)dν(y)

is bounded from Lp(Y, dν) to Lp(X, dμ) for all 1 ≤ p ≤ ∞ if K(x, y) satisfies

sup
y

∫

X

|K(x, y)|dμ(x) < ∞ , sup
x

∫

Y

|K(x, y)|dν(y) < ∞ . (1.3)

In what follows we often identify the integral operatorK with its kernelK(x, y) and sayK or
K(x, y) is admissible if (1.3) is satisfied. We also say that K(x, y) is an Lp bounded kernel
if K is bounded in Lp(R3). We write χ(F) for the characteristic function of the set F and
a≤| · | b means |a| ≤ |b|. For 1 ≤ p ≤ ∞, ‖u‖p = ‖u‖Lp(X) for various X. We denote
by C various constants whose specific values are of no importance. If the constant depends
on some parameter, say Ω , it will be denoted by CΩ . We adopt the physic convention that
the inner product is linear in the second component and anti-linear in the first and denote it
indistinguishably by (u, v) or 〈u, v〉. Furthermore we use this notation whenever the integral
on the right of

(u, v) = 〈u, v〉 : =
∫

R3
u(x)v(x)dx

makes sense. For functions u(x), v(x), |u〉〈v| is an operator defined by

|u〉〈v|f (x) : = u(x)〈v, f 〉 .
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2. Reduction to the low energy analysis

We prove the theorem only for W− and write W− = W in the sequel. The conjugation

Cu(x) = u(x) changes the direction of time and results for W+ = C−1W−C follows imme-
diately from the ones for W−. We write C+ for the upper half plane and define for λ ∈ C+
that

G0(λ) : = (H0 − λ2)−1 , G(λ) : = (H − λ2)−1 .

For the free resolventG0(λ), we have

G0(λ)u(x) = 1

4π

∫

R3

eiλ|x−y|

|x − y| u(y)dy .

The limiting absorption principle ([1]) and the absence of positive eigenvalues ([14]) imply
that, for σ > 1/2, boundary values of 〈x〉−σG0(λ)〈x〉−σ and 〈x〉−σG(λ)〈x〉−σ for λ ∈ R\{0}
exist in B(L2(R3)) and are locally Hölder continuous. When u ∈ L2

σ , σ > 1/2, the stationary
theory of scattering (e.g. [16]) implies that W can be represented via the boundary values of
the resolvents in the form

Wu = u− lim
ε↓0,N↑∞

1

πi

∫ N

ε

G(λ)V (G0(λ)−G0(−λ))uλdλ , (2.1)

which we simply write as

Wu = u− 1

πi

∫ ∞

0
G(λ)V (G0(λ)−G0(−λ))uλdλ . (2.2)

We decomposeW into the high and the low energy parts

W = W> +W< : = WΨ (H0)+WΦ(H0) , (2.3)

by using cut off functionsΦ ∈ C∞
0 (R) and Ψ ∈ C∞(R) such that

Φ(λ2)+ Ψ (λ2) ≡ 1 , Φ(λ2) = 1 near λ = 0 and Φ(λ2) = 0 for |λ| > λ0

for a small constant λ0 > 0. We have proven in our previous paper [23] that, under the

assumption of this paper, W> is bounded in Lp(R3) for all 1 ≤ p ≤ ∞ and we have nothing
to add in this paper forW>. Thus, in what follows, we shall be devoted to studying

W< = Φ(H0)− 1

πi

∫ ∞

0
G(λ)V (G0(λ)−G0(−λ))λΦ(H0)dλ . (2.4)

Evidently Φ(H0) ∈ B(Lp(R3)) for all 1 ≤ p ≤ ∞ and we have only to study the operator Z
defined by the integral of (2.4), which we rewrite as

Zu = − 1

πi

∫ ∞

0
G0(λ)V (1 +G0(λ)V )

−1(G0(λ)−G0(−λ))λF(λ)udλ (2.5)
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by using the resolvent identity G(λ)V = G0(λ)V (1 +G0(λ)V )
−1 for λ > 0 and by defining

F(λ) = Φ(λ2).
We shall use the following well known results (see e.g [23]) on the behavior of (1 +

G0(λ)V )
−1 near the threshold λ = 0. We write E : = N ∩L2(R3). Functions u ∈ N satisfy

u(x) = − 1

4π

∫

R3

V (y)u(y)

|x − y| dy

and, as |x| → ∞,

u(x) = L(u)

|x| +O(|x|−2), L(u) : = −1

4π

∫

R3
V (x)u(x)dx . (2.6)

It follows that E = {u ∈ N : L(u) = 0} and dimN /E ≤ 1. For φ ∈ E , we have

|φ(x)| ≤ C〈x〉−2 , x ∈ R3 , (2.7)

and, for resonances u, with L(u) �= 0,

u(x) = L(u)|x|−1 +O(|x|−2), |x| → ∞. (2.8)

These properties will be frequently used in what follows. Following [11], we say that H is
of exceptional type of the first kind if E = {0}, the second if E = N and the third kind
if {0} � E � N . The orthogonal projection in H onto E will be denoted by P . We let
D0,D1, . . . be the integral operators defined by

Dju(x) : = 1

4πj !
∫

R3
|x − y|j−1u(y)dy , j = 0, 1, . . . .

so that we have a formal Taylor expansion

G0(λ)u(x) = 1

4π

∫

R3

eiλ|x−y|

|x − y| u(y)dy =
∞∑

j=1

(iλ)jDju .

If H is of exceptional type of the third kind, −(V u, u) is an inner product of N and there
exists a unique ψ ∈ N such that

−(V ψ, u) = 0 , ∀u ∈ E , −(Vψ,ψ) = 1 and − L(ψ) > 0 .

We define

ϕ : = ψ + PVD2Vψ ∈ N (2.9)

and call it the canonical resonance ([11]). If H is of exceptional type of the first kind, then
dimN = 1 and there is a unique ϕ ∈ N such that −(V ϕ, ϕ) = 1 and −L(ϕ) > 0 and we call
this ϕ the canonical resonance.
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PROPOSITION 2.1. Let m = 3 and let V satisfy |V (x)| ≤ C〈x〉−δ for some δ > 3.
Suppose that H is of exceptional type of the third kind and let ϕ be the canonical resonance

and a = 4πi|〈V, ϕ〉|−2. Then:

(I +G0(λ)V )
−1 = PV

λ2
− PVD3VPV

λ
− a

λ
|ϕ〉〈ϕ|V + E(λ) , (2.10)

where E(λ) is the operator valued function which, when substituted for (1 + G0(λ)V )
−1

in (2.5), produces an operator which is bounded in Lp(R3) for all 1 ≤ p ≤ ∞. If H is
of exceptional type of the first or the second kind, (2.10) still holds with P = 0 or ϕ = 0
respectively.

3. L1-unboundedness with resonances

If zero energy resonances are present, then Proposition 2.1 shows that their contribution
to the operator Z is given via the canonical resonance ϕ by

Zru : = − ia
π

∫ ∞

0
G0(λ)|Vϕ〉〈V ϕ|(G0(λ)−G0(−λ))F (λ)udλ , (3.1)

where a = 4πi|〈V, ϕ〉|−2 �= 0. We show that Zr is bounded in Lp(R3) for 1 < p < 3 but
not for p = 1 or 3 ≤ p ≤ ∞. We use the following lemma.

LEMMA 3.1. Suppose that K(x, y)≤| · |C〈x〉−1〈y〉−1〈|x| − |y|〉−2−ε for some ε ≥ 0.
Then,

Ku(x) =
∫

R3
K(x, y)u(y)dy

is bounded in Lp(R3) for any 1 ≤ p ≤ ∞ if ε > 0 and, for all 1 < p < ∞ if ε = 0. The

same is true if K(x, y)≤| · |C〈x〉−1−ε〈y〉−1−ε〈|x| − |y|〉−2.

PROOF. For ε > 0, the lemma immediately follows from Schur’s lemma. When ε = 0,
we have

Ku(x)≤| · |C
∫ ∞

0

r
2− 2

p r
2
p |fu(r)|dr

〈x〉〈r〉〈|x| − r〉2 , fu(r) =
∫

S2
u(rω)dω .

Since the right side is rotationally invariant, we have

‖Ku‖pp ≤ C

∫ ∞

0

⎛

⎝
∫ ∞

0

ρ
2
p r

2− 2
p (r

2
p |fu(r)|)dr

〈ρ〉〈r〉〈ρ − r〉2

⎞

⎠

p

dρ

≤ C

∫ ∞

0

⎛

⎝
∫ ∞

0

〈ρ〉 2
p−1〈r〉1− 2

p (r
2
p |fu(r)|)dr

〈ρ − r〉2

⎞

⎠

p

dρ .
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We may estimate 〈ρ〉 2
p
−1〈r〉1− 2

p by C〈ρ − r〉 2
p
−1 if p ≤ 2 and by C〈ρ − r〉1− 2

p if p ≥ 2. It
follows that unless p = 1 or p = ∞ we have a γ > 1 such that

‖Ku‖p ≤ C

⎛

⎝
∫ ∞

0

⎛

⎝
∫ ∞

0

r
2
p |fu(r)|dr
〈ρ − r〉γ

⎞

⎠

p

dρ

⎞

⎠

1/p

and Young’s and Hölder’s inequalities imply

‖Ku‖p ≤ C

(∫ ∞

0
r2|fu(r)|pdr

)1/p

≤ C‖u‖p .

Since 〈x〉−ε〈y〉−ε ≤ Cε〈x−y〉−ε , the second statement follows from the first. This completes
the proof of lemma. �

LEMMA 3.2. Let Zr be the operator defined by (3.1). Then, Zr is bounded in Lp(R3)

for 1 < p < 3 but not for p = 1 nor for 3 ≤ p ≤ ∞.

PROOF. It is known that Zr is bounded in Lp(R3) for 1 < p < 3 ([24]). We give here
the proof for 1 < p < 3 which is different from the one given in [24]. The integral kernel of
Zr is given by

Zr(x, y) =
∑

±

∓ia
π

∫ ∞

0

∫
eiλ(|x−z|±|w−y|) (V ϕ)(z)(V ϕ)(w)F (λ)

16π2|x − z||w − y| dwdzdλ . (3.2)

Since F ∈ C∞
0 ([0,∞)), we immediately see that, with a constant C > 0,

Zr(x, y)≤| · |C
∫ |(V ϕ)(z)(V ϕ)(w)|

|x − z||w − y| dwdz ≤ C

〈x〉〈y〉 (3.3)

and χ(||x| − |y|| ≤ 1)Zr(x, y) and χ(||x|2 − |y|2| ≤ 1)Zr(x, y) are admissible kernels.
Indeed, we have

sup
y

∫

||x|−|y||≤1

dx

〈x〉〈y〉 = sup
x

∫

||x|−|y||≤1

dy

〈x〉〈y〉 = C < ∞ ,

{(x, y) : ||x|2 − |y|2| ≤ 1, ||x| − |y|| > 1} ⊂ {(x, y) : |x| < 1, |y| < 1} and Zr(x, y) is
obviously admissible on {(x, y) : |x| < 1, |y| < 1}. Thus we may and do ignore the parts of

R3
x×R3

y where ||x|−|y|| < 1 or ||x|2−|y|2| < 1 in the proof. We decompose the exponential

functions eiλ|x−z| and eiλ|w−y| as

eiλ|x−z| = eiλ|x| + eiλ|x|r(λ, x, z) , r(λ, x, z) : = eiλ(|x−z|−|x|) − 1 , (3.4)

eiλ|w−y| = eiλ|y| + eiλ|y|r(λ, y,w) , r(λ, y,w) : = eiλ(|w−y|−|y|) − 1 , (3.5)
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and write Zr(x, y) as a sum of four kernels: Zr(x, y) = ∑4
j=1 Zj(x, y),

Zj(x, y) : = −ia
π

∫∫

R6

(V ϕ)(z)(V ϕ)(w)

16π2|x − z||w − y|Fj (x, z,w, z)dwdz

where F1, . . . , F4 are respectively given by

F1 = F1(x, z,w, y) : =
∑

±
±
∫ ∞

0
eiλ(|x|±|y|)r(λ, x, z)r(±λ, y,w)F (λ)dλ ,

F2 = F2(x,w, y) : =
∑

±
±
∫ ∞

0
eiλ(|x|±|y|)r(±λ, y,w)F (λ)dλ ,

F3 = F3(x, z, y) : =
∑

±
±
∫ ∞

0
eiλ(|x|±|y|)r(λ, x, z)F (λ)dλ,

F4 = F4(x, y) : =
∑

±
±
∫ ∞

0
eiλ(|x|±|y|)F (λ)dλ .

Here and hereafter the symbol
∑

± means that the sum should be taken of the summands with
upper signs and the ones with lower signs. We estimate F1, . . . , F4 using integration by parts.
We use the following properties of r(λ, x, y):

r(0, x, y) = 0, ∂λ(r(±λ, x, y))|λ=0 = ±i(|x − y| − |x|), (3.6)

|∂kλr(λ, x, y)| ≤ |y|k, k = 0, 1, . . . . (3.7)

(1) We first show that Z1(x, y) is an admissible kernel. We apply integration by parts three
times to F1. Then, (3.6) and (3.7) imply

F1(x, z,w, y) =
∑

±

( ∓i
(|x| ± |y|)3 ∂

2
λ{r(λ, x, z)r(±λ, y,w)F (λ)}|λ=0

+ ∓i
(|x| ± |y|)3

∫ ∞

0
eiλ(|x|±|y|)∂3

λ{r(λ, x, z)r(±λ, y,w)F (λ)}dλ
)

≤
∑

±
C
(1 + |z| + |w|)3
(|x| ± |y|)3 ≤ C

(1 + |z| + |w|)3
(|x| − |y|)3 .

Recall that we are assuming |V (x|| ≤ C〈x〉−7−ε . It follows that

Z1(x, y)≤| · |C
∫

R6

(1 + |z| + |w|)3|(V ϕ)(z)(V ϕ)(w)|
(|x| − |y|)3|x − z||w − y| dwdz ≤ C

(|x| − |y|)3〈x〉〈y〉
and Z1(x, y) is admissible by virtue of Lemma 3.1 (recall that we are ignoring the parts where

(x, y) satisfies ||x| − |y|| < 1 or ||x|2 − |y|2| < 1).
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(2) We apply integration parts twice to F2 and write it in the form

∑

±

(
−i(|w − y| − |y|)
(|x| ± |y|)2 ∓

∫ ∞

0
eiλ(|x|±|y|) ∂2

λ{r(±λ, y,w)F (λ)}
(|x| ± |y|)2 dλ

)

.

After another integration by parts we see that the integral terms are bounded by C(1 +
|w|)3(|x|±|y|)−3 and, when inserted into Z2(x, y), they produce admissible kernels bounded

by C〈x〉−1〈y〉−1(|x| ± |y|)−3. Thus, modulo the admissible kernel

Z2(x, y) ≡
∑

±

−a
π

∫∫

R6

(|w − y| − |y|)(V ϕ)(z)(V ϕ)(w)
16π2(|x| ± |y|)2 · |x − z||w − y|dzdw

=
∑

±

aϕ(x)

π(|x| ± |y|)2
∫

R3

(|w − y| − |y|)(V ϕ)(w)
4π · |w − y| dw. (3.8)

Note that this is bounded in modulus by C〈x〉−1〈y〉−1(|x| − |y|)−2 and Z2 is bounded in

Lp(R3) for any 1 < p < ∞ by virtue of Lemma 3.1.
(3) For F3, we apply integration by parts twice as in (2):

F3 =
∑

±

(

∓ i(|z− x| − |x|)
(|x| ± |y|)2 ∓

∫ ∞

0
eiλ(|x|±|y|) ∂2

λ{r(λ, x, z)F (λ)}
(|x| ± |y|)2 dλ

)

.

By applying integration by parts once more as in (2) we see that the second terms on the

right are bounded by C(1 + |z|)3(|x| ± |y|)−3 and their sum produces the kernel bounded by

C(|x| − |y|)−3〈x〉−1〈y〉−1 when inserted into Z3(x, y), which is admissible. Thus modulo
the admissible kernel

Z3(x, y) ≡
∑

±

∓a
π

∫

R6

(|z− x| − |x|)(V ϕ)(z)(V ϕ)(w)
16π2(|x| ± |y|)2|x − z||w − y| dzdw

= a

π

(
1

(|x| + |y|)2 − 1

(|x| − |y|)2
)

ϕ(y)

∫

R3

(|z− x| − |x|)(V ϕ)(z)
4π |x − z| dz

≤| · |
4a|x||y|ϕ(y)

π(|x| + |y|)2(|x| − |y|)2
∫

R3

|z||(V ϕ)(z)|
4π |x − z| dz≤| · |

C

(|x| + |y|)2(|x| − |y|)2 .

Thus, Z3(x, y) is admissible.
(4) Again an integration by parts shows that

F4(x, y) =
∑

±
±
(

i

(|x| ± |y|) + i

(|x| ± |y|)
∫ ∞

0
eiλ(|x|±|y|)F ′(λ)dλ

)

Here F ′ ∈ C∞
0 ((0,∞)) and the integral terms are bounded by C〈|x| ± |y|〉−N for any N . It

follows that the sum of the integral terms produces an admissible kernel bounded by C〈|x| −
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|y|〉−N 〈x〉−1〈y〉−1 and, modulo the admissible kernel

Z4(x, y) ≡
∑

±

±a
π(|x| ± |y|)

∫

R6

(V ϕ)(z)(V ϕ)(w)

16π2|x − z||w − y|dzdw =
∑

±

±aϕ(x)ϕ(y)
π(|x| ± |y|) .

(5) We prove that Zr is unbounded in L1(R3). The combination of (1) to (4) implies that
modulo admissible kernel Zr(x, y) is equal to

Zred(x, y)= a

π
ϕ(x)

(
1

(|x| + |y|)2 + 1

(|x| − |y|)2
)

(c + |y|ϕ(y))

+ a

π

(
ϕ(x)ϕ(y)

|x| + |y| − ϕ(x)ϕ(y)

|x| − |y|
)

: = R1(x, y)+ R2(x, y) (3.9)

where

c = 1

4π

∫

R3
V (x)ϕ(x)dx = −L(ϕ) > 0 .

We prove that Zred is unbounded in L1(R3) by contradiction. Take u ∈ C∞
0 (R

3) such that

u(x) ≥ 0, u(x) = 0 for |x| ≥ 1 and
∫

R3 u(x)dx = 1 and, define

un(x) = n3u(nx), fn(x) =
∫

R3
Zred(x, y)un(y)dy , n = 1, 2, . . . .

We have ‖un‖1 = 1, n = 1, 2, . . . . For any R > 100 and 100 ≤ |x| ≤ R,

lim
n→∞ fn(x) = 2ac

π

ϕ(x)

|x|2 .

It follows by Fatou’s lemma that

2|ac|
π

∫

100<|x|<R
|ϕ(x)|
|x|2 dx =

∫

100<|x|<R
lim
n→∞ |fn(x)|dx

≤ lim inf
n→∞

∫

100<|x|<R
|fn(x)|dx ≤ ‖Zr‖B(L1) .

Since |ϕ(x)| ≥ C|x|−1 for a constant C > 0 for |x| ≥ 100, this cannot happen for sufficiently

large R > 0 and Zr is unbounded in L1(R3).
(6) We next prove that Zr is bounded in Lp(R3) for 1 < p < 3. We have shown that Z2 is

bounded in Lp(R3) for 1 < p < ∞ and it suffices to show that the operator R̃2 defined by
the kernel R2(x, y)χ((|x|2 − |y|2) ≥ 1) is bounded in Lp(R3) for 1 < p < 3. We have

R̃2u(x) = −2aϕ(x)||x|
π

∫

||x|2−|y|2|≥1

|x|−1

|x|2 − |y|2ϕ(y)|y|u(y)dy (3.10)
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and |ϕ(x)||x| ∈ L∞(R3). Hence, it suffices to show this for

T u(x) =
∫

||x|2−|y|2|≥1

|x|−1

|x|2 − |y|2u(y)dy .

Since T u(x) is spherically symmetric, we have by using polar coordinates and by changing
variables

‖T u‖pp ≤ 21−pπ
∫ ∞

0
ρ

1
2 − p

2

(∫

|ρ−r |≥1

r
1
2

ρ − r
|Mu(

√
r)|dr

)p

dρ

whereMu(r) = ∫
S2 u(rω)dω. Here −1 < 1

2 − p
2 < p− 1 if 1 < p < 3 and ρ

1
2 − p

2 is an (A)p
weight on R. It follows that by the weighted inequality (see e.g. Theorem 9.4.6 of [10]) that

‖T u‖pp ≤ C

∫ ∞

0
r

1
2 |Mu(

√
r)|pdr ≤ C

∫ ∞

0
r2|Mu(r)|pdr ≤ C‖u‖pp .

(7) We finally prove that Zr is unbounded in Lp(R3) for p ≥ 3. It suffices to prove this for

R̃2. It follows from (3.9) that, for every compact Ω ⊂ R3 there exists a constant C > 0 such
that for a sufficiently large L > 0

|R̃2(x, y)| ≥ C|ϕ(x)|
|y|2 , |y| ≥ L , x ∈ Ω .

Since |y|−2 �∈ Lq(|y| ≥ L) for any q ≤ 3/2 and L > 0, the Riesz representation theorem

implies that R̃2 is unbounded in Lp(R3) for any p ≥ 3. This completes the proof. �

LEMMA 3.3. Suppose φ ∈ E . Then, R1(x, y) and R2(x, y) with φ in place of ϕ are

Lp(R3) bounded kernels for all 1 ≤ p < ∞. If φ further satisfies 〈V, xαφ〉 = 0 for |α| ≤ 1,
R1 and R2 are admissible.

PROOF. R1(x, y) and R2(x, y) then satisfy

R1(x, y)≤| · |C〈x〉−2(|x| − |y|)−2〈y〉−1 , R2(x, y)≤| · |C〈x〉−2(|x|2 − |y|2)−1〈y〉−1 .

Thus, R1(x, y) and R2(x, y) define bounded operator in Lp(R3) for all 1 < p < ∞ by virtue
of Lemma 3.1. They are bounded also in L1(R3) because

sup
y

∫

||x|−|y||≥1

dx

〈x〉2〈y〉(|x| − |y|)2 ≤ C sup
y

∫ ∞

0

dr

〈y〉〈r − |y|〉2
< ∞ ,

sup
y

∫

||x|2−|y|2|≥1

dx

〈x〉2〈y〉(|x|2 − |y|2) ≤ 4π sup
y

∫ ∞

0

dr√
r〈y〉〈r − |y|2〉 < ∞ .

If 〈V, xαφ〉 = 0 for |α| ≤ 1, then |φ(x)| ≤ C〈x〉−2−ε for an ε > 0 and R1 and R2 are
admissible by virtue of Lemma 3.1. �
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4. Contribution of zero-energy eigenfunctions

By virtue of Proposition 2.1 and Lemma 3.2, the following proposition shows that W±
is bounded in L1(R3) if and only if H has no threshold resonances.

PROPOSITION 4.1. Suppose that the threshold resonance is absent fromH . Then,W±
is bounded in L1(R3).

If H has no resonances then (2.10) becomes

(I +G0(λ)V )
−1 = S(λ)+ E(λ) , S(λ) = PV

λ2 − PVD3VPV

λ
(4.1)

and we need study the operator Zs defined by

Zsu : = i

π

∫ ∞

0
G0(λ)V S(λ)V (G0(λ)−G0(−λ))u〉F(λ)λdλ . (4.2)

We recall that all φ ∈ E = PL2(R3) satisfy 〈V, φ〉 = 0 and φ(x)≤| · |C〈x〉−2 for a constant
C > 0. We take the real orthonormal basis {φ1, . . . , φd } of E and write Zsu = Zs0u+ Zs1u,
where with ajk = iπ−1〈φj , VD3V φk〉 ∈ R,

Zs0u : =
d∑

j,k=1

ajk

∫ ∞

0
G0(λ)V φj 〈V φk, (G0(λ)−G0(−λ))u〉F(λ)dλ , (4.3)

Zs1u : =
d∑

j=1

i

π

∫ ∞

0
G0(λ)V φj 〈V φj , (G0(λ)−G0(−λ))u〉F(λ)dλ

λ
. (4.4)

LEMMA 4.2. (1) For any 1 ≤ p < ∞, Zs0 is bounded in Lp(R3).
(2) If all φ1, . . . , φd in addition satisfy

∫
R3 xjV (x)φ(x)dx = 0 for j = 1, 2, 3. Then Zs0 is

bounded in Lp(R3) for all 1 ≤ p ≤ ∞.

PROOF. The proof of Lemma 3.2 and Lemma 3.3 implies the lemma. �

In what follows, we say for operators T depending on φ ∈ E (or the space E) that T

or T (x, y) depends generically on φ (resp. E) if T is bounded in Lp(R3) for 1 ≤ p < 3 in
general, for 1 ≤ p < ∞ if φ (resp. all φ ∈ E) satisfies 〈V, xαφ〉 = 0 for |α| ≤ 1 and, for
1 ≤ p ≤ ∞ if φ (resp. all φ ∈ E) does 〈V, xαφ〉 = 0 for |α| ≤ 2.

LEMMA 4.3. The operator Zs1 depends generically on E .

PROOF. Define for j = 1, . . . , d that

Zs1,ju : = i

π

∫ ∞

0
G0(λ)|V φj 〈V φj , (G0(λ)−G0(−λ))u〉F(λ)λ−1dλ , (4.5)
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so that Zs1u = ∑d
j=1 Zs1,ju. We prove the lemma only for Zs1,1, which we denote by Z and

φ1 by φ for short. The proof for others is similar. As in the proof of Lemma 3.2, by splitting
eiλ|x−y| = eiλ|x| + eiλ|x|r(λ, x, y) and etc., we decompose Z as

Zu = Z1u+ Z2u+ Z3u+ Z4u .

Thus the integral kernels of Z1, . . . , Z4 are given respectively by

Z1 : =
∑

±

±i
π

∫ ∞

0

∫
eiλ(|x|±|y|) r(λ, x, z)r(±λ, y,w)V φ(z)V φ(w)F(λ)

16π2|x − z||w − y| dwdz
dλ

λ
,

Z2 : =
∑

±

±i
π

∫ ∞

0

∫
eiλ(|x|±|y|) r(±λ, y,w)(V φ)(z)(V φ)(w)F (λ)

16π2|x − z||w − y| dwdz
dλ

λ
,

Z3 : =
∑

±
± i

π

∫ ∞

0

∫
eiλ(|x|±|y|) r(λ, x, z)(V φ)(z)(V φ)(w)F (λ)

16π2|x − z||w − y| dwdz
dλ

λ
,

Z4u : =
∑

±
± i

π

∫ ∞

0

∫
eiλ(|x|±|y|) (V φ)(z)(V φ)(w)F (λ)

16π2|x − z||w − y| dwdz
dλ

λ
.

These operators differ from the correspondingZ1, . . . , Z4 in the proof of Lemma 3.2 only by

the constant a and by φ and λ−1dλ replacing ϕ and dλ respectively. We write

r(λ, x, y) = iλ(|x − y| − |x|)r1(λ, x, y) , r1 : =
∫ 1

0
eiλ(|x−y|−|x|)θdθ (4.6)

and etc. We have

r1(λ, x, y)≤| · | 1 , ∂kλr1(λ, x, y)≤| · | |y|k/k! . (4.7)

We estimate Z1u, . . . , Z4u individually in the following four lemmas. �

LEMMA 4.4. Modulo an admissible kernel we have

Z1(x, y) ≡
∑

±

i

π

χ(||x| − |y|| ≥ 1)|x||y|φ(x)φ(y)
(|x| ± |y|)2 (4.8)

and Z1 is bounded for all 1 < p < ∞. If φ satisfies 〈V, xαφ〉 = 0 for |α| ≤ 1, then Z1(x, y)

is an admissible kernel.

PROOF. By virtue of (4.6), we have

Z1(x, y) = − i

π

∫ (
∑

±

∫ ∞

0
eiλ(|x|±|y|)r1(λ, x, z)r1(±λ, y,w)λF(λ)dλ

)

× (|x − z| − |x|)(|w − y| − |y|)(V φ)(z)(V φ)(w)
16π2|x − z||w − y| dwdz

= − i

π

∫
W1(x, z,w, y)

(|x − z| − |x|)(|w− y| − |y|)(Vφ)(z)(V φ)(w)
16π2|x − z||w − y| dwdz ,
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where the definition of W1 should be obvious. We have |W1(x, z,w, y)| ≤ 2‖λF‖1 and

|Z1(x, y)| ≤ C〈x〉−1〈y〉−1. Thus, the part of Z1(x, y) on ||x| − |y|| ≤ 1 is admissible as
remarked in the previous section and we ignore the region {(x, y) : ||x| − |y|| ≤ 1} in what
follows in the proof. We apply integration by parts twice to W1(x, z,w, y) and obtain

W1(x, z,w, y) =
∑

±

−1

(|x| ± |y|)2 + Y1(x, z,w, y) , (4.9)

Y1 : =
∑

±

−1

(|x| ± |y|)2
∫ ∞

0
eiλ(|x|±|y|)(r1(λ, x, z)r1(±λ, y,w)λF(λ))′′dλ .

Since
∫
Vφ(x)dx = 0 and φ + (−Δ)−1V φ = 0, we have

∫
(|x − z| − |x|)(V φ)(z)

4π |x − z| dz = −|x|
∫

(V φ)(z)

4π |x − z|dz = |x|φ(x) (4.10)

and the likewise for the integral involving (V φ)(w) with respect to dw. Thus, the contribution
to Z1(x, y) of the boundary term in (4.9) is given by

i

π

∑

±

|x||y|φ(x)φ(y)
(|x| ± |y|)2 .

By virtue of Lemma 3.1 both + and − terms are Lp bounded kernels for all 1 < p < ∞
and they are admissible if 〈V, xαφ〉 = 0 for |α| ≤ 1. On the other hand the contribution of
Y1(x, z,w, y) to Z1(x, y) produces an admissible kernel since further integration by parts and
(4.7) imply

Y1(x, z,w, y)≤| · |C
∑

±

(1 + |z| + |w|)3
(|x| ± |y|)3

and, its contribution to Z1(x, y) is bounded in modulus by

C
∑

±

∫ |z||w|(1 + |z| + |w|)3|(V φ)(z)(V φ)(w)|
|x − z||w − y|(|x| ± |y|)3 dwdz

≤
∑

±

C

〈x〉〈y〉(|x| ± |y|)3

which is an admissible kernel. This proves the lemma. �

LEMMA 4.5. Modulo an admissible kernel

Z2(x, y) ≡ 2i

π

χ(||x| − |y|| ≥ 1)|x|φ(x)|y|φ(y)
|x|2 − |y|2 (4.11)

and Z2 is bounded for all 1 < p < ∞. If φ satisfies 〈V, xαφ〉 = for |α| ≤ 1, Z2(x, y) is
admissible.
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PROOF. The proof goes in parallel with that of Lemma 4.4. By virtue of the same
reason as in the proof of Lemma 4.4, we ignore the part ofZ2(x, y) on {(x, y) : ||x|−|y|| ≤ 1}.
Using (4.6) and (4.10), we write Z2(x, y) as

1

π

∫ (
∑

±

∫ ∞

0
eiλ(|x|±|y|)r1(±λ,w, y)F (λ)dλ

)
(|w − y| − |y|)φ(x)(Vφ)(w)

4π |w − y| dw .

Applying integration by parts, we have

W2(x,w, y) : =
∑

±

∫ ∞

0
eiλ(|x|±|y|)r1(±λ,w, y)F (λ)dλ =

∑

±

i

|x| ± |y| + Y2 ,

Y2 = Y2(x,w, y) : =
∑

±

i

|x| ± |y|
∫ ∞

0
eiλ(|x|±|y|)(r1(±λ,w, y)F (λ))′dλ .

The contribution of the boundary term in W2(x,w, y) to Z2(x, y) is given by virtue of (4.10)
by

∑

±

i

π

∫
(|w − y| − |y|)φ(x)(Vφ)(w)
(|x| ± |y|) · 4π |w − y| dw =

∑

±

i

π

φ(x)|y|φ(y)
|x| ± |y| (4.12)

which we put on the right of (4.11). Further integration by parts twice shows that

Y2(x,w, y) =
∑

±

(∓(|w − y| − |y|)
2(|x| ± |y|)2 +O

(
C(1 + |w|)3
(|x| ± |y|)3

))

and, modulo the admissible kernel produced by the second term, the contribution to Z2(x, y)

of Y2 is given by

∑

±

∓1

(|x| ± |y|)2
∫

R3

φ(x)(|w − y| − |y|)2(V φ)(w)
4π |w − y| dw≤| · |

C|φ(x)||x||y|
〈y〉(|x|2 − |y|2)2 ,

which is also admissible on {(x, y) : ||x| − |y|| ≥ 1}. If 〈V, xjφ〉 = 0 for j = 1, 2, 3, then

|φ(x)| ≤ C〈x〉−3 and (4.11) also becomes admissible. This proves the lemma. �

LEMMA 4.6. Modulo an admissible kernel

Z3(x, y) ≡ −2i

π

χ(||x| − |y|| ≥ 1)|x|φ(x)|y|φ(y)
|x|2 − |y|2 (4.13)

and Z3 is bounded for all 1 < p < ∞. If φ satisfies 〈V, xαφ〉 = 0 for |α| ≤ 1, then Z3(x, y)

is admissible.

PROOF. The proof goes in parallel with that of Lemma 4.5 and we ignore the part of
Z3(x, y) for ||x| − |y|| < 1. By using (4.6) and (4.10) once more we write Z3(x, y) in the
form

Z3(x, y) = 1

π

∫

R3
W3(x, z, y)

(|x − z| − |x|)(Vφ)(z)φ(y)
4π |x − z| dz , (4.14)
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W3(x, z, y) : =
∑

±
±
∫ ∞

0
eiλ(|x|±|y|)r1(λ, x, z)F (λ)dλ . (4.15)

Application of integration by parts shows that

W3(x, z, y) =
∑

±

±i
|x| ± |y| + Y3(x, z, y), (4.16)

Y3(x, z, y) : =
∑

±

±i
|x| ± |y|

∫ ∞

0
eiλ(|x|±|y|)(r1(λ, x, z)F (λ))′dλ . (4.17)

The contribution of the boundary term of W3 in (4.16) is given by virtue of (4.10) by

∑

±

±i
π

∫

R3

(|x − z| − |x|)(V φ)(z)φ(y)
(|x| ± |y|)4π |x − z| dz =

∑

±

±i
π

|x|φ(x)φ(y)
|x| ± |y| , (4.18)

which is equal to the right of (4.13) for ||x| − |y|| ≥ 2. This is an Lp bounded kernel for all
1 < p < ∞ and, is admissible if φ satisfies 〈V, xαφ〉 = 0 for |α| ≤ 1 by virtue of Lemma
3.1. Further integration by parts implies

Y3(x, z, y) =
∑

±

∓r ′1(0, x, z)
(|x| ± |y|)2 +

∑

±
∓
∫ ∞

0
eiλ(|x|±|y|) (r1(λ, x, z)F (λ))′′

(|x| ± |y|)2 dλ .

Here, we have

r ′1(0, x, z) = i

2
(|x − z| − |x|)

and the contribution of the boundary term in Y3 to Z3(x, y) is given by purely imaginary

∑

±

∓i
2(|x| ± |y|)2

∫

R3

(|x − z| − |x|)2(V φ)(z)φ(y)
4π |x − z| dz

= 2i|x||y|
(|x| − |y|)2(|x| + |y|)2

∫

R3

(|x − z| − |x|)2(V φ)(z)φ(y)
4π |x − z| dz

≤| · |
C|x||y||φ(y)|

(|x| − |y|)2(|x| + |y|)2〈x〉 ≤ C

〈y〉(|x|2 − |y|2)2
and, this is admissible. Applying integration by parts once more, we see that the integral term
for Y3(x, z, y) is bounded in modulus by

∑

±

C〈z〉3

(|x| ± |y|)3

and its contribution to Z3(x, y) is bounded by

∑

±

C|φ(y)|
(|x| ± |y|)3〈x〉 ≤ C

(|x| − |y|)3〈x〉〈y〉2
,
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which is again admissible on ||x| − |y|| ≥ 1. This concludes the proof of the lemma. �

For studying Z4, we need the following lemma.

LEMMA 4.7. Suppose δ > 1 and κ > 2.

(1) The integral operatorK whose kernel satisfies

|K(x, y)| ≤
∫ 1

−1
〈x〉−2〈y〉−1〈|x| − θ |y|〉−δdθ , x, y ∈ R3 (4.19)

is bounded in Lp(R3) for all 1 ≤ p < 3.

(1a) If (4.19) is satisfied with 〈x〉−2〈y〉−2 in place of 〈x〉−2〈y〉−1 in the integrand, thenK is
bounded in Lp for all 1 ≤ p < ∞.

(2) Let Kt , 0 ≤ t ≤ 1 be the integral operator define by

Kt(x, y) : =
∫ 1

−1
〈x〉−2t 〈y〉−κ(1−t )〈|x| − θ |y|〉−δdθ , x, y ∈ R3 . (4.20)

Then, Kt is bounded in L1/t (R3), 0 ≤ t ≤ 1.
(3) The following is an admissible kernel:

K̃(x, y) : =
∫ 1

−1
〈x〉−2〈y〉−κ 〈|x| − θ |y|〉−δdθ . (4.21)

PROOF. (1) It suffices show that K is bounded in L1(R3) and Lp(R3) for 2 < p < 3.
By using polar coordinates, we estimate

∫

R3
|K(x, y)|dx ≤ C

∫ 1

0

(∫ ∞

0

dr

〈r − θ |y|〉δ
)

〈y〉−1dθ ≤ C〈y〉−1

and K is bounded in L1(R3). For 2 < p < 3, Minkowski’s inequality implies
(∫

R3
|K(x, y)|pdx

)1/p

≤ C〈y〉−1
∫ 1

0
G(θ |y|)dθ ,

G(θ |y|) =
(∫ ∞

0

r2〈r〉−2p

〈r − θ |y|〉pδ dr
)1/p

.

For |y| ≤ 1 and for |y| ≥ 2 with θ |y| < 2, we use the obvious estimate

G(θ |y|) ≤ C < ∞ . (4.22)

When θ |y| ≥ 2, split (0,∞) = I1 ∪ I2, I1 = {r > 0 : θ |y|/2 < r < 3θ |y|/2} and I2 = {r >
0 : |r − θ |y|| ≥ θ |y|/2} and estimate by using that 2 − 2p ≤ −2

(∫

I1

r2〈r〉−2p

〈r − θ |y|〉pδ dr
)1/p

≤ C〈θ |y|〉 2
p−2

, (4.23)
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(∫

I2

r2〈r〉−2p

〈r − θ |y|〉pδ dr
)1/p

≤ C〈θ |y|〉−δ . (4.24)

Combining (4.22), (4.23) and (4.24), we obtain for |y| ≥ 1 that

∫ 1

0
G(θ |y|)dθ ≤ C

(
1

|y| +
∫ 1

0
(〈θ |y|〉 2

p
−2 + 〈θ |y|〉−δ)dθ

)

≤ C

|y| .

Thus, for any 2 < p < 3, we have

(∫

R3
|K(x, y)|pdx

)1/p

≤ C〈y〉−2 ∈ L p
p−1 (R3) (4.25)

and Minkowski’s inequality implies

‖Ku‖p ≤
∫

R3

(∫

R3
|K(x, y)|pdx

)1/p

|u(y)|dy ≤ C‖〈y〉−2‖ p
p−1

‖u‖p . (4.26)

(1a) If (4.19) is satisfied with 〈x〉−2〈y〉−2 in place of 〈x〉−2〈y〉−1, then (4.25) is bounded by

C〈y〉−3 which is in L
p
p−1 for all 1 ≤ p < ∞ and, (4.26) is satisfied for all 2 < p < ∞.

Statement (1a) is proved.
(2) Let Kz for z ∈ C with 0 ≤ �z ≤ 1 be the integral operator defined by

Kz(x, y) : =
∫ 1

−1
〈x〉−2z〈y〉−κ(1−z)〈|x| − θ |y|〉−δdθ .

Then, it is obvious that Kz is an analytic family of admissible growth on 0 < �z < 1 and
continuous on 0 ≤ �z ≤ 1 in the sense of Stein [17]. It is easy to see that

sup
y∈R3

∫

R3

(∫ 1

−1
〈x〉−2〈|x| − θ |y|〉−δdθ

)

dx ≤ C < ∞ , (4.27)

sup
x∈R3

∫

R3

(∫ 1

−1
〈y〉−κ〈|x| − θ |y|〉−δdθ

)

dy < ∞ . (4.28)

and the first part of lemma follows by Stein’s interpolation theorem. Two estimates (4.27) and

(4.28) show that K̃(x, y) is admissible. �

LEMMA 4.8. Modulo the kernel which depends generically on φ ∈ E ,

Z4(x, y) ≡ − i

π
φ(x)φ(y)|y| ·

∫ 1

−1

χ(||x| + θ |y|| > 1)

|x| + θ |y| dθ . (4.29)

PROOF. Using (4.10): (−Δ)−1V φ = −φ once again, we simplify

Z4(x, y) = i

π
φ(x)φ(y)

∫ ∞

0
eiλ|x|(eiλ|y| − e−iλ|y|)F (λ)

λ
dλ
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= − 1

π
φ(x)φ(y)|y|

∫ 1

−1

(∫ ∞

0
eiλ(|x|+θ |y|)F (λ)dλ

)

dθ . (4.30)

Break up Z4(x, y) into

Z4(x, y) = Z
≤
4 (x, y)+ Z>4 (x, y)

by inserting 1 = χ(||x|+θ |y|| ≤ 1)+χ(||x|+θ |y|| > 1) in front of dθ of (4.30). We clearly
have

Z
≤
4 (x, y)≤| · |

2

π

∫ 1

0
|φ(x)φ(y)||y|χ(||x| − θ |y|| ≤ 1)dθ

and, Lemma 4.7 imply Z≤
4 (x, y) depends generically on φ ∈ E .

For studying Z>4 (x, y), we apply integration by parts:

∫ ∞

0
eiλ(|x|+θ |y|)F (λ)dλ = i

|x| + θ |y| + i

∫ ∞

0

eiλ(|x|+θ |y|)F ′(λ)
|x| + θ |y| dλ . (4.31)

Since F ′ ∈ C∞
0 ((0,∞)), the integral term on the right is bounded for any N = 1, 2, . . . by

C〈|x|+θ |y|〉−N when ||x|+θ |y|| ≥ 1 and its contribution to Z>4 (x, y) is bounded in modulus
by

C

∫ 1

−1

|φ(x)φ(y)||y|
〈|x| + θ |y|〉N dθ

which depends generically on φ ∈ E . The contribution of the first term on the right of (4.31)
to Z>4 (x, y) is given by the right of (4.29) and the lemma is proved. �

COMPLETION OF THE PROOF OF LEMMA 4.3. We combine previous lemmas and
observe that the right sides of (4.11) and (4.13) cancel each other. It follows that the lemma
holds if the sum K0(x, y) of those of (4.8) and (4.29),

K0(x, y) : =
∑

±

i

π

χ(||x| − |y|| ≥ 1)|x||y|φ(x)φ(y)
(|x| ± |y|)2 (4.32)

− i

π
φ(x)φ(y)|y| ·

∫ 1

−1

χ(||x| + θ |y|| > 1)

|x| + θ |y| dθ (4.33)

generically depends on φ ∈ E . We write |x| = (|x| ± |y|)∓ |y| in (4.32). Then,

(4.32)−
∑

±

i

π

χ(||x| − |y|| ≥ 1)|y|φ(x)φ(y)
|x| ± |y|

= 4iχ(||x| − |y|| ≥ 1)|x||y|3φ(x)φ(y)
π(|x| − |y|)2(|x| + |y|)2

≤| · |
Cχ(||x| − |y|| ≥ 1)|φ(x)||y|2φ(y)

(|x| − |y|)2
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and it is easy to see that this depends generically on φ ∈ E . Thus, it suffices to show the same
for

i

π
φ(x)φ(y)|y|

(
∑

±

χ(||x| − |y|| ≥ 1)

|x| ± |y| −
∫ 1

−1

χ(||x| + θ |y|| > 1)

|x| + θ |y| dθ

)

.

We remark that

φ(x)φ(y)|y|χ(||x| − |y|| < 1)

〈|x| ± |y|〉 ≤| · |
Cχ(||x| − |y|| < 1)

〈x〉〈y〉 (4.34)

is an admissible kernel and, by virtue of Lemma 3.1 and Lemma 4.7 (1),

φ(x)φ(y)|y|χ(||x| − |y|| ≥ 1)

(
1

|x| ± |y| − 1

〈|x| ± |y|〉
)

= φ(x)φ(y)|y|χ(||x| − |y|| ≥ 1)

(|x| ± |y|)〈|x| ± |y|〉{(|x| ± |y|)+ 〈|x| ± |y|〉}
≤| · |

φ(x)φ(y)|y|χ(||x| − |y|| ≥ 1)

〈|x| − |y|〉2

is Lp bounded kernel for 1 ≤ p < ∞ in general and is admissible if φ satisfies 〈V, xαφ〉 = 0
for |α| ≤ 1. We have

∫ 1

−1

χ(||x| + θ |y|| < 1)φ(x)φ(y)|y|
〈|x| + θ |y|〉 dθ ≤ CN

∫ 1

−1

φ(x)φ(y)|y|
〈|x| + θ |y|〉N dθ, N = 1, 2, . . .

and
∫ 1

−1
φ(x)φ(y)|y|χ(||x| + θ |y|| > 1)

(
1

|x| + θ |y| − 1

〈|x| + θ |y|〉
)

dθ

≤| · |
∫ 1

−1

|φ(x)φ(y)||y|χ(||x| + θ |y|| > 1)

〈|x| + θ |y|〉2 dθ

and Lemma 4.7 likewise implies that both depend generically on φ ∈ E . Thus, for concluding
the proof of the lemma, it suffices to show that

i

π
φ(x)φ(y)|y|

(
∑

±

1

〈|x| ± |y|〉 −
∫ 1

−1

dθ

〈|x| + θ |y|〉

)

=
∑

±

i

π
φ(x)φ(y)|y|

∫ 1

0

(
1

〈|x| ± |y|〉 − 1

〈|x| ± θ |y|〉
)

dθ (4.35)

also depends generically on φ ∈ E . But, we have

1

〈|x| ± |y|〉 − 1

〈|x| ± θ |y|〉 = ∓(1 − θ)|y|((|x| ± |y|)+ (|x| ± θ |y|))
〈|x| ± |y|〉〈|x| ± θ |y|〉(〈|x| ± |y|〉 + 〈|x| ± θ |y|〉)
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≤| · |
(1 − θ)|y|

〈|x| ± |y|〉〈|x| ± θ |y|〉 ≤ (1 − θ)

2

( |y|
〈|x| ± |y|〉2 + |y|

〈|x| ± θ |y|〉2

)

and

(4.35)≤| · |C
∫ 1

0
〈x〉−2

(
1

〈|x| − |y|〉2 + 1

〈|x| − θ |y|〉2

)

dθ .

Thus, (4.35) produces a bounded operator in L1(R3). On the other hand we have for any

0 ≤ θ ≤ 1 and 0 ≤ ε ≤ 1 that 〈|x| ± θ |y|〉−1 ≤ 〈x〉1−ε|y|ε−1|θ |ε−1 and

φ(x)φ(y)|y|
〈|x| ± θ |y|〉 ≤| · | φ(x)〈x〉1−ε · φ(y)|y|−ε · θε−1 . (4.36)

Here for p0 and p1 sufficiently close to 3 such that p0 < 3 < p1, φ(x)〈x〉1−ε ∈ Lp(R3) for

all p ≥ p0 and φ(y)|y|−ε ∈ Lp′
(R3) for all p ≤ p1 and, (4.35) is an Lp bounded kernel for

all p0 ≤ p < 3, hence, by interpolation for all 1 ≤ p < 3 in general. If 〈V, xαφ〉 = 0 for
|α| ≤ 1, then φ(y)|y|−ε ∈ L1 and (4.35) is bounded in L∞(R3) and, by interpolation, in all

Lp(R3), 1 ≤ p ≤ ∞. This completes the proof. �

ADDED IN PROOF. After the paper was accepted, we were informed of the paper
“On the Lp-boundedness of wave operators for two dimensional Schrödinger operators with
threshold obstructions” by M. B. Erdoğan, M. Goldberg and W. Green where authors proves
that wave operators are bounded in Lp for all 1 < p < ∞ if there is an s-wave resonance or
eigenvalue only at zero (arXiv: 1706.01530).
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