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Abstract. Let p be an odd prime number, and E an elliptic curve defined over a number field. Suppose that
E has good reduction at any prime lying above p, and has supersingular reduction at some prime lying above p.
In this paper, we construct the plus and the minus Selmer groups of E over the cyclotomic Zp-extension in a more
general setting than that of B.D. Kim, and give a generalization of a result of B.D. Kim on the triviality of finite
�-submodules of the Pontryagin duals of the plus and the minus Selmer groups, where � is the Iwasawa algebra of
the Galois group of the Zp-extension.

1. Introduction

Let p be an odd prime number, F0 a finite extension of Q, F∞/F0 the cyclotomic Zp-
extension and Fn the n-th layer. Denote � = Zp[[Gal(F∞/F0)]]. Let E be an elliptic curve
defined over F0.

When E has good ordinary reduction at any prime of F0 lying above p, the Pontryagin
dual of the p-primary Selmer group of E over F∞ is conjectured to be �-torsion. This
conjecture is proved in several cases now. For example if the p-primary Selmer group of E
over F0 is finite, or if E is defined over Q and F0/Q is abelian, then the conjecture is known
to be true (cf. [2] p. 55).

On the contrary, when E has good supersingular reduction at some prime of F0 lying
above p, the Pontryagin dual of the p-primary Selmer group of E over F∞ is no longer �-
torsion. S. Kobayashi [11] defined the plus and the minus Selmer groups Sel±(F∞, E[p∞])
when E is defined over Q, ap = 1 + p − #Ẽ(Fp) = 0, and F0 = Q(μp), where Ẽ denotes
the reduction of E at p, and μp denotes the group of p-th roots of unity. He proved that the

Pontryagin duals Sel±(F∞, E[p∞])∨ are �-torsion. A. Iovita and R. Pollack [6] generalized
definitions of the plus and the minus Selmer groups to the case when F0 is a number field in
which p splits completely,E is defined over Q and ap = 0. Further B.D. Kim [7] generalized
them to the case when F0 is a number field in which p is unramified, E is defined over Q and
ap = 0.
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B.D. Kim proved in [8] the following theorem on the triviality of finite�-submodules of
Sel±(F∞, E[p∞])∨.

THEOREM 1.1 ([8] Theorem 1.1). Let F0 be a finite extension of Q in which p is un-
ramified, E an elliptic curve defined over Q, and ap = 0.

(1) Assume that Sel−(F∞, E[p∞])∨ is �-torsion. Then Sel−(F∞, E[p∞])∨ has no
nontrivial finite�-submodule.

(2) Assume further that p splits completely in F0, and Sel+(F∞, E[p∞])∨ is �-torsion.
Then Sel+(F∞, E[p∞])∨ has no nontrivial finite�-submodule.

Throughout this paper, we assume that Sel±(F∞, E[p∞])∨ is �-torsion as in the above
theorem. The following proposition on the local conditions of the plus and the minus Selmer
groups was an important ingredient for Theorem 1.1.

PROPOSITION 1.2 ([7] Proposition 3.13, [8] Proposition 2.2 and Proposition 2.3).
Let k0 be a finite unramified extension of Qp, and k∞ the cyclotomic Zp-extension of k0. We
denote the completed group ring Zp[[Gal(k∞/k0)]] by �.

(1) We have

(E−(k∞)⊗Qp/Zp)
∨ ∼= �⊕d

where d = [k0 : Qp].
(2) Assume further that k0 = Qp. Then we have

(E+(k∞)⊗Qp/Zp)
∨ ∼= � .

When B.D. Kim studied the plus Selmer group in [8], he restricted the base field F0 as
in Theorem 1.1 (2) to apply Proposition 1.2, and he got the result only in such a case. Even
when he studied the minus Selmer group in [8], the base field F0 was a finite extension of Q
in which p is unramified. He did not consider the case when μp ⊂ F0.

In this paper, we consider more general fields for F0 and k0, and a more general elliptic
curve E, than those of the above known results. In particular, we remove the assumption
on the splitting behavior of p in F0/Q in Theorem 1.1 (2) and the assumption k0 = Qp in
Proposition 1.2 (2). We also note that we also consider the case when μp ⊂ F0. We get the
following result.

MAIN THEOREM 1.3 (Theorem 4.8). Let F be a finite extension of Q, F0 = F(μp),
F∞/F0 the cyclotomic Zp-extension, and E an elliptic curve defined over a subfield F ′ of
F . Let Sss

p be the set of all primes of F ′ lying above p where E has supersingular reduction.

Assume the following conditions:

(i) E has good reduction at any prime of F ′ lying above p,
(ii) Sss

p is nonempty,

(iii) any prime w ∈ Sss
p is unramified in F ,



SELMER GROUPS FOR ELLIPTIC CURVES 275

(iv) F ′w = Qp for any prime w ∈ Sss
p , where F

′
w is the completion of F ′ at the prime w,

(v) aw = 1+ p − #Ẽw(Fp) = 0 for any prime w ∈ Sss
p , where Ẽw is the reduction of E at

w, and
(vi) both Sel±(F∞, E[p∞])∨ are �-torsion.

Then both Sel±(F∞, E[p∞])∨ have no nontrivial finite �-submodule.
REMARK 1.4. (1) We assume the condition (i) since we expect the condition (vi) au-

tomatically holds true under this condition.
(2) In the case Sss

p = ∅, we have Sel±(F∞, E[p∞]) = Sel(F∞, E[p∞]). Finite �-

submodules of Sel(F∞, E[p∞])∨ was studied by Hachimori and Matsuno [3]. Thus we will
be interested in the case (ii).

(3) The conditions (iii) and (iv) on the fields F and F ′ will be used in applying the local
result discussed in Section 3.

(4) The condition (v) is crucial in this paper. In our method, it is important to study
the local conditions E+(kn) and E−(kn), where kn is the n-th layer of the cyclotomic Zp-
extension k∞/k0 with k0 a finite extension of Qp. In the case when aw �= 0 for some w ∈
Sss
p , one might need another submodule of Sel(F∞, E[p∞]) instead of Sel±(F∞, E[p∞]).

F. Sprung [16] defined Sel�(F∞, E[p∞]) and Sel�(F∞, E[p∞]) instead of the plus and the
minus Selmer groups in the case when F0 = Q(μp), and E is defined over Q which has

supersingular reduction at p without assuming ap = 0. He defined E�(k∞) and E�(k∞) in

the case when k0 = Qp(μp), however, did not defineE�(kn) norE�(kn). We cannot yet apply
our method in the case when aw �= 0 for some w.

(5) In some cases, Sel±(F∞, E[p∞])∨ is actually known to be �-torsion. For example,
let F0 be a finite abelian extension of Q, and F∞/F0 the cyclotomic Zp-extension. Suppose
that E is defined over Q and has supersingular reduction at p with ap = 0. In this case,

one can actually show that Sel±(F∞, E[p∞])∨ is �-torsion. Our main theorem implies that
Sel±(F∞, E[p∞])∨ has no nontrivial finite �-submodule for any finite abelian field F0. On
the other hand, we need a certain assumption on F0 to apply B.D. Kim’s result.

For the proof of Theorem 1.3, we will generalize Proposition 1.2 to the case of our
setting. In the study of (E±(k∞) ⊗ Qp/Zp)

∨, we find that its �-module structure in our
setting is generally different from those in the settings of previous works. We now explain
some known results on the �-module structure of (E±(k∞)⊗Qp/Zp)

∨.
Takeji [17] considered the case when k0 is a quadratic unramified extension of Qp. He

generalized Proposition 1.2 to this case, i.e. he proved that (E±(k∞) ⊗ Qp/Zp)
∨ is a free

�-module of �-rank 2. Applying this result, he proved that Sel±(F∞, E[p∞])∨ has no non-
trivial finite �-submodule in the case when F0 is a quadratic number field in which p inerts,
which is a generalization of Theorem 1.1.

M. Kim proved in his dissertation [10] that E±(kn) are cyclic Zp[Gal(kn/Qp)]-modules
for all n, where kn is the n-th layer of the cyclotomic Zp-extension k∞/k0, in the case when
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k is a general finite unramified extension of Qp and k0 = k(μp), however, he did not notice
that the assumption [k : Qp] ≡/ 0 (mod 4) is needed. From this cyclicity, one can show that

(E±(k∞) ⊗ Qp/Zp)
∨ is a free �-module of �-rank [k0 : Qp], which is a generalization of

Proposition 1.2.
B.D. Kim [9] independently generalized Proposition 1.2 to the case when k0 is a finite

unramified extension of Qp and [k0 : Qp] ≡/ 0 (mod 4), i.e. he proved in this case that

(E±(k∞)⊗Qp/Zp)∨ is a free�-module of�-rank [k0 : Qp] (cf. [9] Theorem 2.8). Applying
this result, we can generalize Theorem 1.1 to the case when F0 is a finite extension of Q in
which p is unramified and [F0,v : Qp] ≡/ 0 (mod 4) for all primes v of F0 lying above p,
where F0,v is the completion of F0 at the prime v.

We remark that we consider more general settings than those of all the above known
results.

Here we prepare some notations of our settings and explain an obstruction for general-
izing Proposition 1.2 to the case of our setting, which we have overcome in this paper. Let
k be a finite unramified extension of Qp of degree d , k0 = k(μp), k∞ the cyclotomic Zp-
extension of k0, kn the n-th layer, � = Gal(k(μp)/k), � = Gal(k∞/k0), �n = Gal(k∞/kn),
Gn = Gal(kn/Qp) and � = Zp[[�]].

An essential property, expected in all previous works [7], [8], [9], [10], and [17] was
that E±(kn) are cyclic Zp[Gn]-modules for all n. From this expected property, we can show

that (E±(k∞) ⊗ Qp/Zp)
∨ is a free �-module of �-rank [k0 : Qp]. On the contrary to

this expectation, we find that E+(kn) are not cyclic Zp[Gn]-modules when d ≡ 0 (mod
4) (cf. Proposition 3.16 and Remark 3.17). An obstruction is that this non-cyclicity makes
(E+(k∞) ⊗ Qp/Zp)

∨ more complicated. In fact, we find that (E+(k∞) ⊗ Qp/Zp)
∨ is not

a free �-module in the case when d ≡ 0 (mod 4) (cf. Remark 3.26). Therefore, the same
statement with the conclusion of Proposition 1.2 does not hold in the general setting.

A crucial step for the proof of our main theorem is to investigate the �-module structure
of (E±(k∞)⊗Qp/Zp)∨ more precisely. We prove the following proposition on the local con-
ditions of the plus and the minus Selmer groups, which is a generalization of Proposition 1.2
and an important ingredient for our main theorem.

PROPOSITION 1.5 (Proposition 3.28). (E±(k∞) ⊗ Qp/Zp)
∨ has no nontrivial finite

�-submodule and its �-rank is [k0 : Qp].
We prove this proposition by calculating the �n-coinvariants of the χ-component

(E±(k∞)χ ⊗ Qp/Zp)
∨ for all n, where χ : � → Z×p is a character of �. The original

idea for such calculations, to calculate the �-coinvariants and to apply Nakayama’s lemma,
was suggested by M. Kurihara. The authors are very grateful to him.

As a consequence of Proposition 1.5, we prove the following proposition which is also
an important ingredient for our main theorem.
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PROPOSITION 1.6 (Proposition 3.32). We have(
H 1(k∞, E[p∞])
E±(k∞)⊗Qp/Zp

)∨
∼= �⊕[k0:Qp ] .

In comparison with the strategy for the proof of Theorem 1.1, we develop another strat-
egy also for the proof of our main theorem. Our strategy is to prove that the triviality of finite
�-submodules of Sel(F∞, E[p∞])∨ is inherited to that of Sel±(F∞, E[p∞])∨, and use the
following theorem.

THEOREM 1.7 (Theorem 4.5). Assume that both Sel±(F∞, E[p∞])∨ are �-torsion.
Then Sel(F∞, E[p∞])∨ has no nontrivial finite �-submodule.

The above discussion is enough to prove our main theorem, however, we can determine
the explicit structure of the �-module (E±(k∞)χ ⊗ Qp/Zp)

∨, on which we explain here.

We prepare some notations concerning the character decomposition. Let χ : � → Z×p be a

character of � = Gal(k(μp)/k). If M is a Zp[�]-module, then M is decomposed into

M =
⊕
χ

εχM ,

where εχ = 1
p−1

∑
σ∈� χ(σ)σ−1 ∈ Zp[�]. We denote by Mχ the χ-component εχM . We

fix a topological generator γ ∈ �, and identify Zp[[�]] with the ring of formal power series
Zp[[X]] by identifying γ with 1+X. We get the following theorem.

THEOREM 1.8 (Theorem 3.34). Let χ : �→ Z×p be a character. We have(
E+(k∞)χ ⊗Qp/Zp

)∨ ∼=�⊕d ⊕ (�/X)⊕δ ,(
E−(k∞)χ ⊗Qp/Zp

)∨ ∼=�⊕d
where

δ =
{

0 if d ≡/ 0 (mod 4) or χ �= 1 ,

2 otherwise .

The outline of this paper is as follows. In Section 2, we define the plus and the minus
Selmer groups following Kobayashi, and fix a global setting. In Section 3, we study the lo-
cal conditions in a local setting. Subsection 3.1 is a preparation for the rest of Section 3.
In Subsection 3.2, we give a description of E±(kn)χ in terms of formal groups and a sys-
tem of local points. In Subsection 3.3, we study the �-modules (E±(k∞)χ ⊗ Qp/Zp)

∨

and (H 1(k∞, E[p∞])/(E±(k∞) ⊗ Qp/Zp))
∨. In Subsection 3.4, we further determine

the explicit structure of the �-module (E±(k∞)χ ⊗ Qp/Zp)
∨. In Section 4, we study
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finite �-submodules of the Pontryagin duals of the Selmer groups Sel(F∞, E[p∞])∨ and
Sel±(F∞, E[p∞])∨. In Subsection 4.1, we prove that the usual p-primary Selmer group has
no nontrivial finite �-submodule under the same assumption with the main theorem. In this
step, it is essential to assume that both Sel±(F∞, E[p∞])∨ are �-torsion. In Subsection 4.2,
we prove our main theorem.

2. The plus and the minus Selmer groups

Let p be a prime number, F a finite extension of Q, and E an elliptic curve defined over
F . For a finite extension K/F , the p-primary Selmer group for E overK is defined by

Sel(K,E[p∞]) := Ker

(
H 1(K,E[p∞]) −→

∏
v

H 1(Kv,E[p∞])
E(Kv)⊗Qp/Zp

)
,

where v runs through all places of K , Kv is the completion ofK at the place v, and E(Kv)⊗
Qp/Zp is regarded as a subgroup of H 1(Kv,E[p∞]) by the Kummer map. For a number
field K that is an infinite extension of F , we define the p-primary Selmer group for E overK
by

Sel(K,E[p∞]) := lim−→
K ′

Sel(K ′, E[p∞]) ,

where K ′ runs through all the subfields of K which are finite extensions of F , and transition
maps are restriction maps between cohomology groups.

We denote Fn = F(μpn+1), F−1 = F and F∞ = ⋃n Fn, where μpn denotes the group

of pn-th roots of unity. We fix a generator (ζpn) of Zp(1), namely, for each n ≥ 0, ζpn is a

primitive pn-th root of unity such that ζ p
pn+1 = ζpn .

Then by definition, we have

Sel(F∞, E[p∞]) = lim−→
n

Sel(Fn,E[p∞]) .

Throughout this paper, we fix the following notations:

• p is an odd prime number,
• F is a finite extension of Q,
• E is an elliptic curve defined over a subfield F ′ of F .

Denote Sss
p the set of all primes of F ′ lying abovep whereE has supersingular reduction.

Throughout this paper, we assume the following:

• E has good reduction at any prime w|p of F ′,
• Sss

p is nonempty,

• any prime w ∈ Sss
p is unramified in F ,

• F ′w = Qp for any primew ∈ Sss
p , where F ′w is the completion of F ′ at the primew, and
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• aw = 1+ p − #Ẽw(Fp) = 0 for any prime w ∈ Sss
p , where Ẽw is the reduction of E at

w.

When p ≥ 5, the condition aw = 0 is automatically satisfied since we have p|aw and
|aw| ≤ 2

√
p.

Denote Sss
p,F the set of all primes of F lying above Sss

p .

Following S. Kobayashi [11] we define subgroups E+(Fn,v) and E−(Fn,v) of E(Fn,v)
for each prime v ∈ Sss

p,F , and define plus and minus Selmer groups Sel±(Fn,E[p∞]),
Sel±(F∞, E[p∞]) as the following (see also [7] and [10]).

DEFINITION 2.1. (1) For a prime v ∈ Sss
p,F and n ≥ −1, let Fn,v be the completion of

Fn at the unique prime of Fn lying above v. We define

E+(Fn,v) = {P ∈ E(Fn,v)|Trn/m+1 P ∈ E(Fm,v) for all even m,−1 ≤ m ≤ n− 1} ,
E−(Fn,v) = {P ∈ E(Fn,v)|Trn/m+1 P ∈ E(Fm,v) for all odd m,−1 ≤ m ≤ n− 1}

where Trn/m+1 : E(Fn,v)→ E(Fm+1,v) is the trace map.
(2) The plus and the minus Selmer groups are defined by

Sel±(Fn,E[p∞]) := Ker

(
Sel(Fn,E[p∞]) −→

⊕
v∈Sss

p,F

H 1(Fn,v, E[p∞])
E±(Fn,v)⊗Qp/Zp

)
,

Sel±(F∞, E[p∞]) := lim−→
n

Sel±(Fn,E[p∞]) .

We denote the Pontryagin dual of a moduleM by M∨. Let Gn = Gal(Fn/F ) and G∞ =
Gal(F∞/F ). Then Zp[Gn] acts naturally on Sel±(Fn,E[p∞])∨ and�(G∞) := Zp[[G∞]] on

Sel±(F∞, E[p∞])∨.
The Pontryagin dual of the usual p-primary Selmer group Sel(F∞, E[p∞])∨ is not a

torsion �(G∞)-module, however, Sel±(F∞, E[p∞])∨ is known to be �(G∞)-torsion in the
case F = Q (cf. [11] Theorem 2.2).

3. The formal groups and the norm subgroups

Let E/Qp be an elliptic curve with ap = 0 and Ê the formal group over Zp associated
with the minimal model of E over Qp. Let k be a finite unramified extension of Qp of degree
d = [k : Qp] and Ok the ring of integers of k. For each n ≥ −1, let kn = k(μpn+1) and mn be

the maximal ideal of kn. Let k∞ =⋃n≥−1 kn and m∞ =⋃n≥−1 mn. LetGn = Gal(kn/Qp),
G∞ = Gal(k∞/Qp), �n = Gal(k∞/kn), � = �0(= Gal(k∞/k0)) and� = Gal(k(μp)/k) =
Gal(k0/k−1). Let ϕ be the Frobenius homomorphism in Gal(k/Qp) = G−1 characterized by
xϕ ≡ xp (mod pOk). We denote � = Zp[[�]]. We fix a topological generator γ ∈ �. Then
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we identify Zp[[�]] with Zp[[X]], and Zp[[G∞]] with Zp[G0][[X]] by identifying γ with
1+ X.

3.1. The formal groups associated to E

PROPOSITION 3.1. For any n, Ê(mn) is Zp-torsion-free.

PROOF. We can prove this by the same method as the proof of [11] Proposition 8.7. �

The above proposition implies that the formal logarithm logÊ(X) induces an injective

homomorphism logÊ : Ê(mn) → kn for all n, since the kernel of the logarithm of a formal
group precisely consists of the elements of finite order.

For such a one-dimensional formal group F defined over Zp with height 2, the for-
mal logarithm logF induces isomorphisms as in the following proposition (cf. The proof of
Proposition 2.1 in [13], and Lemma 2.4 in [4]).

PROPOSITION 3.2. Let F be a one-dimensional formal group defined over Zp with
height 2. For a finite extension K/Qp, denote by mK its maximal ideal. Then the logarithm
logF : F (mK)→ K induces isomorphisms

logF : F (m
j
K)

�−→ m
j
K

for all j > vK(p)/(p
2 − 1), where vK is the normalized valuation of K so that vK(πK) = 1

for a uniformizer πK of K .

Following [7] and [10] we construct a system of local points (dn)n.

Fix a generator ζ of the group of roots of unity in k. Then ζ is a primitive (pd − 1)-th
root of unity, and we have k = Qp(ζ ).

Let g(X) = (X + ζ )p − ζ p ∈ Ok[X], g(m)(X) = gϕ
m−1 ◦ gϕm−2 ◦ · · · ◦ g(X) =

(X + ζ )pm − ζ pm form ≥ 1 and g(0)(X) = X. We define a formal power series logG (X) by

logG (X) =
∞∑
m=0

(−1)m
g(2m)(X)

pm
.

We can check that

(logϕ
−(n+1)

G )ϕ
2
(Xp

2
)+ p logϕ

−(n+1)

G (X) ≡ 0 (mod p)

and (logϕ
−(n+1)

G )′(X) ∈ Ok[[X]] for each n. This means that logϕ
−(n+1)

G (X) is of the Honda

type t2 + p for each n. Hence by Honda theory (cf. [5]) we see that

• there is a formal group Gn defined over Ok whose formal logarithm logGn is given by

logϕ
−(n+1)

G for each n, and
• the power series expÊ ◦ logGn is contained in Ok[[X]] and gives an isomorphism Gn →
Ê over Ok for each n.
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We fix a generator (ζpn) of Zp(1), namely, for each n ≥ 0, ζpn is a primitive pn-th root

of unity such that ζ p
pn+1 = ζpn . Let πn = ζ ϕ−(n+1)

(ζpn+1 − 1) ∈ mn for n ≥ −1 and πn = 0

for n < −1. For each n, we can easily show that

g(m),ϕ
−(n+1)

(πn) = πn−m (3.1)

for any m ≥ 0 by direct calculation.
Put

εn = ζ ϕ−(n+3)
p − ζ ϕ−(n+5)

p2 + ζ ϕ−(n+7)
p3 − · · ·

=
∞∑
i=1

(−1)i−1ζ ϕ
−(n+1+2i)

pi ∈ mk

for n ≥ −1. Since logGn : Gn(mk) → mk is an isomorphism for all n (cf. Proposition 3.2),
there is εn ∈ Gn(mk) such that logGn (εn) = εn for n ≥ −1.

DEFINITION 3.3. We define

dn = expÊ ◦ logGn (εn[+]Gnπn)
for n ≥ −1, where [+]Gn is the addition of Gn.

For n ≥ m, we denote by Trn/m : Ê(mn)→ Ê(mm) the trace (norm) with respect to the

group-law Ê(X, Y ).

PROPOSITION 3.4. The system of local points (dn)n ∈ ∏n≥−1 Ê(mn) satisfies
(1) Trn/n−1(dn) = −dn−2 for each n ≥ 1,

(2) Tr0/−1(d0) = −(ϕ + ϕ−1)d−1.

PROOF. We prove this by the same method as the proof of Lemma 8.9 in [11]. Since
logÊ is injective (cf. Proposition 3.1) and commute with the action of Gn on Ê(mn), it is
enough to show that the relation holds after applying logÊ to both sides of the equality.

We have

logÊ(dn)= logGn(εn[+]Gnπn)
= logGn(εn)+ logGn (πn)

= εn +
[ n+1

2 ]∑
m=0

(−1)m
πn−2m

pm
.

Here the last equality follows from (3.1) and πn = 0 for n ≤ −1.
For n ≥ 1, we have

Trn/n−1 logÊ(dn)= pεn − ζ ϕ
−(n+1)

p +
[ n+1

2 ]∑
m=1

(−1)m
πn−2m

pm−1
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=−εn−2 −
[ n−1

2 ]∑
m=0

(−1)m
πn−2−2m

pm

=− logÊ(dn−2) .

For n = 0, we have

Tr0/−1 logÊ(d0)= (p − 1)ε0 − ζ ϕ−1
p

=−(ϕ + ϕ−1)ε−1

=−(ϕ + ϕ−1) logÊ(d−1) .

�

REMARK 3.5. As long as we define local points as values of certain power series at

certain points, the factor ϕ+ϕ−1 in the condition (2) always appears (cf. [12] Proposition 3.10,

(3.3)). Although B.D. Kim did not mention explicitly in [7], [8], this factor ϕ + ϕ−1 was an
obstruction. He assumed in [7] and [8] that k = Qp when he considered the plus Selmer

groups in order to make the situation simpler, i.e. ϕ + ϕ−1 = 2 in Zp[G−1] = Zp. In
this paper, we consider general unramified extension k/Qp, carefully taking into account this

factor ϕ + ϕ−1 in Zp[G−1].
LEMMA 3.6. ϕ + ϕ−1 is a unit in Zp[G−1] if and only if d ≡/ 0 (mod 4).

PROOF. First we note that ϕ + ϕ−1 ∈ Zp[G−1]× if and only if 1+ ϕ2 ∈ Zp[G−1]×.
If d is odd, we have

(1+ ϕ2)(1− ϕ2 + ϕ4 − · · · + (−1)
2d−2

2 ϕ2d−2)= 1+ (−1)d−1

= 2 .

If d is even, we have

(1+ ϕ2)(1− ϕ2 + ϕ4 − · · · + (−1)
d−2

2 ϕd−2)= 1+ (−1)
d−2

2

=
⎧⎨⎩ 2 if d ≡/ 0 (mod 4) ,

0 if d ≡ 0 (mod 4) ,

and 1− ϕ2+ ϕ4− · · ·+ (−1)
d−2

2 ϕd−2 �= 0 in Zp[G−1]. Since 2 is invertible in Zp[G−1], we
get the conclusion of Lemma 3.6. �

REMARK 3.7. In the proof of Lemma 3.6, we have proved the following; (1) ϕ + ϕ−1

is a unit if d ≡/ 0 (mod 4), (2) ϕ + ϕ−1 is a zero-divisor if d ≡ 0 (mod 4).

Moreover, we can easily check the following lemma.
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LEMMA 3.8. We have

AnnZp [G−1](ϕ + ϕ−1)

=
⎧⎨⎩ 0 if d ≡/ 0 (mod 4) ,

〈1 − ϕ2 + ϕ4 − · · · − ϕd−2〉Zp [G−1] if d ≡ 0 (mod 4) ,

and rankZp AnnZp[G−1](ϕ + ϕ−1) = 2 if d ≡ 0 (mod 4).

To describe the quotient modules Ê(mn)/Ê(mn−1) using the local points (dn)n, we pre-
pare the following lemma.

LEMMA 3.9. We have mn/mn−1 = 〈πn〉Zp [Gn] for n ≥ 0.

PROOF. It is enough to show that ζ(ζpn+1 − 1) generates mn/mn−1 as a Zp[Gn]-
module.

We first observe the ring of integers Okn of kn. Let Pm = {(ζpm − 1)τ |τ ∈ Gal(km/k)}
for m ≥ 1 and P0 = {1}. Since Okn = Ok[ζpn+1], we have

Okn = 〈P0 ∪ P1 ∪ · · · ∪ Pn+1〉Ok
.

Thus, for x ∈ Okn , we can write x = a0+∑n+1
m=1

∑
τ∈Gal(km/k) am,τ (ζp

m−1)τ with a0, am,τ ∈
Ok . With this notation, since each (ζpm − 1)τ already has positive valuation, we see that
x ∈ mn if and only if a0 ∈ mk.

Take any class in mn/mn−1 with a representative x ∈ mn. Write x = a0 +∑n+1
m=1

∑
τ∈Gal(km/k) am,τ (ζpn+1 − 1)τ . In this summation, the summands a0 and am,τ (ζpm −

1)τ with 1 ≤ m ≤ n are contained in mn−1. Since Ok = Zp[ζ ] = 〈ζ 〉Zp [G−1], each

an+1,τ ∈ Ok can be written as an+1,τ =∑d−1
i=0 bτ,iζ

ϕi with bτ,i ∈ Zp. Therefore we have

x ≡
∑

τ∈Gal(kn+1/k)

an+1,τ (ζpn+1 − 1)τ

≡
∑

τ∈Gal(kn+1/k)

d−1∑
i=0

bτ,iζ
ϕi (ζpn+1 − 1)τ (mod mn−1) .

Here, ζ ϕ
i
(ζpn+1 − 1)τ for each i with 0 ≤ i ≤ d − 1, and each τ ∈ Gal(kn+1/k), is exactly a

Galois conjugate of ζ(ζpn+1−1) byGn = G−1×Gal(kn+1/k). This completes the proof. �

PROPOSITION 3.10. For n ≥ 0, we have logÊ(Ê(mn)) ⊆ mn + kn−1 and the formal
logarithm logÊ induces canonical isomorphisms of Zp[Gn]-modules,

Ê(mn)/Ê(mn−1)
�−→ mn/mn−1 .
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By these isomorphisms, dn is sent to πn. In particular, we have

Ê(mn)/Ê(mn−1) = 〈dn〉Zp [Gn] .
PROOF. We prove this by the same method as the proof of Proposition 8.11 in [11] or

Proposition 4.9 in [6].
For the first statement, we only note that by the commutative diagram

Ê(mn)
logÊ ��

∼=expG−1
◦ logÊ

��

kn

G−1(mn)

logG−1

�����������

,

it is enough to consider logG−1
(= logG ) on G−1(mn) instead of logÊ on Ê(mn). Then we can

show that logG−1
(G−1(mn)) ⊆ mn + kn−1 as in [11], [6].

Since we have logÊ(mn) ∩ kn−1 = logÊ(mn−1), the natural map

Ê(mn)/Ê(mn−1) −→ (mn + kn−1)/kn−1 ∼= mn/mn−1

is injective. Since εn ∈ m−1 and πn−2m ∈ kn−2 form ≥ 1, we have

logÊ(dn) = εn + πn +
[ n+1

2 ]∑
m=1

(−1)m
πn−2m

pm

≡ πn (mod kn−1) .

Since πn generates mn/mn−1 as a Zp[Gn]-module (cf. Lemma 3.9), the above injection is in

fact a bijection and dn generates Ê(mn)/Ê(mn−1) as a Zp[Gn]-module. �

COROLLARY 3.11. We have

Ê(mn) =
⎧⎨⎩ 〈d−1〉Zp [G−1] if n = −1 ,

〈dn, dn−1〉Zp [Gn] if n ≥ 0 .

PROOF. The case n = −1 follows from Ê(m−1) ∼= m−1 (see Proposition 3.2) and
Nakayama’s lemma. The case n ≥ 0 follows easily from Proposition 3.10 and the trace
relations satisfied by the dn (see Proposition 3.4). �

REMARK 3.12. We defined the system of local points (dn)n following B.D. Kim [7]
and M. Kim [10] in the above. We can take another system of local points instead of (dn)n.
Indeed, what we need for the following discussion is a system of local points (dn)n which
satisfies the following three conditions

1. Trn/n−1(dn) = −dn−2 for each n ≥ 1 (Proposition 3.4 (1)),

2. Tr0/−1(d0) = −(ϕ + ϕ−1)d−1 (Proposition 3.4 (2)),
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3. Ê(mn)/Ê(mn−1) = 〈dn〉Zp [Gn] (Proposition 3.10).

Such a system (dn)n obviously admits at least a difference of multiplication by a unit in
Zp[G−1]×. S. Kobayashi constructed such a system of local points also in [12] Proof of
Proposition 3.12 by using another formal power series �ε(X) and a system (ζpn+1−1)n instead

of logG (X) and a system (εn[+]Gnπn)n. In our setting, the formal power series �ε(X) is

defined for each ε ∈ Ê(mk) by

�ε(X) = ε +
∞∑
m=0

(−1)m
f (2m)(ε′X)

pm
∈ k[[X]]

where ε = logÊ(ε) ∈ mk , ε′ = (ϕ2 + p)εp−1 ∈ Ok , f (X) = (X + 1)p − 1 and f (m)(X) is
the m-iterated composition of f . By using this formal power series, Kobayashi defined dε,n
for each n ≥ −1 by

dε,n = expÊ ◦�ϕ
−(n+1)

ε (ζpn+1 − 1) ∈ Ê(mn) .
Then the first and the second conditions, which are listed above, are satisfied. If we take
ε ∈ mk such that mk = 〈ε〉Zp [Gn], then the third condition is also satisfied. We also note that
we can take such ε ∈ mk , since mk is known to be a cyclic Zp[Gn]-module.

3.2. The norm subgroups. Following S. Kobayashi [11] (and M. Kim [10]), we de-
fine the n-th plus subgroup Ê+(mn), the n-th minus subgroup Ê−(mn) and the n-th norm
subgroup C (mn) of Ê(mn);

DEFINITION 3.13. We define

Ê+(mn) = {P ∈ Ê(mn)|Trn/m+1 P ∈ Ê(mm) for all even m,−1 ≤ m ≤ n− 1} ,
Ê−(mn) = {P ∈ Ê(mn)|Trn/m+1 P ∈ Ê(mm) for all odd m,−1 ≤ m ≤ n− 1} ,

for n ≥ 0. We denote Ê±(m∞) =⋃n Ê
±(mn). We also define

C (mn) = {P ∈ Ê(mn)|Trn/m+1 P ∈ Ê(mm) for all m ≡ n (mod 2),−1 ≤ m ≤ n− 1}
for n ≥ 0 and C (m−1) = Ê(m−1).

By the following lemma, it is enough to study Ê±(mn) instead of E±(kn) for our pur-
pose.

LEMMA 3.14. The natural maps Ê±(mn) → E±(kn) induce isomorphisms

Ê±(mn)⊗Qp/Zp
�→ E±(kn)⊗Qp/Zp for all n, and thus we have

Ê±(m∞)⊗Qp/Zp
�−→ E±(k∞)⊗Qp/Zp .
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PROOF. We consider the following commutative diagrams

0 �� Ê(mn) �� E(kn) �� Ẽ(Fk) �� 0

0 �� Ê±(mn) ��
��

��

E±(kn) ��
��

��

A±n ��

ι±n

��

0

where Ẽ is the reduction of E modulo p, Fk is the residue field of k and A±n is the cokernel of

Ê±(mn)→ E±(kn). Since Ê±(mn) = Ê(mn)∩E±(kn), we see that the right vertical arrows
ι±n are injective. Thus A±n are finite as Ẽ(Fk) is finite. We also note that A±n [p∞] = 0, since
E/Qp has supersingular reduction. From the above, our claim will follow immediately. �

By comparing two definitions, we get the following relations between the plus subgroups
(the minus subgroups) and the norm subgroups.

LEMMA 3.15. We have

Ê+(mn) =

⎧⎪⎨⎪⎩
C (mn) if n is even ,

C (mn−1) if n is odd ,

Ê−(mn) =

⎧⎪⎨⎪⎩
C (mn) if n is odd ,

C (mn−1) if n is even .

We now describe C (mn) in terms of the system of local points (dn)n, and thus we get a
description of plus and minus subgroups Ê±(mn).

PROPOSITION 3.16. (1) For each n ≥ −1, the n-th norm subgroup is generated by dn
and d−1 as a Zp[Gn]-module;

C (mn) = 〈dn, d−1〉Zp [Gn] .
(2) For each n ≥ 0, we have an exact sequence

0 −→ Ê(m−1) −→ C (mn)⊕ C (mn−1) −→ Ê(mn) −→ 0 , (3.2)

where the first map is diagonal embedding by inclusions, and the second map is (a, b) �→
a − b.

PROOF. We will prove this by the same method as the proof of Proposition 8.12 in
[11]. The main difference is the element d−1 in the first statement.

We can show that C (mn) ∩ C (mn−1) = Ê(m−1) for n ≥ 0 by the completely same way
as in [11].
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For the moment, let C ′(mn) be the Zp[Gn]-submodule of Ê(mn) generated by dn and
d−1. By the trace relations on dn, clearly we have C (mn) ⊇ C ′(mn). We now prove

C (mn) = C ′(mn), C (mn)+ C (mn−1) = Ê(mn)
for n ≥ 0, simultaneously by induction.

In the case n = 0, we have

C (m0) = Ê(m0) = 〈d0, d−1〉Zp [G0] = C ′(m0) ,

C (m0)+ C (m−1) = Ê(m0)+ Ê(m−1) = Ê(m0)

by Corollary 3.11.
In the case n ≥ 1, by the induction hypothesis we have

Ê(mn−1) = C (mn−1)+ C (mn−2), C (mn−2) = C ′(mn−2) (3.3)

and by the trace relation we have C ′(mn−2) ⊆ C ′(mn). Therefore, by Proposition 3.10 and
(3.3), we have

Ê(mn) = 〈dn〉Zp [Gn] + Ê(mn−1)

= (〈dn〉Zp [Gn] + C ′(mn−2))+ C (mn−1)

⊆ C ′(mn)+ C (mn−1) .

In particular, we have C (mn) ⊆ C ′(mn) + C (mn−1). This implies that C (mn) = C ′(mn).
Indeed, if P ∈ C (mn), then there existQ ∈ C ′(mn) and R ∈ C (mn−1) such that P = Q+R.
Then we see that R = P −Q ∈ C (mn)∩C (mn−1) = Ê(m−1). Note that Ê(m−1) ⊆ C ′(mn)
since d−1 ∈ C ′(mn). So we get P = Q+ R ∈ C ′(mn) and thus C (mn) = C ′(mn). It is now
clear that C (mn)+ C (mn−1) = C ′(mn)+ C ′(mn−1) = Ê(mn). �

REMARK 3.17. We check here that the norm subgroup C (mn) is not a cyclic Zp[Gn]-
module generated by dn if and only if d = [k : Qp] ≡ 0 (mod 4) and n is even.

(1) When n is odd or d ≡/ 0 (mod 4), we see that d−1 is automatically contained in
〈dn〉Zp [Gn]. Thus in these cases we see that the norm subgroup C (mn) is a cyclic Zp[Gn]-
module generated by dn for each n;

C (mn) = 〈dn〉Zp[Gn] .
Indeed, when n is odd, we have

d−1 = (−1)
n+1

2 Tr1/0 · · ·Trn−2/n−3 Trn/n−1 dn ∈ 〈dn〉Zp [Gn] .
When d ≡/ 0 (mod 4) and n is even, we have

d−1 = (−1)
n+2

2 (ϕ + ϕ−1)−1 Tr0/−1 · · ·Trn−2/n−3 Trn/n−1 dn ∈ 〈dn〉Zp [Gn] ,
since ϕ + ϕ−1 ∈ Zp[G−1]× by Lemma 3.6.
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(2) When d ≡ 0 (mod 4), d−1 cannot be contained in 〈dn〉Zp [Gn] for any even n. Thus in

this case the norm subgroup C (mn) is not a cyclic Zp[Gn]-module generated by dn for each

even n. Indeed, if Ê(m0) = 〈d0〉Zp [G0], then Ê(m−1) = 〈Tr0/−1(d0)〉Zp [G−1] since Tr0/−1 :
Ê(m0) → Ê(m−1) is surjective. Since Ê(m−1) ∼= Zp[G−1], this means that Zp[G−1] =
(ϕ + ϕ−1)Zp[G−1], which is impossible by Lemma 3.6.

DEFINITION 3.18. Define d±n by

d+n =
⎧⎨⎩ (−1)

n+2
2 dn if n is even ,

(−1)
n+1

2 dn−1 if n is odd ,
d−n =

⎧⎨⎩ (−1)
n+1

2 dn if n is odd ,

(−1)
n
2 dn−1 if n is even .

REMARK 3.19. By the relation between C (mn) and Ê±(mn) (cf. Lemma 3.15), we
can translate Proposition 3.16 in terms of the plus and the minus systems of points (d+n )n
and (d−n )n such that Ê+(mn) = 〈d+n , d−0 〉Zp [Gn] and Ê−(mn) = 〈d−n , d−0 〉Zp [Gn]. As in Re-

mark 3.17, we see that the the plus subgroups Ê+(mn) are cyclic Zp[Gn]-modules generated

by d+n for all n if and only if d ≡/ 0 (mod 4), on the other hand the minus subgroups Ê−(mn)
are always cyclic Zp[Gn]-modules generated by d−n for all n.

Let χ : �→ Z×p be a character of � = Gal(k(μp)/k). If M is a Zp[�]-module, then

M is decomposed into

M =
⊕
χ

εχM ,

where εχ = 1
p−1

∑
σ∈� χ(σ)σ−1 ∈ Zp[�]. We denote by Mχ the χ-component εχM .

Since we have Gn ∼= G−1 × � × Gal(kn/k0), we can regard a Zp[Gn]-module as a
Zp[�]-module.

COROLLARY 3.20. Let χ : �→ Z×p be a character and qn =∑n
i=0(−1)ipn−i . Then

we have

rankZp C (mn)
χ =

{
d(qn + 1) if n : odd and χ = 1 ,

dqn otherwise ,

for each n ≥ 0 and

rankZp C (m−1)
χ =

{
d if χ = 1 ,

0 if χ �= 1 .

PROOF. Since C (m−1) = Ê(m−1) ∼= Zp[G−1], we obtain the latter statement.
From the exact sequence (3.2) we get a recurrence sequence

rankZp C (mn)
χ + rankZp C (mn−1)

χ
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= rankZp Ê(m−1)
χ + rankZp Ê(mn)

χ .

By the theory of formal groups, we have⎧⎨⎩Ê(m
r
n)
χ ∼= (mrn)χ (as Zp[Gn]-modules), and

#Ê(mn)χ/Ê(mrn)
χ = #mχn /(mrn)

χ <∞
for sufficiently large r . Thus we have

rankZp Ê(mn)
χ = rankZp Ê(m

r
n)
χ

= rankZp (m
r
n)
χ = rankZp m

χ
n = dpn

for each n ≥ 0. Therefore we obtain the former statement. �

We introduce here some notation that will be used throughout the rest of the paper. Let

ωn(X) := (1 + X)pn − 1 and �n(X) := ∑p−1
i=0 X

ipn−1
be the pn-th cyclotomic polynomial.

We define ω̃±0 (X) := 1 and

ω̃+n (X) =
∏

1≤m≤n,m:even

�m(1+X), ω+n (X) = Xω̃+n (X) ,

ω̃−n (X) =
∏

1≤m≤n,m:odd

�m(1+X), ω−n (X) = Xω̃−n (X) .

Note that ωn(X) = ω̃∓n (X)ω±n (X) for all n ≥ 0. We write ωn(X), ω̃±n (X) and ω±n (X) simply
by ωn, ω̃±n and ω±n respectively.

We identify Zp[Gn] with Zp[G0][X]/〈ωn〉Zp [G0][X] by sending γn to 1+X, where γn is
the image of γ in Zp[Gn].

Set qn =∑n
i=0(−1)ipn−i as in Corollary 3.20 and q−1 := 0. Put

q+n :=
⎧⎨⎩ qn if n is even ,

qn−1 if n is odd ,
q−n :=

⎧⎨⎩ qn if n is odd ,

qn−1 if n is even .

Note that q+n + q−n = pn for all n ≥ 0.

For later use, we rephrase Corollary 3.20 in terms of Ê±(mn)χ and q±n as in the following
corollary.

COROLLARY 3.21. Let χ : �→ Z×p be a character. Then we have

rankZp (Ê
+(mn)χ )= dq+n ,

rankZp (Ê
−(mn)χ )=

⎧⎨⎩ d(q−n + 1) if χ = 1 ,

dq−n if χ �= 1 .
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For a character χ of �, we define Zp[χ] to be the Zp[�]-module which is Zp as a
Zp-module, and on which � acts via χ , namely σ · x = χ(σ)x for σ ∈ � and x ∈ Zp[χ].

PROPOSITION 3.22. Let χ : �→ Z×p be a character. We have

Ê+(mn)χ ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zp[G−1][X] ⊕ Zp[G−1]

〈(ω̃+n ,−(ϕ + ϕ−1))〉Zp [G−1][X]
if χ = 1 ,

Zp[χ] ⊗Zp

Zp[G−1][X]
〈ω+n 〉Zp[G−1][X]

if χ �= 1 ,

Ê−(mn)χ ∼=

⎧⎪⎪⎨⎪⎪⎩
Zp[G−1][X]/〈ω−n 〉Zp [G−1][X] if χ = 1 ,

Zp[χ] ⊗Zp

Zp[G−1][X]
〈ω̃−n 〉Zp[G−1][X]

if χ �= 1 ,

as Zp[Gn]-modules.
PROOF. There is a surjective homomorphism

ψ : Zp[G0][X]
〈ωn〉Zp [G0][X]

⊕ Zp[G−1] −→ 〈d+n , d−0 〉Zp [Gn] = Ê+(mn)

obtained by sending (1, 0) to d+n and (0, 1) to
d−0
p−1 (= d−1

p−1 ). We have a relation

ω+n d+n = ω+n−2d
+
n−2 = · · · = ω+0 d+0 = Xd+0 = 0 .

Since ε1 = 1
p−1

∑
σ∈� σ−1 = 1

p−1 Tr0/−1 ∈ Zp[�], we also have another relation

ε1ω̃
+
n d
+
n =

1

p − 1
Tr0/−1 ω̃

+
n d
+
n =

1

p − 1
Tr0/−1 d

+
0 = (ϕ + ϕ−1)

d−0
p − 1

.

Thus the map ψ induces a surjective homomorphism

ψ :
Zp[G0][X]
〈ω+n 〉Zp [G0][X]

⊕ Zp[G−1]
〈(ε1ω̃

+
n ,−(ϕ + ϕ−1))〉Zp [G0][X]

−→ 〈d+n , d−0 〉Zp [Gn] = Ê+(mn) .

This map ψ is injective since the source and the target of ψ are free Zp-modules of the same

Zp-rank d(p − 1)q+n (cf. Corollary 3.21). Thus we have

Ê+(mn)∼=
Zp [G0][X]
〈ω+n 〉Zp [G0][X]

⊕ Zp[G−1]〈
(ε1ω̃

+
n ,−(ϕ + ϕ−1))

〉
Zp[G0][X]

∼= Zp[G0][X] ⊕ Zp[G−1]
〈(ω+n , 0), (ε1ω̃

+
n ,−(ϕ + ϕ−1))〉Zp [G0][X]
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∼=
⊕
χ

εχZp[G0][X] ⊕ εχZp[G−1]
〈(εχω+n , 0), (εχε1ω̃

+
n ,−εχ(ϕ + ϕ−1))〉Zp[G0][X]

as Zp[Gn]-modules, where the last isomorphism is obtained by the character decomposition.
Since we have

εχZp[G0][X] ⊕ εχZp[G−1] ∼=
⎧⎨⎩ Zp[G−1][X] ⊕ Zp[G−1] if χ = 1 ,

Zp[G−1][X] if χ �= 1 ,

and

〈(εχω+n , 0), (εχε1ω̃
+
n ,−εχ(ϕ + ϕ−1))〉Zp [G0][X]

∼=
⎧⎨⎩ 〈(ω

+
n , 0), (ω̃+n ,−(ϕ + ϕ−1))〉Zp [G−1][X] if χ = 1 ,

〈ω+n 〉Zp [G−1][X] if χ �= 1

as Zp[G−1][X]-modules, we have

Ê+(mn)χ ∼= εχZp[G0][X] ⊕ εχZp[G−1]
〈(εχω+n , 0), (εχε1ω̃

+
n ,−εχ(ϕ + ϕ−1))〉Zp [G0][X]

∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zp[G−1][X] ⊕ Zp[G−1]

〈(ω+n , 0), (ω̃+n ,−(ϕ + ϕ−1))〉Zp [G−1][X]
if χ = 1 ,

Zp[χ] ⊗Zp

Zp[G−1][X]
〈ω+n 〉Zp [G−1][X]

if χ �= 1

as Zp[Gn]-modules. Since (ω+n , 0) = X(ω̃+n ,−(ϕ + ϕ−1)), we get the conclusion for

Ê+(mn)χ .

Similarly to the above, we have

Ê−(mn)= 〈d−n 〉Zp [Gn]
∼=Zp[G0][X]/〈ω−n , (σ − 1)ω̃n

−|σ ∈ �〉Zp [G0][X]

∼= Zp[G−1][X]
〈ω−n 〉Zp [G−1][X]

⊕
⊕
χ �=1

(
Zp[χ] ⊗Zp

Zp[G−1][X]
〈ω̃−n 〉Zp [G−1][X]

)

as Zp[Gn]-modules. So we get the conclusion for Ê−(mn)χ . �

REMARK 3.23. When d ≡/ 0 (mod 4) and χ = 1, the description of the Galois mod-
ule Ê+(mn)χ in Proposition 3.22 can be made more simpler. Explicitly, we claim that the
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homomorphism

Zp[G−1][X]/〈ω+n 〉 �−→
Zp[G−1][X] ⊕ Zp[G−1]
〈(ω̃+n ,−(ϕ + ϕ−1))〉

given by x �→ (x, 0) is an isomorphism. Indeed, since ϕ+ ϕ−1 ∈ Zp[G−1]× in this case (see

Lemma 3.6), (x, y) ∈ Zp[G−1][X] ⊕ Zp[G−1] is equivalent to (x + y(ϕ + ϕ−1)−1ω̃+n , 0)

and thus the map is surjective. On the other hand, if (x, 0) ∈ 〈(ω̃+n ,−(ϕ + ϕ−1))〉 for
x ∈ Zp[G−1][X], then there exists a(X) ∈ Zp[G−1][X] such that x = a(X)ω̃+n and 0 =
−a(0)(ϕ+ϕ−1). Again by Lemma 3.6, we see that a(0) = 0. So we get x = a(X)

X
ω+n ∈ 〈ω+n 〉

and thus the map is injective.

In the rest of this paper, we abbreviate Zp[G−1][X]-modules 〈S〉Zp [G−1][X] generated by
some set S to 〈S〉 as in the above remark.

3.3. The plus and the minus local conditions. In this subsection, we study the �-
module (Ê±(m∞)χ ⊗Qp/Zp)

∨ and prove Proposition 3.28. We also study the�-module(
H 1(k∞, E[p∞])
Ê±(m∞)⊗Qp/Zp

)∨
and prove Proposition 3.32.

We first study (Ê±(m∞)χ ⊗Qp/Zp)
∨.

Since Ê±(m∞) are Zp-torsion-free, we have an exact sequence

0 −→ Ê±(m∞)χ −→ Ê±(m∞)χ ⊗Qp −→ Ê±(m∞)χ ⊗Qp/Zp −→ 0 .

From this exact sequence, we get the �n-invariant-coinvariant exact sequence

0 −→ Ê±(mn)χ ⊗Qp/Zp −→
(
Ê±(m∞)χ ⊗Qp/Zp

)�n
−→ (

Ê±(m∞)χ
)
�n
[p∞] −→ 0 , (3.4)

for each n ≥ 0. We will compute the rightmost modules
(
Ê±(m∞)χ

)
�n
[p∞] for all n ≥ 0 to

study the �-module (Ê±(m∞)χ ⊗Qp/Zp)
∨.

Define δ by

δ =
{

0 if d ≡/ 0 (mod 4) or χ �= 1 ,

2 otherwise .

.
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PROPOSITION 3.24. Let χ : � → Z×p be a character. Then
(
(Ê±(m∞)χ )�n[p∞]

)∨
are free Zp-modules for all n, and we have

rankZp
(
(Ê+(m∞)χ )�n[p∞]

)∨ = dq−n + δ ,
rankZp

(
(Ê−(m∞)χ )�n[p∞]

)∨ =
⎧⎨⎩ d(q+n − 1) if χ = 1 ,

dq+n if χ �= 1 .

More precisely, we have(
Ê+(m∞)χ

)
�n
[p∞]

∼=

⎧⎪⎪⎨⎪⎪⎩
(
Zp[G−1][X]
〈ω̃−n 〉 ⊕ AnnZp[G−1](ϕ + ϕ−1)

)
⊗Qp/Zp if χ = 1 ,(

Zp[G−1][X]
〈ω̃−n 〉

)
⊗Qp/Zp if χ �= 1 ,

(
Ê−(m∞)χ

)
�n
[p∞]

∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zp[G−1][X]
〈ω̃+n 〉

⊗Qp/Zp if χ = 1 ,

Zp[G−1][X]
〈ω+n 〉

⊗Qp/Zp if χ �= 1

as Zp-modules.

PROOF. We prove the claim for
(
Ê+(m∞)χ

)
�n
[p∞] in the case where χ = 1. We can

prove the rest of the claims similarly.
We have (

Ê+(m∞)χ
)
�n
[p∞]= (Ê+(m∞)χ/ωnÊ+(m∞)χ) [p∞]

∼= lim−→
m≥n

(
Ê+(mm)χ/ωnÊ+(mm)χ

) [p∞] , (3.5)

where transition maps(
Ê+(mm)χ/ωnÊ+(mm)χ

) [p∞] −→ (
Ê+(mm+1)

χ/ωnÊ
+(mm+1)

χ
) [p∞]

are multiplication-by-p maps when m is odd and identity maps when m is even. We will
calculate

(
Ê+(mm)χ/ωnÊ+(mm)χ

) [p∞] for each n, m. Since Ê+(mm) = Ê+(mm−1) if m
is odd, we may assume m is even.
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We consider the case n is even. By Proposition 3.22 we have

Ê+(mm)χ/ωnÊ+(mm)χ ∼= Zp[G−1][X] ⊕ Zp[G−1]〈
(ω̃+m,−(ϕ + ϕ−1)), (ωn, 0)

〉 . (3.6)

We can show that

Zp[G−1][X] ⊕ Zp[G−1]〈
(ω̃+m,−(ϕ + ϕ−1)), (ωn, 0)

〉 [p∞] ∼= Zp[G−1][X]
〈pm−n

2 , ω̃−n 〉
⊕ AnnZp [G−1](ϕ + ϕ−1)

〈pm−n
2 〉

. (3.7)

Indeed, since we have ω+m ≡ p
m−n

2 ω+n (mod ωn) and ωn = ω̃−n ω+n , there is an exact sequence

0−→ Zp[G−1][X]
〈pm−n

2 , ω̃−n 〉
⊕ AnnZp[G−1](ϕ + ϕ−1)

〈pm−n
2 〉

−→ Zp[G−1][X] ⊕ Zp[G−1]〈
(ω̃+m,−(ϕ + ϕ−1)), (ωn, 0)

〉
−→ Zp[G−1][X] ⊕ Zp[G−1]
〈(ω̃+m,−(ϕ + ϕ−1)), (ω+n , 0), (αω̃+n , 0)〉 −→ 0 , (3.8)

where the first map is (x, y) �→ (xω+n +yω̃+n , 0) and α is a generator of the Zp[G−1]-module

AnnZp [G−1](ϕ + ϕ−1) (cf. Lemma 3.8). There is an another exact sequence

0−→ Zp[G−1][X]
〈ω+n , αω̃+n 〉

−→ Zp[G−1][X] ⊕ Zp[G−1]
〈(ω̃+m,−(ϕ + ϕ−1)), (ω+n , 0), (αω̃+n , 0)〉

−→ Zp[G−1]
〈ϕ + ϕ−1〉 −→ 0 , (3.9)

whose leftmost and rightmost modules are both Zp-free, where the first map is x �→ (x, 0)
and the second map is (x, y) �→ y. Thus the rightmost module in (3.8), which is the same as
the middle module in (3.9), is Zp-free. Our claim (3.7) follows from this.

By (3.5), (3.6), and (3.7), we get(
Ê+(m∞)χ

)
�n
[p∞]∼= lim−→

m≥n

(
Ê±(mm)χ/ωnÊ±(mm)χ

) [p∞]
∼= lim−→
m≥n

Zp[G−1][X] ⊕ Zp[G−1]〈
(ω̃+m,−(ϕ + ϕ−1)), (ωn, 0)

〉 [p∞]
∼= lim−→
m≥n

Zp[G−1][X]
〈pm−n

2 , ω̃−n 〉
⊕ AnnZp[G−1](ϕ + ϕ−1)

〈pm−n
2 〉
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∼=
(
Zp[G−1][X]
〈ω̃−n 〉

⊕ AnnZp[G−1](ϕ + ϕ−1)

)
⊗Qp/Zp

when n is even. By replacingp
m−n

2 with p
m−(n−1)

2 in the above discussion, we get the statement
also in the case where n is odd.

From this description, we see that
(
(Ê+(m∞)χ )�n[p∞]

)∨
is Zp-free and

rankZp
(
(Ê+(m∞)χ )�n[p∞]

)∨
= rankZp

(
Zp[G−1][X]
〈ω̃−n 〉

)
+ rankZp

(
AnnZp[G−1](ϕ + ϕ−1)

)
= dq−n + δ .

�

COROLLARY 3.25. Let χ : � → Z×p be a character. Then the �n-coinvariants

((Ê±(m∞)χ ⊗Qp/Zp)
∨)�n are free Zp-modules for all n, and we have

rankZp
((
Ê+(m∞)χ ⊗Qp/Zp

)∨)
�n
= dpn + δ ,

rankZp
((
Ê−(m∞)χ ⊗Qp/Zp

)∨)
�n
= dpn .

PROOF. It follows from Corollary 3.20, Proposition 3.24 and the exact sequence (3.4).
�

REMARK 3.26. From Corollary 3.25, we find that (Ê+(m∞)χ ⊗ Qp/Zp)
∨ is not a

free �-module in the case when δ = 2, i.e. the case when d ≡ 0 (mod 4) and χ = 1. Indeed,
the Zp-rank of the �n-coinvariant of a free �-module is divisible by pn for each n. On the

other hand, the Zp-rank of the �n-coinvariant of (Ê+(m∞)χ ⊗ Qp/Zp)
∨ is not divisible by

pn as in the corollary.

PROPOSITION 3.27. Let χ : �→ Z×p be a character. There exist injective homomor-

phisms of �-modules (
Ê+(m∞)χ ⊗Qp/Zp

)∨ −→ �⊕d ⊕ (�/X)⊕δ ,(
Ê−(m∞)χ ⊗Qp/Zp

)∨ −→ �⊕d

with finite cokernels.

PROOF. We prove the claim for (Ê+(m∞)χ ⊗Qp/Zp)
∨. We can prove the rest of the

claims similarly.
We first note that (Ê+(m∞)χ ⊗Qp/Zp)

∨ has no nontrivial finite�-submodule since its
�n-coinvariants are free Zp-modules for all n ≥ 0 (see Corollary 3.25). Thus by the structure
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theorem for �-modules, there exist irreducible distinguished polynomials fj , nonnegative
integers r , s, t , mi , nj , and an injective homomorphism

f : (Ê+(m∞)χ ⊗Qp/Zp
)∨ −→ �⊕r ⊕

s⊕
i=1

�/pmi ⊕
t⊕

j=1

�/f
nj
j =: E

with finite cokernel Z.
We show that ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r = d ,
s = 0 (in other words mi = 0 for all i) ,

t =
{

0 if d ≡/ 0 (mod 4) or χ �= 1 ,

2 otherwise, and
(f

n1
1 , . . . , f

nt
t ) = (X,X) if t = 2 .

From the exact sequence 0 → (
Ê+(m∞)χ ⊗Qp/Zp

)∨ f→ E → Z → 0, we get the
�n-invariant-coinvariant exact sequences

Z�n −→ (
(Ê+(m∞)χ ⊗Qp/Zp)

∨)
�n

−→ E/ωnE −→ Z/ωnZ −→ 0 (3.10)

for all n. Note that, the first maps in (3.10) are 0-maps for all n, since ((Ê+(m∞)χ ⊗
Qp/Zp)

∨)�n is Zp-free. Then we see that mi = 0 and f
nj
j |ωn (and nj ≤ 1) for all suf-

ficiently large n since Z/ωnZ is bounded as n → ∞. Thus we get s = 0 here. We now
have

dpn + δ = rankZp
(
(Ê+(m∞)χ ⊗Qp/Zp)

∨)
�n

= rankZp (E/ωnE) = rpn +
t∑

j=1

nj deg fj (3.11)

for all sufficiently large n. Thus we get r = d .

In the case when d ≡/ 0 (mod 4) or χ �= 1, we get 0 = ∑t
j=1 nj degfj from the above

discussion. Thus we get nj = 0 which is the desired result, i.e. t = 0.
We finally consider the case when d ≡ 0 (mod 4) and χ = 1. We may assume nj = 1

for all j . In this case, we have

2 =
t∑

j=1

deg fj , (3.12)

fj |ωn(= (1+X)pn − 1) (3.13)
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for all sufficiently large n. We narrow down the possible combinations of (t, (f1, . . . , ft ))

satisfying these two conditions (3.12) and (3.13). If p ≥ 5, there is a unique combination

(t, (f1, . . . , ft )) = (2, (X,X)), since deg fj ≤ 2. If p = 3, since ω1 = X(X2 + 3X + 3),

there are two possible combinations (t, (f1, . . . , ft )) = (2, (X,X)), (1, (X2 + 3X + 3)). By
showing that the last combination is impossible, we complete the proof. Indeed, we have

rankZp E/ω0E = d + 1 with the combination (t, (f1, . . . , ft )) = (1, (X2 + 3X+ 3)). On the
other hand, from the exact sequence (3.10) for n = 0, we must have rankZp E/ω0E = d + 2
and thus we get the desired conclusion. �

We now get the following proposition which is an important ingredient for the proof of
Proposition 3.32.

PROPOSITION 3.28. Let χ : �→ Z×p be a character. Then (Ê±(m∞)χ ⊗ Qp/Zp)
∨

has no nontrivial finite�-submodule and its �-rank is d .

PROOF. This follows from Proposition 3.27. �

In the rest of this subsection, we study the �-module(
H 1(k∞, E[p∞])
Ê±(m∞)⊗Qp/Zp

)∨
.

We consider the following exact sequence;

0→
(

H 1(k∞, E[p∞])
Ê±(m∞)⊗Qp/Zp

)∨
−→

(
H 1(k∞, E[p∞])

)∨
−→ (

Ê±(m∞)⊗Qp/Zp
)∨ → 0 . (3.14)

We studied the �-module structure of the rightmost module. We also know the �-module
structure of the middle module by the following fact (Proposition 3.29).

PROPOSITION 3.29 (Greenberg [1] §3 Corollary 2). LetK be a finite extension ofQp
and K∞ a Zp-extension of K . Put �K = Zp[[Gal(K∞/K)]]. If E(K∞)[p∞] = 0, then

H 1(K∞, E[p∞])∨ is a free �K -module and its �K -rank is 2[K : Qp];

H 1(K∞, E[p∞])∨ ∼= �⊕2[K :Qp ]
K .

We can apply Proposition 3.29 in our setting as K = k0, K∞ = k∞. Indeed we see that
E(k∞)[p∞] = 0 by Proposition 3.1.

Here we recall the following useful lemma on equivalent conditions on freeness of �-
modules and on triviality of finite �-submodules.

LEMMA 3.30. LetM be a finitely generated�-module.
(1)M is a free �-module if and only ifM� = 0 andM� is a free Zp-module.

(2)M has no nontrivial finite�-submodule if and only ifM� is a free Zp-module.
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PROOF. See for example [15] Proposition 5.3.19. �

Applying the following lemma to the exact sequence (3.14), we can now determine the

�-module structure of (H 1(k∞, E[p∞])/(Ê±(k∞)⊗Qp/Zp))
∨.

LEMMA 3.31. Let f : M → N be a surjective homomorphism of �-modules. Sup-
pose thatM is a free �-module of �-rank r , and that N is �-module of �-rank s which has
no non-trivial finite �-submodule. Then its kernel Kerf is a free �-module of rank r − s.

PROOF. We putM0 := Kerf . Then by taking the invariant-coinvariantexact sequence,
we have

0 −→ M�
0 −→ M� −→ N� −→ M0,� −→ M� .

Since M is a free �-module, we have M� = 0 and M� is a free Zp-module by Lemma 3.30.

Since N has no non-trivial finite �-submodule, we see that N� is a free Zp-module by

Lemma 3.30. Hence we have M�
0 = 0 and M0,� is a free Zp-module. Thus M0 is a free

�-module again by Lemma 3.30. It is easy to see that the �-rank ofM0 is r − s. �

PROPOSITION 3.32. We have(
H 1(k∞, E[p∞])
E±(k∞)⊗Qp/Zp

)∨
∼= �⊕[k0:Qp ] .

PROOF. It follows from Proposition 3.28, Proposition 3.29, and Lemma 3.31 for the
exact sequence (3.14). �

3.4. More on the plus and the minus local conditions. The discussion in the pre-
vious subsections is enough to prove our main theorem. In this subsection, we proceed to

determine the explicit structure of the �-module
(
Ê±(m∞)χ ⊗Qp/Zp

)∨
. For that purpose,

we show the following lemma.

LEMMA 3.33. Let f : M → N be an injective homomorphism of �-modules with
finite cokernel. Suppose that M/ωnM is Zp-free and N�-tors = {x ∈ N |ωnx = 0} for all
sufficiently large n. Then f induces an isomorphism

f : M/M�-tors
�−→ N/N�-tors .

PROOF. We regardM as a �-submodule of N by f . Since N/M is finite, we see that
ωnN ⊂ M for all sufficiently large n. We thus have

Coker(f ) = N/(M +N�-tors)

×ωn�−→ωnN/ωnM

↪→ M/ωnM
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for all sufficiently large n. Since M/ωnM is Zp-free for all sufficiently large n and Coker(f )
is finite, we get M/M�-tors ∼= N/N�-tors. �

THEOREM 3.34. Let χ : �→ Z×p be a character. We have(
Ê+(m∞)χ ⊗Qp/Zp

)∨ ∼=�⊕d ⊕ (�/X)⊕δ ,(
Ê−(m∞)χ ⊗Qp/Zp

)∨ ∼=�⊕d .
PROOF. We prove this theorem for (Ê+(m∞)χ ⊗Qp/Zp)

∨. We can prove the rest of
the claim similarly.

Let M = (Ê+(m∞)χ ⊗Qp/Zp
)∨

, N = �⊕d ⊕ (�/X)⊕δ , and f be the map obtained
in Proposition 3.27. Then the assumptions in Lemma 3.33 are satisfied (see Proposition 3.27,
Corollary 3.25). Thus we have M/M�-tors ∼= �⊕d by Lemma 3.33.

We now consider the following commutative diagram;

0 �� M�-tors ��
� �

f0
��

M ��� �

f

��

M/M�-tors ��

∼=f
��

0

0 �� (�/X)⊕δ �� �⊕d ⊕ (�/X)⊕δ �� �⊕d �� 0.

We see that M�-tors ∼= (�/X)⊕δ , since Coker(f0) is finite. Therefore, the above horizontal
exact sequence splits and thus we get

M ∼= M/M�-tors ⊕M�-tors ∼= �⊕d ⊕ (�/X)⊕δ .
�

4. Finite �-submodules

We use the notations and the assumptions introduced in Section 2.
Let � = Gal(F∞/F0) and � = Zp[[�]]. We fix a topological generator γ ∈ �. Then

we identify the completed group ring Zp[[�]] with the ring of power series Zp[[X]] by iden-
tifying γ with 1+X.

4.1. Finite �-submodules of Sel(F∞, E[p∞])∨. In this subsection, we study finite
�-submodules of the Pontryagin dual of the p-primary Selmer group. The aim of this sub-
section is to prove Theorem 4.5.

The following proposition is due to Matsuno [14, Theorem 2.4] (see also Hachimori–
Matsuno [3]).

PROPOSITION 4.1. Let K be a finite extension of Q, K∞/K a Zp-extension, Kn its
n-th layer, and E an elliptic curve defined over K . Put �K = Gal(K∞/K), and �K =
Zp[[�K ]]. Let Xn be the kernel of the restriction map

Sel(Kn,E[p∞]) −→ Sel(K∞, E[p∞])
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and X∞ := lim←−Xn where the projective limit is taken with respect to the corestriction maps.

Assume that the Zp-rank of Sel(Kn,E[p∞])∨ is bounded as n→∞. Then the maximal
finite �K -submodule of Sel(K∞, E[p∞])∨ is isomorphic to X∞.

In particular if we further assume that E(K)[p] = 0, then Sel(K∞, E[p∞])∨ has no
nontrivial finite�K -submodule.

We check that we can apply the above proposition in our setting K = F0, K∞ = F∞.

LEMMA 4.2. The morphisms Sel±(Fn,E[p∞]) → Sel±(F∞, E[p∞]) are injective
for all n ≥ 0.

PROOF. We can prove this by the same method as the proof of Lemma 9.1 in [11]. �

We assume from here that both Sel±(F∞, E[p∞])∨ are �-torsion. We denote the Iwa-
sawa λ-invariant of Sel±(F∞, E[p∞])∨ by λ±.

Let

Sel1(Fn,E[p∞]) := Ker

(
Sel(Fn,E[p∞]) −→

∏
v∈Sss

p,F

H 1(Fn,v, E[p∞])
E(Fv)⊗Qp/Zp

)
,

where Sss
p,F is the set of all primes of F lying above p where E has supersingular reduction.

By the exact sequence (3.2), we have an exact sequence

0 −→ H 1(Fn,v, E[p∞])
E(Fv)⊗Qp/Zp

−→ H 1(Fn,v, E[p∞])
E+(Fn,v)⊗Qp/Zp

⊕ H 1(Fn,v, E[p∞])
E−(Fn,v)⊗Qp/Zp

−→ H 1(Fn,v, E[p∞])
E(Fn,v)⊗Qp/Zp

−→ 0

for each n and for each prime v of F lying above p. Thus, for each n, we get the following
exact sequence

0 −→ Sel1(Fn,E[p∞]) ι−→ Sel+(Fn,E[p∞])⊕ Sel−(Fn,E[p∞])
η−→ Sel(Fn,E[p∞]) (4.1)

where ι is the diagonal embedding by inclusions and η is (x, y) �→ x − y.

PROPOSITION 4.3. The cokernel of η in the exact sequence (4.1) is finite.

PROOF. We can prove this by the same method as the proof of Lemma 10.1 in [11]. �

PROPOSITION 4.4. The Zp-rank of Sel(Fn,E[p∞])∨ is bounded as n → ∞. More
precisely, we have

rankZp Sel(F,E[p∞])∨ + rankZp Sel(Fn,E[p∞])∨ ≤ λ+ + λ−

for every n.
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PROOF. Since the restriction map Sel(F,E[p∞])→ Sel1(Fn,E[p∞]) is injective, we
have

rankZp Sel(F,E[p∞])∨ ≤ rankZp Sel1(Fn,E[p∞])∨ .
Hence by Lemma 4.2 and Proposition 4.3, we get

rankZp Sel(F,E[p∞])∨ + rankZp Sel(Fn,E[p∞])∨
≤ rankZp Sel+(Fn,E[p∞])∨ + rankZp Sel−(Fn,E[p∞])∨
≤ λ+ + λ−

for every n from (4.1). The boundedness of the Zp-ranks follows from this immediately. �

From the above argument, we can prove the following theorem.

THEOREM 4.5. Assume that both Sel+(F∞, E[p∞])∨ and Sel−(F∞, E[p∞])∨ are
�-torsion. Then Sel(F∞, E[p∞])∨ has no nontrivial finite �-submodule.

PROOF. The Zp-rank of Sel(Fn,E[p∞])∨ is bounded as n→∞ (cf. Proposition 4.4).
Further, we have E(F0)[p] = 0 by Proposition 3.1. Thus we can apply Proposition 4.1 and
get the desired result. �

4.2. Finite �-submodules of Sel±(F∞, E[p∞])∨. Finally, we study finite �-
submodules of the Pontryagin duals of the plus and the minus Selmer groups. The aim of
this subsection is to prove our main theorem (Theorem 4.8).

We prove that the triviality of finite �-submodules of Sel(F∞, E[p∞])∨ is inherited to
that of Sel±(F∞, E[p∞])∨.

Let us consider the following exact sequence of �-modules coming from the definition
of the Selmer groups;

⊕
v∈Sss

p,F

(
H 1(F∞,v, E[p∞])
E±(F∞,v)⊗Qp/Zp

)∨
ι±−→ Sel(F∞, E[p∞])∨

−→ Sel±(F∞, E[p∞])∨ −→ 0 . (4.2)

PROPOSITION 4.6. Assume that Sel±(F∞, E[p∞])∨ is �-torsion. Then the map ι±
in (4.2) is injective.

PROOF. We have rank�(Sel(F∞, E[p∞])∨) ≥ ∑
v∈Sss

p,F
[F0,v : Qp] (cf. [2] Theo-

rem 1.7). By Proposition 3.32, we have(
H 1(F∞,v , E[p∞])
E±(F∞,v)⊗Qp/Zp

)∨
∼= �⊕[F0,v :Qp]
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for each prime v ∈ Sss
p,F . From this and the exact sequence (4.2), we see that

∑
v∈Sss

p,F

[F0,v : Qp] = rank�

( ⊕
v∈Sss

p,F

(
H 1(F∞,v, E[p∞])
E±(F∞,v)⊗Qp/Zp

)∨)

≥ rank�
(
Sel(F∞, E[p∞])∨

)
.

Thus we get

rank�

( ⊕
v∈Sss

p,F

(
H 1(F∞,v, E[p∞])
E±(F∞,v)⊗Qp/Zp

)∨)
= rank�

(
Sel(F∞, E[p∞])∨

)
.

From this, we see that the kernel Ker ι± is �-torsion. Therefore we get the conclusion since
the leftmost direct sum in the exact sequence (4.2) is a torsion-free�-module. �

The following proposition is a key tool for the proof of our main theorem.

PROPOSITION 4.7 (Greenberg [2] p.104–105). Let f : M → N be an injective ho-
momorphism of �-modules. Suppose that N is a finitely generated �-module which has no
nontrivial finite �-submodule, and that M is a free �-module. Then the cokernel Coker(f )
has no nontrivial finite�-submodule.

THEOREM 4.8. Assume that both Sel+(F∞, E[p∞])∨ and Sel−(F∞, E[p∞])∨ are
�-torsion. Then both Sel+(F∞, E[p∞])∨ and Sel−(F∞, E[p∞])∨ have no nontrivial finite
�-submodule.

PROOF. It follows from Theorem 4.5, Proposition 4.6 and Proposition 4.7 for f =
ι±. �
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