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Abstract. Corresponding to the concept of p-angular distance αp[x, y] :=
∥∥∥‖x‖p−1x − ‖y‖p−1y

∥∥∥, we first

introduce the notion of skew p-angular distance βp[x, y] :=
∥∥∥‖y‖p−1x − ‖x‖p−1y

∥∥∥ for non-zero elements of x, y

in a real normed linear space and study some of significant geometric properties of the p-angular and the skew p-
angular distances. We then give some results comparing two different p-angular distances with each other. Finally,
we present some characterizations of inner product spaces related to the p-angular and the skew p-angular distances.
In particular, we show that if p > 1 is a real number, then a real normed space X is an inner product space, if and
only if for any x, y ∈ X � {0}, it holds that αp[x, y] ≥ βp[x, y].

1. Introduction

Throughout this paper, let X denotes an arbitrary non-zero normed linear space over the
field of real numbers.

Clarkson [3] introduced the concept of angular distance between non-zero elements x

and y in X by

α[x, y] =
∥∥∥∥ x

‖x‖ − y

‖y‖
∥∥∥∥ .

In [16], Maligranda considered the p-angular distance

αp[x, y] =
∥∥∥∥ x

‖x‖1−p
− y

‖y‖1−p

∥∥∥∥ (p ∈ R)

between non-zero vectors x and y in X as a generalization of the concept of angular distance.
Corresponding to the notion of p-angular distance, we define the concept of skew p-angular
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distance between non-zero vectors x and y in X , as

βp[x, y] =
∥∥∥∥ x

‖y‖1−p
− y

‖x‖1−p

∥∥∥∥ (p ∈ R) .

We set β[x, y] for βp[x, y] when p = 0 and call it skew angular distance between non-zero
elements x and y in X . Evidently, it holds that

βp[x, y] = ‖x‖p−1‖y‖p−1α2−p[x, y] . (1.1)

Dunkl and Williams [10] obtained a useful upper bound for the angular distance. They
showed that

α[x, y] ≤ 4‖x − y‖
‖x‖ + ‖y‖ .

The following result providing a lower bound for the p-angular distance was stated without a

proof by Guraril̆ in [12]:

2−p‖x − y‖p ≤ αp[x, y] ,

where p ≥ 1 and x, y ∈ X .
Finally, we recall the result of Hile [14]:

αp[x, y] ≤ ‖y‖p − ‖x‖p

‖y‖ − ‖x‖ ‖x − y‖ , (1.2)

for p ≥ 1 and x, y ∈ X with ‖x‖ �= ‖y‖. For some recently obtained upper and lower bounds
for the p-angular distance the reader is referred to [8, 9] and [16].

Numerous basic characterizations of inner product spaces under various conditions were
first given by Fréchet, Jordan and von Neumann; see [4] and references therein. Since then,
the problem of finding necessary and sufficient conditions for a normed space to be an inner
product space has been investigated by many mathematicians by considering some types of
orthogonality or some geometric aspects of underlying spaces; see, e.g., [11, 15, 17]. There
is an interesting book by Amir [2] that contains several characterizations of inner product
spaces, which are based on norm inequalities, various notions of orthogonality in normed
linear spaces and so on. Among significant characterizations of inner product spaces related
to p-angular distance, we can mention [1, 4, 5, 6]. The next two theorems due to Lorch and
Ficken will be used in this paper.

THEOREM A (Lorch [15]). Let (X , ‖ · ‖) be a normed space. Then the following
statements are mutually equivalent:

(i) For each x, y ∈ X if ‖x‖ = ‖y‖, then ‖x + y‖ ≤ ‖λx + λ−1y‖ (for all λ �= 0).
(ii) For each x, y ∈ X if ‖x + y‖ ≤ ‖λx + λ−1y‖ (for all λ �= 0), then ‖x‖ = ‖y‖.

(iii) (X , ‖ · ‖) is an inner product space.
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THEOREM B (Ficken [11]). Let (X , ‖ · ‖) be a normed space. Then the following
statements are mutually equivalent:

(i) For each x, y ∈ X if ‖x‖ = ‖y‖, then ‖αx + βy‖ = ‖βx + αy‖ (for all α, β > 0).
(ii) For each x, y ∈ X if ‖x‖ = ‖y‖, then ‖λx + λ−1y‖ = ‖λ−1x + λy‖ for all λ > 0.

(iii) (X , ‖ · ‖) is an inner product space.
In this paper, first we study some topological aspects of p-angular distances such as

metrizability, consistency and completeness. Then, we compare two arbitrary p-angular and
q-angular distances with each other, which generalize the results of Maligranda [16] and
Dragomir [8]. Finally, we present two different characterizations of inner product spaces
related to the p-angular and the skew p-angular distances.

2. Some initial observations

In this section, first we examine some topological facts of the p-angular and the skew p-
angular distances. Then we compare the p-angular distance with the skew p-angular distance
in inner product spaces and give suitable representations for the p-angular distance, which
will be used in the sequel for characterizations of inner product spaces.

2.1. Geometric properties of the p-angular distance. In this subsection, we study
the metrizability, the consistency and the completeness concepts regarding to the p-angular
and the skew p-angular distances.

THEOREM 2.1. For p �= 0, αp[x, y] is a metric on X � {0}, which is consistent with
α1[x, y] = ‖x − y‖; they induce the same topology on X � {0}. If p and q are distinct
non-zero real numbers, then αp is not equivalent with αq . If p �= 1, then αp is not translation
invariant.

PROOF. Clearly αp is a metric. Let α1[xn, x] = ‖xn − x‖ → 0 as n → ∞ in X � {0}.
Thus limn→∞‖xn‖ = ‖x‖, and so

αp[xn, x] =
∥∥∥‖xn‖p−1xn − ‖x‖p−1x

∥∥∥
≤

∥∥∥‖xn‖p−1xn − ‖xn‖p−1x

∥∥∥ +
∥∥∥‖xn‖p−1x − ‖x‖p−1x

∥∥∥
≤ ‖xn‖p−1‖xn − x‖ + ‖x‖

∣∣∣‖xn‖p−1 − ‖x‖p−1
∣∣∣ → 0 (as n → ∞) .

Therefore the topology of αp is weaker than the topology of α1 on X � {0}.
Now we assume that αp[xn, x] → 0 as n → ∞ in X � {0}. We have∣∣∣∣ ‖xn‖

‖xn‖1−p
− ‖x‖

‖x‖1−p

∣∣∣∣ ≤
∥∥∥∥ xn

‖xn‖1−p
− x

‖x‖1−p

∥∥∥∥ → 0 (as n → ∞) ,

and so limn→∞‖xn‖p = ‖x‖p, which implies that limn→∞‖xn‖ = ‖x‖. Thus,

α1[xn, x] = ‖xn − x‖ = ‖x‖1−p
∥∥∥‖x‖p−1xn − ‖x‖p−1x

∥∥∥
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≤ ‖x‖1−p(

∥∥∥‖x‖p−1xn − ‖xn‖p−1xn

∥∥∥ +
∥∥∥‖xn‖p−1xn − ‖x‖p−1x

∥∥∥)

= ‖x‖1−p(‖xn‖
∣∣∣‖x‖p−1 − ‖xn‖p−1

∣∣∣ + αp[xn, x]) → 0 (as n → ∞) .

Therefore the topology of α1 is weaker than the topology of αp on X � {0}. Hence these two
metrics are consistent on X � {0}. Next, let p, q ∈ R � {0} such that p < q . By contrary,
assume that there exists a number M > 0 such that for every x, y ∈ X � {0}, αp[x, y] ≤
Mαq [x, y]. Fix a unit vector a ∈ X � {0}. For each λ,μ > 0, we have αp[λa,μa] ≤
Mαq [λa,μa], or |λp − μp| ≤ M|λq − μq |. In particular, if we put λ = 1

n
and μ = t

n
where

n = 1, 2, . . . and t > 0, then we have nq−p|1− tp| ≤ M|1− tq |, or M ≥ nq−p
∣∣1−tp

1−t q

∣∣ (t �= 1).

Now letting t → ∞ in the case when p < q < 0, and t → 0 in the case when 0 < p < q , we
get M ≥ nq−p (n = 1, 2, . . .), and so M = ∞, which is a contradiction. In the case where
p < 0 < q taking μ = 1, we obtain |λp − 1| ≤ M|λq − 1|. Now letting λ → 0+, we get
M = ∞, a contradiction. Therefore αp is not equivalent to αq .

Now, we show that if p �= 1, then αp is not translation invariant. By contrary, assume
that for each x, y, z ∈ X we have αp[x+z, y+z] = αp[x, y], whenever x, y, x+z, y+z �= 0.
Fixing a unit vector a ∈ X � {0}, put x = λa, y = γ a and z = μa, where λ,μ, γ ∈ R.
In particular, if we put λ = μ = 1 and γ > 0, then we have |2p − (γ + 1)p| = |1 − γ p|.
Now letting γ → ∞ in the case where p < 0, and γ → 0 in the case where p > 0, we get a
contradiction. In the case where p = 0, we also get a contradiction by taking λ = 1, μ = −2
and γ = −1. This completes the proof. �

REMARK 2.2. It may happen that two metrics d1 and d2 on a set E are consistent and
there exists m > 0 such that md2 ≤ d1 but there exists no M > 0 such that d1 ≤ Md2. For a
classical example, take E = [1,∞), d1(x, y) = |x − y| and d2(x, y) = ∣∣ 1

x
− 1

y

∣∣. Two metrics

d1 and d2 induce the same topology on E and d2(x, y) ≤ d1(x, y), but since d2 is bounded,
there exists no M > 0 such that d1 ≤ Md2. Since in Theorem 2.1, p and q are arbitrary, this
case cannot occur.

In spite of αp , the following remark shows that when p �= 1, never βp is a metric on
X � {0}.

REMARK 2.3. Let X be a normed linear space. Take a ∈ X with ‖a‖ = 1, and put
x = ra, y = sa, z = ta, where r, s, t ∈ R. Let p > 1 and take r = 1, s = −1 and t > 0. We
obtain

βp[x, y] = 2 > |tp−1 − t| + |tp−1 + t| = βp[x, z] + βp[y, z] ,

for small enough t. This shows that βp is not a metric on X � {0} in this case. Now let p < 1,
and take r = 2, t = 1 and s > 0. Since for small enough s,

(2s)1−pβp[x, y] = |22−p − s2−p| > |s1−p(22−p − 1)| + |21−p(s2−p − 1)|
= (2s)1−pβp[x, z] + (2s)1−pβp[y, z] ,
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βp is not a metric on X � {0}.
Now we are going to compare completeness of an arbitrary nonempty subset of X � {0}

with respect to αp and αq . To do this, we need some lemmas.

LEMMA 2.4. Let p �= 0, A be a nonempty αp-complete subset of X � {0} and {xn} be
a Cauchy sequence in X � {0}. Then

(i) If p > 0, then A is norm-bounded from below, and if p < 0, then A is norm-bounded
from above.

(ii) If p > 0, then {xn} is norm-bounded from above, and if p < 0, then {xn} is norm-
bounded from below.

PROOF. (i) Let p > 0. By contrary, assume that there exists a sequence {xn} in A such
that limn→∞‖xn‖ = 0. Therefore

αp[xm, xn] =
∥∥∥ xm

‖xm‖1−p
− xn

‖xn‖1−p

∥∥∥ ≤ ‖xm‖p + ‖xn‖p → 0 (m, n → ∞) ,

and so {xn} is an αp-Cauchy sequence. Since A is αp-complete, there exists x ∈ A

such that limn→∞ αp[xn, x] = 0. Since |‖xn‖p − ‖x‖p| ≤ αp[xn, x], we get ‖x‖p =
limn→∞ |‖xn‖p − ‖x‖p| ≤ 0, and so x = 0, which is a contradiction. Therefore, A is
norm-bounded from below.

Now, let p < 0. If A is not norm-bounded from above, then there exists a sequence {xn}
in A such that limn→∞‖xn‖ = ∞. By a similar argument we conclude that {xn} is an αp-
Cauchy sequence in A and so there exists x ∈ A such that limn→∞ αp[xn, x] = 0. Therefore
‖x‖p = 0, which is impossible.

(ii) Obvious. �

The following lemma comparing αp with αq without any restrictions on p and q , plays
an essential role in our study.

LEMMA 2.5. Let p, q ∈ R and q �= 0. Then for any non-zero elements x, y ∈ X ,

|p|
|p| + |p − q| min(‖x‖p−q, ‖y‖p−q )αq [x, y]

≤ αp[x, y] (2.1)

≤ |q| + |p − q|
|q| max(‖x‖p−q, ‖y‖p−q )αq [x, y] .

In particular if q = 1, then

|p|
|p| + |p − 1| min(‖x‖p−1, ‖y‖p−1)‖x − y‖

≤ αp[x, y] (2.2)

≤ (1 + |p − 1|) max(‖x‖p−1, ‖y‖p−1)‖x − y‖ .
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PROOF. We have

αp[x, y] =
∥∥∥‖x‖p−1x − ‖y‖p−1y

∥∥∥
≤

∥∥∥‖x‖p−q‖x‖q−1x − ‖x‖p−q‖y‖q−1y

∥∥∥
+

∥∥∥‖x‖p−q‖y‖q−1y − ‖y‖p−q‖y‖q−1y

∥∥∥
= ‖x‖p−qαq [x, y] + ‖y‖q

∣∣‖x‖p−q − ‖y‖p−q
∣∣ .

Consider the function f (t) = t
p−q

q on the closed interval with endpoints ‖x‖q and ‖y‖q . By
the Mean-Value Theorem, there exists a point η between ‖x‖q and ‖y‖q such that

∣∣‖x‖p−q − ‖y‖p−q
∣∣ = |f (‖x‖q ) − f (‖y‖q)| =

∣∣∣p − q

q

∣∣∣η p−2q
q

∣∣‖x‖q − ‖y‖q
∣∣ .

Since the function t
p−2q

q is monotone, we obtain

η
p−2q

q ≤ max(‖x‖p−2q, ‖y‖p−2q) ,

whence

αp[x, y] ≤ ‖x‖p−qαq [x, y] +
∣∣∣p − q

q

∣∣∣ max(‖x‖p−2q‖y‖q, ‖y‖p−q )
∣∣‖x‖q − ‖y‖q

∣∣
≤

(
‖x‖p−q +

∣∣∣p − q

q

∣∣∣ max(‖x‖p−2q‖y‖q, ‖y‖p−q )
)
αq [x, y] .

Thus,

αp[x, y] ≤ |q| + |p − q|
|q| max(‖x‖p−q, ‖x‖p−2q‖y‖q , ‖y‖p−q)αq [x, y] . (2.3)

By symmetry, we have

αp[x, y] ≤ |q| + |p − q|
|q| max(‖y‖p−q, ‖y‖p−2q‖x‖q , ‖x‖p−q)αq [x, y] . (2.4)

For proving (2.1) we can assume that ‖x‖ ≤ ‖y‖. If q < 0, then ‖y‖q ≤ ‖x‖q and so

‖x‖p−2q‖y‖q ≤ ‖x‖p−q . Now, the right inequality in (2.1) follows from (2.3). Similarly if
q > 0, then (2.4) yields the right inequality in (2.1). The left inequality in (2.1) follows from
the right one by interchanging the roles of p and q . �

THEOREM 2.6. The following statements hold.

(i) If pq > 0, then for each ∅ �= A ⊆ X � {0}, the metric space (A, αp) is complete if
and only if (A, αq) is complete.

(ii) If p > 0 and q < 0, then there exist nonempty sets A,B ⊆ X � {0} such that A is
αp-complete but not αq -complete and B is αq -complete but not αp-complete.
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PROOF. (i) Let ∅ �= A ⊆ X � {0} be αp-complete. Assume {xn} is an αq -Cauchy
sequence in A. First, suppose that p, q > 0. Since A is αp-complete, A, and as a result,
{xn} is norm-bounded from below. On the other hand, since {xn} is αq -Cauchy, {xn} is norm-
bounded from above. Thus, {xn} is norm-bounded from below and above, and so there exists
0 ≤ M < ∞ such that max(‖xm‖p−q , ‖xn‖p−q ) ≤ M (m, n = 1, 2, . . .). Therefore by the
right hand side of inequality (2.1),

αp[xm, xn] ≤ |q| + |p − q|
|q| Mαq [xm, xn] → 0 (m, n → ∞) .

Hence, {xn} is an αp-Cauchy sequence in A. Since A is αp-complete, there exists x ∈
A such that limn→∞ αp[xn, x] = 0, and by the consistency of αp and αq , we reach
limn→∞ αq [xn, x] = 0. So, A is αq -complete.

Now, let p, q < 0. Since A is αp-complete, {xn} is norm-bounded from above. On the
other hand, since {xn} is αq -Cauchy, {xn} is norm-bounded from below. So, {xn} is again
norm-bounded from above and below. Similar to the above argument, there exists x ∈ A such
that limn→∞ αq [xn, x] = 0, and therefore A is αq -complete.

(ii) Take a unit vector a ∈ X and let A = {λa : λ ≥ 1} and B = {λa : 0 < λ ≤ 1}. It is
easily seen that A is αp-complete. Since q < 0 and A is not norm-bounded from above, A is
not αq -complete. Similarly B is αq -complete, but not αp-complete. �

2.2. p-angular distance in inner product spaces. In this part, we suppose that
(X , 〈·, ·〉) is a real inner product space with the induced norm ‖ · ‖, defined by ‖x‖2 = 〈x, x〉.

PROPOSITION 2.7. Let X be an inner product space, x, y ∈ X �{0} and p ∈ R. Then
the following properties hold.

(i) αp[x, y] ≤ βp[x, y] for all p < 1,
(ii) αp[x, y] = βp[x, y] for p = 1,

(iii) αp[x, y] ≥ βp[x, y] for all p > 1.

In each of (i) and (iii) equality holds if and only if ‖x‖ = ‖y‖.
PROOF. It is sufficient to note that

αp[x, y]2 − βp[x, y]2 = (‖x‖2 − ‖y‖2)(‖x‖2p−2 − ‖y‖2p−2) .

�

PROPOSITION 2.8. Let X be an inner product space, p ∈ R and x, y ∈ X �{0}. Then

αp[x, y] =
√

(‖x‖p+1 − ‖y‖p+1)(‖x‖p−1 − ‖y‖p−1) + ‖x‖p−1‖y‖p−1‖x − y‖2 .

In particular if p = 0, then

α[x, y] =
√

‖x − y‖2 − (‖x‖ − ‖y‖)2

‖x‖‖y‖ .
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PROOF. The first identity follows from

α2
p[x, y] = ‖x‖2p + ‖y‖2p − 2‖x‖p−1‖y‖p−1Re〈x, y〉

= ‖x‖2p + ‖y‖2p − ‖x‖p−1‖y‖p−1(‖x‖2 + ‖y‖2 − ‖x − y‖2)

= (‖x‖p+1 − ‖y‖p+1)(‖x‖p−1 − ‖y‖p−1) + ‖x‖p−1‖y‖p−1‖x − y‖2 .

�

Now, we show the relation between the p-angular distance and the errors of the Cauchy-
Schwarz inequality; ‖x‖‖y‖ ± 〈x, y〉 ≥ 0. For this reason we need the following elementary
lemma.

LEMMA 2.9. Let X be an inner product space. If x and y are linearly independent
vectors of X and t ∈ R, then

‖x + ty‖ =
√‖x‖2‖y‖2 − 〈x, y〉2

‖y‖
∞∑

k=0

( 1
2
k

)(
t‖y‖2 + 〈x, y〉√‖x‖2‖y‖2 − 〈x, y〉2

)2k

,

whenever,

−〈x, y〉 − √‖x‖2‖y‖2 − 〈x, y〉2

‖y‖2 ≤ t ≤ −〈x, y〉 + √‖x‖2‖y‖2 − 〈x, y〉2

‖y‖2 . (2.5)

PROOF. Employing the binomial series [13], we get

‖x + ty‖ = (t2‖y‖2 + 2t〈x, y〉 + ‖x‖2)
1
2

=
[(

t‖y‖ + 〈x, y〉
‖y‖

)2

+ ‖x‖2 − 〈x, y〉2

‖y‖2

] 1
2

=
√‖x‖2‖y‖2 − 〈x, y〉2

‖y‖
[(

t‖y‖2 + 〈x, y〉√‖x‖2‖y‖2 − 〈x, y〉2

)2

+ 1

] 1
2

=
√‖x‖2‖y‖2 − 〈x, y〉2

‖y‖
∞∑

k=0

( 1
2
k

)(
t‖y‖2 + 〈x, y〉√‖x‖2‖y‖2 − 〈x, y〉2

)2k

,

whenever ∣∣∣∣ t‖y‖2 + 〈x, y〉√‖x‖2‖y‖2 − 〈x, y〉2

∣∣∣∣ ≤ 1 ,

which is equivalent to (2.5). �

THEOREM 2.10. Let X be an inner product space and p ∈ R. If x and y are linearly
independent vectors of X , then

αp[x, y] =
√‖x‖2‖y‖2 − 〈x, y〉2

‖x‖1−p‖y‖
∞∑

k=0

( 1
2
k

)(‖x‖1−p‖y‖1+p − 〈x, y〉√‖x‖2‖y‖2 − 〈x, y〉2

)2k

, (2.6)
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whenever ‖y‖p ≤ √
2‖x‖p and(

− 1 ≤
)‖x‖−p‖y‖p − √

2 − ‖x‖−2p‖y‖2p

2

≤ 〈x, y〉
‖x‖‖y‖

≤ ‖x‖−p‖y‖p + √
2 − ‖x‖−2p‖y‖2p

2

(
≤ 1

)
.

(2.7)

Similar expansion holds if we change the roles of x and y with each other.

PROOF. We have

αp[x, y] =
∥∥∥‖x‖p−1x − ‖y‖p−1y

∥∥∥ = ‖x‖p−1
∥∥∥∥x − ‖y‖p−1

‖x‖p−1 y

∥∥∥∥ .

Taking t = −‖y‖p−1

‖x‖p−1 in Lemma 2.9, we reach

αp[x, y] = ‖x‖p−1

√‖x‖2‖y‖2 − 〈x, y〉2

‖y‖
∞∑

k=0

( 1
2
k

)(‖x‖1−p‖y‖1+p − 〈x, y〉√‖x‖2‖y‖2 − 〈x, y〉2

)2k

,

provided that,

−〈x, y〉 − √‖x‖2‖y‖2 − 〈x, y〉2

‖y‖2
≤ −‖y‖p−1

‖x‖p−1
≤ −〈x, y〉 + √‖x‖2‖y‖2 − 〈x, y〉2

‖y‖2
.

But, this condition is in turn equivalent to∣∣∣∣〈x, y〉 − ‖x‖1−p‖y‖1+p

∣∣∣∣ ≤
√

‖x‖2‖y‖2 − 〈x, y〉2 ,

or

2〈x, y〉2 − 2‖x‖1−p‖y‖1+p〈x, y〉 + ‖x‖2‖y‖2(‖x‖−2p‖y‖2p − 1) ≤ 0 ,

which is equivalent to ‖x‖2‖y‖2(2 − ‖x‖−2p‖y‖2p) ≥ 0 and (2.7). �

The following corollary shows that α[x, y] is completely expressible by ‖x‖, ‖y‖ and
the errors of the Cauchy-Schwarz inequality; ‖x‖‖y‖ ± 〈x, y〉 ≥ 0.

COROLLARY 2.11. Let X be an inner product space. If x and y are linearly indepen-
dent vectors of X , then

α[x, y] =
√‖x‖2‖y‖2 − 〈x, y〉2

‖x‖‖y‖
∞∑

k=0

( 1
2
k

)(‖x‖‖y‖ − 〈x, y〉
‖x‖‖y‖ + 〈x, y〉

)k

, (2.8)
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whenever 〈x, y〉 ≥ 0, and

α[x, y] =
√√√√4 − ‖x‖2‖y‖2 − 〈x, y〉2

‖x‖2‖y‖2

[ ∞∑
k=0

( 1
2
k

)(‖x‖‖y‖ + 〈x, y〉
‖x‖‖y‖ − 〈x, y〉

)k]2

, (2.9)

whenever 〈x, y〉 < 0.

PROOF. The equality (2.8) follows from (2.6) by taking p = 0. If 〈x, y〉 < 0, then

〈x,−y〉 > 0, and so (2.9) follows from (2.8) and α[x, y] = √
4 − α2[x,−y]. �

3. Comparison of p-angular and q-angular distances

In this section, we compare two quantities αp with αq for arbitrary p, q ∈ R. There
are several papers related to comparison of αp with α1; see, e.g., [8]-[10]. The advantage of
taking p and q arbitrary is that, whenever we find an inequality involving αp and αq , we can
obtain its reverse by changing the roles of p and q with each other, which is as sharp as the
first one.

3.1. Generalizations of Maligranda’s results. The following theorem is a general-
ization of Maligranda’s inequalities [16].

THEOREM 3.1. Let p, q ∈ R, q �= 0 and x, y ∈ X � {0}.
(i) If p

q
≥ 1, then

p

2p − q
max(‖x‖p−q, ‖y‖p−q )αq [x, y]

≤ αp[x, y]
≤ p

q
max(‖x‖p−q, ‖y‖p−q )αq [x, y] . (3.1)

(ii) If 0 ≤ p
q

≤ 1, then

p

q
· αq [x, y]

max(‖x‖q−p, ‖y‖q−p)

≤ αp[x, y]

≤ 2q − p

q
· αq [x, y]

max(‖x‖q−p, ‖y‖q−p)
. (3.2)

(iii) If p
q

≤ 0, then

p

2p − q
· max(‖x‖p, ‖y‖p)

max(‖x‖q, ‖y‖q )
αq [x, y]

≤ αp[x, y]
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≤ 2q − p

q
· max(‖x‖p, ‖y‖p)

max(‖x‖q , ‖y‖q)
αq [x, y] . (3.3)

PROOF. The left inequalities are obtained from right ones by interchanging the roles
of p and q . So, it is sufficient to prove only the right inequalities. Without loss of generality
we may assume that ‖x‖q ≤ ‖y‖q . By the triangle inequality, we have

αp[x, y] ≤
∥∥∥‖x‖p−q‖x‖q−1x − ‖y‖p−q‖x‖q−1x

∥∥∥
+

∥∥∥‖y‖p−q‖x‖q−1x − ‖y‖p−q‖y‖q−1y

∥∥∥
= ‖x‖q

∣∣‖x‖p−q − ‖y‖p−q
∣∣ + ‖y‖p−qαq [x, y] .

(i) Let p
q

≥ 1. Since p−q
q

≥ 0, we have ‖x‖p−q ≤ ‖y‖p−q , and so

αp[x, y] ≤ ‖x‖q(‖y‖p−q − ‖x‖p−q) + ‖y‖p−qαq [x, y] .

If p
q

≥ 2, then since p−2q
q

≥ 0, we get

‖y‖p−q − ‖x‖p−q = p − q

q

∫ ‖y‖q

‖x‖q

t
p−2q

q dt ≤ p − q

q
‖y‖p−2q(‖y‖q − ‖x‖q ) ,

which leads to

‖x‖q(‖y‖p−q − ‖x‖p−q ) ≤ p − q

q
‖x‖q‖y‖p−2q(‖y‖q − ‖x‖q)

≤ p − q

q
‖y‖p−qαq [x, y] .

Whence

αp[x, y] ≤ p

q
‖y‖p−qαq [x, y] .

If 1 ≤ p
q

≤ 2, it follows from p−2q
q

≤ 0 that

‖y‖p−q − ‖x‖p−q = p − q

q

∫ ‖y‖q

‖x‖q

t
p−2q

q dt ≤ p − q

q
‖x‖p−2q(‖y‖q − ‖x‖q ) ,

which gives

‖x‖q(‖y‖p−q − ‖x‖p−q ) ≤ p − q

q
‖x‖p−q(‖y‖q − ‖x‖q) ≤ p − q

q
‖y‖p−qαq [x, y] ,

and again

αp[x, y] ≤ p

q
‖y‖p−qαq [x, y] .
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(ii) Let 0 ≤ p
q

≤ 1. The inequality q−p
q

≥ 0 yields that ‖x‖q−p ≤ ‖y‖q−p, and so

‖x‖q
∣∣‖x‖p−q − ‖y‖p−q

∣∣ = ‖x‖q ‖y‖q−p − ‖x‖q−p

‖x‖q−p‖y‖q−p
.

It follows from

‖y‖q−p − ‖x‖q−p = q − p

q

∫ ‖y‖q

‖x‖q

t
− p

q dt ≤ q − p

q
‖x‖−p(‖y‖q − ‖x‖q ) ,

that

‖x‖q ‖y‖q−p − ‖x‖q−p

‖x‖q−p‖y‖q−p
≤ q − p

q
· ‖y‖q − ‖x‖q

‖y‖q−p
.

Hence

αp[x, y] ≤ q − p

q
· ‖y‖q − ‖x‖q

‖y‖q−p
+ αq [x, y]

‖y‖q−p
≤

(
2 − p

q

)αq [x, y]
‖y‖q−p

.

(iii) The same reasoning as in the proof of (ii) yields (iii). �

Now, taking q = 1 in Theorem 3.1, we obtain the following corollary in which the right
inequalities are due to Maligranda [16] and left ones are new suitable reverses to them.

COROLLARY 3.2. Let x, y ∈ X � {0}.
(i) If p ≥ 1, then

p

2p − 1
max(‖x‖, ‖y‖)p−1‖x − y‖ ≤ αp[x, y] ≤ p max(‖x‖, ‖y‖)p−1‖x − y‖ .

(ii) If 0 ≤ p ≤ 1, then

p‖x − y‖
max(‖x‖, ‖y‖)1−p

≤ αp[x, y] ≤ (2 − p)‖x − y‖
max(‖x‖, ‖y‖)1−p

.

(iii) If p ≤ 0, then

p

2p − 1
· max(‖x‖p, ‖y‖p)

max(‖x‖, ‖y‖) ‖x − y‖ ≤ αp[x, y] ≤ (2 − p)
max(‖x‖p, ‖y‖p)

max(‖x‖, ‖y‖) ‖x − y‖ .

COROLLARY 3.3. Let p �= 2 and x, y ∈ X � {0}.
(i) If p

2−p
≥ 1, then

p

3p − 2
max(‖x‖p−1‖y‖1−p, ‖y‖p−1‖x‖1−p)βp[x, y]

≤ αp[x, y]
≤ p

2 − p
max(‖x‖p−1‖y‖1−p, ‖y‖p−1‖x‖1−p)βp[x, y] .
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(ii) If 0 ≤ p
2−p

≤ 1, then

p

(2 − p)
· βp[x, y]

max(‖x‖p−1‖y‖1−p, ‖y‖p−1‖x‖1−p)

≤ αp[x, y]

≤ 4 − 3p

2 − p
· βp[x, y]

max(‖x‖p−1‖y‖1−p, ‖y‖p−1‖x‖1−p)
.

(iii) If p
2−p

≤ 0, then

p

3p − 2
· max(‖x‖p, ‖y‖p)

max(‖x‖‖y‖p−1, ‖y‖‖x‖p−1)
βp[x, y]

≤ αp[x, y]

≤ 4 − 3p

2 − p
· max(‖x‖p, ‖y‖p)

max(‖x‖‖y‖p−1, ‖y‖‖x‖p−1)
βp[x, y] .

In particular, for p = 0 and q = 1, it follows from (ii) that

α[x, y] ≤ 2 min

{‖x‖
‖y‖ ,

‖y‖
‖x‖

}
β[x, y] .

PROOF. Take q = 2 − p in Theorem 3.1 and consider (1.1). �

REMARK 3.4. In (3.1), (3.2) and (3.3), the constants 2 − p
q

and p
q

in the right in-

equalities are best possible. In fact, consider X = R
2 with the norm of x = (x1, x2) given by

‖x‖ = |x1| + |x2|. Take x = (1 + ε)
1−q
q (1, ε) and y = (1, 0), where ε > 0 is small. If p

q
≥ 1,

then

αp[x, y]
αq [x, y] max(‖x‖p−q, ‖y‖p−q )

= (1 + ε)
p
q
−1 − 1

ε
· 1

(1 + ε)
p
q
−1

+ 1 → p

q

as ε → 0+. In the case 0 ≤ p
q

≤ 1, we obtain

αp[x, y]
αq [x, y] max(‖x‖q−p, ‖y‖q−p) = (1 + ε)

1− p
q − 1

ε
+ 1 → 2 − p

q

as ε → 0+.
In the case when p

q
≤ 0, the best possibility of the constant 2− p

q
in the right inequality of

(3.3) is similarly verified. The best possibility of constants p
2p−q

and p
q

in the left inequalities

of (3.1), (3.2) and (3.3) are obtained from the best possibility of constants 2 − p
q

and p
q

in the

right hand sides of these inequalities by changing the roles of p and q .
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REMARK 3.5. Let p, q ∈ R and q �= 0. It is easily seen that in the case where p
q

≥ 1

(resp. 0 ≤ p
q

≤ 1), the right (resp. left) hand side of inequality (3.1) (resp. (3.2)) is as the

same as the right (resp. left) hand side of inequality (2.1), but the left (resp. right) hand side
of inequality (3.1) (resp. (3.2)) gives better estimate than the left (resp. right) hand side of
inequality (2.1). In the case when p

q
≤ 0, using the fact that

min
(a

c
,
b

d

)
≤ max(a, b)

max(c, d)
≤ max

(a

c
,
b

d

)
(a, b, c, d > 0) ,

both sides of (3.3) are better estimates than both corresponding sides of (2.1).

3.2. Generalization of Dragomir’s results. The following theorem yields the result
of Dragomir in [8], if we take q = 1.

THEOREM 3.6. Let x, y ∈ X � {0}, p, q ∈ R and q �= 0.

(i) If p
q

≥ 1, then

αp[x, y] ≤ p

q
αq [x, y]

∫ 1

0

∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥ p
q −1

dt . (3.4)

(ii) If p
q

< 1 and x, y are linearly independent, then

αp[x, y] ≤ 2q − p

q
αq [x, y]

∫ 1

0

∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥ p
q −1

dt . (3.5)

PROOF. We suppose that x, y are linearly independent and prove (3.4) and (3.5) by
one strike. As one can observe, this proof works also in the case when p

q
≥ 1 and x, y are

linearly dependent. The function f : [0, 1] → [0,∞) given by

f (t) =
∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥p
q
−1

,

and the vector-valued function h : [0, 1] → X given by

h(t) = [
(1 − t)‖x‖q−1x + t‖y‖q−1y

]
,

are both absolutely continuous on [0, 1]. Therefore, the function g : [0, 1] → X given by

g(t) = f (t)h(t) is absolutely continuous. The function k(t) :=∥∥(1−t)‖x‖q−1x+t‖y‖q−1y
∥∥

is convex, and so except than at most a countable number of points, k′(t) exists. It is easily
verified that |k′(t)| ≤ αq [x, y] in each differentiability point t . We have

g ′(t) = f ′(t)h(t) + f (t)h′(t)

=
(p

q
− 1

)
k(t)

p
q −2

k′(t)h(t) + f (t)
[‖y‖q−1y − ‖x‖q−1x

]
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for almost all t ∈ [0, 1]. Thus,

‖g ′(t)‖ ≤
(∣∣∣∣pq − 1

∣∣∣∣ + 1

)∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥ p
q −1

αq [x, y]

for almost all t ∈ [0, 1]. Utilizing the norm inequality for the vector-valued integral, we get

αp[x, y] =
∥∥∥‖y‖p−1y − ‖x‖p−1x

∥∥∥ = ‖g(1) − g(0)‖ =
∥∥∥∥

∫ 1

0
g ′(t)dt

∥∥∥∥ ≤
∫ 1

0
‖g ′(t)‖dt

≤
(∣∣∣∣pq − 1

∣∣∣∣ + 1

)
αq [x, y]

∫ 1

0

∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥p
q
−1

dt ,

and so, the proofs of (3.4) and (3.5) are complete. �

COROLLARY 3.7. Let x, y ∈ X be linearly independent and p, q ∈ R � {0}.
(i) If 0 <

p
q

≤ 1, then

αp[x, y] ≥ p

q
αq [x, y]

(∫ 1

0

∥∥∥(1 − t)‖x‖p−1x + t‖y‖p−1y

∥∥∥ q
p
−1

dt

)−1

.

(ii) If p
q

≥ 1 or p
q

< 0, then

αp[x, y] ≥ p

2p − q
αq [x, y]

(∫ 1

0

∥∥∥(1 − t)‖x‖p−1x + t‖y‖p−1y

∥∥∥ q
p −1

dt

)−1

.

REMARK 3.8. (i) If p
q

≥ 1, then, by the triangle inequality, we have

∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥ p
q −1 ≤ [(1 − t)‖x‖q + t‖y‖q ] p

q −1

for any t ∈ [0, 1]. Integrating both sides on [0, 1], we get∫ 1

0

∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥p
q
−1

dt ≤ q

p

(‖y‖p − ‖x‖p

‖y‖q − ‖x‖q

)

if ‖x‖ �= ‖y‖, and by (3.4) we obtain the chain of inequalities

αp[x, y] ≤ p

q
αq [x, y]

∫ 1

0

∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥p
q
−1

dt

≤ ‖y‖p − ‖x‖p

‖y‖q − ‖x‖q
αq [x, y] , (3.6)

which provides a generalization and refinement of Hile’s inequality (1.2).
(ii) If p

q
≥ 2, then the function f : [0, 1] → [0,∞) given by f (t) = [(1 − t)‖x‖q +

t‖y‖q ] p
q
−1 is convex. Employing the Hermite-Hadamard inequality for the convex function
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f we obtain

q

p

(‖y‖p − ‖x‖p

‖y‖q − ‖x‖q

)
=

∫ 1

0
[(1 − t)‖x‖q + t‖y‖q ] p

q
−1

dt

≤ ‖x‖p−q + ‖y‖p−q

2
≤ max{‖x‖p−q, ‖y‖p−q } ,

which by (3.4), implies the following chain of inequalities

αp[x, y] ≤ p

q
αq [x, y]

∫ 1

0

∥∥∥(1 − t)‖x‖q−1x + t‖y‖q−1y

∥∥∥p
q
−1

dt

≤ p

q
αq [x, y]

∫ 1

0
[(1 − t)‖x‖q + t‖y‖q ] p

q
−1

dt

= ‖y‖p − ‖x‖p

‖y‖q − ‖x‖q
αq [x, y]

≤ p

q
αq [x, y] ‖x‖p−q + ‖y‖p−q

2
≤ p

q
αq [x, y] max{‖x‖p−q, ‖y‖p−q } (3.7)

for ‖x‖ �= ‖y‖.

In particular, inequality (3.7) shows that in the case p
q

≥ 2, inequality (3.6) is better than

inequality (3.1).

REMARK 3.9. Let X be an inner product space. It is known [7] that for any a, b ∈ X ,
b �= 0, it holds that

min
t∈R‖a + tb‖ =

√‖a‖2‖b‖2 − |〈a, b〉|2
‖b‖ .

Hence, if x and y are linearly independent vectors of X , then by taking a = x and b = y − x,
we obtain

‖(1 − t)x + ty‖ = ‖x + t (y − x)‖ ≥
√‖x‖2‖y‖2 − 〈x, y〉2

‖x − y‖ (t ∈ R) .

This implies that ∫ 1

0
‖(1 − t)x + ty‖−1dt ≤ ‖x − y‖√‖x‖2‖y‖2 − 〈x, y〉2

.

Taking p = 0 and q = 1 in (3.5), we get

α[x, y] ≤ 2‖x − y‖
∫ 1

0
‖(1 − t)x + ty‖−1dt ≤ 2‖x − y‖2√‖x‖2‖y‖2 − 〈x, y〉2

.
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This implies an upper estimation for the error of the Cauchy-Schwarz inequality as follows√
‖x‖2‖y‖2 − 〈x, y〉2 ≤ 2‖x‖‖y‖‖x − y‖2

‖‖y‖x − ‖x‖y‖ (‖y‖x �= ‖x‖y) .

4. Characterizations of inner product spaces

In this section, corresponding to Propositions 2.7 and 2.8, we give two characterizations
of inner product spaces regarding to the p-angular and the skew p-angular distances.

The following characterization extends a result of Dehghan [6] from p = 0 to an arbitrary
real number p �= 1.

THEOREM 4.1. Let p > 1 (p < 1 resp.) is a real number. Then a normed space X is
an inner product space, if and only if for any x, y ∈ X � {0},

αp[x, y] ≥ βp[x, y] (αp[x, y] ≤ βp[x, y] resp.) . (4.1)

PROOF. If X is an inner product space, the conclusion follows from Proposition 2.7.
Now, let X be a normed space satisfying the condition (4.1). Since for arbitrary non-zero
elements x and y of X , the inequality αp[x, y] ≤ βp[x, y] is equivalent to β2−p[x, y] ≤
α2−p[x, y], it is sufficient to consider the case when p > 1.

Let x, y ∈ X , ‖x‖ = ‖y‖ and γ �= 0. From Theorem A it is enough to prove that
‖γ x + γ −1y‖ ≥ ‖x + y‖. Clearly, we can assume that ‖x‖ = ‖y‖ = 1 and γ > 0. Applying

inequality (4.1) to γ
1
p x and −γ

− 1
p y for x and y respectively, we obtain

‖γ x + γ −1y‖ ≥ ∥∥γ
2−p
p x + γ

− 2−p
p y

∥∥ . (4.2)

Now using the mathematical induction, we get

‖γ x + γ −1y‖ ≥
∥∥∥∥γ

(
2−p
p

)n

x + γ
−
(

2−p
p

)n

y

∥∥∥∥ (n = 1, 2, . . .) .

Since p > 1, we have
∣∣ 2−p

p

∣∣ < 1, and so

‖γ x + γ −1y‖ ≥ lim
n→∞

∥∥∥∥γ

(
2−p
p

)n

x + γ
−
(

2−p
p

)n

y

∥∥∥∥ = ‖x + y‖ .

This completes the proof. �

REMARK 4.2. If X is not an inner product space, then for each p �= 1 there exist
xi, yi ∈ X � {0} (i = 1, 2), such that αp[x1, y1] < βp[x1, y1] and αp[x2, y2] > βp[x2, y2].
In fact if p > 1, then by Theorem 4.1 there exist x1, y1 ∈ X � {0} such that αp[x1, y1] <

βp[x1, y1]. On the other hand, due to an arbitrary one dimensional subspace M = {λe : λ ∈
R} of X with ‖e‖ = 1 is an inner product space via 〈λe,μe〉 := λμ, for any x2, y2 ∈ M � {0}
with ‖x2‖ �= ‖y2‖, we have αp[x2, y2] > βp[x2, y2]. A similar argument carry out when
p < 1.
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Now we give the second characterization of inner product spaces related to Proposi-
tion 2.8.

THEOREM 4.3. Let p �= 1. Then a normed space X is an inner product space if and
only if for any x, y ∈ X � {0},

αp[x, y] =
√

(‖x‖p+1 − ‖y‖p+1)(‖x‖p−1 − ‖y‖p−1) + ‖x‖p−1‖y‖p−1‖x − y‖2 . (4.3)

PROOF. If X is an inner product space, then identity (4.3) follows from Proposi-
tion 2.8. Now, let X be a normed space satisfying condition (4.3). We prove that X is an
inner product space by considering the following three cases for p.

Case 1. Assume that p �= 0,−1. Let x, y ∈ X , ‖x‖ = ‖y‖ and λ �= 0. From Theorem A
it is enough to prove that ‖x + y‖ ≤ ‖λx + λ−1y‖. We may assume that ‖x‖ = ‖y‖ = 1 and

λ > 0. Applying identity (4.3) to λ
1
p x and −λ

− 1
p y for x and y respectively, we obtain

‖λx + λ−1y‖ =
√

(λ
p+1
p − λ

− p+1
p )(λ

p−1
p − λ

1−p
p ) + ‖λ 1

p x + λ
− 1

p y‖2

=
√√√√λ

2p+2
p − 1

λ
p+1
p

· λ
2p−2

p − 1

λ
p−1
p

+ ‖λ 1
p x + λ

− 1
p y‖2 .

If p > 1, then 2p + 2 > 2p − 2 > 0, and if p < −1, then 2p − 2 < 2p + 2 < 0. For |p| > 1,

we therefore have (λ
2p+2

p − 1)(λ
2p−2

p − 1) ≥ 0. Hence ‖λx + λ−1y‖ ≥ ‖λ 1
p x + λ

− 1
p y‖. It

yields that

‖λx + λ−1y‖ ≥ ‖λ 1
pn x + λ

− 1
pn y‖ (n = 1, 2, . . .) . (4.4)

Thus,

‖λx + λ−1y‖ ≥ lim
n→∞‖λ 1

pn x + λ
− 1

pn y‖ = ‖x + y‖ .

Now if |p| < 1, then | 1
p
| > 1, and so by substituting p by 1

p
in (4.4) we get

‖λx + λ−1y‖ ≥ ‖λpn

x + λ−pn

y‖ (n = 1, 2, . . .) .

Hence,

‖λx + λ−1y‖ ≥ lim
n→∞‖λpn

x + λ−pn

y‖ = ‖x + y‖ ,

and so, X is an inner product space.
Case 2. Suppose that p = 0. Let x, y ∈ X , ‖x‖ = ‖y‖ = 1 and λ > 0. Replacing x and

y by λx and −λ−1y respectively, in identity (4.3), we get

‖x + y‖2 = ‖λx + λ−1y‖2 − (λ − 1

λ
)2 ≤ ‖λx + λ−1y‖2 .



p-ANGULAR AND SKEW p-ANGULAR DISTANCES 271

It follows from Theorem A that X is an inner product space.
Case 3. Let p = −1. Assume x, y ∈ X such that ‖x‖ = ‖y‖ and λ > 0. Applying

identity (4.3) to λx and −λ−1y instead of x and y respectively, we obtain ‖λx + λ−1y‖ =
‖λ−1x + λy‖. Therefore, Theorem B ensures that X is an inner product space. �

REMARK 4.4. It seems that the characterization of inner product spaces in Theo-
rem 4.1 can be extended in a more general case. For example, the following inequality∥∥∥∥ x

1 + ‖x‖ − y

1 + ‖y‖
∥∥∥∥ ≤

∥∥∥∥ x

1 + ‖y‖ − y

1 + ‖x‖
∥∥∥∥ (x, y ∈ X ) , (4.5)

is also a characterization of inner product spaces. In fact, (4.5) holds in any inner product
spaces and conversely, if (4.5) holds in a normed linear space X , then substituting x and y by
nx and ny (n = 1, 2, . . .) respectively, we obtain∥∥∥∥ x

1
n

+ ‖x‖ − y

1
n

+ ‖y‖
∥∥∥∥ ≤

∥∥∥∥ x

1
n

+ ‖y‖ − y

1
n

+ ‖x‖
∥∥∥∥ .

Now letting n → ∞, we get α[x, y] ≤ β[x, y] (x, y ∈ X � {0}), and so X is an inner product
space.
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