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Abstract. In this paper, the one-dimensional Keller-Segel system defined on a bounded interval with the Neu-
mann boundary conditions is considered. The system describes the phenomenon such that the cellular slime molds
form an aggregation by the chemotaxis movement. In the case of small chemotaxis, the asymptotic behavior of solu-
tions to the system are analyzed, as the time development, by using the Fourier series. Some of numerical examples
are also given.

1. Introduction

We consider the Keller-Segel system which has been posed as a mathematical and bi-
ological model for the cellular slime molds by E.F. Keller and S.A. Segel [7] in 1970s. N.
Bellomo, A. Bellouquid, Y. Tao and M. Winkler [1] gives a general survey of the Keller-Segel
system. In T. Hillen and K.J. Painter [6], there is a detailed exploration of variations of the
Keller-Segel model. Here, we analyze an original model dealt in [6]. As has been considered
in K. Osaki and A. Yagi [10], we investigate the one-dimensional Keller-Segel system defined
on a bounded interval with the Neumann boundary conditions, which is given as (KS) in Sec-
tion 3. We focus on the case where the chemotaxis is small, and we analyze the asymptotic
behavior, as the time development, of the cellular slime molds and chemotactic substance.
In Theorem 1, which we describe in Section 5, we show that the solutions of (KS) converge
to some constants, as time tends to infinity, in the case of small chemotaxis. For the case
of one-dimension, in Z. Wang and K. Zhao [11] and M. Winkler [12], analogous results on
the asymptotic behavior of the solutions to corresponding Keller-Segel systems, which are
similar to but not same as the present (KS), are derived. In X. Cao [2] and T. Cieślak, P.
Laurençot and C. Morales-Rodrigo [3], the higher-dimensional analogue of the present (KS)
are considered, and the corresponding results of the asymptotic behavior of the solutions are
investigated. Nevertheless as is indicated in [6], the behavior of the solutions of (KS) depends
strongly on the space dimensions. In this paper to prove Theorem 1, we adopt a discussion
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FIGURE 1. The life cycle of the cellular slime molds
(From the homepage of Japanese Society for the Study of Cellular Slime Molds)

through the Fourier series, which is efficient for considering the problems of one-dimension.

This paper is organized as follows. In Sections 2 and 3, we give the brief explanations
about the cellular slime molds and the Keller-Segel system, respectively. In Section 4, we
introduce some propositions which will play an important role in this paper. Section 5 is
the main section. In Theorem 1, we show that both the solutions of (KS) converge to some
constants in the case of sufficiently small chemotaxis, as time tends to infinity. Section 6 is
devoted to introducing some results by means of the numerical calculation, and a conjecture
on our results is presented. Finally in Section 7, we give the proofs of main propositions given
in Section 4.

2. The cellular slime molds

We describe the life cycle of the cellular slime molds as follows. The cellular slime mold
forms the structure like the plant called a fruit body finally. Then the spore released from a
fruit body germinates, and it eats bacteria inhabit in the soil as feed, and increases in the state
of the amoeba. After it eats whole of feed of bacteria in the surrounding area, it falls into
starvation. Then it begins to release a chemical substance , that is acrasin, which attracts other
cells. Hence they are gathering. Then a cell body moves to the lightning place, and it grows to
a fruit body (see Figure 1). The Keller-Segel system is the biological model which describes
the movement until a cellular slime mold falls in the hunger state and forms an aggregate.

3. The Keller-Segel system

As we described previously, the mathematical formulation which describes the phenom-
enon that cellular slime molds form an aggregation by chemotaxis movement was firstly posed
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by E.F. Keller and L.A. Segel [7]. Nowadays, it has been extensively studied as the Keller-
Segel system. In this paper, we deal with the following one-dimensional Keller-Segel system
(1.1), (1.2) with the Neumann boundary conditions (1.3). The Neumann boundary conditions
are also referred to as reflection boundary conditions, and they mean that there is no out of
cells and chemotactic substance through the boundary ∂I = {a, b}.

(KS)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = uxx − χ(uvx)x in I × (0,∞), (1.1)

vt = vxx − γ v + αu in I × (0,∞), (1.2)

ux(a, t) = ux(b, t) = vx(a, t) = vx(b, t) = 0 in (0,∞), (1.3)

u(x, 0) = u(x), v(x, 0) = v(x) in I ,

where I = (a, b) with some given a and b such that −∞ < a < b < ∞ is a bounded
open interval, and χ, α, γ are some given positive constants. The solutions u = u(x, t) and
v = v(x, t) represent the cell density of the cellular slime molds and the cell concentration of
the chemical substance that released by the cellular slime molds at the position x, and at time t ,
respectively. We review the following: ut = uxx is the heat equation, and ut = −(u ·χvx)x is
the equation of continuity by Euler. It follows that the first term on the righthand side of (1.1)

means the diffusion phenomenon, and the second term means the concentration phenomenon
by which the cells move around randomly. Thus (KS) has the terms expressing both of the
concentration phenomenon and diffusion phenomenon. Remark that the system given by (KS)
is understood as a particular model where it is not affected by the concentration of a chemical
substance, but is affected by the gradient of the concentration of a chemical substance. There
exists an intensive consideration on the existence of unique solution of (KS) and its asymptotic
behavior (cf. K. Osaki and A. Yagi [10]). The purpose of this paper is to show that both the
solutions u and v of (KS) converge to some constants depending only on the initial data of u,
as the time development, in the case of sufficiently small chemotaxis.

4. Existing results

Throughout this paper, we denote Lr ≡ Lr(I), the usual Lebesgue space on I with

the norm ||u||Lr ≡ (
∫
I
|u(x)|r dx)

1
r for 1 ≤ r < ∞, and ||u||L∞ ≡ ess supx∈I |u(x)|. The

Sobolev space Wm,r (I), m = 1, 2, . . . , 1 < r < ∞ is the space of all functions u on I such

that ||u||Wm,r ≡ ∑m
i=1 ||Diu||Lr < ∞, with the derivative D with respect to the variable x.

In this section, we give some propositions that will play an important role in our main results
given in the next section. It is known that (KS) has a unique global-in-time classical solution
(u, v) under suitable initial conditions (cf. Section 7 in K. Osaki and A. Yagi [10]):

PROPOSITION 1 (K. Osaki and A. Yagi [10]). Suppose that the initial data u, v sat-
isfy the following conditions:

u, v ∈ W 1,2(I), inf
x∈I

u > 0, inf
x∈I

v > 0 .
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Then, there exists a unique global-in-time classical solution (u, v) of (KS).

Proposition 2, below, is derived easily by using integration by parts and the Neumann
boundary conditions.

PROPOSITION 2. Assume that (u, v) is the solution of (KS). Then the following identity
holds:

∫
I

u(x, t) dx =
∫

I

u(x) dx . (2)

　

The identity (2) is called as “mass conservation law”, and it tells us that the amounts
of the cellular slime molds do not change in time. In the probability theory, functions that
possess the mass conservation law can be interpreted as probability densities (cf. Y. Yahagi
[13]).

Then, we consider the following non-homogeneous heat equation (3.1) with the Neu-
mann boundary conditions (3.2).

(Heat)

⎧⎪⎪⎨
⎪⎪⎩

wt = wxx + z in I × (0,∞) , (3.1)

wx(a, t) = wx(b, t) = 0, in (0,∞) , (3.2)

w(x, 0) = w(x) in I ,

where, I = (a, b), w ∈ L2(I) and z ∈ C([0,∞); L2(I)).

PROPOSITION 3. The solution w of (Heat) is given by the following formula:

w(x, t) =
∞∑

n=0

e−λ2
nt

(
Tn(0) +

∫ t

0
zn(τ )eλ2

nτ dτ
)

cos λn(x − a) , (4)

where,

λn = πn

b − a
(n ≥ 0) ,

Tn(0) = 2

b − a

∫ b

a

w(x) cos λn(x − a) dx (n ≥ 1) ,

T0(0) = 1

b − a

∫ a

b

w(x) dx ,

zn(t) = 2

b − a

∫ b

a

z(x, t) cos λn(x − a) dx (n ≥ 1) ,
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z0(t) = 1

b − a

∫ b

a

z(x, t) dx .

We will give the proof of Proposition 3 in Section 7.
To prove our main theorems given by Section 5, we efficiently use the following two

propositions, known as the Poincaré inequalities (cf. e.g. Section 7 in D. Gilbarg and
N.S.Trudinger [5], Chapter 3 in S. Mizohata [9]), and the Gronwall inequality(cf. eg. Ap-
pendix B in L.C. Evans [4]), respectively .

PROPOSITION 4. Let I = (a, b) be the given open interval.

(i) There exists a positive constant C = C(a, b) such that for u ∈ W 1,2(I) the following
inequality holds:

||u − Mu||L2 ≤ C||Du||L2 , (5)

where, Mu := 1

b − a

∫
I

u(y) dy.

(ii) For u ∈ W
1,2
0 (I), the following inequality holds:

||u||L2 ≤ b − a√
2

||Du||L2 , (6)

where W
1,2
0 (I) is a subspace of W 1,2(I), composed with the functions u satisfying supp[u] ⊂

(a, b).

PROPOSITION 5. Let J = (t0, t1) be the open interval. Suppose that u ∈ C1(J ) and
β ∈ C(J ) that satisfy

u′(t) ≤ β(t) u(t), (t ∈ J ) .

Then, the following inequality holds:

u(t) ≤ u(c) exp(

∫ t

c

β(s) ds) ,

where t0 < c ≤ t < t1.

Finally in this section, we prepare the following proposition which is an application of
Proposition 5.

PROPOSITION 6. Let F ∈ C1(0,∞) be a nonnegative function, and let G ∈ C(0,∞)

be a nonnegative function such that lim
t→∞ G(t) = 0. Assume that the following differential

inequality holds:

F ′(t) ≤ −kF (t) + lG(t) ,
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where k and l are some given positive constants. Then, it holds that

lim
t→∞ F(t) = 0 .

In Section 7, we will give the proof of Proposition 6.

5. Main Results and their proofs

Recall that in this paper, we focus on sufficiently small chemotaxis, and that the second
term on the righthand side of (1.1) means that the cells move with the speed χvx . Intuitively,
it is expected that if χvx is small enough, then the diffusion phenomenon is stronger than the
concentration phenomenon on (KS). As a result, it is expectable that the solution u of (KS)
will converge to a constant as the time goes by. In fact, we obtain the following main result.

THEOREM 1. Let u, v ∈ W 1,2(I) and inf
x∈I

u > 0, inf
x∈I

v > 0, and let (u, v) be the

global-in-time classical solution of (KS). Assume that there exists t∗ > 0 such that for any
t ≥ t∗, the following inequality holds:

χC||vx(·, t)||L∞ < 1 , (7)

where C = C(a, b) is a constant appearing in (5). Furthermore, assume that

lim
t→∞ ||vxx(·, t)||L2 = 0 .

Then, it holds that

lim
t→∞ ||u(·, t) − M||L2 = 0 , (8)

lim
t→∞

∣∣∣
∣∣∣v(·, t) − αM

γ

∣∣∣
∣∣∣
L2

= 0 , (9)

where M := 1

b − a

∫ b

a

u(x) dx .

Note that by the “mass conservation law” (2), if the solution u of (KS) converges to a

constant C, then it must hold that C = 1
b−a

∫ b

a
u(x) dx . Before we prove this main theorem,

we prepare the following system (KS∗) which is obtained by substituting χ = 0 in (KS).

(KS∗)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ũt = ũxx in I × (0,∞), (10.1)

ṽt = ṽxx − γ ṽ + αũ in I × (0,∞), (10.2)

ũx(a, t) = ũx(b, t) = ṽx(a, t) = ṽx(b, t) = 0, in (0,∞), (10.3)

ũ(x, 0) = u(x), ṽ(x, 0) = v(x) in I. (10.4)
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Note that (KS∗) is linear, although (KS) is nonlinear. At first, we discuss the asymptotic
behavior of (ũ, ṽ), which is the solution of (KS∗), and we proceed to the discussion about
(KS). Fortunately, it is possible to solve (KS∗). Indeed, we have the following proposition.

PROPOSITION 7. Let u, v ∈ W 1,2(I) and inf
x∈I

u > 0, inf
x∈I

v > 0. Then the classical

solution (ũ, ṽ) of (KS∗) is given as follows:

ũ(x, t) = M +
∞∑

n=1

An cos λn(x − a)e−λ2
nt , (11)

ṽ(x, t) = e−γ t

∞∑
n=0

e−λ2
nt

(
Tn(0) + α

∫ t

0
ũn(τ )e(γ+λ2

n)τ dτ
)

cos λn(x − a) , (12)

where λn is the number given in Proposition 3, and

An = 2

b − a

∫ b

a

u(x) cos λn(x − a) dx (n ≥ 1) ,

Tn(0) = 2

b − a

∫ b

a

v(x) cos λn(x − a) dx (n ≥ 1) , (13)

T0(0) = 1

b − a

∫ b

a

v(x) dx =: N , (14)

ũn(t) = 2

b − a

∫ b

a

ũ(x, t) cos λn(x − a) dx (n ≥ 1) , (15)

ũ0(t) = 1

b − a

∫ b

a

ũ(x, t) dx = 1

b − a

∫ b

a

u(x) dx = M .

By using Proposition 7, we have the following theorem.

THEOREM 2. For the solution (ũ, ṽ) of (KS∗) given by (11), (12), the following two
hold:

lim
t→∞ ||ũ(·, t) − M||L∞ = 0 , (16)

lim
t→∞

∣∣∣
∣∣∣ṽ(·, t) − αM

γ

∣∣∣
∣∣∣
L∞ = 0 . (17)

PROOF OF PROPOSITION 7. It is easy to solve (10.1) with (10.3) and (10.4) (cf. e.g.
Section 12.3 in E. Kreyszig [8]). Here, we give the proof of (12) only. By transformation of
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variable ṽ(x, t) = e−γ t w̃(x, t), it holds that

ṽt = −γ e−γ t w̃ + e−γ t w̃t , ṽx = e−γ t w̃x, ṽxx = e−γ t w̃xx .

Therefore we have the following differential equation instead of (10.2),

w̃t = w̃xx + αũeγ t .

Also, we have

w̃(x, 0) = v(x) .

Then, by substituting w = w̃, z = αũeγ t in Proposition 3, it follows that

w̃(x, t) =
∞∑

n=0

e−λ2
nt

(
Tn(0) +

∫ t

0
zn(τ )eλ2

nτ dτ
)

cos λn(x − a) ,

where, Tn(0) and un(t) are the same as (13), (14), (15) and zn(t) = αeγ t ũn(t). Finally, we
obtain the required equation:

ṽ(x, t) = e−γ t w̃(x, t) = e−γ t

∞∑
n=0

e−λ2
nt

(
Tn(0) + α

∫ t

0
ũn(τ )e(γ+λ2

n)τ dτ
)

cos λn(x − a) .

�

PROOF OF THEOREM 2. Firstly, we show (18) given below.

Since e−λ2
nt = 1

eλ2
nt

≤ 1

λ2
nt + 1

≤ 1

λ2
nt

for any λ2
nt > 0, it holds that

∞∑
n=1

e−λ2
nt ≤ 1

t

∞∑
n=1

1

λ2
n

= (b − a)2

tπ2

π2

6
= (b − a)2

6t
. (18)

Now, by using (18), we shall show the first requirement. By (11), we have

|ũ(x, t) − M| =
∣∣∣

∞∑
n=1

An cos λn(x − a)e−λ2
nt

∣∣∣

≤
∞∑

n=1

|An|e−λ2
nt

≤ 2M

t

∞∑
n=1

1

λ2
n

= 2M(b − a)2

tπ2 · π2

6
= M(b − a)2

3t
.

It follows that

||ũ(·, t) − M||L∞ ≤ M(b − a)2

3t
→ 0 (t → ∞) .
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Then by (12), we have

ṽ(x, t) = e−γ t

∞∑
n=0

e−λ2
nt

(
Tn(0) + α

∫ t

0
ũn(τ )e(γ+λ2

n)τ dτ
)

cos λn(x − a)

= e−γ t
∞∑

n=0

e−λ2
ntTn(0) cos λn(x − a) + αe−γ t

∫ t

0
ũ0(τ )eγ τ dτ

+ e−γ t
∞∑

n=1

e−λ2
ntα

∫ t

0
ũn(τ )e(γ+λ2

n)τ dτ cos λn(x − a)

=: I1(x, t) + I2(t) + I3(x, t) .

We see that

|I1(x, t)| ≤ e−γ t
∞∑

n=0

e−λ2
nt |Tn(0)|| cosλn(x − a)| ≤ 2Ne−γ t

∞∑
n=0

e−λ2
nt . (19)

By using (18) again, it follows that

∞∑
n=0

e−λ2
nt = 1 +

∞∑
n=1

e−λ2
nt ≤ 1 + (b − a)2

6t
(t > 0) . (20)

From (19) and (20), we have

sup
I

|I1(x, t)| ≤ 2Ne−γ t (1 + (b − a)2

6t
) → 0 (t → ∞) .

Next, we consider I2(t).

I2(t) = αe−γ t

∫ t

0
ũ0(τ )eγ τ dτ = αe−γ t

∫ t

0
Meγτdτ

= αe−γ tM · 1

γ
(eγ t − 1) → αM

γ
(t → ∞) .

Finally let us evaluate I3(x, t). From (11) and (15), for n ≥ 1, we have

ũn(t) = 2

b − a

∫ b

a

ũ(x, t) cos λn(x − a) dx

= 2

b − a

∫ b

a

(
M +

∞∑
m=1

Am cos λm(x − a)e−λ2
mt

)
cos λn(x − a) dx
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= 2

b − a

∞∑
m=1

Ame−λ2
mt

∫ b

a

cos λm(x − a) cos λn(x − a) dx

= 2

b − a
Ane

−λ2
nt

∫ b

a

cos λ2
n(x − a) dx

= Ane
−λ2

nt .

Therefore, it follows that

I3(x, t) = e−γ t

∞∑
n=1

e−λ2
ntα

∫ t

0
ũn(τ )e(γ+λ2

n)τ dτ cos λn(x − a)

= e−γ t
∞∑

n=1

e−λ2
ntα

∫ t

0
Ane

γ τ dτ cos λn(x − a)

= αe−γ t
∞∑

n=1

e−λ2
ntAn cos λn(x − a)

∫ t

0
eγ τ dτ

= αe−γ t

∞∑
n=1

e−λ2
ntAn cos λn(x − a)

1

γ
(eγ t − 1)

= α

γ

∞∑
n=1

e−λ2
ntAn cos λn(x − a)(1 − e−γ t ) → 0 (t → ∞) .

Hence, we obtain the following result:
∣∣∣
∣∣∣ṽ(·, t) − αM

γ

∣∣∣
∣∣∣
L∞ ≤ ||I1(·, t)||L∞ +

∣∣∣I2(t) − αM

γ

∣∣∣ + ||I3(·, t)||L∞ → 0 (t → ∞) .

Thus (17) has been proven. �

At the end of this section, we give the proof of Theorem 1.

PROOF OF THEOREM 1. First of all, we shall show (8). Multiplying the first equation
(1.1) of (KS) by u and integrating the product on the interval I , we have

1

2

d

dt

∫
I

u2 dx =
∫

I

u uxx dx − χ

∫
I

u(uvx)x dx . (21)

By integration by parts formula, from (21) it follows that

1

2

d

dt

∫
I

(u − M2) dx = −
∫

I

(ux)2 dx − χ

∫
I

(u − M)(uvx)x dx =: J1(t) + J2(t) . (22)
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Because of the “mass conservation law” (2), it holds that
d

dt

∫
I

u dx = 0. Thus we have

d

dt
||u(·, t) − M||2

L2 = d

dt

∫
I

(u2 − 2Mu + M2) dx = d

dt

∫
I

u2 dx = d

dt
||u(·, t)||2

L2 .

Also it holds that

J1(t) = −
∫

I

(ux)
2 dx = −||ux(·, t)||2L2 .

Then, by the Hölder inequality and the Poincaré inequality (6), we see

J2(t) = −χ

∫
I

(u − M)(uvx)x dx

= −χ

∫
I

(u − M)
[
((u − M)vx)x + Mvxx

]
dx

= χ

∫
I

(u − M)x(u − M)vx dx − χ

∫
I

(u − M)Mvxx dx

≤ χ ||vx(·, t)||L∞||ux(·, t)||L2||u(·, t) − M||L2 + χM||vxx(·, t)||L2 ||u(·, t) − M||L2 .

Suppose that there exists t∗ > 0 such that the following property holds (cf. (7)):

p := 1 − χC||vx(·, t)||L∞ > 0 (t ≥ t∗) , (23)

where C = C(a, b) > 0. Furthermore, suppose that lim
t→∞ ||vxx(·, t)||L2 = 0. Then, from (23),

it follows that

d

dt
||u(·, t) − M||2

L2 ≤ − p

C2
||u(·, t) − M||2

L2 + χ2M2

2
||vxx(·, t)||L2 .

By Proposition 6, we find

||u(·, t) − M||2
L2 → 0 (t → ∞) ,

and thus we have proved (8).
Nextly, we shall prove (9). We denote by (ũ, ṽ) the solution of (KS∗), and let

w(x, t) := u(x, t) − ũ(x, t), z(x, t) := v(x, t) − ṽ(x, t) .

Then, we have easily the following system (∗).

(∗)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt = wxx − χ(uxvx + uvxx) in I × (0,∞), (24.1)

zt = zxx − γ z + αw in I × (0,∞), (24.2)

wx(a, t) = wx(b, t) = zx(a, t) = zx(b, t) = 0 in (0,∞),

w(x, 0) = w(x) = 0, z(x, 0) = z(x) = 0 in I .
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Here, we are paying our attention to (24.2). As well as (21) and (22), we have

1

2

d

dt

∫
I

z2 dx = −
∫

I

z2
x dx − γ

∫
I

z2 dx + α

∫
I

zw dx . (25)

We define

F(t) := (

∫
I

z2 dx)
1
2 = ||z(·, t)||L2 .

Then the lefthand side of (25) is written as follows:

1

2

d

dt

∫
I

z2 dx = 1

2

d

dt
{F(t)}2 = F(t)F ′(t) .

Furthermore, we set

G(t) := (

∫
I

w2 dx)
1
2 = ||w(·, t)||L2 .

By the Hölder inequality and the Poincaré inequality (6), the righthand side of (25) becomes

−
∫

I

z2
x dx − γ

∫
I

z2 dx + α

∫
I

zw dx

≤ −γ ||z(·, t)||2
L2 + α||z(·, t)||L2 ||w(·, t)||L2

≤ −γ {F(t)}2 + αF(t) G(t) .

That is,

F(t)F ′(t) ≤ −γ {F(t)}2 + αF(t) G(t) .

Thus we obtain the following inequality:

F ′(t) ≤ −γF(t) + αG(t) . (26)

Note that (cf. (8), (16))

G(t) = ||w(·, t)||L2 = ||(u− ũ)(·, t)||L2 ≤ ||u(·, t)−M||L2 +||ũ(·, t)−M||L2 → 0 (t → ∞) ,

hence by Proposition 6, we have

F(t) = ||z(·, t)||L2 = ||(v − ṽ)(·, t)||L2 → 0 (t → ∞) .

Moreover, since for bounded interval I , L∞ is continuously embedded in L2, by (17) it holds
that

∣∣∣
∣∣∣ṽ(·, t) − αM

γ

∣∣∣
∣∣∣
L2

→ 0 (t → ∞) .
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By combining the above two, we get
∣∣∣
∣∣∣v(·, t) − αM

γ

∣∣∣
∣∣∣
L2

≤ ||(v − ṽ)(·, t)||L2 +
∣∣∣
∣∣∣ṽ(·, t) − αM

γ

∣∣∣
∣∣∣
L2

→ 0 (t → ∞) .

We have completed the proof of Theorem 1. �

6. Examples of numerical calculation

As we showed in Theorem 1, the classical solutions u and v of (KS) with sufficiently
small chemotaxis converge to the constants. Here, we introduce some examples of numerical
calculations. From these examples, heuristic however, we give the following conjecture.

CONJECTURE 1. Let u, v ∈ W 1,2(I) and inf
x∈I

u > 0, inf
x∈I

v > 0, and (u, v) be the

classical solution of (KS). Assume that χ is small enough. Then, for any x ∈ I , the following
hold:

lim
t→∞ u(x, t) = M ,

lim
t→∞ v(x, t) = αM

γ
.

EXAMPLE 1. Let α = 2, γ = 3, a = 0, b = π , u(x) = 3 − cos 2x, v(x) = 3, χ = 1.
As we see in Figure 2, the solutions u and v converge to some constants, respectively.

EXAMPLE 2. Let α, γ, a, u, v(x) be same as Example 1, but let χ = 5

4
. As we see in

Figure 3, the solutions u and v do not converge to some constants.

FIGURE 2. Result of the numerical computation of Example 1
The figure of the lefthand side is the graph of u = u(x, t), and the righthand side is the graph of v = v(x, t).
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FIGURE 3. Result of the numerical computation of Example 2
The figure of the lefthand side is the graph of u = u(x, t), and the righthand side is the graph of v = v(x, t).

7. Appendix

As the final section of this paper, we shall present the proofs of Propositions 3 and 6.

7.1. Proof of Proposition 3. We use an eigenfunction expansion method. We set

w(x, t) :=
∞∑

n=0

wn(x, t) =
∞∑

n=0

Tn(t)Xn(x) , (27)

where

Xn(x) = cos λn(x − a), λn = nπ

b − a
. (28)

Step 1. We set

z(x, t) :=
∞∑

n=0

zn(t)Xn(x) . (29)

From (29), we have the following equation:

∫ b

a

z(x, t) cos λm(x − a) dx =
∫ b

a

∞∑
n=0

zn(t) cos λn(x − a) cosλm(x − a) dx . (30)

Note that if n �= m, then it holds that
∫ b

a

cos λn(x − a) cosλm(x − a) dx = 0 ,
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and in the case n = m �= 0, then it holds that
∫ b

a

cos λn(x − a) cos λn(x − a) dx = b − a

2
.

By substituting these formulas into (30), we obtain
∫ b

a

z(x, t) cos λm(x − a) dx = b − a

2
zn(t) (n ≥ 1) ,

namely,

zn(t) = 2

b − a

∫ b

a

z(x, t) cos λn(x − a) dx (n ≥ 1) .

In the case n = m = 0, it holds that
∫ b

a

cos λ0(x − a) cos λ0(x − a) dx = b − a,

thus it follows that

z0(t) = 1

b − a

∫ b

a

z(x, t) dx .

Step 2. From (27) and (29), we know that (3.1) given in Proposition 3 means

T ′
n(t)Xn(x) = Tn(t)X

′′
n(x) + zn(t)Xn(x) . (31)

For n ≥ 1, (31) is transformed to

T ′
n(t) + λ2

nTn(t) = zn(t) . (32)

On the other hand, from (27) and (28), we notice that

w(x) =
∞∑

n=0

Tn(0) cos λn(x − a) .

With the Fourier series expansion of w(x), we have

Tn(0) = 2

b − a

∫ b

a

w(x) cos λn(x − a) dx (n ≥ 1) ,

and

T0(0) = 1

b − a

∫ b

a

w(x) dx .

For n = 0, (31) means

T ′
0(t) = z0(t) . (33)
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Step 3. Let us solve the differential equations (32) and (33) . By a standard method, we have
the following solutions:

Tn(t) = e−λ2
nt

(
Tn(0) +

∫ t

0
zn(τ )eλ2

nτ dτ
)

(n ≥ 1) , (34)

and for n = 0,

T0(t) = T0(0) +
∫ t

0
zn(τ ) dτ .

Notice that (34) is correct in the case n = 0.

Step 4. Combined (27), (28) with (34), we have proved Proposition 3.

7.2. Proof of Proposition 6. We will show that for any ε > 0, there exists t0 > 0

such that F(t) < ε for all t ≥ t0. We set δ = k

2l
ε. On the other hand, because it is assumed

that lim
t→∞ G(t) = 0, we know that there exists t1 > 0 such that G(t) < δ for all t ≥ t1. From

the given assumption, we have

F ′(t) ≤ −kF (t) + lδ = −k{F(t) − lδ

k
} .

We set X(t) = F(t) − lδ

k
. Then it follows that

X′(t) ≤ −kX(t) .

By Proposition 5, we obtain the following inequality:

X(t) ≤ X(t1)e
−k(t−t1) .

Therefore, we have

F(t) ≤ {F(t1) − lδ

k
}e−k(t−t1) + lδ

k
≤ F(t1)e

−k(t−t1) + lδ

k
. (35)

Since we can choose t0(> t1) such that

F(t1)e
−k(t0−t1) <

ε

2
,

the inequality (35) means F(t) < ε for all t > t0. �
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