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Abstract. We study concentration phenomena of the least energy solutions of the following nonlinear
Schrödinger equation:

h2�u− V (x)u+ f (u) = 0 in R
N, u > 0, u ∈ H 1(RN) ,

for a totally degenerate potential V . Here h > 0 is a small parameter, and f is an appropriate, superlinear and
Sobolev subcritical nonlinearity.

In [16], Lu and Wei proved that when the parameter h approaches zero, the least energy solutions concentrate at

the most centered point of the totally degenerate set � = {x ∈ R
N | V (x) = miny∈RN V (y)} when f (u) = up .

In this paper, we show that this kind of result holds for more general f . In particular, our proof does not
need a so-called uniqueness-nondegeneracy assumption (see, the next-to-last paragraph in Section 1) on the limiting
equation (2.6) in Section 2. Furthermore, in [16] Lu and Wei made a technical assumption for V , that is,

V (x)− min
y∈RN

V (y) ≥ Cd(x, ∂�)2 for x ∈ �c ,

where C is a positive constant, but our proof does not need this assumption.
In our proof, we employ a modification of the argument which has been developed by del Pino and Felmer in [9]

using Schwarz’s symmetrization.

1. Introduction

We consider the following nonlinear Schrödinger equation with a potential V :{
−h2�u+ V (x)u = f (u) in R

N ,

u > 0, u ∈ H 1(RN) ,
(1.1)

where h > 0, � is the Laplace operator, N ≥ 1, u is real-valued, f is a nonlinear term, and
V satisfies the following conditions:

(V0) V ∈ C1(RN ;R).
(V1) V (x) → +∞ as |x| → +∞.
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(V2) infx∈RN V (x) = 1.

The simplest model for the nonlinearity f is given by f (t) = tp with 1 < p < +∞ if
N = 1, 2, and 1 < p < (N + 2)/(N − 2) if N ≥ 3.

The study of concentrating solutions for (1.1) began with the result of Floer and Wein-
stein. In [11], Floer and Weinstein proved that there exists a single-peaked solution of (1.1)

concentrating at each given nondegenerate critical point of the potential V when f (t) = t3,
N = 1, and V is bounded. In [19], Oh generalized this result to N ≥ 2 and f (t) = tp. More-
over, in [20], Oh proved that there exists a multi-peaked solution of (1.1) concentrating at a
given finite collection of nondegenerate critical points of V for N ≥ 2, f (t) = tp and V is in
the class (V )a in the sense of Kato for some a. Later, the existence of a concentrating solution
of (1.1) has long been studied extensively. For example, in [1], Ambrosetti, Badiale and Cin-
golani proved that there exists a solution of (1.1) concentrating at local minima or maxima of
V with nondegeneratem-th derivative for some integer m, for f (t) = tp . In [7, 8], del Pino
and Felmer constructed the solutions of (1.1) concentrating at the degenerate critical point
of V for more general f . In [10], del Pino, Felmer and Wei constructed a solution of (1.1)
concentrating on curves for f (t) = tp. Also, in [5], Byeon and Jeanjean studied the optimal
condition of f for the existence of solutions of (1.1). Recently, in [6], Cingolani, Jeanjean
and Tanaka studied the multiplicity of solutions concentrating at local minimum points.

On the other hand, the study of a “least energy solution” of (1.1) has been studied in
several papers, where the energy functional associated to (1.1) is defined by

Ih[u] := 1

2

∫
RN

h2|∇u(x)|2 + V (x)u(x)2 dx −
∫
RN

F (u(x)) dx, u ∈ H , (1.2)

where H := {u ∈ H 1(RN) | ∫
RN
V (x)u(x)2 dx < +∞}. Moreover, the least energy

associated to (1.1) is defined by

eh := inf
u∈H\{0}

sup
t>0

Ih[tu] . (1.3)

In [21], Rabinowitz proved that there exists a positive least energy solution of (1.1) for any
h > 0 if lim sup|x|→+∞ V (x) = supx∈RN V (x) or lim inf|x|→+∞ V (x) > infx∈RN V (x).
In [22], Wang showed that when f (t) = tp, for small h > 0, a least energy solution has
only one global maximum point xh and limh→0 V (xh) = infx∈RN V (x). In [13], Grossi
and Pistoia obtained that for f (t) = tp if V attains its global minimum at k different
points x1, . . . , xk , which are nondegenerate critical points of V , then limh→0�V (xh) =
min{�V (x1), . . . ,�V (xk)}. In [16], Lu and Wei proved that for � = {x ∈ R

N | V (x) =
infy∈RN V (y)}, limh→0 d(xh, ∂�) = maxx∈� d(x, ∂�). In particular, since one of the results
of Lu and Wei is closely related to our result, we state their result precisely. Here, for a set

A ⊂ R
N , d(x,A) denotes the distance from x to A, A◦ denotes the interior of A, and Ac

denotes the complement of A.
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THEOREM 1.1 ([16, Theorem 2.2]). Assume that �◦ is connected, f (t) = tp with
1 < p < +∞ if N = 2 and 1 < p < (N + 2)/(N − 2) if N ≥ 3, and

V (x)− inf
y∈RN

V (y) ≥ cd(x,�)2 for x ∈ �c . (1.4)

Let uh be a positive least energy solution of (1.1). For h sufficiently small, let xh be a unique
global maximum point of uh. Then, for h sufficiently small, we have xh ∈ �◦ and

d(xh, ∂�) → max
x∈� d(x, ∂�) as h → 0 . (1.5)

In this paper, we study the precise asymptotic location of the concentration point of the least
energy solutions for more general nonlinearities f (u). More precisely, the function f satisfies
the following conditions:

(f0) f ∈ C1(R;R).
(f1) f (t) ≡ 0 for t ≤ 0 and f (t) = o(t) as t → 0.

(f2) f
′
(t) = O(tp−1) as t → +∞ for some 1 < p < (N + 2)/(N − 2) if N ≥ 3 and

1 < p < +∞ if N = 1, 2.
(f3) There exists a constant θ > 2 such that θF (t) ≤ tf (t) for t ≥ 0, where

F(t) =
∫ t

0
f (s) ds .

(f4) f (t) < f
′
(t)t for t > 0.

REMARK 1.1. (f0)–(f4) yield the following basic properties:

(1) f (t) > 0 for t > 0.
(2) f (t) = O(tp) as t → +∞. Actually, by (f2), there exists M ≥ 1 such that

|f ′
(s)| ≤ Csp−1 for s ≥ M .

Hence we obtain that for t ≥ M ,

f (t) =
∫ t

0
f

′
(s) ds =

∫ M

0
f

′
(s) ds +

∫ t

M

f
′
(s) ds

≤ C +
∫ t

M

Csp−1 ds

≤ C(1 + tp) ≤ Ctp ,

where C is a positive constant. Hence, we obtain that f (t) = O(tp) as t → +∞.
(3) f (t)/t is strictly increasing for t > 0.

Finally, the problem (1.1) with a totally degenerate potential is closely related to the
Dirichlet problem considered by Ni and Wei in [18] as Lu and Wei pointed out in [16]. Al-
though Ni and Wei in [18] made a so-called uniqueness-nondegeneracy assumption on (2.6)



568 SHUN KODAMA

below in Sect.2, del Pino and Felmer in [9] developed a new method without using the as-
sumption, where we say that (2.6) satisfies the uniqueness-nondegeneracy condition if the
problem (2.6) has a unique solution and its linearized problem around the solution w to (2.6):

�ϕ(x)− ϕ(x)+ f
′
(w(x))ϕ(x) = 0, x ∈ R

N, ϕ ∈ H 1(RN) , (1.6)

does not have nontrivial solutions other than linear combinations of the functions ∂w/∂xi ,
i = 1, . . . , N .

In what follows, B(x; r) denotes the open ball of radius r > 0 centered at x in R
N and

the following abbreviations, Br(x) = B(x; r) and Br = Br(0) are used. We note that Br(x)
denotes the empty set ∅ if r = 0.

2. The main result

Instead of studying the problem (1.1), we study the following problem which is obtained
by putting v(y) := u(hy) on (1.1):{

−�v + V (hy)v = f (v) in R
N ,

v > 0, v ∈ H 1(RN) .
(2.1)

To study (2.1), we define Eh(V ) by

Eh(V ) :=
{
v ∈ H 1(RN) |

∫
RN

V (hy)v(y)2 dy < +∞
}
, (2.2)

define the norm ‖ · ‖Eh(V ) on Eh(V ) by

‖v‖Eh(V ) :=
(∫

RN

|∇v(y)|2 + V (hy)v(y)2 dy

) 1
2

for v ∈ Eh(V ) , (2.3)

and define the energy functional Jh[·;V ] associated to (2.1) by

Jh[v;V ] := 1

2

∫
RN

|∇v(y)|2 + V (hy)v(y)2 dy −
∫
RN

F (v(y)) dy, v ∈ Eh(V ) . (2.4)

Moreover, we define the least energy ch(V ) associated to (2.1) by

ch(V ) := inf
v∈Eh(V )\{0} sup

t>0
Jh[tv;V ] . (2.5)

Note that eh = hNch(V ) holds.
First, we prepare basic facts for solutions to the limiting problem:{

−�w +w = f (w) in R
N ,

w > 0, maxx∈RN w(x) = w(0), w ∈ H 1(RN) .
(2.6)
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We define the energy functional I [·] associated to (2.6) by

I [w] := 1

2

∫
RN

|∇w|2 + w2 dx −
∫
RN

F (w) dx, w ∈ H 1(RN) , (2.7)

and define the least energy c∗ associated to (2.6) by

c∗ := inf
w∈H 1(RN)\{0}

sup
t>0

I [tw] . (2.8)

REMARK 2.1. Under the assumption (f0)–(f4), it is known that there exists a least

energy solution w ∈ H 1(RN) of (2.6) such that w > 0, w ∈ C2(RN) and w∗ = w, where w∗
denotes the standard radially decreasing rearrangement of w. Moreover, it is also known that
w(r) ≤ C exp(−r), where C is a positive constant which independent of r . For the proof,
see, e.g. [3, 4, 12].

Next, we state the existence and the basic properties of the least energy solutions to (1.1).

PROPOSITION 2.1. We assume (f0)–(f4) and (V0)–(V2) hold. Then, for all h > 0,
there exists a least energy solution uh ∈ Eh(V )∩C2(RN) of (1.1) such that uh > 0. Moreover,
the following statements hold:

(i) For h sufficiently small, uh has a unique local maximum point xh ∈ R
N . Moreover,

{xh}h>0 is bounded in R
N .

(ii) Passing to a subsequence, we may assume that xhj → x0 as j → +∞. Then, V (x0) =
infx∈RN V (x) = 1.

(iii) For all M > 0, there exists a(j,M) ∈ R such that for j sufficiently large,

uhj (x) ≤ exp

[
−|x − xhj | + a(j,M)

hj

]
, |x| ≤ M , (2.9)

where a(j,M)→ 0 as j → +∞.

(iv) There exists a least energy solution w ∈ H 1(RN) of (2.6) such that

vhj → w in H 1(RN) as j → +∞ , (2.10)

where vhj (y) := uhj (hjy + xhj ).

When f (u) = up, this result has been proved by Wang ([22]). Since we cannot find the
exact reference for the general case f (u), we shall give a proof in Appendix for the sake
of completeness to the proof of Proposition 2.1. For the precise asymptotic location of the
maximum point xh and the precise asymptotic expansion of the least energy ch(V ), we show
the following theorem, which is the main result of this paper.
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THEOREM 2.1. We assume (f0)–(f4), (V0)–(V2) and �◦ �= ∅ hold, where � = {x ∈
R
N | V (x) = infy∈RN V (y)}. Let uh be a least energy solution of (1.1) and xh a point where

uh reaches its maximum value. Then,

(i) For h sufficiently small, xh ∈ �◦.
(ii) d(xh, ∂�) → maxx∈� d(x, ∂�) as h → 0.

(iii) Passing to a subsequence, we have

ehj = hNj chj (V ) = hNj

[
c∗ + exp

(
− 2

hj
[d(xhj , ∂�)+ o(1)]

)]
as j → +∞ ,

where we recall the symbols ehj , chj (V ) and c∗ denote the least energies which are
defined by (2.6), (1.3) and (2.9) respectively.

This result is closely related to Theorem 1.1. In Theorem 1.1, they proved the same concen-
tration phenomena for the case f (u) = up. They also imposed a additional assumption on
the connectivity of �◦ and the condition (1.4) for V (x). Our proof of Theorem 2.1 is based
on a modification of the idea in [9] employing the rearrangement technique. Especially, we
do not need to assume the uniqueness-nondegeneracy condition for (2.6).

This paper is organized as follows. In section 3, we give the proof of the precise as-
ymptotic expansion of the least energy in the case the potential V (x) is radially symmetric,
increasing and the totally degenerate set � is the unit ball. In particular, Lemma 3.2 plays a
very important role in the proof of the lower bound. In section 4, we give the proof of our
main result. In Appendix, we recall the definition and basic properties of the increasing and
decreasing rearrangement, and we give the proof of Propositions 2.1 and 3.2.

3. In the case V = V∗

In this section, we prove the asymptotic expansion of ch(V ) in the case that V = V∗ and
the totally degenerate set � is the unit ball. More precisely, we assume the following:

(Va) � = {x ∈ R
N | infy∈RN V (y) = V (x)} = B̄(0; 1).

(Vb) V is a Borel measurable function such that V∗ = V .

THEOREM 3.1. Assume that (f0)–(f4), (V0)–(V2) and (Va)–(Vb) hold. Then, passing
to a subsequence, we have

chj (V ) = c∗ + exp

(
− 2

hj
(1 + o(1))

)
as j → ∞ . (3.1)

3.1. Upper bound. We can prove the upper bound essentially in the same way as in
the proof of the upper bound in [9, Lemma 2.1].

First, we shall show the following important Lemma (cf. [9, Lemma 2.3]).
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LEMMA 3.1. Let zρ be a solution of the equation{
−z′′

ρ(r)− N−1
r
z

′
ρ(r)+ zρ(r) = 0 , ρ − 1 ≤ r ≤ ρ ,

zρ(ρ − 1) = 1, zρ(ρ) = 0 .

Then, it holds that

lim sup
ρ→+∞

{−z′
ρ(ρ − 1)} ≤ 1 + e−2

1 − e−2 .

PROOF. Let z̃ρ be a solution of the equation{
−z̃ρ ′′

(r)− N−1
ρ−1 z̃ρ

′
(r)+ z̃ρ(r) = 0 , 0 ≤ r ≤ 1 ,

z̃ρ(0) = 1, z̃ρ(1) = 0 .

We define uρ as uρ(r) := z̃ρ(r − ρ + 1). Note that u
′
ρ(r) < 0 holds. Then, we have

−�(uρ − zρ)(x)+ (uρ(x)− zρ(x))

= −uρ ′′(|x|)− N − 1

|x| u
′
ρ(|x|)+ uρ(|x|)

≤ −uρ ′′(|x|)− N − 1

ρ − 1
u

′
ρ(|x|)+ uρ(|x|) = 0 for x ∈ Bρ \ B̄ρ−1 .

By the weak maximum principle, we see that uρ(r) ≤ zρ(r). We then also have z̃ρ
′
(0) =

u
′
ρ(ρ−1) ≤ z

′
ρ(ρ−1). We study the behavior of z̃ρ

′
(0). Let λ1(ρ) < 0 < λ2(ρ) be solutions

of the equation

λ2 + N − 1

ρ − 1
λ− 1 = 0 ,

then we see z̃ρ(r) = α(ρ)eλ1(ρ)r + β(ρ)eλ2(ρ)r , where α(ρ) and β(ρ) satisfy{
1 = α(ρ)+ β(ρ) ,

0 = α(ρ)eλ1(ρ) + β(ρ)eλ2(ρ) .

By the elementary calculation, we have

α(ρ) = 1

1 − exp[λ1(ρ)− λ2(ρ)] .

z̃ρ
′
(0) = α(ρ)λ1(ρ)+ β(ρ)λ2(ρ)

= α(ρ)
[
λ1(ρ)− λ2(ρ)e

λ1(ρ)−λ2(ρ)
]

→ −1 − e−2

1 − e−2
as ρ → ∞ .



572 SHUN KODAMA

Hence, we see that

lim inf
ρ→∞ z

′
ρ(ρ − 1) ≥ −1 + e−2

1 − e−2
.

�

Now, we can prove the upper bound of ch(V ).

PROPOSITION 3.1. Assume that (f0)–(f4), (V0)–(V2) and (Va) hold. Then

ch(V ) ≤ c∗ + exp
(
− 2

h
[1 + o(1)]

)
as h → 0 .

REMARK 3.1. Assume (f0)–(f4), (V0)–(V2) and � = B(0; r) for some r > 0. Put

Ṽ (x) := V (rx). Then, note that Ṽ satisfies (V0)–(V2) and (Va). By Proposition 3.1, we
obtain that

ch(V ) = ch/r (Ṽ ) ≤ c∗ + exp
(
− 2

h
[r + o(1)]

)
as h → 0 .

PROOF OF PROPOSITION 3.1. We put ρh := 1/h. Let w ∈ H 1(RN) ∩ C2(RN) be a
least energy solution of the problem{

−�w +w = f (w) in R
N ,

w∗ = w, w > 0 .
(3.2)

Let wh ∈ H 1(Bρh \ B̄ρh−1) be a unique radially symmetric solution of the equation{
−�wh +wh = 0 in Bρh \ B̄ρh−1 ,

wh(ρh − 1) = w(ρh − 1), wh(ρh) = 0 .

Note that wh(r) = w(ρh − 1)zρh(r) using the notation of Lemma 3.1. We define wh as

wh(r) :=
{
w(r) 0 ≤ r ≤ ρh − 1 ,

wh(r) ρh − 1 ≤ r ≤ ρh .

Then, we see that wh ∈ Eh \ {0} by the zero extension, and hence

ch(V ) ≤ sup
t>0

Jh[twh;V ] = Jh[thwh;V ] ,

where, th is a unique positive constant such that the last equality holds. Remark that the
uniqueness of th follows from (f4).

CLAIM 1. For h sufficiently small, th ≤ 2.

Assume that there exists a subsequence {hk}∞k=1 ⊂ {h} such that

thk > 2, hk → 0 as k → ∞ .
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Using the definition of thk and V (hky) = 1 on |y| ≤ 1/hk by the assumption (Va), we obtain
that ∫

Bρhk
−1

|∇w|2 +w2 dy +
∫
Bρhk

\Bρhk−1

|∇whk |2 + whk
2 dy

=
∫
RN

|∇wkj |2 + V (hjk y)wkj
2 dy

= 1

thk

∫
RN

f (thkwhk )whk dy

>
1

2

∫
RN

f (2whk)whk dy

≥ 1

2

∫
Bρhk

−1

f (2w)w dy.

By integration by parts, we may estimate∫
Bρhk

\Bρhk−1

|∇whk |2 + whk
2 dy

=
∫
∂Bρhk

−1

∇whk (y) ·
−y
|y|whk (y) dS

= −w′
hk
(ρhk − 1)w(ρhk − 1)|∂B1|(ρhk − 1)N−1

≤ Cw(ρhk − 1)2(ρhk − 1)N−1

≤ C exp[−2ρhk (1 + o(1))] , (3.3)

where the first inequality follows from Lemma 3.1 and the second inequality follows from
w(r) ≤ C exp(−r). Hence, we have∫

Bρhk
−1

|∇w|2 +w2 dy + C exp[−2ρhk(1 + o(1))] ≥ 1

2

∫
Bρhk

−1

f (2w)w dy .

As k → ∞, we see that∫
RN

|∇w|2 + w2 dy ≥ 1

2

∫
RN

f (2w)w dy >
∫
RN

f (w)w dy .

This is impossible because w is a solution of (3.2).
Now, we have

ch(V ) ≤ Jh[thwh;V ] ≤ t2h

2

∫
Bρh−1

|∇w|2 + w2 dy −
∫
Bρh−1

F(thw) dy

+ t2h

2

∫
Bρh\B̄ρh−1

|∇wh|2 +w2
h dy
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= t2h

2

∫
Bρh−1

|∇w|2 +w2

[
1 − 2F(thw)

t2hw
2

]
dy

+ t2h

2

∫
Bρh\B̄ρh−1

|∇wh|2 +w2
h dy

≤ I [thw] + t2h

2

∫
Bρh\B̄ρh−1

|∇wh|2 +w2
h dy

≤ sup
t>0

I [tw] + t2h

2

∫
Bρh\B̄ρh−1

|∇wh|2 + w2
h dy , (3.4)

where the second inequality holds by the following inequality which follows by (f1), Claim 1,
and w(r) ≤ C exp(−r):

1 − 2F(thw(r))

t2hw(r)
2

≥ 0 for ρh − 1 ≤ r < +∞ .

Since w is a least energy solution of (3.2), we see that

sup
t>0

I [tw] = I [w] = c∗ . (3.5)

Also, by Claim 1 and (3.3), we obtain that

t2h

2

∫
Bρh\B̄ρh−1

|∇wh|2 +w2
h dy ≤ C exp[−2ρh(1 + o(1))] . (3.6)

(3.4), (3.5) and (3.6) yield that

ch(V ) ≤ c∗ + exp[−2ρh(1 + o(1))] .
�

3.2. Lower Bound. Next we shall prove the lower bound of ch(V ). We need to
modify the method of the proof of lower bound in [9, Lemma 2.1]. We will prepare some
results for the proof of lower bound of ch(V ).

First, we note the following result which gives the information of least energy solutions
under the assumption (Va) and (Vb).

PROPOSITION 3.2. Assume that (f0)–(f4), (V1), (V2), (Va), (Vb) hold. Then, the fol-
lowing statements hold:

(i) There exists a least energy solution vh ∈ Eh(V ) ∩ C1(RN) of (2.1) such that vh > 0
and v∗

h = vh.
(ii) For all δ > 0, there exist a subsequence {hj }∞j=1 ⊂ {h} and a constant C(δ) > 0 such

that

vhj (y) ≤ C(δ) exp(−(1 − δ)|y|) for y ∈ R
N .
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(iii) Passing to a subsequence, we have a least energy solution w ∈ H 1(RN) of (2.6) such

that vhj → w in H 1(RN) ∩ C1
loc(R

N).

(iv) For all β > 0, there exists C > 0 such that

|v′
hj
(y)| ≤ C for |y| ≤ β/hj .

We can show Proposition 3.2 by the well-known argument, but it is very long. So, it will be
included in the Appendix. The next Lemma plays a very important role in the proof of the
lower bound of ch.

LEMMA 3.2. Assume (f0)–(f4), (V1), (V2), (Va) and (Vb). Let vh be a least energy
solution of (2.1) such that v∗

h = vh. Then for all ε > 0, there exists a subsequence {hk}∞k=1 ⊂
{h} such that

vhk ((1 + ε)ρk) ≥ exp
(−ρk(√V (1 + 2ε)(1 + ε)+ o(1)

)
as k → ∞ .

PROOF. Take any R > 0. Put Aε := V (1 + 2ε). Let z(r) be a solution of the equation{
z′′(r)+ N−1

R
z′(r)− Aεz(r) = 0 R ≤ r ≤ (1 + 2ε)ρk ,

z(R) = vhk (R), z((1 + 2ε)ρk) = 0 .
(3.7)

Let z̃(r) be a solution of the equation{
z̃′′(r)+ N−1

R
z̃′(r)− Aεz̃(r) = 0 0 ≤ r ≤ (1 + 2ε)ρk − R ,

z̃(0) = 1, z̃((1 + 2ε)ρk − R) = 0 .
(3.8)

Note that z(r) = z̃(r − R)vhk (R). Remarking z′(r) < 0, we may estimate

−�(z− vhk )(|y|)+ Aε(z − vhk )(|y|)

= (V (hky)− Aε)vhk (|y|)− z′′(|y|)− N − 1

r
z′(|y|)+ Aεz(|y|)

≤ −z′′(|y|)− N − 1

R
z′(|y|)+ Aεz(|y|) = 0 for |y| ∈ (R, (1 + 2ε)ρk) .

By the weak maximum principle, we have z(r) ≤ vhk (r) (R ≤ r ≤ (1+2ε)ρk). In particular,
z((1 + ε)ρk) ≤ vhk ((1 + ε)ρk).

Step 1. We show the estimate of z̃((1 + ε)ρk − R).

Let λ1(R) < 0 < λ2(R) be a solution of the equation

λ2 + N − 1

R
λ− Aε = 0 . (3.9)

Then, we see that λ1(R) → −√
Aε, λ2 → √

Aε as R → ∞. Moreover, it follows that,

z̃(r) = α(k) exp(λ1(R)r)+ β(k) exp(λ2(R)r) , (3.10)
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where α(k) and β(k) satisfy{
1 = α(k)+ β(k) ,

0 = α(k) exp[λ1(R){(1 + 2ε)ρk − R}] + β(k) exp[λ2(R){(1 + 2ε)ρk − R}] .
Hence, we have

z̃((1 + ε)ρk − R) = eλ1(R){(1+ε)ρk−R} [
α(k)+ β(k)e(λ2(R)−λ1(R)){(1+ε)ρk−R}] . (3.11)

We will prove that α(k) → 1 as k → ∞ and β(k)e(λ2−λ1){(1+ε)ρk−R} → 0 as k → ∞. By
the elementary calculation, we have

β(k)e(λ2(R)−λ1(R)){(1+ε)ρk−R} = 1

e(λ1(R)−λ2(R)){(1+ε)ρk−R} − e(λ2(R)−λ1(R))ερk
.

Hence we see that β(k)e(λ2−λ1){(1+ε)ρk−R} → 0 as k → ∞. Furthermore, by β(k) → 0 as
k → ∞, we have α(k) → 1 as k → ∞. By (3.11), it follows that

z̃((1 + ε)ρk − R) ≥ 1

2
e
−ρk

{
−λ1(R)(1+ε)− R

ρk

}
.

Passing to a subsequence, we have

z̃((1 + ε)ρkj − R) ≥ e
−ρkj {

√
Aε(1+ε)+o(1)} as j → ∞ . (3.12)

Step 2. We prove the estimate of vhk (R).

By vhk (R) → w(R) as k → ∞, it follows that vhk (R) ≥ 1
2w(R) > 0 as k → ∞. This

inequality and (3.11) yield

vhk ((1 + ε)ρk) ≥ exp
(
−ρk(

√
V (1 + 2ε)(1 + ε)+ o(1)

)
as k → ∞ .

�

The next Lemma also plays an important role (cf. [9, Lemma 2.3]).

LEMMA 3.3. We assume uρ ∈ H 1(RN \ Bρ) is a solution of equation{
−u′′

ρ(r)− N−1
r
u

′
ρ(r)+ aρuρ(r) = 0 , ρ ≤ r < +∞ ,

uρ(ρ) = 1, uρ(+∞) = 0 ,
(3.13)

where aρ ∈ R and limρ→+∞ aρ =: α > 0. Then, the following statements follow:
(i)

lim
ρ→+∞ u

′
ρ(ρ) = −√

α .
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(ii)

uρ(r) ≤ Cρe
−

√
α

2 r for r ≥ ρ ,

where Cρ is a positive constant which depends on ρ.

(iii)

|u′
ρ(r)| ≤ Cρ for r ≥ 2ρ ,

where Cρ is a positive constant which depends on ρ.

PROOF. Let uρ and ũρ be solutions of the equations{
−uρ ′′

(r)− N−1
ρ
uρ

′
(r)+ aρuρ(r) = 0 , ρ ≤ r < +∞ ,

uρ(ρ) = 1 , uρ(+∞) = 0 ,{
−ũρ ′′

(r)+ aρũρ(r) = 0 , ρ ≤ r < +∞ ,

ũρ(ρ) = 1, ũρ(+∞) = 0 .

Then, by the elementary calculation, we have

lim
ρ→+∞ uρ

′
(ρ) = −√

α, lim
ρ→+∞ ũρ

′
(ρ) = −√

α . (3.14)

On the other hand, by the weak maximum principle, we see that uρ is a subsolution of (3.13),

and ũρ is a supersolution. Then, we have ũρ
′
(ρ) ≥ u

′
ρ(ρ) ≥ uρ

′
(ρ). By (3.14), we obtain

lim
ρ→+∞ u

′
ρ(ρ) = −√

α .

Also, by the elementary calculation, we see that

ũρ(r) = e−
√
aρ(r−ρ) .

By uρ(r) ≤ ũρ(r) and limρ→+∞ aρ = α, (ii) follows. Finally, we will prove (iii). By
Lemma B.3, for any |z| ≥ 2ρ, we have

sup
B3/4(z)

|∇uρ |2 ≤ C(‖uρ‖2
LN+1(B1(z))

+ ‖∇uρ‖2
L2(B1(z))

) .

By B1(z) ⊂ R
N \ Bρ , (ii) and uρ ∈ H 1(RN \ Bρ), (iii) follows. �

Now, we can prove the lower bound of ch(V ).

PROPOSITION 3.3. Assume that (f0)–(f4), (V1), (V2), (Va) and (Vb). Then passing to
a subsequence, we have

chk (V ) ≥ c∗ + exp
(
− 2

hk
[1 + o(1)]

)
as k → ∞ .
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REMARK 3.2. If we assume (f0)–(f4), (V1), (V2), (Vb) and � = B(0; r) for some
r > 0, then we have

chk (V ) ≥ c∗ + exp
(
− 2

hk
[r + o(1)]

)
as k → ∞ ,

by the similar argument to Remark 3.1.

PROOF OF PROPOSITION 3.3. Take any ε > 0. Let vhk ∈ Ehk(V )∩C1(RN) be a least
energy solution of (2.1) such that v∗

h = vh.

chk (V ) ≥ Jhk [tvhk ;V ] .
Let wk ∈ H 1(RN \ B(1+ε)ρk ) be a solution of the equation{

−�wk + wk = 0 in R
N \ B̄(1+ε)ρk ,

wk((1 + ε)ρk) = vhk ((1 + ε)ρk), wk(x) → 0 as |x| → ∞ .

Put

vk(x) :=
{
vhk (x) for |x| ≤ (1 + ε)ρk ,

wk(x) for |x| ≥ (1 + ε)ρk .

We decompose Jhk [tvhk ;V ] into the following two parts.

Jhk [tvhk ;V ] =
{
t2

2

∫
B(1+ε)ρk

|∇vhk |2 + V (hky)v
2
hk
dy −

∫
B(1+ε)ρk

F (tvhk ) dy

}

+
{
t2

2

∫
RN\B(1+ε)ρk

|∇vhk |2 + V (hky)v
2
hk
dy −

∫
RN\B(1+ε)ρk

F (tvhk ) dy

}
=: I1(t, k, ε)+ I2(t, k, ε) .

First, we shall estimate I1(t, k, ε). By minx∈RN V (x) = 1, we obtain that

I1(t, k, ε) = t2

2

∫
B(1+ε)ρk

|∇vhk |2 + v2
hk
dy −

∫
B(1+ε)ρk

F (tvhk ) dy

+ t2

2

∫
B(1+ε)ρk

(V (hky)− 1)v2
hk
dy

≥ t2

2

∫
B(1+ε)ρk

|∇vhk |2 + v2
hk
dy −

∫
B(1+ε)ρk

F (tvhk ) dy

= I [tvhk ] −
{
t2

2

∫
RN\B(1+ε)ρk

|∇wk|2 + w2
k dy −

∫
RN\B(1+ε)ρk

F (twk) dy

}
=: I [tvhk ] −K(t, k, ε) .
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By integration by parts, we have

−K(t, k, ε) ≥ − t
2

2

∫
RN \B(1+ε)ρk

|∇wk|2 +w2
k dy

= − t
2

2
lim

R→+∞

∫
BR\B(1+ε)ρk

|∇wk|2 +w2
k dy

= t2

2
lim

R→+∞

[
−

∫
∂BR

∇wk(y) · y|y|wk(y) dS

+
∫
∂B(1+ε)ρk

∇wk(y) · y|y|wk(y) dS
]

≥ t2

2

∫
∂B(1+ε)ρk

∇wk(y) · y|y|wk(y) dS

= t2

2
|∂B1|ρN−1

k (1 + ε)N−1vhk ((1 + ε)ρk)w
′
k((1 + ε)ρk) ,

where the second inequality follows from Lemma 3.3 (ii) and (iii). Hence, we have

I1(t, k, ε) ≥ I [tvhk ] + t2

2
|∂B1|ρN−1

k (1 + ε)N−1vhk ((1 + ε)ρk)w
′
k((1 + ε)ρk) . (3.15)

Next, we shall estimate I2.

I2(t, k, ε)

= t2

2

∫
RN\B(1+ε)ρk

|∇vhk |2 + V (hky)v
2
hk
dy −

∫
RN\B(1+ε)ρk

F (tvhk ) dy

= t2

2

∫
RN\B(1+ε)ρk

|∇vhk |2 + V (hky)v
2
hk

[
1 − 2F(tvhk )

t2v2
hk

]
dy

≥ t2

2

∫
RN\B(1+ε)ρk

|∇vhk |2 + V (hky)v
2
hk

[
1 − f ((t + 1)vhk )

(t + 1)vhk

]
dy

≥ t2

2
min|y|≥(1+ε)ρk

[
1 − f ((t + 1)vhk )

(t + 1)vhk

] ∫
RN\B(1+ε)ρk

|∇vhk |2 + V (hky)v
2
hk
dy

≥ t2

2
min|y|≥(1+ε)ρk

[
1 − f ((t + 1)vhk )

(t + 1)vhk

] ∫
B3ρk \B(1+ε)ρk

|∇vhk |2 + V (hky)v
2
hk
dy .

By integration by parts, we may estimate∫
B3ρk \B(1+ε)ρk

|∇vhk |2 + V (hky)v
2
hk
dy
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=
∫
B3ρk \B(1+ε)ρk

f (vhk )vhk dy −
∫
∂B(1+ε)ρk

∇vhk (y) ·
y

|y|vhk (y) dS

+
∫
∂B3ρk

∇vhk (y) ·
y

|y|vhk (y) dS

≥ −
∫
∂B(1+ε)ρk

∇vhk (y) ·
y

|y|vhk (y) dS +
∫
∂B3ρk

∇vhk (y) ·
y

|y|vhk (y) dS

= |∂B1|ρN−1
k

×
[
(1 + ε)N−1vhk ((1 + ε)ρk)(−v′

hk
((1 + ε)ρk))+ 3N−1vhk (3ρk)v

′
hk
(3ρk)

]
≥ |∂B1|ρN−1

k (1 + ε)N−1vhk ((1 + ε)ρk)(−v′
hk
((1 + ε)ρk))− exp

(
−5

2
ρk

)
,

where the last inequality yields by Proposition 3.2 (ii), (iv). Putting

e(t, k, ε) := min|y|≥(1+ε)ρk

[
1 − f ((t + 1)vhk )

(t + 1)vhk

]
,

then we have

I2(t, k, ε) (3.16)

≥ t2

2
e(t, k, ε)

[
|∂B1|ρN−1

k (1 + ε)N−1vhk ((1 + ε)ρk)(−v′
hk
((1 + ε)ρk))

− exp
(
−5

2
ρk

)]
.

Take tk > 0 which satisfies supt>0 I [tvk] = I [tkvk]. Then

I [tkvhk ] ≥ inf
w∈H 1(RN)

w �≡0

sup
t>0

I [tw] =: c∗ .

Hence, by (3.15) and (3.16), we have

chk (V ) ≥c∗ − t2k

2
exp

(
−5

2
ρk

)
+ t2k

2
|∂B1|(1 + ε)N−1ρN−1

k vhk ((1 + ε)ρk)

× [−e(tk, k, ε)v′
hk
((1 + ε)ρk)+w

′
k((1 + ε)ρk)

]
. (3.17)

CLAIM 1. tk → 1 as k → ∞.

First, we will prove v̄k → w in H 1(RN).

‖wk‖2
H 1(RN\B(1+ε)ρk )
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= lim
R→+∞ ‖wk‖2

H 1(BR\B(1+ε)ρk )

= lim
R→+∞

[∫
∂BR

∇wk(y) · y|y|wk(y)dS −
∫
∂B(1+ε)ρk

∇wk(y) · y|y|wk(y)dS
]

≤ −|∂B1|(1 + ε)N−1ρN−1
k w

′
k((1 + ε)ρk)vhk ((1 + ε)ρk) ,

where the inequality follows by Lemma 3.3 (ii) and (iii). By Lemma 3.3 (i), we have

−w′
k((1 + ε)ρk)/vhk ((1 + ε)ρk) ≤ 3/2 ,

and by Proposition 3.2, it holds that

vhk ((1 + ε)ρk) ≤ C exp(−αρk) ,
for some positive constants C and α which are independent of k. Hence, we have

−ρN−1
k w

′
k((1 + ε)ρk)vhk ((1 + ε)ρk) ≤ CρN−1

k exp(−αρk) → 0 ,

as k → ∞. Therefore, we obtain that

‖wk‖2
H 1(RN\B(1+ε)ρk )

→ 0 as k → ∞ . (3.18)

By {vhk } is bounded in H 1(RN), we see that {vk} is bounded in H 1(RN). Hence,

vk ⇀ w̃ in H 1(RN) .

For any φ ∈ C∞
c (R

N),∫
RN

wφ dy = lim
k→∞

∫
RN

vhkφ dy = lim
k→∞

∫
RN

vkφ dy =
∫
RN

w̃φ dy .

Hence, w = w̃. ∣∣‖vk‖2
H 1(RN)

− ‖w‖2
H 1(RN)

∣∣
≤ ∣∣‖vhk‖2

H 1(B(1+ε)ρk )
− ‖w‖2

H 1(B(1+ε)ρk )
∣∣

+ ∣∣‖wk‖2
H 1(RN\B(1+ε)ρk )

− ‖w‖2
H 1(RN\B(1+ε)ρk )

∣∣
→ 0 as k → ∞ ,

where the last limit is observed by vhk → w in H 1(RN), ‖wk‖H 1(RN\B(1+ε)ρk )
→ 0 and

‖w‖H 1(RN\B(1+ε)ρk )
→ 0. Hence ‖vk‖H 1(RN) → ‖w‖H 1(RN), so we have vk → w inH 1(RN).

We will prove Claim 1. Assume that there exists a subsequence {kj } ⊂ {k} and a constant
δ0 > 0 such that

tkj ≤ 1 − δ0 (3.19)
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or

tkj ≥ 1 + δ0 . (3.20)

If (3.19) holds, ∫
RN

|∇vk|2 + vk
2dy = 1

tk

∫
RN

f (tkvk)vkdy

≤ 1

1 − δ0

∫
RN

f ((1 − δ0)vk)vkdy .

By using vk → w in H 1(RN), it follows that∫
RN

|∇w|2 +w2dy ≤ 1

1 − δ0

∫
RN

f ((1 − δ0)w)wdy <

∫
RN

f (w)wdy .

It is impossible since w is a least energy solution of (2.6). We can show that the case of (3.20)
is also impossible in a similar way.

By Claim 1 and vhk (y) ≤ C exp(−α|y|), we have

e(tk, k, ε) → 1 as k → ∞ . (3.21)

We will estimate the square bracket part in (3.17). Let zk ∈ H 1(RN \ B(1+ε)ρk ) be a solution
of the equation{

−�zk + e(tk, k, ε)Mεzk = 0 in R
N \ B̄(1+ε)ρk ,

zk((1 + ε)ρk) = vhk ((1 + ε)ρk), zk(x) → 0 (|x| → ∞) ,

where 1 < Mε := V (1 + ε).

CLAIM 2.
(
∂zk
∂ν

− ∂vhk
∂ν

)
≤ 0 on ∂B(1+ε)ρk .

Take any k and any R > 2ρk .

−�(vhk − zk)(y)+Mεe(tk, k, ε)(vhk − zk)(y)

= f (vhk (y))− V (hky)vhk (y)+ vhk (y)e(tk, k, ε)Mε

≤ f (vhk (y))− V (hky)vhk (y)+
[

1 − f ((tk + 1)vhk (y))

(tk + 1)vhk (y)

]
vhk (y)Mε

≤ f (vhk (y))[1 −Mε] + vhk (y)[Mε − V (hky)]
≤ 0 for y ∈ BR \ B̄(1+ε)ρk .

Hence by the weak maximum principle,

vhk (y)− zk(y) ≤ max|y|=R
or|y|=(1+ε)ρk

[
vhk (y)− zk(y)

]
+ for (1 + ε)ρk ≤ |y| ≤ 2ρk .
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As R → ∞, we have vhk ≤ zk in B̄2ρk \ B(1+ε)ρk . Hence Claim 2 follows.
By Claim 2, we have

−v′
hk
((1 + ε)ρk) ≥ −z′

k((1 + ε)ρk) . (3.22)

Lemma 3.3 yields that

lim
k→∞

−z′
k((1 + ε)ρk)

vhk ((1 + ε)ρk)
= √

Mε , (3.23)

and

lim
k→∞

w
′
k((1 + ε)ρk)

vhk ((1 + ε)ρk)
= −1 . (3.24)

Therefore, by (3.21)–(3.26), we obtain that

−e(tk, k, ε)v′
hk
((1+ε)ρk)+w′

k((1+ε)ρk) ≥
√
Mε − 1

2
vhk ((1+ε)ρk) as k → ∞ . (3.25)

Hence, we have

chk (V ) ≥ c∗ + Cvhk ((1 + ε)ρk)
2 − exp

(
−5

2
ρk

)
≥ c∗ + C exp

(
−2ρk

[√
V (1 + 2ε)(1 + ε)− logC(ε)

ρk
+ o(1)

])
− exp

(
−5

2
ρk

)
.

Since V is lower semicontinuous and nondecreasing, and V (1) = 1, passing to a subsequence,
we obtain that

chk (V ) ≥ c∗ + exp(−2ρk(1 + o(1))) k → ∞ .

�

The following result holds from Proposition 3.3. We need this result to show Theo-
rem 2.1.

COROLLARY 3.1. Assume (f0)–(f4), (V1), (V2) and (Vb). Moreover, assume

� = {
x ∈ R

N | V (x) = inf
y∈RN

V (y) = 1
} = {0} . (3.26)

Then for any ε > 0 there exists a subsequence {hk}∞k=1 ⊂ {h} such that

chk (V ) ≥ c∗ + exp
(
− 2

hk
[ε + o(1)]

)
as k → ∞ .
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PROOF. Fix any ε > 0. Put

V̄ (z) := χ
RN\B̄ε (z)V (z)+ χB̄ε (z) . (3.27)

Then, we note that V̄ is Borel measurable, and satisfies (V1), (V2). Moreover, note that

{y ∈ R
N | V̄ (y) = 1} = B̄ε , (3.28)

and V̄ (z) ≤ V (z). Then we obtain that

ch(V ) ≥ ch(V̄ ) . (3.29)

For any v ∈ Eh(V̄ ) \ {0}, we obtain that

Jh[v; V̄ ] ≥ Jh[v∗; V̄∗] , (3.30)

by Propositions A.1–A.3, where V̄∗ denotes the increasing rearrangement of V̄ . Remarking
that v∗ ∈ Eh(V̄∗) holds for any v ∈ Eh(V̄ ), we have

sup
t>0

Jh[tv; V̄ ] ≥ sup
t>0

Jh[tv∗; V̄∗] ≥ ch(V̄∗) , (3.31)

for any v ∈ Eh(V̄ ) and t > 0. Hence, we obtain that

ch(V̄ ) ≥ ch(V̄∗) . (3.32)

Note that

{y ∈ R
N | V̄∗(y) = 1} = B̄ε ,

and V̄∗ satisfies (V1), (V2). By Remark 3.2, passing to a subsequence, we obtain

chk (V̄∗) ≥ c∗ + exp
(
− 2

hk
[ε + o(1)]

)
as k → ∞ . (3.33)

(3.29), (3.32) and (3.33) yield the estimate

chk (V ) ≥ c∗ + exp
(
− 2

hk
[ε + o(1)]

)
as k → ∞ .

�

4. Proof of Theorem 2.1

First, we shall prove (iii) of Theorem 2.1.

4.1. Proof of the upper bound. Take x0 ∈ � such that dist(x0, ∂�) =
maxx∈� dist(x, ∂�), and put r := dist(x0, ∂�). Put

Ṽ (y) := V (y)+ (|y − x0|2 − r2)3χ
RN\B̄(x0,r)

(y) .
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Then, Ṽ ∈ C1(RN), infx∈RN Ṽ (x) = 1, lim|x|→∞ Ṽ (x) = +∞ and {Ṽ ≡ 1} = B̄(x0, r). By

V (y) ≤ Ṽ (y), we obtain that

Jh[tv;V ] ≤ Jh[tv; Ṽ ] for any t > 0 and v ∈ Eh(Ṽ ) \ {0} .
Hence we have ch(V ) ≤ ch(Ṽ ) by Eh(Ṽ ) ⊂ Eh(V ). By Remark 3.1, it holds that

ch(V ) ≤ c∗ + exp
(
− 2

h
[r + o(1)]

)
as h → 0 .

4.2. Proof of the lower bound. By Proposition 2.1 (ii), xhk → x0 ∈ � as k → ∞.

dk := dist(xhk , ∂�) → dist(x0, ∂�) =: d0 as k → ∞ .

Choose any δ > 0. Put δ
′ := δ/2. Let us choose a number d

′
0 ≥ 0 so that

|B(x0; d ′
0)| = |� ∩ B(x0; d0 + δ

′
)| .

Note that d0 + δ
′
> d

′
0.

Take R > 0 so that � ⊂ B(x0;R). Take η ∈ C∞(RN) such that

η ≡ 0 on B̄(x0; d0 + δ
′
) ∪ (RN \ B(x0;R)) ,

1 ≥ η > 0 on B(x0;R) \ B̄(x0; d0 + δ
′
) .

Put

Ṽ (x) := V (x)+ η(x) .

Then {x ∈ R
N | Ṽ (x) = 1} = � ∩ B̄(x0; d0 + δ

′
). For all 0 < t ≤ 2,

chk (V ) = Jhk [vhk ;V ]
≥ Jhk [tvhk ;V ]

= t2

2

∫
RN

|∇vhk |2 + Ṽ (hky)v
2
hk
dy −

∫
RN

F (tvhk ) dy − t2

2

∫
RN

η(hky)v
2
hk
dy

=: I1 − I2 .

First, we shall estimate I2. By Proposition 2.1, we may estimate

I2 = 1

hNk

t2

2

∫
RN

η(x)uhk(x)
2 dx

≤ C

hNk

22

2

∫
B(x0;R)\B(x0;d0+δ′ )

exp
(
−2|x − xhk |

hk

)
dx

≤ C

hNk

∫
B(x0;R)\B(x0;d0+δ′ )

exp
(
−2|x − x0| − 2|x0 − xhk |

hk

)
dx
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≤ C

hNk

∫
B(x0;R)\B(x0;d0+δ′ )

exp
(
−2(d0 + δ

′
)− 2|x0 − xhk |
hk

)
dx

≤ exp

(
− 2

hk

[
d0 + δ

′ − |x0 − xhk | − hk

2
log

( C
hNk

)])
= exp

(
− 2

hk
[d0 + δ

′ + o(1)]
)
. (4.1)

Next, we shall estimate I1. By Propositions A.1–A.3, we obtain that

I1 ≥ t2

2

∫
RN

|∇v∗
hk

|2 + Ṽ∗(hky)(v∗
hk
)2 dy −

∫
RN

F (tv∗
hk
) dy . (4.2)

By (4.1) and (4.2), we obtain

chk (V ) ≥ Jhk [tv∗
hk

; Ṽ∗] − exp
(
− 2

hk
[d0 + δ

′ + o(1)]
)
. (4.3)

Let us choose a number tk > 0 so that

Jhk [tkv∗
hk

; Ṽ∗] = sup
t>0

Jhk [tv∗
hk

; Ṽ∗] .

CLAIM 1. For sufficiently large k, tk ≤ 2.

Assume that there exists a subsequence such that tk > 2. By (f4), we obtain that

Ak :=
∫
RN

|∇vhk |2 + Ṽ (hky)v
2
hk
dy

≥
∫
RN

|∇v∗
hk

|2 + Ṽ∗(hky)(v∗
hk
)2 dy

= 1

tk

∫
RN

f (tkv
∗
hk
)v∗
hk
dy

>
1

2

∫
RN

f (2v∗
hk
)v∗
hk
dy

=: Bk .

Ak =
∫
RN

|∇vhk |2 + V (hky)v
2
hk
dy +

∫
RN

η(hky)v
2
hk
dy

=
∫
RN

f (vhk )vhk dy + 1

hk
N

∫
B(x0;R)\B(x0;d0+δ′ )

η(x)uhk (x)
2 dx

≤
∫
RN

f (uhk (hky + xhk ))uhk (hky + xhk ) dy + exp
(
− 2

hk
[d0 + δ

′ + o(1)]
)
.
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On the other hand,

Bk = 1

2

∫
RN

f (2uhk (hky + xhk ))uhk (hky + xhk ) dy .

Hence, we have∫
RN

f (uhk (hky + xhk ))uhk (hky + xhk ) dy + exp
(
− 2

hk
[d0 + δ

′ + o(1)]
)

≥ 1

2

∫
RN

f (2uhk (hky + xhk ))uhk (hky + xhk ) dy . (4.4)

By uhk (hk · +xhk) → w in H 1(RN), taking k → ∞ on (4.4), we have∫
RN

f (w)w dy ≥ 1

2

∫
RN

f (2w)w dy >
∫
RN

f (w)w dy .

This is impossible.
Hence,

chk (V ) ≥ chk (Ṽ∗)− exp
(
− 2

hk
[d0 + δ

′ + o(1)]
)

as k → ∞ .

We will prove the next claim to use Proposition 3.2.

CLAIM 2. {Ṽ∗ = 1} = B̄(0; d ′
0).

We will prove Ṽ∗(d
′
0) = 1. Assume Ṽ∗(d

′
0) > 1. Then we see that there exists t0 > 1

such that d
′
0 ∈ R

N \ {Ṽ < t0}∗. Put B(0; r0) := {Ṽ < t0}∗. Note that r0 ≤ d
′
0. Since

{Ṽ = 1} ⊂ {Ṽ < t0}∗, we have B(0; d ′
0) ⊂ B(0; r0). Thus, d

′
0 ≤ r0. Hence, d

′
0 = r0. By

|{Ṽ = 1}| + |{1 < Ṽ < t0}| = |{Ṽ < t0}| = |B(0; r0)| = |B(0; d ′
0)| = |{Ṽ = 1}| ,

it follows that |{1 < Ṽ < t0}| = 0. On the other hand, by the continuity of Ṽ , {Ṽ = 1} �=,

and Ṽ (x) → +∞ as |x| → ∞, we have |{1 < Ṽ < t0}| > 0. This is impossible.

Case 1. d
′
0 = 0 for some δ > 0.

By Claim 2, we can use Corollary 3.1, hence we have

chk (Ṽ∗) ≥ c∗ + exp
(
− 2

hk
[ε + o(1)]

)
as k → ∞ , (4.5)

for any ε > 0. On the other hand, by subsection 5.1, we have

chk (V ) ≤ c∗ + exp
(
− 2

hk

[
max
x∈� d(x, ∂�)+ o(1)

])
as k → ∞ . (4.6)

By (4.5) and (4.6), we have ε ≥ maxx∈� d(x, ∂�) for any ε > 0. This is impossible.
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Case 2. d
′
o > 0 for any δ > 0.

By Claim 2, we can use Proposition 3.3, hence we have

chk (Ṽ∗) ≥ c∗ + exp
(
− 2

hk
[d ′

0 + o(1)]
)

as k → ∞ .

Hence,

chk (V ) ≥ c∗ + exp
(
− 2

hk
[d ′

0 + o(1)]
)

− exp
(
− 2

hk
[d0 + δ

′ + o(1)]
)

= c∗ + exp
(
− 2

hk
[d0 + δ]

)
×

{
exp

(
− 2

hk
[d ′

0 − d0 − δ + o(1)]
)

− exp
(
− 2

hk
[δ′ − δ + o(1)]

)}
.

CLAIM 3.{
exp

(
− 2

hk
[d ′

0 − d0 − δ + o(1)]
)

− exp
(
− 2

hk
[δ′ − δ + o(1)]

)}
≥ 1 as k → ∞ .

Since δ
′ − δ < 0 and d

′
0 − d0 − δ

′
< 0, we have{

exp
(
− 2

hk
[d ′

0 − d0 − δ + o(1)]
)

− exp
(
− 2

hk
[δ′ − δ + o(1)]

)}
= exp

(
− 2

hk
[δ′ − δ + o(1)]

){
exp

(
− 2

hk
[d ′

0 − d0 − δ
′ + o(1)]

)
− 1

}
≥ 1 .

Hence,

chk (V ) ≥ c∗ + exp
(
− 2

hk
[d(x0, ∂�)+ o(1)]

)
as k → ∞ .

4.3. Proof of (i) and (ii) of Theorem 2.1. First, we shall prove (i). Assume that
there exists a subsequence such that xhk ∈ �c. Then passing to a subsequence, we learn
xhk → x0 ∈ �. By the argument in the proof of (iii), we have

chk (V )≥ c∗ + exp
(
− 2

hk
[d(x0, ∂�)+ o(1)]

)
as k → ∞ , (4.7)

chk (V )≤ c∗ + exp
(
− 2

hk
[d0 + 0(1)]

)
as k → ∞ , (4.8)

where d0 := maxx∈� d(x, ∂�). By (4.7) and (4.8), we see that 0 = d(x0, ∂�) ≥ d0 > 0.
This is impossible. Hence, we have proved (i).

Next, we shall prove (ii). Assume that there exist a constant δ > 0 and a subsequence
such that for k sufficiently large,

d(xhk , ∂�) ≥ d0 + δ (4.9)
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or

d(xhk , ∂�) ≤ d0 − δ . (4.10)

Passing to a subsequence, we have xhk → x0 ∈ �. By (iii), it follows that d(x0, ∂�) ≥ d0.
On the other hand, from (4.9) or (4.10), we see that d(x0, ∂�) ≥ d0+δ or d(x0, ∂�) ≤ d0−δ.
This is impossible. Hence, we have proved (ii).

A. Rearrangements

The rearrangement is a key in the proof of our main result. So, we prepare properties of
the decreasing rearrangement and increasing rearrangement.

First, we recall the decreasing rearrangement.

DEFINITION A.1. Assume that f : RN → R is Borel measurable and for any t > 0,
|{|f | > t}| < ∞. We define the decreasing rearrangement f ∗ of f as

f ∗(x) :=
∫ ∞

0
χ{|f |>t}∗(x) dt, x ∈ R

N ,

where for a Borel measurable set A ⊂ R
N , there exists r ≥ 0 such that |A| = |B(0; r)|, and

put A∗ := B(0; r).
The following results are well known (see, [15]).

PROPOSITION A.1. Assume that f : RN → R is Borel measurable and for any t > 0,
|{|f | > t}| < ∞. Then the following statements hold:

(i) f ∗ is radially symmetric and decreasing, i.e.,

f ∗(x) = f ∗(y) if |x| = |y| ,
and

f ∗(x) ≥ f ∗(y) if |x| ≤ |y| .
(ii) If F : R → R is Borel measurable and F ≥ 0, then∫

RN

F (f ∗(x)) dx =
∫
RN

F (f (x)) dx .

(iii) If ψ : R → R is non-decreasing, then

(ψ(f ))∗ = ψ(f ∗) .

(iv) If f ∈ H 1(RN), then ∫
RN

|∇f ∗(x)|2 dx ≤
∫
RN

|∇f (x)|2 dx .

Next, we define the increasing rearrangement.
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DEFINITION A.2. Assume that f : RN → R is Borel measurable and for any t > 0,
|{|f | < t}| < ∞. We define the increasing rearrangement f∗ of f as

f∗(x) :=
∫ ∞

0
χRN\{|f |<t}∗(x) dt, x ∈ R

N .

PROPOSITION A.2. Assume that f : RN → R is Borel measurable and for any t > 0,
|{|f | < t}| < ∞. Then the following statements hold:

(i) f∗ is radially symmetric and increasing, i.e.,

f∗(x) = f∗(y) if |x| = |y|
and

f∗(x) ≤ f∗(y) if |x| ≤ |y| .
(ii) For all t > 0,

{x ∈ R
N | f∗(x) < t} = {x ∈ R

N | |f (x)| < t}∗ .
(iii) f∗ is right continuous, i.e., for r ≥ 0,

lim
h→+0

f∗(r + h) = f∗(r) .

Since we cannot find the exact reference for the increasing rearrangement in R
N , we shall

give a proof here.

PROOF OF PROPOSITION A.2. It is easy to see that (i) holds. So, we will prove (ii)
and (iii). Assume that

f∗(x) < t . (A.1)

If x �∈ {t > |f |}∗, then

t >

∫ ∞

0
χRN\{s>|f |}∗(x) ds

≥
∫ t

0
χRN\{s>|f |}∗(x) ds

≥
∫ t

0
χRN\{t>|f |}∗(x) ds = t ,

where the last equality holds by χRN\{t>|f |}∗(x) = 1. This is impossible. Therefore, we

obtain x ∈ {t > |f |}∗. Hence

{x ∈ R
N | f∗(x) < t} ⊂ {t > |f |}∗ . (A.2)

Next, we will prove

{x ∈ R
N | f∗(x) < t} ⊃ {t > |f |}∗ . (A.3)
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Assume that x ∈ {t > |f |}∗. Here, we will show the next claim.

CLAIM 1. There exists 0 < t0 < t such that x ∈ {|f | < t0}∗.

If not, then x �∈ {|f | < s}∗ for all 0 < s < t . Take r > 0 such that B(0; r) = {|f | < t}∗
and rs ≥ 0 such that B(0; rs) = {|f | < s}∗. Note that |x| < r and |x| ≥ rs . Then, we may
estimate

|B(0; r)| = ∣∣{x ∈ R
N | |f (x)| < t

}∣∣
=

∣∣∣∣∣ ⋃
0<s<t

{
x ∈ R

N | |f (x)| < s
}∣∣∣∣∣

= lim
s↑t

∣∣{x ∈ R
N | |f (x)| < s

}∣∣
= lim

s↑t |B(0; rs)|

≤ |B(0; |x|)|
< |B(0; r)| .

This is impossible. Hence, Claim 1 holds.
By x ∈ {|f | < t0}∗, we obtain that

χRN\{s>|f |}∗(x) ≤ χRN\{t0>|f |}∗(x) = 0 for any t0 ≤ s < +∞ . (A.4)

Hence, we have

f∗(x) =
∫ t0

0
χRN\{s>|f |}∗(x) ds +

∫ +∞

t0

χRN\{s>|f |}∗(x) ds

=
∫ t0

0
χRN\{s>|f |}∗(x) ds

≤ t0 < t .

Therefore, we have proved (ii).
Finally, we will prove (iii). Let x ∈ R

N be |x| = r . Note that for all t > 0, {y ∈ R
N |

f∗(y) < t} is an open set since the right hand of (ii) is an open ball. Therefore, since for any
r ≥ 0 and any ε > 0, {y ∈ R

N | f∗(y) < f∗(x)+ ε} is an open set, there exists δ > 0 such
that

B(x; δ) ⊂ {
y ∈ R

N | f∗(y) < f∗(x)+ ε
}
. (A.5)

(A.5) and (i) yield that

0 ≤ f∗(r + h)− f∗(r) < ε for 0 < h < δ .

Hence, (iii) holds. �

In particular, the following result is very important.
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PROPOSITION A.3. Assume that f : RN → R and g : RN → R are Borel measur-
able and for any t > 0, |{|f | > t}| < ∞ and |{|g| < t}| < ∞. Then,∫

RN

f ∗(x)g∗(x) dx ≤
∫
RN

|f (x)||g(x)| dx . (A.6)

PROOF OF PROPOSITION A.3. First, we remark the following inequality.

CLAIM 1. Let A, B ⊂ R
N be measurable sets such that |A| < ∞ and |B| < ∞.

Then, it follows that

|A \ B| ≥ |A∗ \ B∗| . (A.7)

If |B| ≥ |A|, we have B∗ ⊃ A∗, hence we obtain that |A∗ \ B∗| = 0. Therefore, (A.7) holds
in this case. Assume that |B| < |A|. Note that B∗ ⊂ A∗. Then, we may estimate

|A \ B| ≥ |A| − |B| = |A∗| − |B∗| = |A∗ \ B∗| .
Hence, (A.7) holds in this case too.

We will prove (A.6). By Fubini’s Theorem and Claim 1, we may estimate∫
RN

|f (x)||g(x)| dx

=
∫
RN

∫ +∞

0

∫ +∞

0
χ{s<|f (x)|}(s)χ{t≤|g(x)|}(t) dsdtdx

=
∫ +∞

0

∫ +∞

0

∫
RN

χ{s<|f (x)|}(x)χRN\{t>|g(x)|}(x) dxdsdt

=
∫ +∞

0

∫ +∞

0
|{x ∈ R

N | s < |f (x)|} \ {x ∈ R
N | t > |g(x)|}| dsdt

≥
∫ +∞

0

∫ +∞

0
|{s < |f |}∗ \ {t > |g|}∗| dsdt

=
∫ +∞

0

∫ +∞

0

∫
RN

χ{s<|f |}∗(x)χRN\{t>|g |}∗(x) dxdsdt

=
∫
RN

f ∗(x)g∗(x) dx .

�

B. Proof of Propositions 2.1 and 3.2

We will prove Propositions 2.1 and 3.2 in this section. For simplicity, we use symbols
Eh, Jh[v] and ch instead of Eh(V ), Jh[v;V ] and ch(V ) respectively.

First, We will use the next Lemma to show Proposition 2.1 and Proposition 3.2. This
Lemma gives another representation of the least energy. This result is well known. For the
proof, see e.g. [21, Proposition 3.11].
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LEMMA B.1. Assume that (f0)–(f4) hold and V is Borel measurable and satisfies
(V2). Then, it holds that

inf
v∈Nh

Jh[v] = inf
v∈Eh
v �≡0

sup
t>0

Jh[tv] ,

where Nh := {v ∈ Eh \ {0} | 〈J ′
h[v], v〉 = 0}.

Now, we shall prove Proposition 2.1.

PROOF OF PROPOSITION 2.1. Our proof is carried out in eleven steps. In Steps 1–3,
we show that the existence of a least energy solution uh. In Step 4, we show that the existence
of a point xh where uh reaches its maximum value, and in Steps 5–7, we show the properties
for the maximum point xh. In Steps 8–11, we show the properties for a least energy solution.

Step 1. There exists vh ∈ Nh such that mh := infv∈Nh Jh[v] = Jh[vh].
By the definition of mh, there exists {vj }∞j=1 ⊂ Nh such that Jh[vj ] → mh as j → ∞. Then,

for j sufficiently large,

mh + 1 ≥ Jh[vj ]
= 1

2

∫
RN

|∇vj |2 + V (hy)v2
j dy −

∫
RN

F (vj ) dy

≥ 1

2
‖vj‖2

Eh
− 1

θ

∫
RN

f (vj )vj dy

=
(1

2
− 1

θ

)
‖vj‖2

Eh
.

Hence, ‖vj‖Eh is bounded uniformly for j . Moreover,

‖vj‖2
Eh

=
∫
RN

f (vj )vj dy

≤
∫
RN

1

2
v2
j + Cv

p+1
j dy

≤ 1

2
‖vj‖2

Eh
+ C‖vj‖p+1

Eh
,

hence, there exists δ > 0 such that δ ≤ ‖vj‖Eh = ∫
RN
f (vj )vj dy holds uniformly for j .

By using the compact embedding Eh ↪→ Lq(RN) for 2 ≤ q < (2N)/(N − 2) if N ≥ 3 and
2 ≤ q < ∞ if N = 1, 2 (see e.g. [2]), we have

vj ⇀ wh weakly in Eh , (B.1)

vj → wh in Lq(RN) , (B.2)

vj (y) → wh(y) a.e. y ∈ R
N , (B.3)
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where wh ∈ Eh. We will prove wh ∈ Nh and mh = Jh[wh]. By δ ≤ ∫
RN
f (vj )vj dy, taking

j → ∞, we have δ ≤ ∫
RN
f (wh)wh dy. Hence, wh �≡ 0. Moreover, we obtain∫

RN

|∇wh|2 + V (hy)w2
h dy −

∫
RN

f (wh)wh dy

≤ lim inf
j→∞

[∫
RN

|∇vj |2 + V (hy)(vj )
2 dy −

∫
RN

f (vj )vj dy

]
= 0 .

Thus there exists a constant 0 < t0 ≤ 1 such that t0wh ∈ Nh.

mh ≤ Jh[t0wh] =
∫
RN

1

2
f (t0wh)t0wh − F(t0wh) dy

≤
∫
RN

1

2
f (wh)wh − F(wh) dy

= lim
j→∞

∫
RN

1

2
f (vj )vj − F(vj ) dy

= lim
j→∞ Jh[vj ] = mh .

Hence, by (f4), we have t0 = 1. Therefore, we can concludewh ∈ Nh and mh = Jh[wh].
Step 2. We claim that J

′
h[vh] = 0 holds.

Let ϕ ∈ Eh \ {0}. Then, there exists ε > 0 such that vh + sϕ �≡ 0 (−ε < s < ε). We put

γ (s, t) := 〈J ′
h[t (vh + sϕ)], t (vh + sϕ)〉. Note that γ ∈ C1(R2) by (f2), and γ (0, 1) = 0 by

vh ∈ Nh. We calculate

γt (s, t)= 2t
∫
RN

|∇(vh + sϕ)|2 + V (hy)(vh + sϕ)2 dy

−
∫
RN

f
′
(t (vh + sϕ))t (vh + sϕ)2 dy −

∫
RN

f (t (vh + sϕ))(vh + sϕ)2 dy .

By using (f4),

γt (0, 1) =
∫
RN

f (vh)vh − f
′
(vh)v

2
h dy < 0 .

Hence, by Implicit Function Theorem, there exists t ∈ C1((−ε0, ε0)) such that t (0) = 1 and
γ (s, t (s)) = 0.We put ρ(s) := Jh[t (s)(vh+sϕ)]. By γ (s, t (s)) = 0 and t (s)(vh+sϕ) ∈ Nh,

we have ρ(0) = Jh[vh] = infv∈Nh Jh[v] ≤ ρ(s) (−ε0 < s < ε0). Hence, ρ
′
(0) = 0, and

0 = ρ
′
(0) = 〈J ′

h[vh], t
′
(0)vh〉 + 〈J ′

h[vh], ϕ〉 = 〈J ′
h[vh], ϕ〉 .

Step 3. We claim that a least energy solution vh of (2.1) satisfies vh > 0.

By Step 1, Step 2 and Lemma B.1, we see that there exists a least energy solution vh ∈ Eh.
In particular, the maximum principle yields vh > 0.
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Step 4. The existence of a point where uh reaches its maximum value.

Note that uh(0) > 0. Put vh(y) := uh(hy). Then

−�vh(y)+ dh(y)vh(y) ≤ 0, y ∈ R
N ,

where dh(y) := −Cvh(y)p−1. Since uh is a least energy solution, we have ‖vh‖H 1(RN) ≤
‖vh‖Eh ≤ C for all h > 0, hence ‖dh‖L2∗/(p−1)(RN) ≤ C, where 2∗/(p − 1) > N/2. By

Theorem 4.1 in [14], for all z ∈ R
N ,

sup
y∈B 1

4
(z)

vh(y) ≤ C‖vh‖L2(B1(z))
, (B.4)

where C is independent of z. Take R = R(h) > 0 such that C‖vh‖L2(RN\BR) ≤ uh(0)/2.

Then, by (B.4), for all |z| ≥ R + 1, we have supy∈B1/4(z)
vh(y) ≤ uh(0)/2. Hence, vh(y) ≤

uh(0)/2 for all |y| ≥ R + 1. Thus there exists a point xh such that where uh reaches its
maximum value.

Step 5. If uh attains a local maximum at xh ∈ R
N , then {xh} is bounded in R

N for h
sufficiently small.

Assume that there exists a subsequence {xhj } ⊂ {h} such that |xhj | → +∞. Take any R > 0
and fix it. Then, put wj(z) := uhj (hj z + xhj ), for j sufficiently large,

−�wj(z)+ 2wj(z) ≤ −�wj(z)+ V (hj z+ xhj )wj (z) = f (wj (z)), for |z| ≤ R . (B.5)

Hence, for any ϕ ∈ C∞
c (R

N) with ϕ ≥ 0, taking R > 0 such that Suppϕ ⊂ BR ,∫
RN

∇wj(z) · ∇ϕ + 2wj(z)ϕ dz ≤
∫
RN

f (wj (z))ϕ dz . (B.6)

By ‖whj ‖H 1(RN) ≤ C, we have

wj ⇀ w weakly in H 1(RN) , (B.7)

wj → w in Lploc(R
N) (2 ≤ p < 2∗) . (B.8)

Since xhj is a local maximum point, wj (0) = uhj (xhj ) ≥ ū, hence w(0) ≥ ū > 0, where

ū > 0 satisfies f (ū) = ū. In particular w �≡ 0. By (B.6), for any ϕ ∈ C∞
c (R

N) with ϕ ≥ 0,∫
RN

∇w · ∇ϕ + 2wϕ dz ≤
∫
RN

f (w)ϕ dz . (B.9)

Hence, there exists 0 < t0 < 1 such that supt>0 I [tw] = I [t0w].

c∗ ≤ I [t0w] =
∫
RN

1

2
f (t0w)t0w − F(t0w) dz

<

∫
RN

1

2
f (w)w − F(w) dz
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≤ lim
j→∞

∫
RN

1

2
f (wj )wj − F(wj ) dz

= lim
j→∞ chj = c∗ .

This is impossible.

Step 6. Assume uh attains a local maximum at xh ∈ R
N . Passing to a subsequence, we

may assume xh → x0 as h → 0. Then V (x0) = infx∈RN V (x). Moreover, putting
wh(z) := uh(hz+ xh), a limit w of wh is a least energy solution of (2.6).

Applying the argument in the proof of Theorem 2.1 in [22], we see that Step 6 follows.

Step 7. A point where uh attains a local maximum is unique for sufficiently small h.

Assume that there exists {hj } ⊂ {h} such that uhj has two local maximum points xhj and x̃hj .

CLAIM 2.

|xhj − x̃hj |
hj

→ +∞ as j → ∞ .

Assume that

|xhj − x̃hj |
hj

≤ C . (B.10)

By Step 5, {xhj } and {x̃hj } are bounded in R
N . Hence, passing to a subsequence, we may

assume xhj → x0 and x̃hj → x̃0. By (B.10), we have x0 = x̃0. Put wj(z) := uhj (hj z+ xhj ).

Then, we see that whj → w in C2
loc(R

N), where w is a least energy solution of (2.6). Hence,
taking any R > 0 and any ε, for j sufficiently large, we have

‖wj −w‖C2(B̄R)
≤ ε . (B.11)

Here, we use the following key Lemma.

LEMMA B.2 ([17, Lemma 4.2]). Let φ ∈ C2(B̄a) be a radial function satisfying

φ
′
(0) = 0 and φ

′′
< 0 for 0 ≤ r ≤ a. Then there exists a δ > 0 such that if ψ ∈ C2(B̄a)

satisfies (i) ∇ψ(0) = 0 and (ii) ‖ψ − φ‖C2(B̄a)
< δ, then ∇ψ �= 0 for x �= 0.

Take 0 < a < b such that w
′′
(r) < 0 (0 ≤ r ≤ a), w(b) < ū and C < b where C is the

constant of (B.10). By using (B.11) as R := b and ε := min{1/2 mina≤r≤b |w′
(r)|, δ/2}

where δ is the constant of Lemma B.2, then for j sufficiently large,

|∇wj(z)| ≥ |∇w(z)| − |∇wj(z)− ∇w(z)| ≥ min
a≤r≤b |w

′
(r)| − ε > 0 ,

if a ≤ |z| ≤ b. On the other hand, by Lemma B.2, we have ∇wj(z) �= 0 if 0 < |z| ≤ a. Hence
∇wj (z) �= 0 if 0 < |z| ≤ b. But |(xhj − x̃hj )/hj | ≤ C < b and ∇wj((x̃hj − xhj )/hj ) = 0.
This is impossible.
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By Claim 1, for any R > 0, we have |xhj − x̃hj | ≥ 2hjR for j sufficiently large. Put

wj (y) := uhj (hjy + xhj ) and w̃j (y) := uhj (hj y + x̃hj ). Then,

chj = 1

hNj

∫
RN

1

2
f (uhj (x))uhj (x)− F(uhj (x)) dx

≥ 1

hNj

∫
B(xhj ;hjR)

1

2
f (uhj (x))uhj (x)− F(uhj (x)) dx

+ 1

hNj

∫
B(x̃hj ;hjR)

1

2
f (uhj (x))uhj (x)− F(uhj (x)) dx

=
∫
B(0;R)

1

2
f (wj (y))wj(y)− F(wj (y)) dy +

∫
B(0;R)

1

2
f (w̃j (y))− F(w̃j (y)) dy .

As j → ∞, we have

c∗ ≥
∫
B(0;R)

1

2
f (w)w − F(w) dy +

∫
B(0;R)

1

2
f (w̃)w̃ − F(w̃) dy .

As R → ∞, we see that c∗ ≥ 2c∗. This is impossible.

Step 8. For any δ > 0, there exists R > 0 such that for j sufficiently large, wj (y) ≤ δ if
|y| ≥ R.

Take any δ > 0. Take R > 0 such that w(R) ≤ δ/2. By wj → w in C2
loc(R

N), for j
sufficiently large,

wj(y) ≤ w(y)+ δ

2

if |y| ≤ R. Hence, for j sufficiently large, wj(R) ≤ δ. If there exists y0 ∈ R
N such that

wj (y0) > δ and |y0| > R, then, there exists a point y1 where uhj attains a local maximum
such that |y1| > R by lim|y|→∞wj(y) = 0. This is impossible because of Step 8.

Step 9. For all δ > 0, there exists R > 0 such that for j sufficiently large,

wj(y) ≤ e
√

1−δRe−
√

1−δ|y|

if |y| ≥ R.

Take any δ > 0 and fix it. By Step 5, there exists R > 0 such that

wj(R) ≤ 1 and
f (wj (y))

wj (y)
≤ δ if |y| ≥ R .

Let v(r) be a solution of the equation{
v′′(r)− (1 − δ)v(r) = 0 in (R,+∞) ,

v(R) = 1, v(+∞) = 0 .
(B.12)
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Then, we have v(r) = exp(−√
1 − δr) exp(

√
1 − δR).

−�(wj − v)(y)+ (1 − δ)(wj − v)(y)

= f (wj (y))− (V (hj y + xhj )− 1 + δ)wj (y)+ v
′′
(|y|)+ N − 1

|y| v
′
(|y|)− (1 − δ)v(|y|)

≤ wj(y)

[
f (wj (y))

wj (y)
− δ

]
+ v

′′
(|y|)− (1 − δ)v(|y|)

≤ 0 for y ∈ (R,+∞) .

By the weak maximum principle, we havewj (y) ≤ exp(
√

1 − δR) exp(−√
1 − δ|y|) if |y| ≥

R.

Step 10. For any M > 0, there exists a(j,M) ∈ R such that a(j,M) → 0 as j → ∞ and if
|x| ≤ M ,

uhj (x) ≤ exp

(
−|x − xhj | + a(j,M)

hj

)
.

By supy∈RN wj (y) ≤ C and Step 9, we have

uhj (hj y + xhj ) = wj(y) ≤ C(δ)e−(1−δ)|y| ,

for all y ∈ R
N . Hence for j sufficiently large,

uhj (x) ≤ C(δ) exp

(
−(1 − δ)

|x − xhj |
hj

)
= exp

(
− 1

hj
{|x − xhj | − δ|x − xhj | − hj logC(δ)}

)
for all x ∈ R

N . Taking any M > 0, then, for j sufficiently large,

uhj (x) ≤ exp
(
− 1

hj
{|x − xhj | −Mδ − hj logC(δ)}

)
if |x| ≤ M . Passing to a subsequence, we obtain a(j,M) ∈ R

N such that a(j,M) → 0 as
j → ∞ and

uhj (x) ≤ exp
(
− 1

hj
{|x − xhj | + a(j,M)}

)
for j sufficiently large and |x| ≤ M .

Step 11. wj → w in H 1(RN).

Take any R > 0.

lim sup
j→∞

‖wj‖2
H 1(RN)
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≤ lim sup
j→∞

‖wj‖2
Eh

= lim sup
j→∞

∫
RN

f (wj )wj dy

= lim sup
j→∞

{∫
BR

f (wj )wj dy +
∫
RN\BR

f (wj )wj dy

}
≤ lim sup

j→∞

{∫
BR

f (wj )wj dy + e−αR
}

≤
∫
BR

f (w)w dy + e−αR ,

where the second inequality follows by Step 9, and the third inequality holds by wj →
w in C1

loc(R
N). As R → ∞, it follows that

lim sup
j→∞

‖wj‖H 1(RN) ≤ ‖w‖H 1(RN) .

On the other hand, by the weak lower semicontinuous of ‖ · ‖H 1(RN), we have

‖w‖H 1(RN) ≤ lim inf
j→∞ ‖wj‖H 1(RN) .

Hence,

lim
j→∞ ‖wj‖H 1(RN) = ‖w‖H 1(RN) .

By the weak convergence, Step 11 follows. �

Finally, we show Proposition 3.2. We use the next Lemma to prove Proposition 3.2. This
result is well-known. For the proof, see [14, (3.17)].

LEMMA B.3. Let z ∈ R
N and u ∈ H 1(B1(z)) be a weak solution of

−�u = g in B1(z) ,

where g ∈ Lq(B1(z)) for q > N . Then, there exists a positive constant C which is indepen-
dent of z such that

sup
B3/4(z)

|∇u|2 ≤ C
(‖g‖2

Lq(B1(z))
+ ‖∇u‖2

L2(B1(z))

)
.

Now, we shall prove Proposition 3.2. Our proof consists of the well-known argument by using
the Nehari manifold. But, remark that we use the rearrangement to gain a solution which is
invariant with respect to the rearrangement.

PROOF OF PROPOSITION 3.2. First, we can show that there exists a positive least en-
ergy solution of (2.1) by the same argument as the proof of Proposition 2.1 Steps 1–3.
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Now, our proof is carried out in four steps. In Step 1, we show that there exists a positive
least energy solution which is invariant with respect to the rearrangement. Step 2 proves (ii),
Step 3 proves (iii), and Step 4 proves (iv).

Step 1. We claim that there exists a positive least energy solution which is invariant with
respect to the rearrangement.

We will prove that v∗
h is a least energy solution, where we denote by v∗

h the decreasing
rearrangement of vh (see, Appendix A). By Proposition A.1 and Proposition A.3, we have∫

RN

|∇v∗
h|2 + V (hy)(v∗

h)
2 dy −

∫
RN

f (v∗
h)v

∗
h dy

≤
∫
RN

|∇vh|2 + V (hy)(vh)
2 dy −

∫
RN

f (vh)vh dy = 0 .

Hence, there exists a constant 0 < t1 ≤ 1 such that t1v∗
h ∈ Nh. Then, we have

mh ≤ Jh[t1v∗
h] =

∫
RN

1

2
f (t1v

∗
h)t1v

∗
h − F(t1v

∗
h) dy

≤
∫
RN

1

2
f (v∗

h)v
∗
h − F(v∗

h) dy

=
∫
RN

1

2
f (vh)vh − F(vh) dy

= Jh[vh] = mh .

Hence, by (f4), we have t1 = 1. Therefore, we obtain v∗
h ∈ Nh and mh = Jh[v∗

h]. Moreover,
we see that v∗

h is a least energy solution by the similar argument to Step 2 of the proof of
Proposition 2.1.

By using the interior Lp estimate, we have v∗
h ∈ C1(RN). Moreover, by the strong

maximum principle, it follows that v∗
h > 0. Hence, we may assume that v∗

h = vh.

Step 2. We prove the part (ii) of Proposition 4.2.

By v∗
h(y) = vh(y), we have vh(0) = maxy∈RN vh(y). Hence, by the strong maximum

principle, there exists δ > 0 such that for h sufficiently small, vh(0) ≥ δ > 0. By
‖vh‖H 1(RN) ≤ ‖vh‖Eh ≤ C, we see that

vh ⇀ w weakly in H 1(RN) ,

vh → w in C1
loc(R

N) .

Moreover, we see that w is a least energy solution of (2.6). Take any δ > 0. Take R > 0 such

that w(R) ≤ δ/2. By vh → w in C1
loc(R

N), for h sufficiently small, vh(y) ≤ w(y) + δ/2
for |y| ≤ R. In particular, vh(R) ≤ δ. By v∗

h = vh, vh(y) ≤ vh(R) ≤ δ for |y| ≥ R. (ii) is
obtained from the weak maximum principle by comparison with a suitable test function.

Step 3. We show the part (iii) of Proposition 3.2.
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Take any R > 0.

lim sup
h→0

‖vh‖2
H 1(RN)

≤ lim sup
h→0

‖vh‖2
Eh

= lim sup
h→0

∫
RN

f (vh)vh dy

= lim sup
h→0

{∫
BR

f (vh)vh dy +
∫
RN\BR

f (vh)vh dy

}
≤ lim sup

h→0

{∫
BR

f (vh)vh dy + e−αR
}

≤
∫
BR

f (w)w dy + e−αR ,

where the second inequality follows by Step 2, and the third inequality holds by vh →
w in C1

loc(R
N). As R → ∞, it follows that

lim sup
h→0

‖vh‖H 1(RN) ≤ ‖w‖H 1(RN) .

On the other hand, by the weak lower semicontinuous of ‖ · ‖H 1(RN), we have

‖w‖H 1(RN) ≤ lim inf
h→0

‖vh‖H 1(RN) .

Hence,

lim
h→0

‖vh‖H 1(RN) = ‖w‖H 1(RN) .

By the weak convergence, Step 3 follows.

Step 4. We show the part (iv) of Proposition 3.2.

Take for all β > 0. Let z ∈ R
N .

−�vhj = −V (hj y)vhj + f (vhj ) =: cj (y) in R
N .

For q := 2N/(N − 2)p(> N), by Sobolev’s embedding and V (hj y) ≤ V (β) for all |y| ≤
β/hj , we have ‖cj‖Lq(Bβ/hj ) ≤ C, uniformly for j . Hence it follows that

sup
y∈B1/2(z)

|∇vhj (y)|2 ≤ C
(‖∇vhj ‖2

L2(B1(z))
+ ‖cj‖2

Lq(B1(z))

)
,

by Lemma B.3. For all |z| ≤ β/2hj , ‖cj‖Lq(B1(z)) ≤ ‖cj‖Lq(Bβ/hj ) ≤ C, hence

‖v′
hj

‖L∞(Bβ/2hj ) ≤ C uniformly over j . �
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