A Function Determined by a Hypersurface of Positive Characteristic

Kosuke OHTA

Meiji University
(Communicated by Y. Gomi)

Abstract

Let $R=k \llbracket X_{1}, \ldots, X_{n+1} \rrbracket$ be a formal power series ring over a perfect field k of characteristic $p>0$, and let $\mathfrak{m}=\left(X_{1}, \ldots, X_{n+1}\right)$ be the maximal ideal of R. Suppose $0 \neq f \in \mathfrak{m}$. In this paper, we introduce a function $\xi_{f}(x)$ associated with a hypersurface $R /(f)$ defined on the closed interval [0,1] in \mathbf{R}. The Hilbert-Kunz multiplicity and the F-signature of $R /(f)$ appear as the values of our function $\xi_{f}(x)$ on the interval's endpoints. The F-signature of the pair, denoted by $s\left(R, f^{t}\right)$, was defined by Blickle, Schwede and Tucker. Our function $\xi_{f}(x)$ is integrable, and the integral $\int_{t}^{1} \xi_{f}(x) d x$ is just $s\left(R, f^{t}\right)$ for any $t \in[0,1]$.

1. Introduction

For Noetherian local rings of characteristic $p>0$, some important invariants can be defined using the Frobenius endomorphism as follows.

The Hibert-Kunz multiplicity $e_{H K}(R)$ of a d-dimensional Noetherian local ring (R, \mathfrak{n}, k) of characteristic $p>0$ is defined by Kunz [9] to be

$$
e_{H K}(R)=\lim _{e \rightarrow \infty} \frac{\ell\left(R / \mathfrak{n}^{\left[p^{e}\right]}\right)}{p^{e d}},
$$

where $\ell\left(R / \mathfrak{n}^{\left[p^{e}\right]}\right)$ is the length of $R / \mathfrak{n}^{\left[p^{e}\right]}$, and $\mathfrak{n}^{\left[p^{e}\right]}$ is the ideal generated by all the p^{e}-th powers of elements of \mathfrak{n}. Monsky [11] showed that this limit always exists. The Hibert-Kunz multiplicity $e_{H K}(R)$ gives a measure of the singularity of R. In fact, for an unmixed local ring of characteristic $p>0$, Watanabe and Yoshida [14] proved that $e_{H K}(R)=1$ if and only if R is regular.

Huneke and Leuschke [7] defined the F-signature $s(R)$ of a d-dimensional reduced Noetherian local ring of characteristic $p>0$ to be

$$
s(R)=\lim _{e \rightarrow \infty} \frac{a_{e}}{p^{e d}}
$$

Received February 24, 2016; revised September 13, 2016
Mathematics Subject Classification: 13F25
Key words and phrases: F-pure threshold, F-signature, F-signature of pair, Hilbert-Kunz function, hypersurface, Hilbert-Kunz function
where a_{e} is the e-th Frobenius splitting number of R, that is the largest integer such that $R^{\oplus a_{e}}$ is a direct summand of $R^{\frac{1}{p^{c}}}$. Tucker [13] proved that this limit always exists. Huneke and Leuschke [7] proved that $0 \leq s(R) \leq 1$, and $s(R)=1$ if and only if R is regular. Therefore, F-signature $s(R)$ gives a measure of the singularity of R, as well as Hibert-Kunz multiplicity. Aberbach and Leuschke [2] proved that $s(R)>0$ if and only if R is strongly F-regular.

The F-pure threshold $\operatorname{fpt}(f)$ for an element f in R was defined by Takagi and Watanabe [12] to be

$$
\operatorname{fpt}(f)=\lim _{e \rightarrow \infty} \frac{\mu_{f}\left(p^{e}\right)}{p^{e}}
$$

where $\mu_{f}\left(p^{e}\right)=\min \left\{t \geq 1 \mid f^{t} \in \mathfrak{m}^{\left[p^{e}\right]}\right\}$ for each integer $e>0$. This limit exists because the sequence $\left\{\frac{\mu_{f}\left(p^{e}\right)}{p^{e}}\right\}_{e>0}$ is decreasing and $\frac{\mu_{f}\left(p^{e}\right)}{p^{e}} \geq 0$ for any $e>0$.

Blickle, Schwede and Tucker [4] defined the F-signature

$$
s\left(R, f^{t}\right)=\lim _{e \rightarrow \infty} \frac{1}{p^{e(n+1)}} \ell_{R}\left(\frac{R}{\mathfrak{n}^{\left[p^{e}\right]}: f^{\left[t\left(p^{e}-1\right)\right]}}\right)
$$

of a pair $\left(R, f^{t}\right)$ for an F-finite regular local ring $(R, \mathfrak{n}), 0 \neq f \in \mathfrak{n}$ and a real number $t \in[0,1]$. They proved the following. The right derivative of $s\left(R, f^{t}\right)$ exists at $t=0$ and equals to the negative of the Hilbert-Kunz multiplicity of $R /(f)$. The left derivative of $s\left(R, f^{t}\right)$ exists at $t=1$ and equals to the negative of the F-signature of $R /(f)$.

The purpose of this paper is to introduce a function $\xi_{f}(x)$ associated with a hypersurface $R /(f)$ defined on the closed interval $[0,1]$ in \mathbf{R}. The function $\xi_{f}(x)$ is decreasing and Riemann integrable. Important invariants for Noetherian local rings of characteristic $p>0$ appears in this function $\xi_{f}(x)$. In fact, the Hilbert-Kunz multiplicity $e_{H K}(R /(f))$ equals to $\xi_{f}(0)$, and the F-signature $s(R /(f))$ equals to $\xi_{f}(1)$. We shall prove that $\xi_{f}^{\prime}(0)=0$ if $R /(f)$ is normal. The F-pure threshold $\operatorname{fpt}(f)$ satisfies $\xi_{f}(\operatorname{fpt}(f)+\delta)=0$ and $\xi_{f}(\operatorname{fpt}(f)-\delta)>0$ for any small real number $\delta>0$. We show

$$
\int_{t}^{1} \xi_{f}(x) d x=s\left(R, f^{t}\right)
$$

for $t \in[0,1]$, and

$$
\int_{0}^{1} \xi_{f}(x) d x=1
$$

In Section 2, we define this function $\xi_{f}(x)$ and state our main theorem. We investigate the basic behavior of $\xi_{f}(x)$ here. Considering this function, we prove

$$
e_{H K}(R /(f)) \times \operatorname{fpt}(f) \geq 1
$$

in Corollary 1. In Section 3, we calculate this function $\xi_{f}(x)$ for a monomial f. We obtain an example of $\xi_{f}(x)$ which is continuous on $[0,1]$. Furthermore, we know that $\xi_{f}(x)$ is
discontinuous in almost all cases.

2. The main theorem

The aim of this section is to state the main theorem and prove it.
In the rest of this paper, let $n \geq 1$ be an integer. Let $R=k \llbracket X_{1}, \ldots, X_{n+1} \rrbracket$ be a formal power series ring over a perfect field k of characteristic $p>0$, and let $\mathfrak{m}=\left(X_{1}, \ldots, X_{n+1}\right)$ be the maximal ideal of R. Suppose $0 \neq f \in \mathfrak{m}$. Rings of the form $R /(f)$ are called " n-dimensional hypersurfaces".

Definition 1. We define

$$
M_{e, t}=\frac{\left(f^{t}\right)+\mathfrak{m}^{\left[p^{e}\right]}}{\left(f^{t+1}\right)+\mathfrak{m}^{\left[p^{e}\right]}} \simeq \frac{R}{\left(\left(f^{t+1}\right)+\mathfrak{m}^{\left[p^{e}\right]}\right): f^{t}}=\frac{R}{(f)+\left(\mathfrak{m}^{\left[p^{e}\right]}: f^{t}\right)},
$$

where $e \geq 0$ and $t \geq 0$ are integers.
Since $(f)+\left(\mathfrak{m}^{\left[p^{e}\right]}: f^{t}\right) \subset(f)+\left(\mathfrak{m}^{\left[p^{e}\right]}: f^{t+1}\right)$, the natural surjection $M_{e, t} \rightarrow M_{e, t+1}$ exists. Let $\bar{R}=R / \mathfrak{m}^{\left[p^{e}\right]}$. Then, remark that $M_{e, t}=f^{t} \bar{R} / f^{t+1} \bar{R}$.

Definition 2. We define

$$
C_{e, t}=\frac{\ell_{R}\left(M_{e, t}\right)}{p^{e n}}
$$

where $\ell_{R}\left(M_{e, t}\right)$ is the length as an R-module.
Then we have

$$
\begin{equation*}
p^{e} \geq C_{e, 0} \geq C_{e, 1} \geq C_{e, 2} \geq \cdots \geq C_{e, p^{e}-1} \geq C_{e, p^{e}}=C_{e, p^{e}+1}=\cdots=0 \tag{2.1}
\end{equation*}
$$

A sequence of functions $\left\{\xi_{f, e}:[0,1] \rightarrow \mathbf{R}\right\}_{e \geq 0}$ is defined by

$$
\xi_{f, e}(x)= \begin{cases}C_{e,\left\lfloor x p^{e}\right\rfloor} & (0 \leq x<1) \\ C_{e, p^{e}-1} & (x=1)\end{cases}
$$

where $\left\lfloor x p^{e}\right\rfloor=\max \left\{a \in \mathbf{Z} \mid x p^{e} \geq a\right\}$ is the floor function. By the definition, we have $\int_{0}^{1} \xi_{f, e}(x) d x=1$ because

$$
\begin{aligned}
\int_{0}^{1} \xi_{f, e}(x) d x & =\frac{1}{p^{e}}\left(C_{e, 0}+C_{e, 1}+C_{e, 2}+\cdots+C_{e, p^{e}-1}\right) \\
& =\frac{1}{p^{e}} \times \frac{1}{p^{e n}}\left(\ell_{R}\left(M_{e, 0}\right)+\ell_{R}\left(M_{e, 1}\right)+\cdots+\ell_{R}\left(M_{e, p^{e}-1}\right)\right) \\
& =\frac{1}{p^{e(n+1)}} \ell_{R}\left(R / \mathfrak{m}^{\left[p^{e}\right]}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{p^{e(n+1)}} \times p^{e(n+1)} \\
& =1
\end{aligned}
$$

Definition 3. We define the function $\xi_{f}(x)$ by

$$
\xi_{f}(x)=\limsup _{e \rightarrow \infty} \xi_{f, e}(x)
$$

for $x \in[0,1]$.
By Eq. (2.1), $\xi_{f}(x)$ is decreasing on [0, 1]. If $\lim _{e \rightarrow \infty} \xi_{f, e}(\alpha)$ exists, then $\xi_{f}(\alpha)=$ $\lim _{e \rightarrow \infty} \xi_{f, e}(\alpha)$. The sequence $\left\{C_{e, 0}\right\}_{e}$ is increasing by Lemma 1 in this section.

$$
\lim _{e \rightarrow \infty} C_{e, 0}=\lim _{e \rightarrow \infty} \frac{\ell_{R}\left(M_{e, 0}\right)}{p^{e n}}=\lim _{e \rightarrow \infty} \frac{\ell_{R}\left(R /(f)+\mathfrak{m}^{\left[p^{e}\right]}\right)}{p^{e n}}
$$

This limit exists and is called the Hilbert-Kunz multiplicity of $R /(f)$, denoted by $e_{H K}(R /(f))$. Therefore, by (2.1), $\limsup _{e \rightarrow \infty} \xi_{f, e}(\alpha)$ is not $+\infty$ for any $\alpha \in[0,1]$. We shall give an example that $\lim _{e \rightarrow \infty} \xi_{f, e}(\alpha)$ does not exist for some $f \in R$ and $\alpha \in[0,1]$ in Section 3 . We have

$$
\xi_{f}(0)=e_{H K}(R /(f)) .
$$

Therefore, $\xi_{f}(x)$ is a bounded and decreasing function on [0, 1]. In particular, $\xi_{f}(x)$ is integrable, and has at most countably many points of discontinuity on [0, 1].

The main theorem of this paper is the following:
Theorem 1. 1) The function $\xi_{f}(x)$ is decreasing. There exists a countable subset C of the interval $[0,1]$ such that $\xi_{f}(x)$ is continuous at any $\alpha \in[0,1]-C$. Moreover, $\xi_{f}(x)$ is continuous at 0 and 1 .
2) If $\xi_{f}(x)$ is continuous at $\alpha \in[0,1]$, then $\lim _{e \rightarrow \infty} \xi_{f, e}(\alpha)=\xi_{f}(\alpha)$.
3) We have $\xi_{f}(0)=e_{H K}(R /(f))$, and also $\xi_{f}(1)=s(R /(f))$.
4) Suppose that $\xi_{f}(1)=0$, then $\operatorname{fpt}(f)=\inf \left\{\alpha \in[0,1] \mid \xi_{f}(\alpha)=0\right\}$ holds.
5) The function $\xi_{f}(x)$ is integrable, and we have $\int_{\frac{a+1}{p^{e}}}^{\frac{a+1}{p^{e}}} \xi_{f}(x) d x=\frac{\ell_{R}\left(M_{e, a}\right)}{p^{e(n+1)}}$ for integers $0 \leq a<p^{e}$. In particular, $\int_{0}^{1} \xi_{f}(x) d x=1$ holds.
6) If $R /(f)$ is normal then $\xi_{f}^{\prime}(0)=0$, where ξ_{f}^{\prime} is the derivative of ξ_{f}.

Remark 1. By Theorem 1.1 and Proposition 3.2 (i) in [3], we know that above $\operatorname{fpt}(f)$ is a positive rational number. Note that F-pure thresholds are defined as the smallest Fjumping exponents in [3].

Remark 2. We define the function $\varphi_{f}(x)$ on $[0,1]$ as follows;

$$
\varphi_{f}(x)=\int_{0}^{x} \xi_{f}(t) d t
$$

Actually, we have

$$
\varphi_{f}(x)=\lim _{e \rightarrow \infty} \frac{1}{p^{e}}\left(C_{e, 0}+C_{e, 1}+\cdots+C_{e,\left\lfloor x p^{e}\right\rfloor-1}\right) .
$$

Since $\xi_{f}(x)$ is bounded and integrable on [0, 1], $\varphi_{f}(x)$ is Lipschitz continuous on [0, 1]. In particular, $\varphi_{f}(x)$ is continuous on $[0,1]$. We can rewrite 3) and 4) in Theorem 1 as follows;
3^{\prime}) The function $\varphi_{f}(x)$ is differentiable at $x=0$ and 1 , and $\varphi_{f}^{\prime}(0)=e_{H K}(R /(f))$ and $\varphi_{f}^{\prime}(1)=s(R /(f))$.
4^{\prime}) Suppose that $s(R /(f))=0$, then

$$
\operatorname{fpt}(f)=\inf \left\{\alpha \in[0,1] \mid \varphi_{f}(\alpha)=1\right\}
$$

holds.
Using 5) in Theorem 1, we know

$$
1-\varphi_{f}(x)=\int_{t}^{1} \xi_{f}(x) d x=s\left(R, f^{t}\right)
$$

for $t \in[0,1]$. Moreover, if we know that $\xi_{f}(x)$ is continuous at 0 and 1 (see Theorem 11)), we obtain 3) in Theorem 1 immediately from Theorem 4.4 in [4].

In this section, we shall prove Theorem 1. The following corollary immediately follows from Theorem 13) and 5).

Corollary 1. $\quad e_{H K}(R /(f)) \times \operatorname{fpt}(f) \geq 1$.
Example 1. Suppose $R=k \llbracket X_{1}, X_{2}, \ldots, X_{n+1} \rrbracket$ and $\alpha>0$. Then $e_{H K}\left(R /\left(X_{1}^{\alpha}\right)\right)=$ α and $\operatorname{fpt}\left(X_{1}^{\alpha}\right)=\frac{1}{\alpha}$. Therefore, if $\tau(f)=X_{1}^{\alpha}$ for a linear transformation τ (for example, $f=X_{1}+X_{2}$), then $e_{H K}(R /(f)) \times \operatorname{fpt}(f)=1$ and $s(R /(f))=1$ (see Section 3). We do not know another example that the equality holds in Corollary 1.

REMARK 3. By Theorem 11), 3) and 5), we immediately know that $e_{H K}(R /(f))=1$ if and only if $s(R /(f))=1$. These conditions are equivalent to that $R /(f)$ is regular by the following results.

1) Let S be an unmixed local ring of positive characteristic. Then $e_{H K}(S)=1$ if and only if S is regular ([14], Theorem 1.5).
2) Let S be a reduced F-finite Cohen-Macaulay local ring of positive characteristic. Then $s(S)=1$ if and only if S is regular ([7], Corollary 16).

REMARK 4. Let $m<n=\operatorname{dim} R /(f)$, and set $a_{e}=\ell\left(M_{e, p^{e}-1}\right)$. Assume that $a_{e}=$ $\alpha p^{e m}+o\left(p^{e m}\right)$, that is $\lim _{e \rightarrow \infty} \frac{a_{e}}{p^{e m}}=\alpha$. Let $g_{e}=a_{e}-\alpha p^{e m}$. Then

$$
\begin{aligned}
\varphi_{f}(1)-\varphi_{f}\left(\frac{p^{e}-1}{p^{e}}\right) & =\sum_{i=0}^{p^{e}-1} \frac{\ell\left(M_{e, i}\right)}{p^{e(n+1)}}-\sum_{i=0}^{p^{e}-2} \frac{\ell\left(M_{e, i}\right)}{p^{e(n+1)}} \\
& =\frac{\ell\left(M_{\left.e, p^{e}-1\right)}\right.}{p^{e(n+1)}} \\
& =\frac{\alpha}{p^{e(n-m+1)}}+\frac{g_{e}}{p^{e(n+1)}}
\end{aligned}
$$

holds. Let $x=\frac{p^{e}-1}{p^{e}}$. Since $x-1=-\frac{1}{p^{e}}$, we know

$$
\begin{equation*}
\varphi_{f}(x)=\varphi_{f}(1)+(-1)^{n-m} \alpha(x-1)^{n-m+1}+o\left((x-1)^{n-m+1}\right) . \tag{2.2}
\end{equation*}
$$

Since $\varphi_{f}(x)$ is continuous on [0, 1] from Remark 1, $\varphi_{f}(x)$ has the form of Eq. (2.2) around the point $x=1$. Therefore, if $\varphi_{f}(x)$ is equal to its Taylor series around the point $x=1$, we obtain that

$$
\begin{aligned}
& \varphi_{f}^{(i)}(1)= \begin{cases}0 & (i=1,2, \ldots, n-m), \\
(-1)^{n-m}(n-m+1)!\alpha & (i=n-m+1),\end{cases} \\
& \xi_{f}^{(i)}(x)= \begin{cases}0 & (i=1,2, \ldots, n-m-1), \\
(-1)^{n-m}(n-m+1)!\alpha & (i=n-m) .\end{cases}
\end{aligned}
$$

Let $F: R \rightarrow R$ be the Frobenius map $a \mapsto a^{p}$. Since k is perfect, we have $F_{*} R \simeq$ $R^{\oplus p^{n+1}}$, where $F_{*} R$ stands for $F_{*}^{1} R$. Therefore,

$$
\left(M_{e, t}\right)^{\oplus p^{n+1}} \simeq M_{e, t} \otimes_{R} F_{*} R=\frac{\left(\left(f^{t}\right)+\mathfrak{m}^{\left[p^{e}\right]}\right) F_{*} R}{\left(\left(f^{t+1}\right)+\mathfrak{m}^{\left[p^{e}\right]}\right) F_{*} R}=F_{*}\left(\frac{\left(f^{p t}\right)+\mathfrak{m}^{\left[p^{e+1}\right]}}{\left(f^{p t+p}\right)+\mathfrak{m}^{\left[p^{e+1}\right]}}\right)
$$

for all $e, t \geq 0$. Consequently,

$$
\begin{equation*}
p \times C_{e, t}=C_{e+1, p t}+C_{e+1, p t+1}+\cdots+C_{e+1, p t+p-1}, \tag{2.3}
\end{equation*}
$$

where the sum on the right-hand side of Eq. (2.3) has p-terms. That is, $C_{e, t}$ is the mean of $C_{e+1, p t}, C_{e+1, p t+1}, \ldots, C_{e+1, p t+p-1}$. Therefore, by Eq. (2.1) and Eq. (2.3), we obtain the following inequalities immediately.

Lemma 1. $C_{e+1, p t} \geq C_{e, t} \geq C_{e+1, p t+p-1}$.

Hence, by Eq. (2.1) and Lemma 1, we have

$$
\begin{array}{ccccc}
C_{e,\left\lfloor x p^{e}\right\rfloor-1} & \underset{\text { by Lemma 1 }}{\geq} & C_{e+1,\left(\left\lfloor x p^{e}\right\rfloor-1\right) p+(p-1)} & \geq & C_{e+1,\left\lfloor x p^{e+1}\right\rfloor-1} \\
\mathrm{VI} & & & \mathrm{VI} \\
C_{e,\left\lfloor x p^{e}\right\rfloor} & & & & C_{e+1,\left\lfloor x p^{e+1}\right\rfloor} \\
\mathrm{VI} & & & \mathrm{VI} \\
C_{e,\left\lceil x p^{e}\right\rceil} & \begin{array}{ll}
\text { by Lemma 1 }
\end{array} & C_{e+1,\left\lceil x p^{e}\right\rceil p} & \leq & C_{e+1,\left\lceil x p^{e+1}\right\rceil}
\end{array}
$$

and here, we note that $\left\lfloor x p^{e}\right\rfloor p \leq\left\lfloor x p^{e+1}\right\rfloor$ and $\left\lceil x p^{e}\right\rceil p \geq\left\lceil x p^{e+1}\right\rceil$. Therefore, the sequence $\left\{C_{e,\left\lfloor x p^{e}\right\rfloor-1}\right\}_{e}$ is decreasing, the sequence $\left\{C_{e,\left\lceil x p^{e}\right\rceil}\right\}_{e}$ is increasing, and $C_{e,\left\lfloor x p^{e}\right\rfloor-1} \geq C_{e,\left\lceil x p^{e}\right\rceil}$ for all $e \geq 0$ by Eq. (2.1). Consequently, the limits $\lim _{e \rightarrow \infty} C_{e,\left\lfloor x p^{e}\right\rfloor-1}$ and $\lim _{e \rightarrow \infty} C_{e,\left\lceil x p^{e}\right\rceil}$ exist in \mathbf{R}. In particular,

$$
\begin{equation*}
C_{e,\left\lfloor\alpha p^{e}\right\rfloor-1} \geq \lim _{e \rightarrow \infty} C_{e,\left\lfloor\alpha p^{e}\right\rfloor-1} \geq \xi_{f}(\alpha) \geq \lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil} \geq C_{e,\left\lceil\alpha p^{e}\right\rceil} \geq 0 \tag{2.4}
\end{equation*}
$$

holds for any $\alpha \in(0,1]$ and e satisfying $\left\lfloor\alpha p^{e}\right\rfloor-1 \geq 0$.
Lemma 2. We set $\bar{C}(\alpha)=\lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil}$ for $\alpha \in[0,1]$ and $\underline{C}(\beta)=$ $\lim _{e \rightarrow \infty} C_{e,\left\lfloor\beta p^{e}\right\rfloor-1}$ for $\beta \in(0,1]$.

1) For $\alpha \in[0,1]$ and any integer $i \geq 0,\left\{C_{\left.e+1,\left\lceil\alpha p^{e}\right\rceil p+i\right\}_{e} \text { is an increasing sequence. }}^{\text {. }}\right.$ The limits $\lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+i}$ and $\lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil+k}$ exist for any non-negative integers $i, k \geq 0$. Furthermore,

$$
\begin{equation*}
\bar{C}(\alpha)=\lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+i}=\lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil+k} \tag{2.5}
\end{equation*}
$$

holds.
2) For $\beta \in(0,1]$ and any integer $i>0,\left\{C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-i}\right\}_{e}$ is a decreasing sequence. The limits $\lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-i}$ and $\lim _{e \rightarrow \infty} C_{e,\left\lfloor\beta p^{e}\right\rfloor-k}$ exist for any positive integers $i, k>0$. Furthermore,

$$
\begin{equation*}
\underline{C}(\beta)=\lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-i}=\lim _{e \rightarrow \infty} C_{e,\left\lfloor\beta p^{e}\right\rfloor-k} \tag{2.6}
\end{equation*}
$$

holds.
Proof. Let $\alpha \in[0,1]$ and $\beta \in(0,1]$, and let $k \geq 0$ and $\ell>0$ be integers. We know

$$
\left\{\begin{array}{l}
\left(\left\lceil\alpha p^{e}\right\rceil p+k\right) p=\left\lceil\alpha p^{e}\right\rceil p^{2}+k p \geq\left\lceil\alpha p^{e+1}\right\rceil p+k p \geq\left\lceil\alpha p^{e+1}\right\rceil p+k, \\
\left(\left\lfloor\beta p^{e}\right\rfloor p-\ell\right) p+(p-1) \leq\left\lfloor\beta p^{e}\right\rfloor p^{2}-\ell p+(p-1) \ell \leq\left\lfloor\beta p^{e+1}\right\rfloor p-\ell
\end{array}\right.
$$

and therefore

$$
\left\{\begin{array}{l}
C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+k} \leq C_{e+2,\left(\left\lceil\alpha p^{e}\right\rceil p+k\right) p} \leq C_{e+2,\left\lceil\alpha p^{e+1}\right\rceil p+k} \leq \lim _{e \rightarrow \infty} C_{e, 0}, \\
C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-\ell} \geq C_{e+2,\left(\left\llcorner\beta p^{e}\right\rfloor p-\ell\right) p+(p-1)} \geq C_{e+2,\left\lfloor\beta p^{e+1}\right\rfloor p-\ell} \geq 0,
\end{array}\right.
$$

by Eq. (2.1) and Lemma 1. Hence, $\left\{C_{e+1,\left\lceil\alpha p^{p}\right\rceil p+k}\right\}_{e}$ is increasing and bounded. $\left\{C_{e+1,\lfloor },\left\lfloor p^{e}\right\rfloor p-\ell\right\}_{e}$ is decreasing and bounded. Therefore, $\lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+k}$ and $\lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-\ell}$ exist.

Next, we shall show that

$$
\begin{equation*}
\bar{C}(\alpha)=\lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+i} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{C}(\beta)=\lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-j} \tag{2.8}
\end{equation*}
$$

hold for any integers $0 \leq i \leq p-1$ and $1 \leq j \leq p$. We have

$$
\left\{\begin{array}{l}
p \times C_{e,\left\lceil\alpha p^{e}\right\rceil}=C_{e+1,\left\lceil\alpha p^{e}\right\rceil p}+C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+1}+\cdots+C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+p-1}, \\
p \times C_{e,\left\lfloor\beta p^{e}\right\rfloor-1}=C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-p}+C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-(p-1)}+\cdots+C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-1},
\end{array}\right.
$$

by Eq. (2.3). Thus, it holds that

$$
\left\{\begin{array}{l}
p \times \lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil}=\lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p}+\cdots+\lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+p-1}, \\
p \times \lim _{e \rightarrow \infty} C_{e,\left\lfloor\beta p^{e}\right\rfloor-1}=\lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-p}+\cdots+\lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-1} .
\end{array}\right.
$$

On the other hand, we have

$$
\left\{\begin{aligned}
& \lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil}= \lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p} \geq \lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+1} \\
& \geq \cdots \geq \lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+p-1}, \\
& \lim _{e \rightarrow \infty} C_{e,\left\lfloor\beta p^{e}\right\rfloor-1}=\lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-1} \leq \lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-2} \\
& \leq \cdots \leq \lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-p},
\end{aligned}\right.
$$

since $C_{e,\left\lceil\alpha p^{e}\right\rceil} \leq C_{e+1,\left\lceil\alpha p^{e}\right\rceil p} \leq C_{e+1,\left\lceil\alpha p^{e+1}\right\rceil}$ and $C_{e,\left\lfloor\beta p^{e}\right\rfloor-1} \geq C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-1} \geq$ $C_{e+1,\left\lfloor\beta p^{e+1}\right\rfloor-1}$. Consequently, we have Eq. (2.7) and Eq. (2.8).

In order to complete the proof of the assertion 1), we have the inequalities

$$
\begin{aligned}
C_{e,\left\lceil\alpha p^{e}\right\rceil+k} & \leq C_{e+1,\left(\left\lceil\alpha p^{e}\right\rceil+k\right) p} \\
& =C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+k p} \\
& \leq C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+k} \\
& \leq C_{e+1,\left\lceil\alpha p^{e+1}\right\rceil+k}
\end{aligned}
$$

for any $k \geq 1$. Hence,

$$
\lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil+k}=\lim _{e \rightarrow \infty} C_{e+1,\left\lceil\alpha p^{e}\right\rceil p+k}
$$

holds. Therefore, we obtain Eq. (2.5).

In order to complete the proof of the assertion 2), we have the inequalities

$$
\begin{aligned}
C_{e,\left\lfloor\beta p^{e}\right\rfloor-k} & \geq C_{e+1,}\left(\left\lfloor\beta p^{e}\right\rfloor-k\right) p+p-1 \\
& =C_{e+1}\left\lfloor\left\langle\beta p^{e}\right\rfloor p-(k-1) p-1\right. \\
& \geq C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-k} \\
& \geq C_{e+1,\left\lfloor\beta p^{e+1}\right\rfloor-k}
\end{aligned}
$$

for any $k \geq 2$. Hence,

$$
\lim _{e \rightarrow \infty} C_{e,\left\lfloor\beta p^{e}\right\rfloor-k}=\lim _{e \rightarrow \infty} C_{e+1,\left\lfloor\beta p^{e}\right\rfloor p-k}
$$

holds. Therefore, we obtain Eq. (2.6).
Proposition 1. 1) For $\alpha \in[0,1), \lim _{x \rightarrow \alpha+0} \xi_{f}(x)=\lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil}$ holds.
2) For $\beta \in(0,1], \lim _{x \rightarrow \beta-0} \xi_{f}(x)=\lim _{e \rightarrow \infty} C_{e,\left\lfloor\beta p^{e}\right\rfloor-1}$ holds.

In particular, we have

$$
\left\{\begin{array}{l}
\lim _{x \rightarrow+0} \xi_{f}(x)=\lim _{e \rightarrow \infty} C_{e, 0}=\xi_{f}(0) \\
\lim _{x \rightarrow 1-0} \xi_{f}(x)=\lim _{e \rightarrow \infty} C_{e, p^{e}-1}=\xi_{f}(1)
\end{array}\right.
$$

that is to say that $\xi_{f}(x)$ is continuous at $x=0$ and 1.
Proof. 1) First, we show $\lim _{x \rightarrow \alpha+0} \xi_{f}(x) \leq \lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil \text {. Take } x_{0}>\alpha \text {. For }}$ a large enough number e^{\prime}, we may assume that $\alpha p^{e^{\prime}} \leq x_{0} p^{e^{\prime}}-2$ holds. Then, $\left\lceil\alpha p^{e^{\prime}}\right\rceil \leq$ $\left\lfloor x_{0} p^{e^{\prime}}\right\rfloor-1$. Hence, by Eq. (2.1) and Eq. (2.4),

$$
\xi_{f}\left(x_{0}\right) \leq C_{e^{\prime},\left\lfloor x_{0} p^{\left.e^{\prime}\right\rfloor-1}\right.} \leq C_{e^{\prime},\left\lceil\alpha p^{\left.e^{\prime}\right\rceil}\right.} \leq \lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil},
$$

as desired.
Next, we shall show the opposite inequality. By Lemma 2 1), we have only to show that

$$
\lim _{x \rightarrow \alpha+0} \xi_{f}(x) \geq \lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil+1} .
$$

For any $e \geq 0, \alpha<\frac{\left\lceil\alpha p^{e}\right\rceil+1}{p^{e}}$. Hence, there exists a real number $x_{1} \in \mathbf{R}$ such that $\alpha<x_{1}<$ $\frac{\left\lceil\alpha p^{e}\right\rceil+1}{p^{e}}$. Then $\left\lceil x_{1} p^{e}\right\rceil \leq\left\lceil\alpha p^{e}\right\rceil+1$, and therefore

$$
\lim _{x \rightarrow \alpha+0} \xi_{f}(x) \geq \xi_{f}\left(x_{1}\right) \geq C_{e,\left\lceil x_{1} p^{e}\right\rceil} \geq C_{e,\left\lceil\alpha p^{e}\right\rceil+1}
$$

for any $e \geq 0$ because we have Eq. (2.1) and Eq. (2.4), and $\xi_{f}(x)$ is decreasing. Consequently,

$$
\lim _{x \rightarrow \alpha+0} \xi_{f}(x) \geq \lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil+1},
$$

as desired.
2) It is proved in the same way as 1).

Remark 5. From Eq. (2.1), we have

$$
C_{e,\left\lfloor\alpha p^{e}\right\rfloor-1} \geq \xi_{f, e}(\alpha)=C_{e,\left\lfloor\alpha p^{e}\right\rfloor} \geq C_{e,\left\lceil\alpha p^{e}\right\rceil}
$$

for any $\alpha \in[0,1]$. Hence, if

$$
\lim _{e \rightarrow \infty} C_{e,\left\lfloor\alpha p^{e}\right\rfloor-1}=\lim _{e \rightarrow \infty} C_{e,\left\lceil\alpha p^{e}\right\rceil},
$$

there exists $\lim _{e \rightarrow \infty} \xi_{f, e}(\alpha)$ in \mathbf{R}, and it is equal to $\xi_{f}(\alpha)$.
Corollary 2. If $\xi_{f}(x)$ is continuous at $\alpha \in[0,1]$ then $\lim _{e \rightarrow \infty} \xi_{f, e}(\alpha)$ exists, so that it is equal to $\xi_{f}(\alpha)$.

Proof. The proof is obtained from Remark 5 immediately.
We have just shown Theorem 11).
We obtain the following Corollary 3 immediately from Proposition 1 .
Corollary 3. We define $\varphi_{f}(x)$ by

$$
\varphi_{f}(x)=\int_{0}^{x} \xi_{f}(t) d t
$$

for $x \in[0,1]$. Then we have the followings.

1) $\varphi_{f}(x)$ is differentiable at 0 , and $\varphi_{f}^{\prime}(0)=\xi_{f}(0)=\lim _{e \rightarrow \infty} C_{e, 0}=e_{H K}(R /(f))$.
2) $\varphi_{f}(x)$ is differentiable at 1 , and $\varphi_{f}^{\prime}(1)=\xi_{f}(1)=\lim _{e \rightarrow \infty} C_{e, p^{e}-1}$.

Set $\mu_{f}\left(p^{e}\right)=\min \left\{t \geq 0 \mid f^{t} \in \mathfrak{m}^{\left[p^{e}\right]}\right\}$ for each $e \geq 0$. Since $f^{\mu_{f}\left(p^{e}\right)} \in \mathfrak{m}^{\left[p^{e}\right]}$, $f^{\mu_{f}\left(p^{e}\right) p} \in \mathfrak{m}^{\left[p^{e+1}\right]}$. Hence $\mu_{f}\left(p^{e}\right) p \geq \mu_{f}\left(p^{e+1}\right)$, and so

$$
1 \geq \frac{\mu_{f}\left(p^{e}\right)}{p^{e}} \geq \frac{\mu_{f}\left(p^{e+1}\right)}{p^{e+1}} \geq 0
$$

Since $\left\{\frac{\mu_{f}\left(p^{e}\right)}{p^{e}}\right\}_{e \geq 0}$ is decreasing and bounded below, the limit $\lim _{e \rightarrow \infty} \frac{\mu_{f}\left(p^{e}\right)}{p^{e}}$ exists in \mathbf{R}, and it is called the F-pure threshold of f, denoted by $\operatorname{fpt}(f)$. It is easy to see that $\operatorname{fpt}(f) \in(0,1]$, and $\operatorname{fpt}(f)=1$ if and only if $\mu_{f}\left(p^{e}\right)=p^{e}$ for any $e \geq 1$.

Lemma 3. $C_{e, t}=0$ if and only if $t \geq \mu_{f}\left(p^{e}\right)$.
Proof. If $M_{e, t}=0$, then $M_{e, t}=M_{e, t+1}=M_{e, t+2}=\cdots=M_{e, p^{e}}=0$. Hence, $f^{t} \in \mathfrak{m}^{\left[p^{e}\right]}$, and so $t \geq \mu_{f}\left(p^{e}\right)$. Conversely if $t \geq \mu_{f}\left(p^{e}\right)$, then $f^{t} \in \mathfrak{m}^{\left[p^{e}\right]}$ holds.

We start to prove Theorem 1. The assertion 1) follows from Proposition 1. The assertion 2) follows from Corollary 2. The first half of 3) follows from the definition of $C_{e, 0}$. Now, we shall show 4).

Proof. First, we check that

$$
\inf \left\{\alpha \in[0,1] \mid \xi_{f}(\alpha)=0\right\} \leq \operatorname{fpt}(f)
$$

If $\operatorname{fpt}(f)=1$, then the assertion is easy. Assume $\operatorname{fpt}(f)<1$. Let $1>\alpha>\operatorname{fpt}(f)$. Since $\operatorname{fpt}(f)=\inf _{e \geq 0}\left\{\frac{\mu_{f}\left(p^{e}\right)}{p^{e}}\right\}$,

$$
\operatorname{fpt}(f) \leq \frac{\mu_{f}\left(p^{e_{1}}\right)}{p^{e_{1}}}<\alpha
$$

holds for $e_{1} \gg 0$. Then, it holds that

$$
\begin{aligned}
\xi_{f}(\alpha) & \leq \xi_{f}\left(\frac{\mu_{f}\left(p^{e_{1}}\right)}{p^{e_{1}}}\right) \\
& =\limsup _{e \rightarrow \infty} C_{e,\left\lfloor\frac{\mu_{f}\left(p^{e_{1}}\right)}{p^{e_{1}}} p^{e}\right\rfloor} \\
& =0
\end{aligned}
$$

because, by Lemma 3,

$$
C_{e_{1}+s, \mu_{f}\left(p^{e_{1}}\right) p^{s}} \leq C_{e_{1}+s, \mu_{f}\left(p^{e_{1}+s}\right)}=0
$$

for any integers $s \geq 0$. Therefore, $\xi_{f}(\alpha)=0$ for all $\alpha>\operatorname{fpt}(f)$, as desired. Conversely, suppose $\alpha<\operatorname{fpt}(f)$. Hence, we have $(\operatorname{fpt}(f)-\alpha) p^{e^{\prime}} \geq 1$ for $e^{\prime} \gg 0$, and therefore $\alpha p^{e^{\prime}} \leq$ $\operatorname{fpt}(f) p^{e^{\prime}}-1$. Then, since we have

$$
\alpha \leq \frac{\operatorname{fpt}(f) p^{e^{\prime}}-1}{p^{e^{\prime}}}<\frac{\operatorname{fpt}(f) p^{e^{\prime}}}{p^{e^{\prime}}}=\operatorname{fpt}(f) \leq \frac{\mu_{f}\left(p^{e^{\prime}}\right)}{p^{e^{\prime}}},
$$

we obtain

$$
\alpha \leq \frac{\mu_{f}\left(p^{e^{\prime}}\right)-1}{p^{e^{\prime}}} .
$$

Therefore,

$$
\xi_{f}(\alpha) \geq \xi_{f}\left(\frac{\mu_{f}\left(p^{e^{\prime}}\right)-1}{p^{e^{\prime}}}\right) \underset{\text { by Eq. (2.4) }}{\geq} \lim _{e \rightarrow \infty} C_{e,\left\lceil\frac{\mu_{f}\left(p^{\left.e^{\prime}\right)-1}\right.}{p^{e^{\prime}}} p^{e}\right\rceil}
$$

holds. We have $C_{e^{\prime}, \mu_{f}\left(p^{e^{\prime}}\right)-1} \neq 0$ by Lemma 3. Since $\left\{C_{e,\left\lceil\frac{\mu_{f}\left(p^{\prime}\right)-1}{p^{e^{\prime}}} p^{e}\right\rceil}\right\}_{e \geq 0}$ is an increasing sequence, we obtain $\lim _{e \rightarrow \infty} C_{e,\left\lceil\frac{\mu_{f}\left(p^{\rho^{\prime}}\right)-1}{p^{e^{\prime}}} p^{e}\right\rceil}>0$. Therefore, $\xi_{f}(\alpha)>0$ for all α such that $\alpha<\operatorname{fpt}(f)$, as desired.

Next, we shall show 5).

Proof. Let $F=\left\{\left.\alpha \in\left[\frac{a}{p^{e}}, \frac{a+1}{p^{e}}\right] \right\rvert\, \alpha\right.$ is a discontinuity for $\left.\xi_{f}(x)\right\}$ and $\Omega=$ $\left[\frac{a}{p^{e}}, \frac{a+1}{p^{e}}\right]-F$. Recall that F is a countable set, and $\lim _{s \rightarrow \infty} \xi_{f, s}(\alpha)=\xi_{f}(\alpha)$ for any $\alpha \in \Omega$ by Theorem 1 1), 2). Then, we have

$$
\begin{aligned}
\int_{\frac{a}{p^{e}}}^{\frac{a+1}{p^{e}}} \xi_{f}(x) d x & =\int_{\Omega} \xi_{f}(x) d x \\
& =\int_{\Omega} \lim _{s \rightarrow \infty} \xi_{f, s}(x) d x \\
& =\lim _{s \rightarrow \infty} \int_{\Omega} \xi_{f, s}(x) d x \\
& =\lim _{s \rightarrow \infty} \int_{\frac{a}{p^{e}}}^{\frac{a+1}{p^{e}}} \xi_{f, s}(x) d x \\
& =\frac{1}{p^{e}} C_{e, a}
\end{aligned}
$$

by Lebegue's dominated convergence theorem, as desired.
We shall show 6).
Proof. Let $g, h: \mathbf{N} \rightarrow \mathbf{R}$ be functions. If there exists a positive constant C such that $|h(n)| \leq C g(n)$ for $n \gg 0$, then we write $h(n)=O(g(n))$. If $R /(f)$ is normal, then there exists $\beta(R /(f)) \in \mathbf{R}$ such that

$$
e_{H K}(R /(f)) p^{n e}+\beta(R /(f)) p^{(n-1) e}=\ell_{R}\left(M_{e, 0}\right)+O\left(p^{(n-2) e}\right)
$$

by Huneke-McDermott-Monsky [8]. Since a hypersurface is Gorenstein, $\beta(R /(f))=0$ follows from Corollary 1.4 in Kurano [10]. Therefore, we have

$$
\begin{equation*}
e_{H K}(R /(f)) p^{n e}=\ell_{R}\left(M_{e, 0}\right)+O\left(p^{(n-2) e}\right) \tag{2.9}
\end{equation*}
$$

First, we shall show that

$$
\left|\frac{\xi_{f}\left(\frac{1}{p^{s}}\right)-\xi_{f}(0)}{\frac{1}{p^{s}}}\right| \rightarrow 0(s \rightarrow \infty)
$$

Since the sequence $\left\{C_{s+i, p^{i}}\right\}_{i \geq 0}$ is increasing, we have

$$
\xi_{f}\left(\frac{1}{p^{s}}\right)=\underset{e \rightarrow \infty}{\limsup } C_{e,\left\lfloor p^{e-s}\right\rfloor} \geq C_{s, 1} .
$$

Hence, we obtain

$$
\left|\frac{\xi_{f}\left(\frac{1}{p^{s}}\right)-\xi_{f}(0)}{\frac{1}{p^{s}}}\right|=\frac{\xi_{f}(0)-\xi_{f}\left(\frac{1}{p^{s}}\right)}{\frac{1}{p^{s}}} \leq \frac{\xi_{f}(0)-C_{s, 1}}{\frac{1}{p^{s}}} .
$$

Set $\lambda_{i}(e)=e_{H K}(R /(f)) p^{e n}-\ell_{R}\left(M_{e, i}\right)$ for each $e \geq 0$ and $0 \leq i \leq p-1$. Note that

$$
0 \leq \lambda_{0}(e) \leq \lambda_{1}(e) \leq \cdots \leq \lambda_{p-1}(e)
$$

Since we have,

$$
p \times \frac{\ell_{R}\left(M_{s-1,0}\right)}{p^{(s-1) n}}=\frac{\ell_{R}\left(M_{s, 0}\right)}{p^{s n}}+\frac{\ell_{R}\left(M_{s, 1}\right)}{p^{s n}}+\cdots+\frac{\ell_{R}\left(M_{s, p-1}\right)}{p^{s n}}
$$

for any $s \geq 1$ by Eq. (2.3), then we obtain

$$
p \times \frac{\lambda_{0}(s-1)}{p^{(s-1) n}}=\frac{\lambda_{0}(s)}{p^{s n}}+\frac{\lambda_{1}(s)}{p^{s n}}+\cdots+\frac{\lambda_{p-1}(s)}{p^{s n}} .
$$

Hence, since

$$
p \times \frac{\lambda_{0}(s-1)}{p^{(s-1) n}} \geq \frac{\lambda_{1}(s)}{p^{s n}},
$$

it holds that

$$
p^{2} \times \frac{\lambda_{0}(s-1)}{p^{(s-1)(n-1)}} \geq \frac{\lambda_{1}(s)}{p^{s(n-1)}} \geq 0
$$

Therefore,

$$
\begin{aligned}
\frac{\xi_{f}(0)-C_{s, 1}}{\frac{1}{p^{s}}} & =\frac{p^{s}}{p^{s n}}\left(e_{H K}(R /(f)) p^{s n}-C_{s, 1} \times p^{s n}\right) \\
& =\frac{\lambda_{1}(s)}{p^{s(n-1)}} \\
& \leq p^{2} \times \frac{\lambda_{0}(s-1)}{p^{(s-1)(n-1)}} \\
& =\frac{p^{2}}{p^{s-1}} \times \frac{\lambda_{0}(s-1)}{p^{(s-1)(n-2)}} \\
& \rightarrow 0 \quad(s \rightarrow \infty)
\end{aligned}
$$

by Eq. (2.9). Consequently, for any positive real number $\varepsilon>0$, there exists a natural number $s_{0} \in \mathbf{N}$ such that $s \geq s_{0}$ implies that

$$
\left|\frac{\xi_{f}\left(\frac{1}{p^{s}}\right)-\xi_{f}(0)}{\frac{1}{p^{s}}}\right|<\frac{\varepsilon}{p}
$$

Let $\delta=\frac{1}{p^{s_{0}}}$. If $0<x<\delta$, then there exists $s \in \mathbf{N}$ such that

$$
\frac{1}{p^{s+1}}<x<\frac{1}{p^{s}} \leq \frac{1}{p^{s_{0}}} .
$$

Therefore,

$$
\begin{aligned}
\left|\frac{\xi_{f}(x)-\xi_{f}(0)}{x}\right| & =\frac{\xi_{f}(0)-\xi_{f}(x)}{x} \\
& \leq \frac{\xi_{f}(0)-\xi_{f}\left(\frac{1}{p^{s}}\right)}{\frac{1}{p^{s+1}}} \\
& \leq p \times \frac{\varepsilon}{p} \\
& =\varepsilon
\end{aligned}
$$

as desired.
Finally, we shall prove the last half of 3).
Definition 4. Let (S, \mathfrak{n}) be a $(d+1)$-dimensional regular local ring. Let $0 \neq \alpha \in \mathfrak{n}$. The pair (ρ, σ) is called a matrix factorization of the element α if all of the following conditions are satisfied:
(1) $\rho: G \rightarrow F$ and $\sigma: F \rightarrow G$ are S-homomorphisms, where F and G are finitely generated S-free modules, and $\operatorname{rank}_{S} F=\operatorname{rank}_{S} G$.
(2) $\rho \circ \sigma=\alpha \cdot i d_{F}$.
(3) $\sigma \circ \rho=\alpha \cdot i d_{G}$.

Actually, if either (2) or (3) is satisfied, the other is satisfied.
DEFinition 5. Let (S, \mathfrak{n}) be a $(d+1)$-dimensional regular local ring, and let $0 \neq \alpha \in$ \mathfrak{n}. Let (ρ, σ) and $\left(\rho^{\prime}, \sigma^{\prime}\right)$ be matrix factorizations of α. We regard ρ and σ as $r \times r$ matrices with entries in S, and ρ^{\prime} and σ^{\prime} as $r^{\prime} \times r^{\prime}$ matrices with entries in S. Then, we write

$$
(\rho, \sigma) \oplus\left(\rho^{\prime}, \sigma^{\prime}\right)=\left(\left(\begin{array}{cc}
\rho & 0 \\
0 & \rho^{\prime}
\end{array}\right),\left(\begin{array}{cc}
\sigma & 0 \\
0 & \sigma^{\prime}
\end{array}\right)\right)
$$

which is a matrix factorization of α.
Definition 6. Let (S, \mathfrak{n}) be a $(d+1)$-dimensional regular local ring, and let $0 \neq \alpha \in$ \mathfrak{n}. A matrix factorization (ρ, σ) of α is called reduced if all the entries of ρ and σ are in \mathfrak{n}.

REMARK 6. Let (S, \mathfrak{n}) be a $(d+1)$-dimensional regular local ring, and let $0 \neq \alpha \in \mathfrak{n}$. Let the map $\alpha: S \rightarrow S$ be multiplication by $\alpha \in \mathfrak{n}$ on S. If (ρ, σ) is a matrix factorization of $\alpha \in \mathfrak{n}$, then we can write

$$
(\rho, \sigma) \simeq\left(\alpha, i d_{S}\right)^{\oplus v} \oplus\left(i d_{S}, \alpha\right)^{\oplus u} \oplus\left(\gamma_{1}, \gamma_{2}\right)
$$

where v and u are some integers, and $\left(\gamma_{1}, \gamma_{2}\right)$ is reduced. Therefore,

$$
\begin{aligned}
\operatorname{cok}(\rho) & \simeq \operatorname{cok}(\alpha)^{\oplus v} \oplus \operatorname{cok}\left(i d_{S}\right)^{\oplus u} \oplus \operatorname{cok}\left(\gamma_{1}\right) \\
& \simeq(S /(\alpha))^{\oplus v} \oplus \operatorname{cok}\left(\gamma_{1}\right) .
\end{aligned}
$$

It is known that $\operatorname{cok}\left(\gamma_{1}\right)$ has no free direct summands if $\left(\gamma_{1}, \gamma_{2}\right)$ is reduced ([6], Corollary 6.3). Consequently, v is equal to the largest rank of a free $S /(\alpha)$-module appearing as a direct summand of $\operatorname{cok}(\rho)$.

Let $F^{e}: R \rightarrow F_{*}^{e} R$ be the e-th Frobenius map. Consider the map $f: F_{*}^{e} R \rightarrow$ $F_{*}^{e} R$. We have $f=F_{*}^{e}\left(f^{p^{e}}\right)=F_{*}^{e}(f) \cdot F_{*}^{e}\left(f^{p^{e}-1}\right)=F_{*}^{e}\left(f^{p^{e}-1}\right) \cdot F_{*}^{e}(f)$. Therefore, $\left(F_{*}^{e}(f), F_{*}^{e}\left(f^{p^{e}-1}\right)\right)$ is a matrix factorization. We put

$$
\left(F_{*}^{e}(f), F_{*}^{e}\left(f^{p^{e}-1}\right)\right)=\left(f, i d_{R}\right)^{\oplus v_{e}} \oplus\left(i d_{R}, f\right)^{\oplus u_{e}} \oplus(\text { reduced }) .
$$

By Remark 6 this implies that v_{e} is the number of $R /(f)$ appearing as the direct summand of $\frac{F_{*}^{e} R}{F_{*}^{e}(f)\left(F_{*}^{e} R\right)}=F_{*}^{e}(R /(f))$. That is, $\lim _{e \rightarrow \infty} \frac{v_{e}}{p^{e n}}$ is the F-signature of $R /(f)$, denoted by $s(R /(f))$.

PROPOSITION 2. $v_{e}=\ell_{R}\left(M_{e, p^{e}-1}\right)$.
Proof. We can regard the map $F_{*}^{e}\left(f^{p^{e}-1}\right): F_{*}^{e} R \longrightarrow F_{*}^{e} R$ as a $p^{(n+1) e} \times p^{(n+1) e}$ matrix A with entries in R;

$$
A=\left(\begin{array}{l|ll|l}
\boldsymbol{I}_{v_{e}} & & & \\
& & f & \\
\\
& & \ddots & \\
& & & f
\end{array}\right)
$$

where $I_{v_{e}}$ is the identity matrix of size v_{e}, and B is a matrix with entries in \mathfrak{m}. Therefore, we have

$$
v_{e}=\operatorname{dim}_{R / \mathfrak{m}}\left(\operatorname{Im}\left(R / \mathfrak{m} \otimes F_{*}^{e}\left(f^{p^{e}-1}\right)\right)\right)=\operatorname{dim}_{R / \mathfrak{m}}\left(\frac{\left(f^{p^{e}-1}\right)+\mathfrak{m}^{\left[p^{e}\right]}}{\mathfrak{m}^{\left[p^{e}\right]}}\right)=\ell_{R}\left(M_{e, p^{e}-1}\right) .
$$

We completed a proof of Theorem 1.

REmARK 7. Let (S, \mathfrak{n}, k) be a complete regular local ring of characteristic $p>0$. Suppose that k is perfect. Let I be an ideal of S, and put $\bar{S}=S / I$. Suppose that a_{e} is equal to the largest rank of a free \bar{S}-module appearing in a direct summand of $F_{*}^{e} \bar{S}$. Then it is known that

$$
a_{e}=\operatorname{dim}_{k} \frac{\left(I^{\left[p^{e}\right]}: I\right)+\mathfrak{m}^{\left[p^{e}\right]}}{\mathfrak{m}^{\left[p^{e}\right]}}
$$

by Fedder's lemma (see [1]). If $I=(f)$, then

$$
a_{e}=\operatorname{dim}_{k} \frac{\left(f^{p^{e}-1}\right)+\mathfrak{m}^{\left[p^{e}\right]}}{\mathfrak{m}^{\left[p^{e}\right]}}
$$

3. Examples

Let $f=X_{1}^{\alpha_{1}} X_{2}^{\alpha_{2}} \ldots X_{n+1}^{\alpha_{n+1}}$ and $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n+1}$. We set $\left(\underline{X}^{p^{e}}\right)=$ $\left(X_{1}^{p^{e}}, X_{2}^{p^{e}}, \ldots, X_{n+1}^{p^{e}}\right)$ for $e \geq 0$. By Theorem 2.1 in Conca [5], we know that there exists a polynomial $P(y) \in \mathbf{Z}[y]$ such that

$$
\ell_{R}\left(\frac{R}{\left(f^{t}\right)+\left(\underline{X}^{p^{e}}\right)}\right)=P\left(p^{e}\right)
$$

for all $p^{e} \geq \alpha_{n+1}$. In fact, since the sequence

$$
0 \longrightarrow \frac{\left(f^{t}\right)+\left(\underline{X}^{p^{e}}\right)}{\left(\underline{X}^{p^{e}}\right)} \longrightarrow \frac{R}{\left(\underline{X}^{p^{e}}\right)} \longrightarrow \frac{R}{\left(f^{t}\right)+\left(\underline{X}^{p^{e}}\right)} \longrightarrow 0
$$

is exact, we have

$$
\ell_{R}\left(\frac{R}{\left(f^{t}\right)+\left(\underline{X}^{p^{e}}\right)}\right)= \begin{cases}p^{e(n+1)}-\prod_{j=1}^{n+1}\left(p^{e}-t \alpha_{j}\right) & \left(\text { if } t \alpha_{n+1}<p^{e}\right) \\ p^{e(n+1)} & (\text { otherwise })\end{cases}
$$

On the other hand, we have an exact sequence

$$
0 \longrightarrow M_{e, t} \longrightarrow \frac{R}{\left(f^{t+1}\right)+\left(\underline{X}^{p^{e}}\right)} \longrightarrow \frac{R}{\left(f^{t}\right)+\left(\underline{X}^{p^{e}}\right)} \longrightarrow 0
$$

for any $t \geq 0$. Therefore, we have

$$
\ell_{R}\left(M_{e, t}\right)= \begin{cases}0 & \left(\frac{p^{e}}{\alpha_{n+1}} \leq t\right) \tag{3.1}\\ \prod_{j=1}^{n+1}\left(p^{e}-t \alpha_{j}\right) & \left(\frac{p^{e}}{\alpha_{n+1}}-1 \leq t<\frac{p^{e}}{\alpha_{n+1}}\right), \\ \prod_{j=1}^{n+1}\left(p^{e}-t \alpha_{j}\right)-\prod_{j=1}^{n+1}\left(p^{e}-(t+1) \alpha_{j}\right) & \left(t<\frac{p^{e}}{\alpha_{n+1}}-1\right)\end{cases}
$$

If $t<\frac{p^{e}}{\alpha_{n+1}}-1$,

$$
\begin{aligned}
\ell_{R}\left(M_{e, t}\right) & =\prod_{j=1}^{n+1}\left(p^{e}-t \alpha_{j}\right)-\prod_{j=1}^{n+1}\left(p^{e}-(t+1) \alpha_{j}\right) \\
& =\sum_{j=1}^{n+1}(-1)^{j} t^{j} \beta_{j} p^{e(n+1-j)}-\sum_{j=1}^{n+1}(-1)^{j}(t+1)^{j} \beta_{j} p^{e(n+1-j)} \\
& =\sum_{j=1}^{n+1}(-1)^{j+1}\left(\sum_{i=0}^{j-1}\binom{j}{i} t^{i}\right) \beta_{j} p^{e(n+1-j)},
\end{aligned}
$$

where β_{j} denotes the elementary symmetric polynomial of degree j in $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}$. Hence

$$
C_{e, t}=\frac{\ell_{R}\left(M_{e, t}\right)}{p^{e n}}=\sum_{j=1}^{n+1}(-1)^{j+1}\left(\sum_{i=0}^{j-1}\binom{j}{i} \frac{t^{i}}{p^{e(j-1)}}\right) \beta_{j}
$$

holds. We shall calculate $\xi_{f}(x)$. If $x<\frac{1}{\alpha_{n+1}}$, then $\left\lfloor x p^{e}\right\rfloor<\frac{p^{e}}{\alpha_{n+1}}-1$ for $e \gg 0$. Then,

$$
C_{e,\left\lfloor x p^{e}\right\rfloor}=\sum_{j=1}^{n+1}(-1)^{j+1}\left(\sum_{i=0}^{j-1}\binom{j}{i} \frac{\left\lfloor x p^{e}\right\rfloor^{i}}{p^{e(j-1)}}\right) \beta_{j} .
$$

Since $x p^{e}-1 \leq\left\lfloor x p^{e}\right\rfloor \leq x p^{e}$, we have

$$
\lim _{e \rightarrow \infty} \frac{\left\lfloor x p^{e}\right\rfloor^{a}}{p^{e b}}= \begin{cases}x^{a} & (\text { if } a=b) \\ 0 & (\text { if } a<b)\end{cases}
$$

Consequently,

$$
\begin{equation*}
\xi_{f}(x)=\beta_{1}-2 \beta_{2} x+3 \beta_{3} x^{2}-\cdots+(-1)^{n}(n+1) \beta_{n+1} x^{n} \tag{3.2}
\end{equation*}
$$

holds for $0 \leq x<\frac{1}{\alpha_{n+1}}$. In particular, $e_{H K}(R /(f))=\xi_{f}(0)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n+1}$. By Eq. (3.1), we have

$$
\begin{equation*}
\xi_{f}(x)=0 \tag{3.3}
\end{equation*}
$$

if $x>\frac{1}{\alpha_{n+1}}$.
Next, we shall calculate $\xi_{f}\left(\frac{1}{\alpha_{n+1}}\right)$. Since $\frac{p^{e}}{\alpha_{n+1}}-1 \leq\left\lfloor\frac{p^{e}}{\alpha_{n+1}}\right\rfloor \leq \frac{p^{e}}{\alpha_{n+1}}$ for any $e \geq 0$,

$$
\begin{aligned}
& \ell\left(M_{e,\left\lfloor\frac{1}{\alpha_{n+1}} p^{e}\right\rfloor}\right) \\
& =\prod_{j=1}^{n+1}\left\{p^{e}-\left\lfloor\frac{p^{e}}{\alpha_{n+1}}\right\rfloor \alpha_{j}\right\} \\
& =\varepsilon_{e} \prod_{j=1}^{n}\left\{p^{e}-\left(p^{e}-\varepsilon_{e}\right) \frac{\alpha_{j}}{\alpha_{n+1}}\right\} \\
& =\varepsilon_{e} \prod_{j=1}^{n}\left\{\left(1-\frac{\alpha_{j}}{\alpha_{n+1}}\right) p^{e}+\frac{\varepsilon_{e}}{\alpha_{n+1}} \alpha_{j}\right\} \\
& =\varepsilon_{e}\left(\frac{1}{\alpha_{n+1}}\right)^{n} \prod_{j=1}^{n}\left\{\left(\alpha_{n+1}-\alpha_{j}\right) p^{e}+\varepsilon_{e} \alpha_{j}\right\} \\
& =\varepsilon_{e}\left(\frac{1}{\alpha_{n+1}}\right)^{n}\left\{p^{e n} \prod_{j=1}^{n}\left(\alpha_{n+1}-\alpha_{j}\right)+\sum_{k=1}^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \delta_{\underline{i}} p^{e(n-k)} \varepsilon_{e}^{k} \alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}\right\} \\
& =\varepsilon_{e}\left(\frac{1}{\alpha_{n+1}}\right)^{n} p^{e n}\left\{\prod_{j=1}^{n}\left(\alpha_{n+1}-\alpha_{j}\right)+\sum_{k=1}^{n} \delta_{k}\left(\frac{\varepsilon_{e}}{p^{e}}\right)^{k}\right\},
\end{aligned}
$$

where $\varepsilon_{e} \equiv p^{e}\left(\bmod \alpha_{n+1}\right)$ such that $0 \leq \varepsilon_{e}<\alpha_{n+1}$, and

$$
\begin{aligned}
& \delta_{\underline{i}}=\prod_{j \neq i_{1}, i_{2}, \ldots, i_{k}}\left(\alpha_{n+1}-\alpha_{j}\right), \\
& \delta_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \delta_{\underline{i}} \alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}} .
\end{aligned}
$$

Hence,

$$
C_{e,\left\lfloor\frac{1}{\alpha_{n+1}} p^{e}\right\rfloor}=\varepsilon_{e}\left(\frac{1}{\alpha_{n+1}}\right)^{n}\left\{\prod_{j=1}^{n}\left(\alpha_{n+1}-\alpha_{j}\right)+\sum_{k=1}^{n} \delta_{k}\left(\frac{\varepsilon_{e}}{p^{e}}\right)^{k}\right\},
$$

and therefore

$$
\begin{equation*}
\limsup _{e \rightarrow \infty} C_{e,\left\lfloor\frac{1}{\alpha_{n+1}} p^{e}\right\rfloor}=\left(\limsup _{e \rightarrow \infty} \varepsilon_{e}\right)\left(\frac{1}{\alpha_{n+1}}\right)^{n} \prod_{j=1}^{n}\left(\alpha_{n+1}-\alpha_{j}\right) . \tag{3.4}
\end{equation*}
$$

We shall examine whether $\lim _{e \rightarrow \infty} \varepsilon_{e}$ exists. Let $\alpha_{n+1}=p^{s} q$, where q is coprime to p, and s is a non-negative integer. If $p \equiv 1(\bmod q)$, then we can find that ε_{e} is constant for any $e \geq s$ by the Chinese remainder theorem. If $p \not \equiv 1(\bmod q)$, then ε_{e} is eventually periodic with period more than 1 .

From the following Proposition 3, we get to know the function $\xi_{f}(x)$.
Proposition 3. Let $f=X_{1}^{\alpha_{1}} X_{2}^{\alpha_{2}} \cdots X_{n+1}^{\alpha_{n+1}}$ with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n+1}$.

1) We have $\operatorname{fpt}(f)=\frac{1}{\alpha_{n+1}}$. If $\alpha_{n+1} \geq 2$, we have $s(R /(f))=0$.
2) $\lim _{x \rightarrow \frac{1}{\alpha_{n+1}}-0} \xi_{f}(x)=\left(\frac{1}{\alpha_{n+1}}\right)^{n-1} \prod_{j=1}^{n}\left(\alpha_{n+1}-\alpha_{j}\right) \geq 0$.
3) The function $\xi_{f}(x)$ is continuous on $[0,1]$ if and only if $\alpha_{n+1}=\alpha_{n}$ holds.
4) Let $\alpha_{n+1}=p^{s} q$, where q is coprime to p, and s is a non-negative integer. The limit $\lim _{e \rightarrow \infty} \xi_{f, e}\left(\frac{1}{\alpha_{n+1}}\right)$ exists if and only if it satisfies that $\alpha_{n+1}=\alpha_{n}$ or $p \equiv 1$ $(\bmod q)$.

Proof. By Eq. (3.2) and Eq. (3.3), we obtain 1) immediately.
Next we shall prove 2). We set

$$
g(x)=\beta_{1}-2 \beta_{2} x+3 \beta_{3} x^{2}-\cdots+(-1)^{n}(n+1) \beta_{n+1} x^{n}
$$

and

$$
h(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n+1}\right) .
$$

Now, since $h(x)=x^{n+1}-\beta_{1} x^{n}+\beta_{2} x^{n-1}-\cdots+(-1)^{n+1} \beta_{n+1}$,

$$
x^{n+1} h\left(\frac{1}{x}\right)=1-\beta_{1} x+\beta_{2} x^{2}-\cdots+(-1)^{n+1} \beta_{n+1} x^{n+1}
$$

Hence, we have the following equation

$$
g(x)=-\left\{x^{n+1} h\left(\frac{1}{x}\right)\right\}^{\prime}=-(n+1) x^{n} h\left(\frac{1}{x}\right)+x^{n-1} h^{\prime}\left(\frac{1}{x}\right) .
$$

Since $h\left(\alpha_{n+1}\right)=0$,

$$
\begin{aligned}
\lim _{x \rightarrow \frac{1}{\alpha_{n+1}}-0} \xi_{f}(x) & =g\left(\frac{1}{\alpha_{n+1}}\right) \\
& =\left(\frac{1}{\alpha_{n+1}}\right)^{n-1} h^{\prime}\left(\alpha_{n+1}\right)
\end{aligned}
$$

$$
=\left(\frac{1}{\alpha_{n+1}}\right)^{n-1} \prod_{j=1}^{n}\left(\alpha_{n+1}-\alpha_{j}\right) \geq 0
$$

The assertion 3) follows from Eq. (3.1), Eq. (3.2) and 2) as above. The assertion 4) follows from Eq. (3.4).

Example 2. If $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n-2}=0$ and $\alpha_{n-1} \neq 0$, the derivative

$$
g^{\prime}(x)=-2\left(\alpha_{n+1} \alpha_{n}+\alpha_{n+1} \alpha_{n-1}+\alpha_{n} \alpha_{n-1}\right)+6 \alpha_{n+1} \alpha_{n} \alpha_{n-1} x .
$$

Let α be the root of $g^{\prime}(x)=0$, that is,

$$
\alpha=\frac{1}{3} \times \frac{\alpha_{n+1} \alpha_{n}+\alpha_{n+1} \alpha_{n-1}+\alpha_{n} \alpha_{n-1}}{\alpha_{n+1} \alpha_{n} \alpha_{n-1}}
$$

Then, we have

$$
\alpha-\frac{1}{\alpha_{n+1}}=\frac{1}{\alpha_{n+1}}\left\{\frac{1}{3}\left(\frac{\alpha_{n+1}}{\alpha_{n-1}}+\frac{\alpha_{n+1}}{\alpha_{n}}+1\right)-1\right\} \geq 0
$$

and so $g^{\prime}(x)<0$ for any $x<\frac{1}{\alpha_{n+1}}$. Moreover, if $\alpha_{n+1} \neq \alpha_{n}$ we obtain $g^{\prime}\left(\frac{1}{\alpha_{n+1}}\right)<0$. The second derivative $g^{\prime \prime}(x)$ is positive for any $x \in \mathbf{R}$. In fact, $g^{\prime \prime}(x)=6 \alpha_{n-1} \alpha_{n} \alpha_{n+1}>0$.

Acknowledgment. This paper was written while the author was a Ph.D student of Meiji University. I would like to express my deepest gratitude to my advisor Prof. Kurano who provided helpful comments and suggestions. I would also like to thank Yuji Kamoi, Akiyoshi Sannai and Kei-ichi Watanabe who gave me invaluable comments and warm encouragements.

References

[1] I. Aberbach and F. Enescu, The structure of F-pure rings, Math. Z. 250 (2005), no. 4, 791-806.
[2] I. Aberbach and G. Leuschke, The F-signature and strongly F-regularity, Math. Res. Lett. 10 (2003), 51-56.
[3] M. Blickle, M. Mustaţă and K. E. Smith, F-thresholds of hypersurfaces, Trans. Amer. Math. Soc. 361 (2009), 6549-6565.
[4] M. Blickle, K. Schwede and K. Tucker, F-signature of pairs: continuity, p-fractals and minimal log discrepancies, J. London Math. Soc. (2) 87 (2013), 802-818.
[5] A. Conca, Hilbert-Kunz function of monomial ideals and binomial hypersurfaces, Manuscripta Math. 90 (1996), 287-300.
[6] D. EISENBUD, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35-64.
[7] C. Huneke and G. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), no. 2, 391-404.
[8] C. Huneke, M. A. McDermott and P. Monsky, Hilbert Kunz functions for normal graded rings, Math. Res. Letters 11 (2004), 539-546.
[9] K. Kunz, On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 999-1013.
[10] K. Kurano, The singular Riemann-Roch theorem and Hilbert-Kunz functions, J. Algebra 304 (2006), 487499.
[11] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43-49.
[12] S. TAKAGI and K.-I. Watanabe, On F-pure thresholds, J. Algebra 282 (2004), 278-297.
[13] K. TUCKER, F-signature exists, Invent. Math. 190 (2012), no. 3, 743-765.
[14] K.-I. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), 295-317.

Present Address:

ICAD LTD.,
2F, Nomura-Fudosan Shibadaimon Bldg., 1-9-9 Shibadaimon, Minato-Ku, Tokyo 105-0012, Japan. e-mail: koske.math@gmail.com

