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Abstract. For a locally compact Hausdorff space X, let C0(X) be the Banach space of continuous complex-
valued functions on X vanishing at infinity endowed with the supremum norm ‖ · ‖X . We show that for locally
compact Hausdorff spaces X and Y and certain (not necessarily closed) subspaces A and B of C0(X) and C0(Y ),
respectively, if T : A −→ B is a surjective map satisfying one of the norm conditions

i) ‖(Tf )s(T g)t‖Y = ‖f sg t‖X ,
or
ii) ‖ |Tf |s + |T g |t ‖Y = ‖ |f |s + |g |t ‖X ,

for some s, t ∈ N and all f, g ∈ A, then there exists a homeomorphism ϕ : ch(B) −→ ch(A) between the Choquet
boundaries of A and B such that |Tf (y)| = |f (ϕ(y))| for all f ∈ A and y ∈ ch(B). We also give a result for the
case where A is closed (or, in general, satisfies a special property called Bishop’s property) and T : A −→ B is a

surjective map satisfying the inclusion Rπ((Tf )s(T g)t ) ⊆ Rπ(f sg t ) of peripheral ranges. As an application, we
characterize such maps between subspaces of the form A1f1 + A2f2 + · · · + Anfn, where for each 1 ≤ i ≤ n, Ai

is a uniform algebra on a compact Hausdorff space X and fi is a strictly positive continuous function on X. Our
results in case (ii) improve similar results in [30], for subspaces rather than uniform algebras, without the additional

assumption that T is R+-homogeneous.

1. Introduction

The study of maps between various Banach algebras preserving the spectrum or the norm
of algebra elements is an active research area in modern Banach algebra theory. It is known
that under certain natural conditions, such maps are forced to be linear or multiplicative. By
the well-known Gleason-Kahane-Żelazko theorem, a linear surjective spectrum-preserving
map T : A −→ B between commutative semisimple Banach algebras is an algebra isomor-
phism. On the other hand, by a result of Kowalski and Słodkowski [17], an arbitrary map
T : A −→ B satisfying T (0) = 0 and σ(T (a) − T (b)) ⊆ σ(a − b), for a, b ∈ A, is
linear and multiplicative. Here σ(·) denotes the spectrum of algebra elements. Another ma-
jor concern is to characterize such maps as weighted composition operators or multiples of
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algebra homomorphisms. Nagasawa [25] and de Leeuw, Rudin and Wermer [19] extended
the Banach-Stone theorem to uniform algebras and show that a surjective linear isometry
T : A −→ B between uniform algebras A and B on compact Hausdorff spaces X and Y ,
respectively, is of the form Tf = w�(f ), f ∈ A, where w is an invertible element in B and
� : A −→ B is an algebra isomorphism.

In [24], Molnár described surjective maps T on C(X), where X is a first countable
compact Hausdorff space, satisfying T (1) = 1 and σ(Tf T g) = σ(f g) for f, g ∈ C(X),
as weighted composition operators of the form Tf = f ◦ ϕ for some homeomorphism
ϕ : X −→ X and so that T is an algebra isomorphism. This result has been extended in
various directions. For instances, generalizations of this result have been given in [7, 26, 27]
for uniform algebras, in [22] for maps between uniform algebras satisfying peripherally
multiplicative condition (rather than multiplicative condition on the spectrum), in [9, 21]
and [30] for maps T between uniform algebras satisfying multiplicative norm condition
‖Tf T g‖Y = ‖f g‖X and those satisfying norm condition ‖|Tf | + |T g|‖Y = ‖|f | + |g|‖X,
respectively. For more results see also [3, 6, 10, 11, 28].

Most recently, in [23] a large number of previous results are obtained for a pair of maps,
not necessarily linear, between multiplicative subsets of function algebras satisfying various
spectral conditions. Related results for a pair of maps, satisfying certain norm conditions,
whose ranges are absolutely multiplicative subsets of uniform algebras, were also given in
[9].

In this paper we first study surjective maps T : A −→ B between certain subspaces A

and B (not necessarily closed) of C0(X) and C0(Y ), for locally compact Hausdorff spaces X

and Y , respectively, satisfying one of the norm conditions
(i) ‖(Tf )s(T g)t‖Y = ‖f sg t‖X,
or
(ii) ‖ |Tf |s + |T g|t ‖Y = ‖ |f |s + |g|t ‖X,

for some s, t ∈ N and all f, g ∈ A. We show that there exists a homeomorphism
ϕ : ch(B) −→ ch(A) such that |Tf | = |f ◦ ϕ| on ch(B), for all f ∈ A. Since A and
B are not assumed to be neither multiplicative nor closed (or complete under some norms),
our results in case (i) generalize the previous results on such maps between uniform alge-
bras or (Banach) function algebras. We should note that the case (ii) has been considered
in [30] for uniform algebras on compact Hausdorff spaces when s = t = 1 and it was
shown that, under the additional assumption that T is R

+-homogenous, there exists a con-
tinuous map τ : ch(A) −→ ch(B) such that the equality |Tf (τ(x))| = |f (x)| holds for all
f ∈ A and x ∈ ch(A). However, we get the same result (with a homeomorphism τ ) for
maps between certain subspaces of C0(X) and C0(Y ), not assumed to be closed, rather than
uniform algebras, without assuming that T is R+-homogenous. Next we show that if A is
closed (or has a certain property called Bishop’s property) and T : A −→ B satisfies the
stronger condition Rπ((Tf )s(T g)t ) ⊆ Rπ(f sg t ) on peripheral ranges for all f, g ∈ A, then

(Tf )d(y) = γ (y)f d(ϕ(y)) for all f ∈ A and y ∈ ch(B), where d is the greatest common
divisor of s and t , ϕ is as above and γ is a unimodular continuous function on ch(B). This
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is similar to the results stated in [8, 9, 23] for such maps between certain (absolutely) mul-
tiplicative subsets of uniform algebras and function algebras and in [3] for pointed Lipschitz
algebras.

As an application, we consider subspaces of C(X) of the form A1f1 +A2f2 +· · ·+Anfn

where for each i = 1, ..., n, Ai is a uniform algebra on a compact Hausdorff space X and
fi ∈ C(X) is strictly positive. We should note that a discussion on surjective linear isometries
between subspaces of the form Af , where A is a uniform algebra on a compact Hausdorff
space X and f ∈ C(X) is strictly positive, was given in [1]. Moreover, the results of [16] and
[12] provide the form of surjective isometries, respectively into isometries, not assumed to be
linear, on such spaces. However, the known results on maps satisfying norm conditions (i)
and (ii), can not be applied for such subspaces, since they are not (absolutely) multiplicative.

2. Preliminaries

For an arbitrary topological space X, let C(X) be the space of all continuous complex-
valued functions on X. When X is a locally compact Hausdorff space, C0(X) denotes the
Banach space of all continuous complex-valued functions on X vanishing at infinity, with the
supremum norm ‖.‖X. In this case X∞ is the one-point compactification of X.

For a locally compact Hausdorff space X and a function f ∈ C0(X), by M(f ) we
mean the maximum set of f , i.e. M(f ) = {x ∈ X : |f (x)| = ‖f ‖X} which is clearly a
compact subset of X whenever f is nonzero. The peripheral range of f ∈ C0(X) is defined
by Rπ(f ) = {f (x) : x ∈ M(f )}. For a subspace A of C0(X), we say that f ∈ A is a
peaking function if Rπ(f ) = {1} and in this case we say that the set {x ∈ X : f (x) = 1} is
a peak set for A. For a subspace A of C0(X), we denote the dual space of A (with respect to
the supremum norm) by A∗ and the Choquet boundary of A by ch(A). We recall that each
extreme point of the unit ball of A∗ is of the form αϕx for some scalar α with |α| = 1 and
x ∈ X, where ϕx is the evaluation functional at x. Moreover, ch(A) consists of all points
x ∈ X such that ϕx is an extreme point of the unit ball of A∗. For each subspace A of C0(X),
ch(A) is a boundary of A, that is for each f ∈ A, M(f ) ∩ ch(A) �= ∅ (see [29, Page 184]) .
Clearly in the case where X is compact and A contains the constant function 1, a point x ∈ X

is in ch(A) if and only if ϕx is an extreme point of TA = {L ∈ A∗ : L(1) = 1 = ‖L‖}.
For a compact Hausdorff space X, a uniform algebra on X is a closed subalgebra A

of C(X) containing the constants and separating the points of X. In general for a locally
compact Hausdorff space X, a uniform algebra on X is a closed subalgebra A of C0(X),
such that for distinct points x, y ∈ X, there exists f ∈ A with f (x) �= f (y) and for each
x ∈ X there exists f ∈ A with f (x) �= 0. It is well known that for a uniform algebra A on
a locally compact Hausdorff space X, ch(A) consists of all points x ∈ X such that for each
neighborhood U of x there exists f ∈ A such that f (x) = 1 = ‖f ‖X and |f | < 1 on X\U
(see [20, Theorem 4.7.22] for compact case and [27, Theorem 2.1] for general case).
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3. Main Results

We begin this section by introducing some notations and a definition. Let X be a locally
compact Hausdorff space and A be a subspace of C0(X). For a point x ∈ X we fix the
following notations:

Vx(A) = {f ∈ A : f (x) = 1 = ‖f ‖X} , Fx(A) = {f ∈ A : |f (x)| = 1 = ‖f ‖X}
DEFINITION 3.1. Let X be a locally compact Hausdorff space and A be a subspace of

C0(X). We call a closed subset E of X a weak peak set for A if for each neighborhood U of
E and 0 < ε ≤ 1 there exists a function f ∈ A such that f |E = 1 = ‖f ‖X and |f | < ε on
X\U . A weak peak point for A is a point x ∈ X such that {x} is a weak peak set for A.

Clearly every weak peak set for A is necessarily compact. We denote the set of all weak
peak points for A by 
(A).

We emphasis on the distinction between the notion of weak peak points defined above
and the one given in some literatures as the intersections of peak sets. Indeed, the above def-
inition is compatible with the one given in [13, Definition 1]. However, the two definitions
are the same in uniform algebra case. We should also note that some authors call weak peak
points as strong boundary points (see [16]) while the others use the notation of strong bound-
ary points for the points x ∈ X satisfying the above condition for just ε = 1. Clearly for
subalgebras of C0(X) these definitions are the same.

We note that for any subspace A of C0(X), 
(A) ⊆ ch(A) (see [2, Theorem 2.2.1] for
compact case and [12] for locally compact case) and, as we noted before, for each uniform
algebra A on X, 
(A) = ch(A).

For a subspace A of C0(X), it is easy to see that weak peak points for A can be described

as points x ∈ X such that μ({x}) = 0 for all μ ∈ A⊥ (see for example [13] for compact case).

For a subset E of a locally compact Hausdorff space X, we say that a bounded continuous
function f on X belongs locally to a subspace A of C0(X) at E if there exists a neighborhood
U of E and g ∈ A with ‖g‖X = ‖f ‖X and f |U = g|U . For example, for a locally compact
Hausdorff space �, the constant function 1 on � belongs locally to C0(�) at each compact
subset of �.

PROPOSITION 3.2. Let X be a locally compact Hausdorff space and A be a subspace
of C0(X). If E is a weak peak set for A such that the constant function 1 belongs locally to
A at E, then E is an intersection of peak sets for A. In particular, if X is compact and A

contains the constant function 1, then each weak peak set for A is an intersection of peak sets
for A.

PROOF. We first note that for each neighborhood W of E and ε > 0, the function
g ∈ A with the property that g|E = 1 = ‖g‖X and |g| < ε on X\W , can be chosen to be a
peaking function. Indeed, by hypothesis, there exists a neighborhood U of E and f0 ∈ A with
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norm 1 such that f0|U = 1. Fixing 0 < ε ≤ 1
2 , for each neighborhood W of E there exists an

f ∈ A such that f |E = 1 = ‖f ‖X and |f | < ε on X\(W ∩U). Setting gW = εf0 + (1 − ε)f

we see that gW ∈ A is a peaking function with gW |E = 1 = ‖gW ‖X and |gW | < 2ε on X\W .
Therefore, E is the intersection ∩W M(g

W
) of peak sets, where the intersection is taken over

all neighborhoods W of E. �

We recall that by [5, Theorem 2.12.7] for a uniform algebra A on a compact Hausdorff

space X, a closed subset E of X is a weak peak set for A if and only if μ ∈ A⊥ implies
μE ∈ A⊥, where μE is the restriction of a regular Borel measure μ on X to E. However, the
following important theorem in [5] shows, in particular, that for a closed subspace A of C(X),
every closed subset E of X satisfying this implication is a weak peak set for A.

THEOREM 3.3 ([5, Theorem 2.12.5]). Let A be a closed subspace of C(X), for a
compact Hausdorff space X, and E be a closed subset of X such that μE ∈ A⊥ for all
measures μ ∈ A⊥. Let f ∈ A|E and p be a strictly positive continuous function on X such
that |f (y)| ≤ p(y) for all y ∈ E. Then there is g ∈ A such that g|E = f and |g(x)| ≤ p(x)

for all x ∈ X.

The above theorem yields the following corollary:

COROLLARY 3.4. Let A1, ..., An be uniform algebras on a compact Hausdorff space
X, f1, ..., fn ∈ C(X) be strictly positive and A = A1f1 + · · · + Anfn. If E is a weak peak
set for Ai , for some i = 1, ..., n such that 1 ∈ Aifi |E , then E is a weak peak set for A. In
particular, for each i = 1, ..., n, ch(Ai) = 
(Ai) ⊆ 
(A).

PROOF. Since for each uniform algebra B on X and strictly positive f ∈ C(X), Bf is
a closed subspace of C(X) and μ ∈ Bf ⊥ implies that fμ ∈ B⊥, using the above theorem we
conclude that each weak peak set E for some Ai with 1 ∈ Aifi |E , is a weak peak set for Aifi

and consequently a weak peak set for A. In particular ∪n
i=1
(Ai) ⊆ 
(A). �

To state our results, we define two maps �+,�× : C(X) × C(X) −→ C(X) by
�+(f, g) = |f | + |g| and �×(f, g) = f g for all f, g ∈ C(X), where X is a compact
Hausdorff space. As we mentioned before, for the case where � = �×, the following result
is well known whenever A and B are uniform algebras or multiplicative subsets of uniform
algebras. The case where � = �+, s = t = 1 and A and B are uniform algebras has also
been investigated in [30] under the additional assumption that T is R+-homogeneous.

We first state our result for compact case and then obtain the locally compact case as a
corollary (Corollary 3.14). In the next theorem for a compact Hausdoeff space X, by a good
subspace of C(X) we mean a subspace A of C(X) satisfying one of the following conditions:

(i) A contains constants,
or
(ii) A is a subalgebra of C(X),
or
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(iii) ch(A) is a closed subset of X.

THEOREM 3.5. Let X,Y be compact Hausdorff spaces, A,B be good subspaces of
C(X) and C(Y ), not assume to be closed, with ch(A) = 
(A) and ch(B) = 
(B). Then for
every surjective map T : A −→ B satisfying the norm condition

‖�((Tf )s, (T g)t )‖Y = ‖�(f s, g t )‖X (f, g ∈ A)

where � = �+ or � = �× and s, t ∈ N, there exists a homeomorphism ϕ : ch(B) −→
ch(A) such that |Tf (ϕ(y0))| = |f (ϕ(y0))| for all f ∈ A and y0 ∈ ch(B).

The proof of the above theorem will be given through the following lemmas. In the
next lemmas, we assume that X,Y are compact Hausdorff spaces, A and B are subspaces of
C(X), not necessarily closed, with ch(A) = 
(A) and ch(B) = 
(B). We also assume that
T : A −→ B is a surjective map satisfying ‖�((Tf )s, (T g)t )‖Y = ‖�(f s, g t )‖X for all
f, g ∈ A where � = �+ or � = �×.

LEMMA 3.6. Let A be a subspace of C(X) and s, t ∈ N. Then given x0 ∈ 
(A),
�(|f (x0)|s, 1) = inf{‖�(f s, ht )‖X : h ∈ Vx0(A)} for the case where � = �× and f ∈ A
or the case where � = �+ and f ∈ A with ‖f ‖X ≤ 1.

PROOF. Let � = �× or � = �+ and let f ∈ A be given. Clearly �(|f (x0)|s, 1) ≤
‖�(f s, ht )‖X for all h ∈ Vx0(A). Given 0 < ε ≤ 1 we set U = {x ∈ X : |f s(x) −
f s(x0)| < ε}. Then since x0 ∈ 
(A), there exists h ∈ Vx0(A) such that |h| < min( ε

‖f ‖s
X
, ε)

on X\U . Since |ht | ≤ |h|, it is easy to see that ‖f sht‖X ≤ |f (x0)|s + ε and, moreover,
|f s(x)| + |ht (x)| ≤ |f s(x0)| + ε + 1 for all x ∈ U . Now if ‖f ‖X ≤ 1, then for each
x ∈ X\U , |f (x)|s + |h(x)|t ≤ 1 + ε and hence ‖ |f |s + |h|t ‖X ≤ |f (x0)|s + ε + 1 which
proves the desired equalities. �

LEMMA 3.7. Let y0 ∈ ch(B). Then for each r > 0, the intersection ∩Tf ∈rVy0 (B)M(f )

is nonempty.

PROOF. Let y0 ∈ ch(B) and r > 0 be given. It suffices to show that the family
{M(f ) : Tf ∈ rVy0(B)} of compact subsets of X has finite intersection properties. Let
f1, ..., fn ∈ A such that Tfi ∈ rVy0(B) for i = 1, ..., n. Since T is surjective there exists

h ∈ A such that T h = 1
n
�n

i=1Tfi . We note that the norm condition on T in both cases
implies that ‖Tf ‖Y = ‖f ‖X for f ∈ A. Indeed, in the case where � = �× we have
‖(Tf )s+t‖Y = ‖f s+t‖X and hence ‖Tf ‖Y = ‖f ‖X and in the case where � = �+ since
‖ |T 0|s + |T 0|t ‖Y = 0 it follows that T 0 = 0 and consequently ‖(Tf )s‖Y = ‖f s‖X, i.e.
‖Tf ‖Y = ‖f ‖X. Hence in both cases T is norm preserving. Therefore, ‖h‖X = ‖T h‖Y =
r = T h(y0). Since 
(A) = ch(A) and ch(A) is a boundary for A, there exists x0 ∈ 
(A)

such that |h(x0)| = r = ‖h‖X . We claim that x0 ∈ M(fi) for i = 1, ..., n. Assume on the
contrary that |fi(x0)| < r for some 1 ≤ i ≤ n. Then there exists a neighborhood U of x0

such that |fi | < r on U and since x0 ∈ 
(A) we can find h′ ∈ Vx0(A) such that |h′| < 1 on
X\U . Then clearly ‖f s

i h′t‖X < rs and ‖ |fi |s + |h′|t ‖X < rs + 1.
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Assume first that � = �×, that is �(f, g) = f g for all f, g ∈ C(X) (f, g ∈ C(Y )). In
this case

‖(Tfi)
s(T h′)t‖Y = ‖�((Tfi)

s, (T h′)t )‖Y = ‖�(f s
i , h′t )‖X = ‖f s

i h′t‖X < rs .

We may assume that s ≥ t . Then since ‖T h′‖Y = 1 and consequently ‖TfiT h′‖s
Y =

‖(Tfi)
s(T h′)s‖Y ≤ ‖(Tfi)

s(T h′)t‖Y < rs it follows that ‖TfiT h′‖Y < r . Thus for each
y ∈ Y

|(T h′)s(y)(T h)t (y)| ≤ |(T h′)t (y)(T h)t (y)| =
∣∣∣T h′(y) ·

( 1

n
Tfi(y) + 1

n
�j �=iTfj (y)

)∣∣∣
t

≤
(1

n
|Tfi(y) · T h′(y)| + (n − 1)r

n

)t

≤
(1

n
‖TfiT h′‖Y + (n − 1)r

n

)t

<
( r

n
+ (n − 1)r

n

)t = rt .

Hence ‖h′sht‖X = ‖(T h′)s(T h)t‖Y < rt while |h′sht (x0)| = rt , a contradiction.
Assume now that � = �+, that is �(f, g) = |f |+|g| for all f, g ∈ C(X) (f, g ∈ C(Y )).

Since ‖ |Tfi |s + |T h′|t ‖Y = ‖ |fi |s + |h′|t ‖X < rs + 1 and ‖Tfi‖Y = r and ‖T h′‖Y = 1
this inequality easily implies that ‖ |Tfi | + |T h′| ‖Y < r + 1. Hence for each y ∈ Y ,

|T h(y)| + |T h′(y)| ≤ 1

n
|Tfi(y)| + 1

n
�j �=i |Tfj (y)| + |T h′(y)|

≤ 1

n
(|Tfi(y)| + |T h′(y)|) + 1

n
(�j �=i |Tfj (y)| + (n − 1)|T h′(y)|)

≤ 1

n
‖ |Tfi | + |T h′| ‖Y + 1

n
((n − 1)r + n − 1)

<
1

n
(r + 1) + (n − 1)r

n
+ n − 1

n
= r + 1 ,

that is |T h(y)|+ |T h′(y)| < r +1. Since ‖T h‖Y = r and ‖T h′‖Y = 1 this inequality implies
that ‖ |T h|s + |T h′|t ‖Y < rs + 1. Therefore, ‖|h|s + |h′|t‖X < rs + 1 while |h(x0)| = r and
h′(x0) = 1, a contradiction.

This argument shows that x0 ∈ ∩n
i=1M(fi), as desired. �

LEMMA 3.8. Let A be a subspace of C(X). Then for each nonempty intersection
E = ∩Eα of peak sets Eα for A we have E ∩ ch(A) �= ∅.

PROOF. Since each Eα is a peak set for A, there exists a function hα ∈ A with hα = 1
on Eα and |hα| < 1 on X\Eα . For each α, set Fα = {L ∈ A∗

1 : L(hα) = 1} where A∗
1 is

the closed unit ball of A∗. Then clearly each Fα is a convex weak-star compact subset of A∗
1.

Setting F = ∩αFα we see that the weak-star compact set F which contains E, is an extreme
subset of A∗

1. Hence, by the Krein-Milman Theorem, F contains an extreme point of A∗
1 and
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consequently there exist λ ∈ T and x ∈ ch(A) such that λϕx ∈ Fα for all α. Therefore,
λhα(x) = 1 and consequently |hα(x)| = 1 for all α. Since hα is a peaking function at Eα, it
follows that x ∈ Eα for all α. Therefore, E ∩ ch(A) �= ∅. �

LEMMA 3.9. If A is, in addition, a good subspace, then for each y0 ∈ ch(B) and
r > 0, ∩Tf ∈rVy0

M(f ) ∩ ch(A) �= ∅.
PROOF. Given y0 ∈ ch(B) and r > 0, by Lemma 3.7, ∩Tf ∈rVy0 (B)M(f ) �= ∅. Let

xr
0 be an arbitrary element in this intersection. Assume that 1 ∈ A and for each f ∈ A

with Tf ∈ rVy0(B), let f ∗
r ∈ A be defined by f ∗

r (x) = r2+f (xr
0)f

2r2 , x ∈ X. Then it is

easy to see that f ∗
r is a peaking function for A with M(f ∗

r ) ⊆ M(f ) and, moreover, xr
0 ∈

M(f ∗
r ) for all f ∈ A with Tf ∈ rVy0(B). Therefore, ∩Tf ∈rVy0 (B)M(f ∗

r ) is a nonempty

intersection of peak sets and so, by the above lemma, it contains a point of ch(A). In particular,
∩Tf ∈rVy0 (B)M(f ) ∩ ch(A) �= ∅.

In the case that A is a subalgebra of C(X) it suffices to apply the same argument for the

peaking function f ∗
r = r2f (xr

0)f +f (xr
0)2f 2

2r4 for A.

Finally in the case where ch(A) is closed, it suffices to note that the family {M(f ) ∩
ch(A) : Tf ∈ rVy0(B)} of compact subsets of X has finite intersection property. Indeed,

for f1, ..., fn ∈ A with Tfi ∈ rVy0(B) there exists h ∈ A with T h = 1
n
�n

i=1Tfi and since
‖h‖X = ‖T h‖Y = r there exists x0 ∈ ch(A) with |h(x0)| = ‖h‖X . Then the argument given
in Lemma 3.7 shows that x0 ∈ M(fi) for i = 1, ..., n, as desired. �

LEMMA 3.10. Let A and B satisfy the hypotheses of Theorem 3.5. Then for each

y0 ∈ ch(B) and r > 0 there exists a point xr
0 ∈ ch(A) such that T −1(rVy0(B)) ⊆ rFxr

0
(A)

and T (rVxr
0
(A)) ⊆ rFy0(B).

PROOF. Given y0 ∈ ch(B) and r > 0, let xr
0 be an element in the intersection

∩Tf ∈rVy0 (B)M(f ) ∩ ch(A). Then clearly T −1(rVy0(B)) ⊆ rFxr
0
(A). By a similar argu-

ment ∩f ∈rVxr
0
(A)M(Tf ) ∩ ch(B) �= ∅ and consequently there exists a point zr

0 ∈ ch(B)

such that T (rVxr
0
(A)) ⊆ rFzr

0
(B). Hence it suffices to show that y0 = zr

0. Assume on

the contrary that y0 �= zr
0. Then considering disjoint neighborhoods U and W of y0 and

zr
0, respectively, we can find elements g ∈ Vy0(B) and h ∈ Vzr

0
(B) such that |g| < 1 on

Y\U and |h| < 1 on Y\W . Clearly ‖(rg)sht‖Y < rs and ‖ |rg|s + |h|t ‖Y < rs + 1. Let

f, f ′ ∈ A with Tf = rg and Tf ′ = h. Then f ∈ T −1(rVy0(B)) ⊆ rFxr
0
(A) and conse-

quently |f (xr
0)| = r = ‖f ‖X. In particular, αf ∈ rVxr

0
(A) for some α ∈ T. Therefore,

T (αf ) ∈ T (rVxr
0
(A)) ⊆ rFzr

0
(B), that is ‖T (αf )‖Y = |(T (αf ))(zr

0)| = r . This implies

that ‖(T (αf ))sht‖Y = rs = |(T (αf ))s(zr
0)h

t (zr
0)| and ‖ |T (αf )|s + |h|t‖Y = rs + 1 =

|T (αf )(zr
0)|s + |h(zr

0)|t . Therefore, if � = �×, then

‖(rg)sht‖Y = ‖(Tf )s (Tf ′)t‖X = ‖f sf ′t‖X = ‖(αf )sf ′t‖X = ‖T (αf )sht‖Y = rs
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which is a contradiction. If � = �+, then

‖ |rg|s + |h|t ‖Y = ‖ |Tf |s + |Tf ′|t ‖Y = ‖ |f |s + |f ′|t ‖X

= ‖ |αf |s + |f ′|t ‖X = ‖ |T (αf )|s + |h|t ‖X = rs + 1

which is again, a contradiction. �

LEMMA 3.11. Under the hypotheses of Theorem 3.5, for each y0 ∈ ch(B), there exists
a point x0 ∈ ch(A) such that for all r > 0, ∩Tf ∈rVy0 (B)M(f ) ∩ ch(A) = {x0}.

PROOF. Let y0 ∈ ch(B) and let x0 be an arbitrary element in ∩Tf ∈Vy0 (B)M(f )∩ch(A).

Then it suffices to show that for each r > 0 and each xr
0 ∈ ∩Tf ∈rVy0 (B)M(f )∩ch(A) we have

xr
0 = x0. Assume on the contrary that xr

0 �= x0 for some r > 0. We note that, by the proof

of the above lemma, T −1(rVy0(B)) ⊆ rFxr
0
(A) and T (rVxr

0
(A)) ⊆ rFy0(B) and similarly

T −1(Vy0(B)) ⊆ Fx0(A) and T (Vx0(A)) ⊆ Fy0(B).
Choosing disjoint neighborhoods of xr

0 and x0 in X we can find easily functions f ∈
Vx0(A) and g ∈ Vxr

0
(A) such that ‖(rg)sf t‖X < rs and ‖ |rg|s + |f |t ‖X < rs + 1. In

particular, T (rg) ∈ rFy0(B) and Tf ∈ Fy0(B). According to the case where � = �× or
� = �+ we have either

‖T (rg)sTf t‖Y = ‖(rg)sf t‖X < rs

or

‖ |T (rg)|s + |Tf |t ‖Y = ‖ |rg|s + |f |t ‖X < rs + 1

which both are impossible, since |T (rg)(y0)| = r and |Tf (y0)| = 1. This contradiction
completes the proof. �

Using the above lemmas we can define a function ϕ : ch(B) −→ ch(A) which associates
to each y0 ∈ ch(B), the unique point x0 ∈ ∩Tf ∈Vy0 (B)M(f )∩ch(B). Therefore, by the above

lemma, for each r > 0, ∩Tf ∈rVy0 (B)M(f ) ∩ ch(B) = {x0} and consequently, as we noted

before, T (rVϕ(y0)(A)) ⊆ rFy0(B).

LEMMA 3.12. Let A and B be as in Theorem 3.5. Then |Tf (y0)| = |f (ϕ(y0))| holds
for all f ∈ A and y0 ∈ ch(B).

PROOF. Let f ∈ A (with ‖f ‖X ≤ 1 for the case where � = �+) and let y0 ∈ 
(B) be
such that |f (ϕ(y0))| < |Tf (y0)|. Then �(|f (ϕ(y0))|s, 1) < �(|Tf (y0)|s, 1) and since, by
Lemma 3.6, |�(|f (ϕ(y0))|s, 1)| = inf{‖�(f s, ht )‖X : h ∈ Vϕ(y0)(A)} it follows that there

exists h ∈ Vϕ(y0)(A) such that ‖�((Tf )s, (T h)t )‖Y = ‖�(f s, ht )‖X < �(|Tf (y0)|s, 1).
Since T h ∈ T (Vϕ(y0)(A)) ⊆ Fy0(B) it follows that

�(|Tf (y0)|s , 1) > ‖�((Tf )s, (T h)t )‖X ≥ �(|Tf (y0)|s , |T h(y0)|t ) = �(|Tf (y0)|s, 1) ,
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which is a contradiction. Hence |Tf (y0)| ≤ |f (ϕ(y0))| for all f ∈ A and y0 ∈ 
(B).
The other inequality is proven in a similar manner, that is |Tf (y0)| = |f (ϕ(y0))|. Hence
it suffices to show that this equality holds for arbitrary f ∈ A when � = �+. So assume
that T satisfies ‖ |Tf |s + |T g|t ‖Y = ‖ |f |s + |g|t ‖X for all f, g ∈ A. Given an arbitrary

nonzero function f ∈ A, using Lemma 3.6 for f
‖f ‖X

we conclude that |f (ϕ(y0))|s + ‖f ‖s
X =

inf{‖ |f |s + |h|t ‖X : h ∈ ‖f ‖
s
t

XVϕ(y0)(A)}. If |f (ϕ(y0))| < |Tf (y0)|, then |f (ϕ(y0))|s +
‖f ‖s

X < |Tf (y0)|s + ‖f ‖s
X and consequently there exists h ∈ ‖f ‖

s
t

XVϕ(y0)(A) such that

‖ |Tf |s + |T h|t ‖Y = ‖ |f |s + |h|t ‖X < |Tf (y0)|s + ‖f ‖s
X .

On the other hand, using Lemma 3.10 for r = ‖f ‖
s
t

X we have T h ∈ rFy0(B), that is

|T h(y0)| = r = ‖T h‖Y and so |Tf (y0)|s +|T h(y0)|t = |Tf (y0)|s +rt = |Tf (y0)|s +‖f ‖s
X,

a contradiction. �

PROOF OF THEOREM 3.5. By the above lemmas we need only to show that the func-
tion ϕ : ch(B) −→ ch(A) is a homeomorphism. We first note that ϕ is surjective. In-
deed, given x0 ∈ ch(A), using the same argument as in Lemma 3.10, there exists a point
y0 ∈ ch(B) such that ∩f ∈Vx0 (A)M(Tf ) ∩ ch(B) = {y0}. Since, by the definition of

ϕ, ∩Tf ∈Vy0 (B)M(f ) ∩ ch(A) = {ϕ(y0)}, the argument given in Lemma 3.10 implies that

ϕ(y0) = x0, i.e. ϕ is surjective.
Similar argument shows that ϕ is injective.
To prove the continuity of ϕ, let y0 ∈ ch(B) and U be an open neighborhood of ϕ(y0)

in X. Then choosing h ∈ Vϕ(y0)(A) with |h| < 1
2 on X\U , the equality |T h| = |h ◦ ϕ| on

ch(B) implies that for the open subset W = {y ∈ ch(B) : |T h(y)| > 1
2 } of ch(B) we have

ϕ(W) ⊆ U ∩ ch(A). Hence ϕ is continuous. Similarly ϕ−1 is also continuous. �

As we noted before, for a uniform algebra A on a compact Hausdorff spaces X and
strictly positive function f ∈ C(X) we have ch(A) ⊆ 
(Af ) ⊆ ch(Af ). Hence Theorem 3.5
can be applied for subspaces of the form Af whenever ch(A) = X. As an example of
uniform algebras A on X with this property we can refer to Dirichlet algebras or, in general,
logmodular algebras (see [20, Theorem 1.6.3]). However we have the following more general
results.

COROLLARY 3.13. LetA1, ..., An be uniform algebras on a compact Hausdorff space
X with ∪n

i=1ch(Ai) = X. Let s, t ∈ N, f1, ..., fn be strictly positive functions in C(X)

and B = A1f1 + · · · + Anfn. Then for each surjective map T : B −→ B satisfying
‖�((Tf )s, (T g)t )‖X = ‖�(f s, g t )‖X for all f, g ∈ B, where � = �+ or �×, there exists a
homeomorphism ϕ : X −→ X such that |Tf (y)| = |f (ϕ(y))| for all f ∈ B and y ∈ X.

Clearly for each family {Aα}α∈I of uniform algebras on a compact Hausdorff space X

with ∪αch(Aα) = X and a family {fα}α∈I of strictly positive functions in C(X), the above
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corollary can also be stated for the subspace B consisting of all finite sums gα1fα1 + · · · +
gαnfαn where gαi ∈ Aαi , i = 1, ..., n.

We now give our result for locally compact case. For a locally compact Hausdorff space
�, since any subspace A of C0(�) can be considered as a subspace of C(�∞) with the same
Choquet boundary and the same weak peak points, we get the following corollary.

COROLLARY 3.14. Let�1,�2 be locally compact Hausdorff spaces andA,B be sub-
spaces of C0(�1) and C0(�2), respectively such that ch(A) = 
(A) and ch(B) = 
(B).
Assume further that each of A and B satisfies one of the following conditions

(i) it is a subalgebra, or
(ii) its Choquet boundary is compact.

Then for every surjective map T : A −→ B satisfying ‖�((Tf )s, (T g)t )‖Y = ‖�(f s, g t )‖X

for all f, g ∈ A, where � = �+ or �× and s, t ∈ N, there exists a homeomorphism ϕ :
ch(B) −→ ch(A) such that |Tf (y)| = |f (ϕ(y))| for all f ∈ A and y ∈ ch(B).

We note that the above corollary is an improvement of the known results for uniform
algebras on a locally compact Hausdorff space � or Banach subalgebras of C0(�), without
assuming that the subalgebras under consideration are uniformly closed or complete under
some norms.

Next corollary gives [30, Proposition 1] without the additional assumption that T is R+-
homogeneous.

COROLLARY 3.15. If A and B are uniform algebras on locally compact Hausdorff
spaces X and Y , respectively, and T : A −→ B is a surjective map such that ‖ |Tf | +
|T g| ‖Y = ‖ |f | + |g| ‖X for all f, g ∈ A, then there exists a homeomorphism ϕ : ch(B) −→
ch(A) such that |Tf (y)| = |f (ϕ(y))| for all f ∈ A and y ∈ ch(B).

In the rest of the paper we provide conditions for surjective maps T : A −→ B between
subspaces A and B of C0(X) and C0(Y ), respectively, to be a weighted composition operator.

Following [4], for a locally compact Hausdorff space X we call a subspace A of C0(X),
extremely regular if given 0 < ε < 1, for each x ∈ X and a neighborhood U of x there exists
a function f ∈ A with f (x) = ‖f ‖X = 1 and |f | < ε on X\U , and extremely regular of
type zero if for each x ∈ X and a neighborhood U of x there exists a function f ∈ A with
f (x) = ‖f ‖X = 1 and f = 0 on X\U . Clearly for an extremely regular subspace A of
C0(X), 
(A) = ch(A) = X and so A satisfies the hypotheses of Corollary 3.14(ii), whenever
X is compact.

Here are some examples of extremely regular subspaces (of type zero):

EXAMPLE 3.16. (i) For a compact Hausdorff space X, by [4], the kernel of each con-
tinuous measure μ ∈ M(X) (that is its atomic part is zero), is a (maximal) extremely regular
subspace of C(X) of type zero.

(ii) For a compact metric space (X, d) and 0 < α ≤ 1, let Lip(X, α) be the Banach space
of Lipschitz functions of order α on X, endowed with the norm ‖f ‖ = ‖f ‖X + pα(f ) where
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for f ∈ Lip(X, α)

pα(f ) = sup
x �=y

|f (x) − f (y)|
dα(x, y)

.

For each x ∈ X and open neighborhood U of x, let fx,U ∈ Lip(X, α) be defined by fx,U (y) =
min

( dα(y,X\U)
dα(x,X\U)

, 1
)
. Then clearly any subspace of Lip(X, α) containing all functions of the

form fx,U is an extremely regular subspace of C(X) of type zero.
(ii) For a locally compact group G and 1 ≤ p < ∞, the Figa-Talamanca-Herz algebra

Ap(G) and every subspace of Ap(G) containing functions of the form χU ∗ χUx0 where U is
a compact symmetric neighborhood of the identity of G and x0 ∈ G, is an extremely regular
subspace of C0(G) of type zero (see [11, Page 319].

Next theorem, in particular, proves the additive and multiplicative version of Bishop’s
lemma simultaneously (see [30]).

THEOREM 3.17. LetX be a locally compact Hausdorff space, B be a closed subspace
of C0(X) and let � = �× or � = �+ and s, t ∈ N. Then for a compact subset E of X the
following statements are equivalent:

(i) E is a weak peak set for B.
(ii) For each neighborhood U of E and a bounded continuous function f on X (with

‖f ‖X ≤ 1 for the case where � = �+) if p is a continuous function on X with infx∈X p(x) >

0 and |f | ∣∣
E

= p
∣∣
E

, then there exists a function h ∈ B with h|E = 1 = ‖h‖X, |�(f s, ht )| ≤
�(ps, 1) on X and M

(�(f s,ht )
�(ps,1)

) = M(h) ⊆ U .

PROOF. (i) ⇒ (ii): The proof is a minor modification of [30, Lemma 1]. Assume that
f and p are as in (ii) and set m0 = infx∈X p(x). Then by hypotheses m0 > 0 and f is
necessarily nonzero. For each n ∈ N we set

Un =
{
x ∈ U : ∣∣ |f s(x)| − ps(x)

∣∣ <
ms

0

2n+1

}
.

Then clearly Un ⊇ Un+1 for each n ∈ N and E ⊂ ∩∞
n=1Un = {x ∈ U : |f s(x)| = ps(x)}.

Since E is a weak peak set, it follows that for each n ∈ N, there exists a function hn ∈ B

with hn|E = 1 = ‖hn‖X and |hn| < min
( ms

0
2n‖f ‖s

X
,

ms
0

2n , 1
2n

)
on X\Un. Clearly the function

h = �∞
n=1

hn

2n is an element of B with h|E = 1 = ‖h‖X . Moreover, M(h) ⊆ ∩∞
n=1M(hn) ⊆

∩∞
n=1Un.

Now let x ∈ X and � = �×. If x ∈ M(h), then since x ∈ ∩∞
n=1Un we have |f s(x)| =

ps(x) and so |f s(x)ht (x)| = ps(x) = �(ps(x), 1).
If x ∈ ∩∞

n=1Un\M(h), then clearly x ∈ U , |f s(x)| = ps(x) and |h(x)| < 1 which

conclude that |f s(x)ht (x)| < ps(x) = �(ps(x), 1).
If x ∈ X\ ∩∞

n=1 Un, then either x /∈ Un for all n ∈ N or there exists n ≥ 2 such
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that x ∈ Un−1\Un. In the first case |hn(x)| < min
( ms

0
2n‖f ‖s

X
,

ms
0

2n , 1
2n

)
for all n ∈ N, which

implies that |f s(x)ht (x)| ≤ |f s(x)h(x)| < �∞
n=1

ms
0

4n < ms
0 ≤ ps(x). In the second case

x ∈ U1, ..., Un−1 and x /∈ Ui for all i ≥ n. Since
∣∣ |f s(x)| − ps(x)

∣∣ <
ms

0
2n we have

|f s(x)ht (x)| ≤
(
ps(x) + ms

0

2n

)
|h(x)| ≤ ps(x)

(
1 + 1

2n

)(
�n−1

i=1
1

2i
+ �∞

i=n

1

4i

)

= ps(x)
(

1 + 1

2n

)(
1 − 1

2n−1
+ 1

3 · 4n−1

)
< ps(x) .

The above argument shows that for � = �×, |�(f s, ht )| = |f sht | ≤ ps = �(ps, 1) on X

and M
(�(f s ,ht )

�(ps,1)

) = M
(f sht

ps

) = M(h) ⊆ U .

A similar argument can be applied for the case where � = �+ (with ‖f ‖X ≤ 1).
(ii) ⇒ (i) It is clear. �

We should note that in part (ii) of the above theorem, if either B contains the constant
function 1 locally at E or is a subalgebra of C0(X), then since each hn can be chosen to be a
peaking function, it follows that in these cases the function h ∈ B is also a peaking function.

COROLLARY 3.18. Let X be a locally compact Hausdorff space and B be a closed
subspace of C0(X). Let x0 ∈ 
(B), U be an open neighborhood of x0 and f ∈ C0(X) with
f (x0) �= 0. Then for each s, t ∈ N there exists a function h ∈ Vx0(B) such that M(f sht ) =
M(h) ⊆ U . If, furthermore, either 1 belongs locally at x0 to B or B is a subalgebra of C0(X)

then the function h can be chosen to be a peaking function with Rπ(f sht ) = {f s(x0)}.
PROOF. Assume without loss of generality that f (x0) = 1. Then it suffices to apply

the proof of the above theorem for the constant function p = 1 and sets Un = {
x ∈ U :

|f s(x) − 1| < 1
2n+1

}
. �

REMARK. Let X be a locally compact Hausdorff space and B be a, not necessarily
closed, subspace of C0(X) such that there exists a complete norm ‖ · ‖ on B with ‖ · ‖ ≥
‖.‖X . Assume that 
(B, ‖.‖) is the set of points x0 ∈ X such that for each 0 < ε ≤ 1 and
neighborhood U of x0, there exists a function f ∈ B such that f (x0) = 1 = ‖f ‖ and |f | < ε

on X\U . Then the proof of the preceding theorem shows that part (ii) of this theorem also
holds for each x0 ∈ 
(B, ‖ · ‖). Hence in the case that 
(B, ‖.‖) = ch(B) which clearly
implies 
(B) = ch(B), the above corollary holds for each x0 ∈ ch(B). Motivated by this, we
consider the following definition.

DEFINITION 3.19. Let X be a locally compact Hausdorff space. We say that a (not
necessarily closed) subspace A of C0(X) has Bishop’s property (for a pair (s, t) ∈ N × N) if
for each x0 ∈ ch(A) and f ∈ A with f (x0) �= 0 there exists a peaking function h ∈ A such
that h(x0) = 1 = ‖h‖X , Rπ(f sht ) = {f s(x0)}.

Here are some examples of subspaces having Bishop’s property:
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EXAMPLE 3.20. (i) By Corollary 3.18, every closed subspace B of C0(X) with

(B) = ch(B) which either contains the constant function 1 locally at each point of ch(B) or
is a subalgebra of C0(X) has Bishop’s property for all (s, t) ∈ N × N. In particular, uniform
algebras on a locally compact Hausdorff space X and closed extremely regular subspaces of
C(Y ), for a compact Hausdorff space Y , containing constants have Bishop’s property.

(ii) Let X be a compact metric space with a distinguished base point eX and let Lip0(X)

be the algebra of all complex Lipschitz functions f on X such that f (eX) = 0. Then by
Lemma 2.1 in [15] for any x ∈ X and f ∈ Lip0(X) with f (x) �= 0 there exists h ∈ Lip0(X)

with h(x) = 1 = ‖h‖X and Rπ(f h) = {f (x)}. Since the function h in this lemma is positive
it follows that Lip0(X) has Bishop’s property for (s, 1), s ∈ N.

(iii) For a locally compact group G with a left Haar measure λ, since for each com-
pact symmetric neighborhood U of the identity of G and x0 ∈ G, the element fU,x0 =
λ(U)−1χU ∗ χUx0 of Ap(G) satisfies ‖fU,x0‖ = 1, fU,x0(x0) = 1 and fU,x0 = 0 on G\Ux0,
it follows from the above remark that Ap(G) and its closed subalgebras containing all fU,x0

have Bishop’s property for all (s, t) ∈ N × N.

Next theorem generalizes previous results proven for function algebras, see for example
[14]. As we noted before similar results have been also proven in [23] for multiplicative
subsets of function algebras. As before we first state our result for compact case and conclude
the locally compact case as a corollary.

THEOREM 3.21. Let X,Y be compact Hausdorff spaces and A,B be subspaces of
C(X) and C(Y ) satisfying the hypotheses of Theorem 3.5. Assume, further, that A has
Bishop’s property for some (s, t) ∈ N × N. Then for each surjective map T : A −→ B

satisfying

Rπ((Tf )s(T g)t ) ⊆ Rπ(f sg t ) (f, g ∈ A)

there exists a homeomorphism ϕ : ch(B) −→ ch(A) and a continuous function w :
ch(B) −→ T such that (Tf )s(y) = w(y)f s(ϕ(y)). Moreover, (Tf )t (y) = 1

w(y)
f t (ϕ(y))

also holds for all f ∈ A and y ∈ ch(B), whenever A has Bishop’s property for (t, s). In
particular, in this case, Tf d(y) = γ (y)f d(ϕ(y)) for all f ∈ A and y ∈ ch(B) where d is
the greatest common divisor of s and t , and γ : ch(B) −→ T is a continuous function.

PROOF. The proof is a modification of [14, Theorem 2.1]. Clearly T satisfies the norm
condition ‖(Tf )s(T g)t‖Y = ‖f sg t‖X for all f, g ∈ A. Hence by Theorem 3.5, there exists a
homeomorphism ϕ : ch(B) −→ ch(A) such that for each f ∈ A, |Tf | = |f ◦ ϕ| on ch(B).
Assume now that y0 ∈ ch(B) and f ∈ A are given and set x0 = ϕ(y0). Choosing an arbitrary
peaking function h ∈ Vx0(A), by hypotheses, we have Rπ((T h)s+t ) = Rπ((T h)s(T h)t ) ⊆
Rπ(hs+t ) = {1} and consequently Rπ((T h)s+t ) = {1}. Since |T h(y0)| = |h(x0)| = 1 it

follows that (T h)s+t (y0) = 1. Setting w(y0) = 1
(T h)t (y0)

, we have clearly |w(y0)| = 1. We

note that the definition of w(y0) is independent of the choice of peaking function h ∈ Vx0(A).
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Indeed, if h1, h2 ∈ Vx0(A) are peaking functions, then since

Rπ((T h2)
s(T h1)

t ) ⊆ Rπ(hs
2h

t
1) = {1}

and Rπ((T h2)
s+t ) = {1} we have Rπ((T h2)

s(T h1)
t ) = {1} = Rπ((T h2)

s+t ) and conse-
quently ((T h2)

s(T h1)
t )(y0) = 1 = (T h2)

s+t (y0). Therefore, (T h1)
t (y0) = (T h2)

t (y0), as
desired. Hence the function w is well defined.

We now show that for each f ∈ A and y0 ∈ ch(B), (Tf )s(y0) = w(y0)f
s(x0) where

x0 = ϕ(y0). Clearly the equality holds if f (x0) = 0. So we assume that f (x0) �= 0.
Then since A has Bishop’s property, there exists a peaking function h ∈ Vx0(A) with
Rπ(f sht ) = {f s(x0)}. Since Rπ((Tf )s(T h)t ) ⊆ Rπ(f sht ) = {f s(x0)} and more-

over, |(Tf )s(T h)t (y0)| = |f s(x0)h
t (x0)| = |f s(x0)| it follows that 1

w(y0)
(Tf )s(y0) =

(Tf )s(y0)(T h)t (y0) = f s(x0) and consequently (Tf )s(y0) = w(y0)f
s(x0).

If A also has Bishop’s property for (t, s), then a similar argument shows that there exists
a function u : ch(B) −→ T such that (Tf )t (y0) = u(y0)f

t (ϕ(y0)) for all f ∈ A and
y0 ∈ ch(B). Since for each x0 ∈ ch(A) and peaking function h ∈ Vx0(A), Rπ((T h)s+t ) ⊆
Rπ(hs+t ) = 1 and |T h(y0)| = |h(x0)| = 1 we have (T h)s+t (y0) = 1 which shows that

u(y0)w(y0) = 1. Hence (Tf )t (y0) = 1
w(y0)

f t (y0), as desired. Since for the greatest common

divisor d of s and t there are integers k1 and k2 such that d = k1s + k2t it follows that
(Tf )d(y0) = γ (y0)f

d(y0) where γ (y0) = w(y0)
k1−k2 .

Now it suffices to show that w is continuous. For this, since for each y0 ∈ ch(B) and
f ∈ A, (Tf )s(y0) = w(y0)f

s(ϕ(y0)), choosing a function f ∈ A with f (ϕ(y0)) �= 0 we

have w = (Tf )s

f s◦ϕ
on a neighborhood of y0 which implies that w is continuous at y0. �

COROLLARY 3.22. Let�1,�2 be locally compact Hausdorff spaces, A andB be sub-
spaces of C0(�1) and C0(�2) satisfying the hypotheses of Corollary 3.14. If A has Bishop’s
property for (s, t) ∈ N × N, then any surjective map T : A −→ B satisfying

Rπ((Tf )s(T g)t ) ⊆ Rπ(f sg t ) (f, g ∈ A)

has the same description as in the above theorem.

As we noted before, all uniform algebras on locally compact Hausdorff spaces as well
as Lip0(X) for a compact metric space X and Ap(G), 1 ≤ p < ∞, for a locally com-
pact group G satisfy the hypotheses of the above theorem and corollary (for appropriate
s, t ∈ N). For another example, we can refer to closed extremely regular subspaces of C(X)

containing constants, where X is a compact Hausdorff space, in particular subspaces of the

form A1f1 + · · · + Anfn + C1 where each Ai is a uniform algebra on X and moreover,
∪n

i=1ch(Ai) = X.
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