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Ravels Arising from Montesinos Tangles
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Abstract. A ravel is a spatial graph which is non-planar but contains no non-trivial knots or links. We charac-
terize when a Montesinos tangle can become a ravel as the result of vertex closure with and without replacing some
number of crossings by vertices.

1. Introduction

One of the earliest results in spatial graph theory was the discovery by Suzuki [11] in
1970 of an embedding of an abstractly planar graph which had the property that it was non-
planar but every subgraph of the embedding was planar. Note that a graph is said to be
abstractly planar if it can be embedded in R

2, and a particular embedding of a graph in R
3 is

said to be planar if there is an ambient isotopy of it into R
2 ⊆ R

3. Two years after Suzuki’s
result, Kinoshita [5] found an embedding of a θ3 graph which had this property. Many results
about such embeddings have been obtained since then, though several different terms are used
to refer to them. In particular, we have the following definition.

DEFINITION 1.1. An embedding G of an abstractly planar graph in R
3 is said to be

almost unknotted (equivalently almost trivial, minimally knotted, or Brunnian) if G is non-
planar but G − {e} is planar for any edge e of G.

One of the most significant results in the study of almost unknotted graphs is the result
obtained by Kawauchi [4] and Wu [14] that every abstractly planar graph without valence one
vertices has an almost unknotted embedding.

We are now interested in a larger class of embedded graphs defined below.

DEFINITION 1.2. An embedding G of an abstractly planar graph in R
3 is said to be a

ravel if G is non-planar but contains no non-trivial knots or links.
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Any almost unknotted graph G is a ravel, unless G is topologically a non-trivial knot
or a Brunnian link. However, the converse is not true. For example, starting with an almost
unknotted embedding of a graph G, add an additional edge e′ parallel to an existing edge e to
get a new embedded graph G′. Since G was almost unknotted, G′ will contain no non-trivial
knots or links. However, the removal of the edge e′ will not make G′ planar, and hence G′ is
a ravel that is not almost unknotted.

The term ravel was originally coined as a way to describe hypothetical molecular struc-
tures whose complexity results from “an entanglement of edges around a vertex that contains
no knots or links” [1]. The first molecular ravel to be identified was a metal-ligand complex
synthesized by Feng Li et al. in 2011 [6]. In order to formalize the notion of entanglement
about a vertex, we require the “entanglement” to be properly embedded in a ball. If we bring
the endpoints of the edges in the boundary sphere together into a single vertex, we obtain a
spatial graph which is known as the vertex closure V (T ) of the entanglement T . In Figure 1.1,
we illustrate an entanglement whose vertex closure is a ravel.

FIGURE 1.1. The entanglement on the left becomes a ravel when the endpoints are brought together on the right.

In this paper, we characterize when a Montesinos tangle can become a ravel as the re-
sult of vertex closure with and without replacing some number of crossings by vertices. In
particular, our main results are the following.

THEOREM 3.3. Let T = T1 + · · · + Tn be a Montesinos tangle such that n is minimal
and not both T1 and Tn are trivial vertical tangles. If T is rational, then the vertex closure
V (T ) is planar. If T is not rational and some rational subtangle Ti has ∞-parity, then V (T )

contains a non-trivial knot or link. Otherwise, V (T ) is a ravel.

THEOREM 4.7. Let T = T1 + · · · + Tn be a projection of a Montesinos tangle in
standard form, and let T ′ be obtained from T by replacing at least one crossing by a vertex.
Then the vertex closure V (T ′) is a ravel if and only if T ′ is an exceptional vertex insertion.

While we postpone defining an exceptional vertex insertion until Section 4, Theorem 4.7
has the following more easily stated corollary.

COROLLARY 4.8. Let T = T1 + · · · + Tn be a projection of a Montesinos tangle in
standard form, and let T ′ be obtained from T by replacing at least one crossing by a vertex.
If V (T ′) is a ravel, then precisely one Ti has ∞-parity.
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2. Background

For completeness we include some well-known definitions and results about knots, links,
and tangles.

DEFINITION 2.1. A 2-string tangle T in a ball B is said to be rational if there is an
ambient isotopy of B setwise fixing ∂B that takes T to a trivial tangle.

DEFINITION 2.2. The sum and product of tangles R and S are shown in Figure 2.1.

FIGURE 2.1. The sum and product of tangles R and S.

DEFINITION 2.3. A tangle is said to be Montesinos if it can be written as the sum of
finitely many rational tangles. A tangle is said to be algebraic or arborescent if it can be
written in terms of sums and products of finitely many rational tangles.

Note that Montesinos tangles and algebraic tangles are not necessarily 2-string tangles
since they may contain simple closed curves in addition to the two strings.

DEFINITION 2.4. Let T be a 2-string tangle. The knot or link obtained by joining the
NE and SE points together and the NW and SW points together is called the denominator
closure of T , and denoted by D(T ). The knot or link obtained by joining the NW and NE
points together and the SW and SE points together is called the numerator closure of T , and
denoted by N(T ).

DEFINITION 2.5. A 2-string tangle is said to have ∞-parity if the NW and SW bound-
ary points are on the same strand, and 0-parity if the NW and NE boundary points are on the
same strand.

DEFINITION 2.6. Any tangle obtained from a trivial horizontal tangle by twisting to-
gether the NE and SE ends is said to be a horizontal tangle.

We will use the following results repeatedly in our proofs.

WOLCOTT’S THEOREM ([13]). Let T be a rational tangle. Then D(T ) is the unknot if
and only if T is a horizontal tangle; and D(T ) is an unlink if and only if T is a trivial vertical
tangle.
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SCHUBERT’S THEOREM ([9]). Let L1 and L2 be knots or links. Then L1#L2 is trivial
if and only if both L1 and L2 are trivial.

THISTLETHWAITE’S THEOREM ([12]). A reduced alternating projection of a link has
the minimum number of crossings.

3. Vertex closure of rational and Montesinos tangles

DEFINITION 3.1. Let T be a 1-string or 2-string tangle (possibly with additional
closed components) in a ball B. The embedded graph V (T ) obtained by bringing the end-
points of the string(s) together into a single vertex w in ∂B is said to be the vertex closure of
T and w is said to be the closing vertex.

We begin with the following observation about when the vertex closure of a tangle is
planar.

LEMMA 3.2. Let T be a 2-string tangle with tangle ball B. Then the vertex closure
V (T ) of T is planar if and only if T is rational.

PROOF. It follows from the definition of rational that T is rational if and only if it can
be made planar by moving the endpoints of the strands of T around in ∂B. However, moving
the endpoints of the strands around in ∂B corresponds to moving the edges of V (T ) about the
closing vertex. So T is rational if and only if V (T ) can be made planar by moving the edges
of V (T ) about the vertex. �

The following theorem characterizes when the vertex closure of a Montesinos tangle is a
ravel.

THEOREM 3.3. Let T = T1 + · · · + Tn be a Montesinos tangle such that n is minimal
and not both T1 and Tn are trivial vertical tangles. If T is rational, then the vertex closure
V (T ) is planar. If T is not rational and some rational subtangle Ti has ∞-parity, then V (T )

contains a non-trivial knot or link. Otherwise, V (T ) is a ravel.

PROOF. We know by Lemma 3.2 that if T is rational, then V (T ) is planar. So we
assume that n > 1. Since n is minimal, none of the Ti is horizontal. Without loss of generality
we can assume that Tn is not a trivial vertical tangle.

First suppose that at least one of the rational subtangles has ∞-parity. Let Ti be the
rightmost such tangle in the sum T = T1 + · · · + Tn. Thus both ends of the NE-SE strand of
Ti can be extended to the right until they are joined together at the closing vertex w, giving us
a loop L1 (illustrated in grey on the left in Figure 3.1), though we may have i = n.

Suppose that i < n. Then the loop L1 is a connected sum of the denominator closure
D(Tn) together with a (possibly trivial) knot to the left. Since Tn does not have ∞-parity,
D(Tn) has a single component. Now since Tn is not horizontal, by Wolcott’s Theorem D(Tn)

is a non-trivial knot, and hence by Schubert’s Theorem, L1 is a non-trivial knot contained in
V (T ).
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FIGURE 3.1. On the left Ti has ∞-parity and on the right no subtangle has ∞-parity.

Next suppose that i = n and Tn is the only Tj with ∞-parity. Then we can extend both
ends of the NW-SW strand of Tn to the left until they join together at the closing vertex w. We
denote this loop by L2. Since n > 1, L2 is the connected sum of D(T1) and another (possibly
trivial) knot. Now since T1 is not horizontal, by Wolcott’s Theorem and Schubert’s Theorem
L2 is a non-trivial knot in V (T ).

Now suppose that some rational subtangle in addition to Tn has ∞-parity. Let Ti be the
tangle with ∞-parity that is closest to Tn. Then both ends of the NE-SE strand of Tn can be
extended rightward to w to obtain a loop L1; and both ends of the NW-SW strand of Tn can
be extended leftward until they are joined together in Ti , to obtain a loop L2. Then the link
L = L1 ∪ L2 is the connected sum of D(Tn) with some possibly trivial knot. Now since Tn is
not a trivial vertical tangle, by Wolcott’s Theorem and Schubert’s Theorem, L is a non-trivial
link in V (T ).

Finally, suppose that no Ti has ∞-parity. Then V (T ) is an embedding of the wedge of
two circles and hence V (T ) cannot contain a two component link. Let L denote the vertex
closure of a single strand of T . Since no Ti has ∞-parity, L passes through each Ti exactly
once, as illustrated by the grey arcs on the right side of Figure 3.1. Now since each Ti is
rational, by Lemma 3.2, each individual V (Ti) is planar. It follows that the vertex closure of
each of the single strands Ti ∩ L is unknotted. Now the loop L is the connected sum of the
loops V (T1 ∩ L), . . . , V (Tn ∩ L), each of which is unknotted. Hence L is a trivial knot. Thus
V (T ) contains no non-trivial knots or links. However, since T is not rational, we know by
Lemma 3.2 that V (T ) is non-planar. Hence in this case V (T ) is a ravel. �

The tangle in Figure 3.2 illustrates why Theorem 3.3 has the hypothesis that not both T1

and Tn are trivial vertical tangles. In this case, V (T1 + T2) is planar even though T1 + T2 is a
non-rational Montesinos tangle.

FIGURE 3.2. A Montesinos tangle where both T1 and T2 are trivial vertical tangles.
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COROLLARY 3.4. Let T be a non-rational algebraic tangle written as the sum and
product of rational tangles T1, . . . , Tn where either n > 2 or not both T1 and T2 are trivial
vertical tangles. If each strand of T passes through each Ti exactly once, then V (T ) is a ravel.

PROOF. Observe that by our hypotheses, V (T ) must be a wedge of two circles. Thus
the argument is analogous to the last case in the proof of Theorem 3.3. �

The algebraic tangle T in Figure 3.3 illustrates that the converse of Corollary 3.4 does
not hold. In particular, the grey strand does not pass through T1 or T2. Observe that the
vertex closure V (T ) contains no non-trivial knots or links. However, since T is non-rational,
it follows from Lemma 3.2 that V (T ) is non-planar. Thus V (T ) is a ravel.

FIGURE 3.3. A counterexample to the converse of Corollary 3.4.

4. Vertex closure with crossing replacement

We are now interested in whether we can obtain a ravel from a projection of a Montesinos
tangle by replacing some number of crossings by vertices and taking the vertex closure. In
this case, we need to specify what types of projections we are considering.

DEFINITION 4.1. A projection of a rational tangle T is said to be in alternating 3-

braid form if it is alternating and has the form of Figure 4.1, where each box Ai consists of
some number of horizontal twists, and this number is non-zero for all i > 1.

FIGURE 4.1. The 3-braid form of a rational tangle.

It follows from Schubert [10] and more recently Kauffman and Lambropoulou [3] that
every rational tangle has a projection in alternating 3-braid form.
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DEFINITION 4.2. A projection of a Montesinos tangle T is said to be in standard
form if it is expressed as T = T1 + · · · + Tn, where each Ti is a non-trivial rational tangle in
alternating 3-braid form and n is minimal.

Note that every Montesinos tangle with no trivial vertical tangle as a summand has a
projection in standard form, though this projection may not be alternating.

DEFINITION 4.3. Let T be a projection of a knot, link, or tangle. The embedded graph
obtained from T by replacing some number of crossings by vertices of valence 4 is denoted
by T ′ and referred to as an insertion of vertices into T .

Note that if T is a tangle then T ′ is not technically an embedded graph, because its
endpoints are not vertices. However, for convenience we will abuse notation and refer to T ′
as an embedded graph. Now let T = T1 + · · · + Tn be a projection of a Montesinos tangle in
standard form. Then T ′

i denotes the subgraph of T ′ obtained from Ti by vertex insertion, and

(A
j
i )

′ denotes the subgraph obtained from the j th box of twists A
j
i in Ti by vertex insertion.

If there are no vertices in T ′
i or in (A

j

i )
′, then we write T ′

i = Ti or (A
j

i )
′ = A

j

i , respectively.
The following result shows that a ravel cannot occur in the special case where a single

crossing is replaced by a vertex and V (T ′) is a θ4 graph (i.e., the graph consists of two vertices
and four edges between them).

THEOREM 4.4 (Farkas, Flapan, Sullivan [2]). Let T = T1+· · ·+Tn be a projection of
a Montesinos tangle in standard form with n > 1, and let T ′ be obtained from T by replacing
a single crossing by a vertex such that the vertex closure V (T ′) is a θ4 graph. Then V (T ′)
contains a non-trivial knot and hence is not a ravel.

To see the necessity of the hypothesis that V (T ′) is a θ4 graph consider the Montesinos
tangle in standard form illustrated on the left in Figure 4.2. By replacing a crossing in T2 with
a vertex and taking the vertex closure as illustrated on the right, we obtain a ravel which is not
a θ4 graph.

FIGURE 4.2. A Montesinos tangle which becomes a ravel by inserting one vertex and taking the vertex closure.

We will now consider the case where we replace any number of crossings of a Mon-
tesinos tangle in standard form by vertices. We begin with some technical definitions.
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DEFINITION 4.5. Let T be a projection of a rational tangle in alternating 3-braid form

with boxes A1, . . . , Am as illustrated in Figure 4.1. A vertex or crossing x of T ′ is said to be
to the right of a vertex or crossing y if either x and y are in the same box (Ai)′ and y is to the

right of x in (Ai)′, or x is in the box (Ai)′ and y is in the box (Aj )′ and i > j .

Observe that given a rational tangle T in 3-braid form, a subtangle R of T containing
consecutive boxes Aj , . . . , Am (illustrated in Figure 4.3) is itself a rational tangle in 3-braid
form.

FIGURE 4.3. The subtangle R is itself a rational tangle in 3-braid form.

DEFINITION 4.6. Let T = T1 + · · · + Tn be a projection of a Montesinos tangle in
standard form, and let T ′ be obtained by replacing some non-zero number of crossings by
vertices. Then T ′ is said to be an exceptional vertex insertion if all of the following conditions
hold.

(1) There exists precisely one Tj with ∞-parity, and T ′
j has no vertices.

(2) For all k �= j , T ′
k contains exactly one vertex vk , and vk is in (A2

k)
′ or possibly in

(A3
k)

′ if A2
k has a single crossing.

(3) For all k �= j , the subtangle Rk ⊆ Tk containing the boxes of Tk to the right of the
vertex vk has at least two crossings.

(4) For all k �= j , T ′
k has a loop containing vk .

We see as follows that the insertion of vertices illustrated for the tangle in Figure 4.2 is
exceptional.

(1) T1 is the only Ti with ∞-parity, and T ′
1 has no vertices.

(2) T ′
2 contains exactly one vertex, and it is in the second box of T ′

2. (Note that the first

box of T ′
2 has zero crossings).

(3) The subtangle R2 ⊆ T2 has two crossings.
(4) T ′

2 has a loop containing its vertex.

Figure 4.4 illustrates a generalization of the exceptional vertex insertion in Figure 4.2.
Here T3 is any tangle with ∞-parity; for each k �= 3, T ′

k contains exactly one vertex and it

replaces the only crossing in A2
k; and Rk is any rational tangle containing at least two crossings
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such that T ′
k has a loop containing vk . As in Figure 4.2, we obtain a ravel by taking the vertex

closure of this exceptional vertex insertion.

FIGURE 4.4. A ravel obtained by an exceptional vertex insertion together with vertex closure.

The remainder of the paper is devoted to proving the following theorem.

THEOREM 4.7. Let T = T1 + · · · + Tn be a projection of a Montesinos tangle in
standard form, and let T ′ be obtained from T by replacing at least one crossing by a vertex.
Then the vertex closure V (T ′) is a ravel if and only if T ′ is an exceptional vertex insertion.

Observe that requirement (4) of an exceptional vertex insertion implies that if T ′ is an
exceptional vertex insertion, then V (T ′) cannot be a θ4 graph. Thus Theorem 4.7 is a gener-
alization of Theorem 4.4. Theorem 4.7 immediately implies the following more simply stated
corollary.

COROLLARY 4.8. Let T = T1 + · · · + Tn be a projection of a Montesinos tangle in
standard form, and let T ′ be obtained from T by replacing at least one crossing by a vertex.
If V (T ′) is a ravel, then precisely one Ti has ∞-parity.

Observe that if T = T1 + · · · + Tn is a projection of a non-rational Montesinos tangle in
standard form, then no Ti is horizontal since otherwise n would not be minimal. Also, by the
definition of standard form, no Ti is a trivial tangle. Finally, because every vertex in V (T ′)
has valence 4, no arc in T ′ is forced to terminate at a vertex. This means that any arc in a
T ′

i can be extended to go from one of the points NE, SE, NW, SW of T ′
i to another. We will

make use of these facts together with the following simplifying assumptions that allow us to
remove unnecessary crossings in any T ′

i .

Simplifying Assumptions

(1) If there are vertices in some box (A
j

i )
′ of T ′

i , then we can untwist about them to

remove all of the crossings of (A
j
i )

′. Thus we assume that there are no crossings in
any box containing a vertex.

(2) If there is a single crossing to the right of the rightmost vertex of some T ′
i , then the

crossing can be removed by untwisting about the vertex as illustrated in Figure 4.5.
Thus we assume that there are either zero crossings or at least two crossings to the
right of the rightmost vertex in any T ′

i .
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FIGURE 4.5. A single crossing to the right of the rightmost vertex of T ′
i can be removed.

The rest of the paper is organized as follows. In Section 5, we prove two lemmas that we
will use to prove the forward direction of Theorem 4.7. We then prove the forward direction
in Section 6, and prove the backward direction in Section 7.

5. Lemmas for the Forward Direction

LEMMA 5.1. Let T be a projection of a non-trivial rational tangle in 3-braid form.
Suppose that T ′ has at least one vertex and there are no crossings to the right of its rightmost
vertex vR . Then for any pair of distinct points p1 and p2 in T ′, there is a simple path between
p1 and p2 in T ′.

PROOF. Observe from Figure 4.1 that if a path P starts at the NE point of T and goes
leftward, it will go through the rightmost box Am precisely once. In particular, once a path
exits from Am, it cannot return to Am. Thus both strands of T must go through Am.

Recall that for all i �= 1, the box Ai contains a non-zero number of crossings. Since there
are no crossings to the right of vR , this means that vR occurs in the rightmost box (Am)′ of T ′
as illustrated in Figure 5.1. Thus both strands of T are involved in the crossing that becomes
vR .

FIGURE 5.1. Both strands of T are part of the crossing that becomes vR .

Now consider distinct points p1 and p2 in T ′. Since both strands of T are part of the
crossing that becomes vR , there are paths P1 and P2 in T ′ joining both p1 and p2 to vR . Thus
P = P1 ∪ P2 is a path in T ′ between p1 and p2. By removing any loops in P we obtain a
simple path joining p1 and p2. �
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It follows from Lemma 5.1 that if there are no crossings to the right of the rightmost
vertex of T ′, then there is a simple path in T ′ between any pair of the NW, SW, NE, SE points
of T ′. We use Lemma 5.1 to prove our next lemma.

LEMMA 5.2. Let T = T1 + · · · + Tn be a projection of a Montesinos tangle written in
standard form, and let T ′ be obtained from T by replacing at least one crossing by a vertex.
Suppose that every T ′

i containing a vertex has at most one crossing to the right of its rightmost

vertex vR
i . Then V (T ′) is not a ravel.

PROOF. We assume that V (T ′) does not contain any non-trivial knots or links, and we
will prove that V (T ′) can be isotoped into the plane.

By Simplifying Assumption (2), we can assume that no T ′
i has any crossings to the right

of its rightmost vertex vR
i . Thus any T ′

i that contains a vertex must have vR
i in its rightmost

box (Am
i )′. Now we see in Figure 5.2 that we can remove all of the crossings between vR

i and

the next vertex to its left in T ′
i , or all of the crossings in T ′

i if vR
i is the only vertex in T ′

i . Thus
we assume there are no such crossings.

FIGURE 5.2. We remove all of the crossings between vR
i and the next vertex to the left in T ′

i .

We now sequentially prove the following list of claims showing that we can remove all
of the crossings of V (T ′) to obtain a planar embedding.

(1) Every T ′
i contains a vertex.

(2) V (T ′) can be simplified so that there is at most one crossing between any pair of
adjacent vertices in each T ′

i .

(3) All crossings to the left of the leftmost vertex in each T ′
i can be removed.

(4) All of the crossings of V (T ′) can be removed.

CLAIM 1. Every T ′
i contains a vertex.

First we consider the case where T ′
1 is the only T ′

i containing a vertex. Then there are
no crossings to the right of its rightmost vertex, and hence by Lemma 5.1 there is a simple
path L1 in T ′

1 between its NE and SE points. Now we extend the ends of L1 to the right until
either they meet in some Ti with ∞-parity or at the closing vertex w. This gives us a simple
closed curve L. Since there are no crossings in T1 to the right of its rightmost vertex, L is
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the connected sum of D(T2) together with a possibly trivial knot to its right. Now, since T

is in standard form, T2 is not horizontal and not a trivial vertical tangle. Thus by Wolcott’s
Theorem, D(T2) is a non-trivial knot or link. It now follows from Schubert’s Theorem that L

is a non-trivial knot or link. As this is contrary to our assumption, this case does not occur.

Thus we now assume that for some i, T ′
i+1 contains a vertex and T ′

i does not. Let vR
i+1

be the rightmost vertex of T ′
i+1. Since there are no crossings in T ′

i+1 to the right of vR
i+1, we

can apply Lemma 5.1 to obtain a simple path L1 in T ′
i+1 between its NW and SW points. We

will now argue that there is also a simple path between the NW and SW points of Ti whose
interior is to the left of Ti .

Suppose no T ′
k to the left of T ′

i contains a vertex or has ∞-parity. Then there are disjoint
simple paths Pi and Qi going leftwards from the NW and SW points of Ti to the closing
vertex w. In this case, L2 = Pi ∪ Qi is a simple path between the NW and SW points of Ti

whose interior is to the left of Ti .
Thus we assume that either some T ′

k to the left of T ′
i contains a vertex or some T ′

k to

the left of T ′
i has ∞-parity and contains no vertices. Let T ′

k be the closest such subgraph to

the left of Ti . If T ′
k contains a vertex, then there are no crossings to the right of its rightmost

vertex, and hence by Lemma 5.1 there is a simple path in T ′
k between its NE and SE points.

If Tk = T ′
k has ∞-parity, then the NE-SE strand is a simple path in Tk . Thus in either case

T ′
k contains a simple path between its NE and SE points. By combining this path in T ′

k with

the strands of all Tj with k < j < i and the arcs between these Tj from T ′
k to T ′

i , we obtain
a simple path L2 between the SW and NW points of Ti whose interior is to the left of Ti .
Figure 5.3 illustrates the paths L1 and L2 as dotted arcs.

FIGURE 5.3. On the left, T ′
k

contains a vertex; and on the right, T ′
k

has ∞-parity.

Now in any of the above cases, let L denote the arc L1 (in T ′
i+1) together with the arc

L2 (to the left of T ′
i+1), as well as the strands of Ti , and the arcs joining T ′

i and T ′
i+1. If Ti

has ∞-parity, then L has two components, and otherwise L has a single component. In either
case, observe that L is the connected sum of some (possibly trivial) knot that lies to the left
of Ti , together with the denominator closure D(Ti), and some (possibly trivial) knot that lies
to the right of Ti . Now, as in the case at the beginning of the claim, L is a non-trivial knot or
link. As this is contrary to our assumption, this proves Claim 1.
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Hence from now on we assume that for every i, T ′
i contains a vertex, and hence vR

i is in

the rightmost box of T ′
i . Thus it follows from Lemma 5.1 that every pair of distinct points in

any T ′
i is joined by a simple path in T ′

i .

CLAIM 2. V (T ′) can be simplified so that there is at most one crossing between any
pair of adjacent vertices in each T ′

i .

Suppose that some T ′
i has two or more crossings between a pair of adjacent vertices v1

and v2 contained in boxes (A
j

i )
′ and (Ak

i )
′, respectively. Note that by Simplifying Assumption

(1), we can assume that there are no crossings in any box containing a vertex. Thus the boxes

(A
j
i )

′ and (Ak
i )

′ must be distinct. Hence without loss of generality j < k. Thus v2 is to the
right of v1. Also, as we saw at the beginning of the proof, we can assume that there are no

crossings between vR
i and the next vertex to its left. Hence v2 cannot be the rightmost vertex

of T ′
i .

Now let B be a ball containing v1 and v2 together with the portion of T ′
i between v1 and

v2 as illustrated in Figure 5.4; and let a and b be the points of ∂B ∩ T ′
i which are separated

from v1 and v2 by crossings, as indicated in the figure. Note that since v1 and v2 are adjacent
vertices, there are no other vertices in B. Thus either T ′

i ∩ B contains two edges which go
between v1 and v2 creating a simple closed curve K and a disjoint arc A going from a to b (as
illustrated on the left in Figure 5.4), or T ′

i ∩ B contains a single arc A joining a and b which
goes through both v1 and v2 (as illustrated on the right in Figure 5.4).

FIGURE 5.4. The ball B contains the portion of T ′
i

between v1 and v2.

Now since v1 is contained in the box (A
j
i )

′, there is a path P1 going leftward from a to

the NW, SW, or SE point of T ′
i which does not pass through any box (At

i)
′ with t ≥ j . Also,

there is a path P2 going rightward from b to the rightmost vertex vR
i , and then to the NE point

of T ′
i which does not pass through any (As

i )
′ with s ≤ k. In particular, neither P1 nor P2

contains v1 or v2.
We will now define a simple closed curve J that contains P1 ∪ P2 ∪ A. We first do this

in the case where P1 goes from a to the SE point of T ′
i as illustrated by the dotted arc in

Figure 5.5. In this case, if i �= n, we extend P1 and P2 rightward to the SW and NW points
of T ′

i+1 respectively. Then by Claim 1 and Lemma 5.1 applied to T ′
i+1, we can join P1 and P2
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by a simple path in T ′
i+1. If i = n, then we can extend P1 and P2 rightward until they meet

at w. Thus either way we can join P1 and P2 by a simple path. This gives us a simple path
P from a to b whose interior is disjoint from B. Now let J denote the simple closed curve
P ∪ A. Then J meets ∂B only in the points a and b.

FIGURE 5.5. There is a simple path P from a to b consisting of P1, P2, and an arc in T ′
i+1.

Next suppose that P1 does not go to the SE point of T ′
i . Since P1 does not go to the NE

point of T ′
i , without loss of generality we can assume P1 goes from a to the SW point of T ′

i

as illustrated by the dotted arc in Figure 5.6. By Claim 1 and Lemma 5.1, we can now extend
P1 and P2 leftward and rightward respectively until they meet at the closing vertex w giving
us a simple path P from a to b whose interior is disjoint from B. Now let J denote the simple
closed curve P ∪ A. Again J meets ∂B only in the points a and b.

FIGURE 5.6. We extend P1 leftward and P2 rightward until they meet at the closing vertex w.

In either of the above cases, if the arc A contains v1 and v2, we let L = J , and otherwise
we let L = J ∪ K . Now since T ′

i has at least two crossings between v1 and v2, the vertex
closure V (L ∩ B) contains at least two crossings and is reduced and alternating. Thus it
follows from Thistlethwaite’s Theorem and Schubert’s Theorem that L is a non-trivial knot
or link in V (T ′). As this is contrary to our assumption, we have proven Claim 2.

Hence from now on we assume that there is at most one crossing between any pair of
adjacent vertices in each T ′

i .

CLAIM 3. All crossings to the left of the leftmost vertex in each T ′
i can be removed.
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If T is rational, then we can remove all of the crossings to the left of the leftmost vertex
vL by untwisting about the closing vertex w from left to right, as illustrated in Figure 5.7.
Thus for the rest of the proof of this claim we assume that T is not rational, and hence n > 1.

FIGURE 5.7. If T is rational, we can remove all of the crossings to the left of vL.

Let T ′
i be the leftmost subgraph of T ′ that contains at least one crossing to the left of its

leftmost vertex vL
i . By Simplifying Assumption (1), there are no crossings in the box with

vL
i . Thus (A1

i )
′ cannot contain any vertices, and hence A1

i = (A1
i )

′. Suppose that A1
i contains

a crossing. Let c denote the leftmost crossing of A1
i ; let R denote a ball whose intersection

with V (T ′) is (T1 + · · · + Ti−1)
′; and let F denote the part of T ′

i to the right of c (see the left
side of Figure 5.8).

FIGURE 5.8. Removing a crossing of A′
i .

We flip R over to remove the crossing c. This adds a crossing to the left of R which can
be removed by untwisting the strands around the closing vertex w. Thus we get the illustration
on the right of Figure 5.8.

We repeat this operation until we have removed all of the crossings in A1
i . This proves the

claim in the case where vL
i is in (A1

i )
′ or (A2

i )
′. Thus we assume for the sake of contradiction

that vL
i is not in (A1

i )
′ or (A2

i )
′.

Next suppose there is only one crossing in T ′
i to the left of vL

i . Since every box (Ak
i )

′

with k > 1 must either contain a crossing or a vertex, this means that (A2
i )

′ contains one

crossing and vL
i is in (A3

i )
′. Hence (A2

i )
′ has no vertices and (A3

i )
′ has no crossings. Thus we

have the illustration on the left of Figure 5.9, where the ball R contains the subgraphs T ′
1, . . . ,
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T ′
i−1 and the ball F contains the boxes (A

j

i )
′ with j > 3. We can now remove the crossing in

A2
i by flipping both R and F and untwisting the strands around w as illustrated on the right

side of Figure 5.9. Thus we assume there are at least two crossings in T ′
i to the left of vL

i .

FIGURE 5.9. Removing a single crossing in A2
i

when vL
i

is in (A3
i
)′.

Now let B be a ball containing vL
i together with the part of T ′

i that is to the left of vL
i as

illustrated in Figure 5.10. Since T ′
i contains the vertex vR

i in its rightmost box, the arc marked

x can be extended rightward by a simple path to the NE point of T ′
i . Now the NW and SW

points of T ′
i are joined together either by an arc through vR

i−1 or through w in the case where

i = 1, and the NE and SE points of T ′
i are joined together either by an arc through T ′

i+1 or
through w if i = n. These arcs, together with the bold black and grey arcs in Figure 5.10,
give us one or two simple closed curves which we denote by L. Since V (L ∩ B) is reduced
and alternating and has at least two crossings, it follows from Thistlethwaite’s Theorem and
Schubert’s Theorem that L is a non-trivial knot or link. As this contradicts our assumption,
this case cannot arise.

FIGURE 5.10. We can extend the bold black and grey arcs to get one or two simple closed curves.

Thus we have proven Claim 3. Hence from now on we assume that there are no crossings
to the left of the leftmost vertex in every T ′

i .

It follows from our hypotheses together with Claims 1–3 that the only crossings remain-
ing in V (T ′) are isolated crossings between two adjacent vertices within a single T ′

i .

Let x denote the leftmost crossing in V (T ′). Then x is between a pair of vertices va and
vb in some T ′

i . Since there is at most one crossing between any pair of adjacent vertices va
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and vb are in boxes (A
j
i )

′ and (A
j+2
i )′ respectively, and the crossing x is in the box (A

j+1
i )′ =

A
j+1
i . Let G denote a ball around all of the boxes (Ak

i )
′ with k < j in T ′

i , and let F denote a

ball around all of the boxes (Ak
i )

′with k > j + 2 in T ′
i (see Figure 5.11).

FIGURE 5.11. T ′
i

has a single crossing between va and vb .

Let B denote a ball containing all of the T ′
s such that s < i. Then V (T ′) is the embedded

graph illustrated on the top of Figure 5.12. Note that B and G contain no crossings since x is
the leftmost crossing in V (T ′). We now flip F over to remove the crossing x from V (T ′) as
illustrated on the bottom of Figure 5.12. We repeat the above argument to sequentially remove
all of the remaining crossings in the projection of V (T ′).

FIGURE 5.12. We can flip F over to remove the crossing between va and vb .

This gives us a planar embedding of V (T ′). Thus V (T ′) is not a ravel. �

6. Proof of the Forward Direction of Theorem 4.7

PROPOSITION 6.1. Let T = T1 + · · · + Tn be a projection of a Montesinos tangle in
standard form, and let T ′ be obtained from T by replacing at least one crossing by a vertex.
Suppose that the vertex closure V (T ′) is a ravel. Then T ′ is an exceptional vertex insertion.
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PROOF. Given any k such that T ′
k contains a vertex, let vR

k denote the rightmost vertex

of T ′
k . Then T ′

k has the form illustrated in Figure 6.1, where vR
k may be in the top or the bottom

row, and Rk is a ball containing all of the boxes of T ′
k that are to the right of vR

k .

FIGURE 6.1. vR
k is the rightmost vertex of T ′

k , and Rk contains all of the crossings of T ′
k that are to the right of vR

k .

We now prove that T ′ is an exceptional vertex insertion by sequentially proving the
following list of claims.

(1) Some Tj has ∞-parity, and T ′
j has no vertices.

(2) For all k �= j , Tk does not have ∞-parity, T ′
k has at least one vertex, and Rk has at

least two crossings.
(3) For all k �= j , T ′

k contains exactly one vertex vk .

(4) For all k �= j , the vertex vk is in (A2
k)

′ or possibly in (A3
k)

′ if A2
k has a single

crossing.
(5) For all k �= j , the tangle T ′

k has a loop containing vk .

We begin by proving Observation 1 which will be used in the proof of Claim 1.

OBSERVATION 1. If for some k, there are at least two crossings in Rk , then there is no
path in T ′

k between its NE and SE point. Hence T ′
k contains paths from its NE and SE points

to its NW and SW points.

To prove Observation 1, suppose that there are at least two crossings in Rk and there is a
path in T ′

k between its NE and SE point. Then we can extend this path rightward until its ends

meet either at a vertex in some T ′
j , in some Tj with ∞-parity, or at the closing vertex w. This

gives us a simple closed curve L1. If L1 contains vR
k , then all of the crossings of Rk are in L1.

In this case, let L = L1. Otherwise, as can be seen in Figure 6.1, there is a grey simple closed

curve L2 ⊆ T ′
k containing vR

k such that all of the crossings in Rk are contained in L1 ∪ L2. In
this case, we let L = L1 ∪ L2.

Now let Bk denote the tangle ball for Tk . Then L is the union of L ∩ Bk together with an
arc outside of Bk . Since L∩Bk contains at least two crossings and is reduced and alternating,
by Thistlethwaite’s Theorem L is a non-trivial knot or link. However, this contradicts the
hypothesis that V (T ′) is a ravel. Thus we have proven the observation.

CLAIM 1. Some Tj has ∞-parity, and T ′
j has no vertices.
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Since V (T ′) is a ravel, we know by Lemma 5.2 that some T ′
k containing a vertex has at

least two crossings in Rk . Now by Observation 1, there is an arc Pk in T ′
k from its NE point

to its SW or NW point. Suppose the endpoints of Pk can be extended rightward and leftward

to w, so that we obtain a simple closed curve L1. If L1 contains vR
k , let L = L1. Otherwise,

there is another simple closed curve L2 ⊆ T ′
k containing vR

k such that all of the crossings
in Rk are contained in L1 ∪ L2. In this case, we let L = L1 ∪ L2. Now as in the proof of
Observation 1, this implies that L is a non-trivial knot or link contradicting the hypothesis that
V (T ′) is a ravel. Thus Pk cannot be extended so that it passes through every T ′

j .

Thus there must exist some j such that Tj has ∞-parity. Now suppose that T ′
j has at

least one vertex. If there are less than two crossings to the right of the rightmost vertex vR
j ,

then by Simplifying Assumption (2), we can assume there are no crossings in T ′
j to the right

of vR
j . Hence by Lemma 5.1, we could again extend Pk through Tj . On the other hand if

there are at least two crossings to the right of vR
j , then by Observation 1, there are paths from

the NE and SE points of T ′
j to the NW and SW points of T ′

j . Thus we could again extend Pk

through T ′
j . Hence T ′

j cannot have any vertices. Thus we have proven Claim 1.

We now prove Observation 2, which will be used in the proof of Claim 2.

OBSERVATION 2. A single strand of Tj cannot be extended to a simple closed curve
in T ′.

Suppose that some strand of Tj can be extended to a simple closed curve L1 in T ′. We
now extend the ends of the other strand of Tj until they meet at or before w. Since Tj has
∞-parity, this gives us a simple closed curve L2 which is disjoint from L1. Then L = L1 ∪L2

is the connected sum of D(Tj ) and two (possibly trivial) knots. Since Tj has ∞-parity, D(Tj )

is a link; and because Tj is non-trivial, by Wolcott’s Theorem D(Tj ) is non-trivial. Hence L

is also a non-trivial link. As this contradicts the hypothesis that V (T ′) is a ravel, Observation
2 follows.

CLAIM 2. For all k �= j , Tk does not have ∞-parity, T ′
k has at least one vertex, and

Rk has at least two crossings.

Suppose that there is some k �= j such that Tk has ∞-parity. Without loss of generality,
k > j . Then we can extend one of the strands of Tj to the right so that the ends meet either in
Tk or before. As this violates Observation 2, no Tk with k �= j can have ∞-parity.

Suppose that some T ′
k with k �= j has no vertices. Without loss of generality, k > j .

Since Tj has ∞-parity, we can extend the western endpoints of Tk leftward until they meet at
or before Tj , and we can extend the eastern endpoints of Tk rightward until they meet at or
before w. Let L be the simple closed curve obtained as the union of Tk with these rightward
and leftward extensions. Now L is the connected sum of D(Tk) with (possibly trivial) knots
on the right and left. Recall that since T is in standard form, Tk is not horizontal. Thus by
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Wolcott’s Theorem L is a non-trivial knot. As this is contrary to our hypothesis, T ′
k must have

at least one vertex.
Finally, suppose that some T ′

k has at most one crossing in Rk . Then by Simplifying

Assumption (2), T ′
k has no crossings to the right of vR

k . Hence by Lemma 5.1, there is a

simple path in T ′
k between its NW and SW point. Thus again we can extend one of the strands

of Tj to a simple closed curve in T ′. As this again violates Observation 2, Rk must have at
least two crossings.

CLAIM 3. For all k �= j , T ′
k contains exactly one vertex.

Suppose that some T ′
k contains at least two vertices. Without loss of generality k > j .

Let vL
k be the leftmost vertex in T ′

k . Then we can illustrate T ′
k by Figure 6.2, where all of the

crossings of T ′
k are in the balls Qk , Sk , and Rk , and any other vertices of T ′

k are contained in

Sk . Note that in spite of the way we have illustrated them, vL
k and vR

k can each be in either the
top or the bottom row.

FIGURE 6.2. L1 intersects T ′
k

in disjoint arcs C1 and C2.

Now we extend the ends of the NE-SE strand of Tj rightward until they meet. This must
occur at the closing vertex w or else it would violate Observation 2. After removing any loops,
we obtain a simple closed curve L1 which intersects T ′

k in a pair of disjoint arcs C1 and C2

each going between an eastern and western point of T ′
k . Without loss of generality, we assume

the endpoints of C1 are the NE and NW points of T ′
k and the endpoints of C2 are the SE and

SW points of T ′
k as illustrated in Figure 6.2.

Observe that two arcs of C2 enter Qk from the left. Since Qk has no vertices and does not
contain the rightmost box of Tk , an arc that enters on the left must leave on the right. Thus two
arcs of C2 must exit Qk on the right. Now C1 also exits Qk on the left, and hence must enter
Qk on the right. Since C1 and C2 are disjoint, this means that the two arcs entering vL

k from
the left must belong to C2 and the dotted black arc in Figure 6.2 belongs to C1. Furthermore,

since C2 does not contain any loops, C2 cannot continue rightward beyond vL
k . In particular,

vR
k cannot be in C2.

Next suppose that the arc of C1 from Rk to Sk passes through vR
k . Then T ′

k is illustrated
in Figure 6.3, where the grey dotted arcs entering Sk on the right are connected in some way
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to the grey dotted arcs exiting Sk on the left. In this case, there is a path in T ′
k going from its

NE endpoint passing through both vL
k and vR

k and exiting T ′
k from its SE endpoint. However,

by Claim 2 we know that Rk contains at least two crossings, and hence by Observation 1 no

such path can exist. Thus the arc of C1 from Rk to Sk cannot pass through vR
k as it does in

Figure 6.3.

FIGURE 6.3. L1 intersects T ′
k in disjoint arcs C1 and C2.

Hence either C1 goes through vR
k and then reenters Rk , or T ′

k contains a simple closed

curve L2 that goes through vR
k and is disjoint from C1. In the first case, since Rk is alter-

nating and contains at least two crossings, L1 is a non-trivial knot. As this is contrary to our
assumption, the second case must occur. However, Rk is itself a rational tangle in alternating
3-braid form, and by Simplifying Assumption 1 there are no crossings in the same box as vR

k .
Thus there must be at least two crossings between L1 and L2. But this implies that L1 ∪ L2

is a non-trivial link. As this is again contrary to our hypothesis, T ′
k must contain exactly one

vertex.

CLAIM 4. For all k �= j , the vertex vk is in (A2
k)

′ or possibly in (A3
k)

′ if A2
k has a

single crossing.

If some T ′
k has its vertex in the first box, as illustrated in Figure 6.4, then there would be

a path in T ′
k between its NE and SE points, which would violate Observation 1.

FIGURE 6.4. If vk is in A1, then there are paths in T ′
k

joining the NW and SW points and joining the NE and SE

points.

Now suppose that some T ′
k has its vertex vk in a box (A

p
k )′ where either p > 3 or p = 3

and A2
k has more than one crossing. Let Wk be the tangle consisting of vk and the part of T ′

k
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to the left of vk , as illustrated in Figure 6.5 (though vk could be in a box to the right of Ak
3).

Note that Wk includes the black arcs to the left of vk but not the grey arcs to the right of vk .

Then Wk is a rational tangle; and since there are at least two crossings in A2
k, . . . , A

p−1
k , the

tangle Wk is neither a horizontal tangle nor a trivial vertical tangle.

FIGURE 6.5. Wk is a rational tangle which is neither a horizontal tangle nor a trivial vertical tangle.

Now there is a path that goes from the NW and SW points of Wk leftward until its ends
meet in Tj , at w, or at some other vertex. Also there is a path that goes rightward from the
NE and SE points of Wk until the ends meet in Tj , at w, or at some other vertex. Note that
since Tj has ∞-parity, at most one of these paths contains w. The union of the two strands
of Wk together with these leftward and rightward paths is the connected sum of D(Wk) with
two (possibly trivial) knots. Since Wk is neither horizontal nor a trivial vertical tangle, this

connected sum is a non-trivial knot or link. Thus the vertex vk must either be in (A2
k)

′ or

possibly in (A3
k)

′ if A2
k has only one crossing.

CLAIM 5. For all k �= j , T ′
k has a loop containing vk .

It follows from Claim 4 that T ′
k has one of the forms illustrated in Figure 6.6.

FIGURE 6.6. T ′
k

has one of these forms.
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First we consider the illustration on the left in Figure 6.6. In this case, if Rk has 0-parity,
then the strands going into vk from the right are connected together in Rk . Hence they are part
of a loop in T ′

k . On the other hand, if Rk does not have 0-parity, then there is a path from the

NE point of Rk to vk . We can then extend this path to get a path in T ′
k from its NE point to its

SE point. As this violates Observation 1, this cannot occur.
Next we consider the illustration on the right in Figure 6.6. Now if Rk has ∞-parity,

then the strands going into vk from the right are connected together in Rk . Hence they are part
of a loop in T ′

k . But if Rk does not have ∞-parity, then there is a path from the NE point of

Rk to vk . Again we can extend this path to get a path in T ′
k from its NE point to its SE point

violating Observation 1. Thus in either case, T ′
k has a loop containing vk .

Now it follows from Claims 1 through 5 that T ′ is an exceptional vertex insertion. �

7. The Proof of the Backward Direction of Theorem 4.7

In order to prove the backward direction of Theorem 4.7, we make use of the following
definition and theorem due to Sawollek [8].

DEFINITION 7.1. Let G be a 4-valent graph embedded in R
3. The set of associated

links S(G) consists of all knots and links that can be obtained from G by replacing a neigh-
borhood of each vertex of G by a rational tangle.

SAWOLLEK’S THEOREM ([8]). Let G be a 4-valent graph embedded in R
3. The set

of associated links S(G) is an isotopy invariant of G.

PROPOSITION 7.2. Let T = T1 + · · · + Tn be a projection of a Montesinos tangle in
standard form, and suppose that T ′ is obtained from T by an exceptional vertex insertion.
Then the vertex closure V (T ′) is a ravel.

PROOF. By the definition of an exceptional vertex insertion, there is a single Tj with
∞-parity, and T ′

j has no vertices. Without loss of generality we assume that 1 < j ≤ n. Also,

for all k �= j , T ′
k has a single vertex vk which is either in (A2

k)
′ or possibly in (A3

k)
′ if A2

k has
only one crossing. Furthermore, Rk (the subtangle of Tk consisting of the boxes to the right
of vk) is a rational tangle with at least two crossings and T ′

k has a loop containing vk . Now for

each k such that vk is in (A3
k)

′, we move vk to (A2
k)

′ by flipping Rk as illustrated in Figure 7.1.
Next, for each sequential k > 1 such that k �= j , we flip the part of the projection of

V (T ′) to the left of A1
k repeatedly to move the crossings of A1

k to A1
1. Then we remove all

of the accumulated crossings from A1
1 by twisting the strands around w. We illustrate this in

Figure 7.2, where A1
1 begins with zero crossings and A1

2 begins with three crossings. In the

second picture we have moved the three crossings of A1
2 to A1

1, and in the third picture we

have removed all of the crossings from A1
1. This gives us a projection of V (T ′) such that for

each k �= j , the vertex vk is in (A2
k)

′ and all of the crossings of T ′
k are in Rk .
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FIGURE 7.1. When vk is in A3
k
, we flip Rk to move vk to (A2

k
)′.

FIGURE 7.2. We can remove the crossings from the first box of each T ′
k

with k �= j .

After doing the moves illustrated in Figure 7.1 and Figure 7.2, there are four different
ways that the edges can go in and out of each Rk , which we illustrate in Figure 7.3.

FIGURE 7.3. The possibilities for how the strands enter and exit each Rk , with the loop ck indicated in grey.

The leftmost illustration occurs if vk was originally in the second box so we did not have
to flip Rk as in Figure 7.1, and in moving the crossings in the first boxes of the T ′

i to the left
as in Figure 7.2 we flipped Sk zero or an even number of times. The second illustration in
Figure 7.3 occurs if vk was originally in the third box so we flipped Rk as in Figure 7.1, and
in moving the crossings in the first boxes of the T ′

i to the left as in Figure 7.2 we flipped Sk

zero or an even number of times. The third illustration occurs if vk was in the second box so
we did not flip Rk as in Figure 7.1, but in moving the crossings in the first boxes of the T ′

i to
the left as in Figure 7.2 we flipped Sk an odd number of times. The rightmost illustration in
Figure 7.3 occurs if vk was in the third box so we flipped Rk as in Figure 7.1, and in moving
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the crossings in the first boxes of the T ′
i to the left as in Figure 7.2 we flipped Sk an odd

number of times.
Observe that regardless of which of the four illustrations occur, the only difference be-

tween the edges outside of Sk is that the “dangling edge” at the left of Sk (that is the one not
going into vk) may be above or below the vertex vk .

In Figure 7.4 we define a labeling of the edges of V (T ′), keeping in mind that Tj has
∞-parity and none of the Tk with k �= j have ∞-parity. In particular, we label the loop
containing vk by ck and label the edges which are not loops consecutively as follows. Let a1

be the edge from w to v1, and let a2 be the other edge with one endpoint at v1. We label the
rest of the edges whose vertices are to the left of Tj consecutively from one vertex to the next
as a3,. . . , aj . Then aj will have one endpoint at w, and hence a = a1 ∪ a2 ∪ · · · ∪ aj will be
a simple closed curve. Similarly, let bn be the edge of V (T ′) from w to the rightmost vertex
vn, and then consecutively label the edges whose endpoints are to the right of Tj as bn−1, . . . ,
bj . Then bj will also have an endpoint at w. Thus b = bn ∪ bn−1 ∪ · · · ∪ bj will also be a
simple closed curve.

FIGURE 7.4. We label the edges of V (T ′) in this way.

In Figure 7.4, for k = 1 and k = 2 we illustrate the dangling edge at the left of Sk above
vk , while for k = 4 we illustrate the dangling edge at the left of Sk below v4. In fact, it makes
no difference which of these illustrations occur.

Now observe from Figure 7.4 that there are no crossings between the projections of any
pair of grey loops ck and ci with i �= k, and hence no such pair can be linked. Also, observe
from Figure 7.3 that each individual ck is the numerator or denominator closure of a single
strand of the rational tangle Rk , and so must be unknotted. In addition, the loops a and b

are each connected sums of numerator or denominator closures of single strands of rational
tangles. Hence a and b are also each unknotted. Finally, a has no crossings with any ck with
k > j and meets every ck with k < j at the vertex vk . Hence a cannot be linked with any ck .
Similarly, b cannot be linked with any ck . It follows that V (T ′) contains no non-trivial knots
or links.

In order to show that V (T ′) is non-planar we will show that the subgraph G obtained by
deleting the loops ck and vertices vk for all k > 1 with k �= j is non-planar. The possibilities
for Sk with ck and vk deleted are illustrated in Figure 7.5. Observe that since Rk is rational,
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after the deletion of ck , the tangle Rk is left with a single unknotted strand. Thus in G, each
Sk with k > 1 and k �= j is a trivial horizontal tangle.

FIGURE 7.5. The forms of Sk after ck and vk have been deleted.

FIGURE 7.6. G has one of these forms.

It now follows that the spatial graph G has one of the forms illustrated in Figure 7.6.
Since Tj has ∞-parity, regardless of which form G has, as an abstract graph G is isomorphic
to the illustration on the left of Figure 7.7. We now let G0 denote the planar embedding of
G illustrated on the right side of Figure 7.7, and obtain the set of associated links S(G0) by
replacing the two vertices of G0 by rational tangles P and Q.

FIGURE 7.7. G as an abstract graph on the left, and a planar embedding G0 on the right.

The denominator closure of a rational tangle is a 2-bridge knot or link. Thus all of the
non-trivial, non-split links in S(G0) are either the connected sum of two 2-bridge knots or
links or a single 2-bridge knot or link. Hence, by Sawollek’s Theorem, to show that the
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spatial graph G is non-planar, it suffices to show that the set of associated links S(G) contains
some prime knot or link which is not 2-bridge.

In Figure 7.8, we replace the vertices w and v1 of G by the rational tangles P and Q to
get the elements of S(G). Then in Figure 7.9, we group the rational tangles R1 and Q together
to create a single tangle U .

FIGURE 7.8. The elements of S(G) have one of these forms.

FIGURE 7.9. We group R1 and Q together into a single tangle U .

Recall that R1 is an alternating rational tangle with at least two crossings. Thus we can
choose a rational tangle Q so that U is a non-trivial rational tangle which is not horizontal.
Note that the choice of Q will depend on R1 as well as on which form U has.

Now since Tj has ∞-parity, it cannot be horizontal; and by hypothesis Tj cannot be
trivial. Thus for any rational tangle P , the knot or link L = N(P + U + Tj ) will be the
numerator closure of a Montesinos tangle, where neither U nor Tj is horizontal or trivial.

It follows that the double branched cover �(L) is a Seifert fibered space over S2, and
as long as P is not horizontal or trivial, �(L) has three exceptional fibers. Now by the
classification of Seifert manifolds [7], we can choose a rational tangle P such that �(L) is

irreducible, not S1 × S2, and has infinite fundamental group. For such a P , we know that L

will be a prime link which is not 2-bridge. Thus S(G) contains a link which is not in S(G0). It
follows that G is non-planar, and hence V (T ′) must also be non-planar. Thus we have shown
that V (T ′) is a ravel. �
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Propositions 6.1 and 7.2 together prove Theorem 4.7.
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