Ravels Arising from Montesinos Tangles

Erica FLAPAN and Allison N. MILLER
Pomona College and University of Texas at Austin
(Communicated by M. Hara)

Abstract

A ravel is a spatial graph which is non-planar but contains no non-trivial knots or links. We characterize when a Montesinos tangle can become a ravel as the result of vertex closure with and without replacing some number of crossings by vertices.

1. Introduction

One of the earliest results in spatial graph theory was the discovery by Suzuki [11] in 1970 of an embedding of an abstractly planar graph which had the property that it was nonplanar but every subgraph of the embedding was planar. Note that a graph is said to be abstractly planar if it can be embedded in \mathbb{R}^{2}, and a particular embedding of a graph in \mathbb{R}^{3} is said to be planar if there is an ambient isotopy of it into $\mathbb{R}^{2} \subseteq \mathbb{R}^{3}$. Two years after Suzuki's result, Kinoshita [5] found an embedding of a θ_{3} graph which had this property. Many results about such embeddings have been obtained since then, though several different terms are used to refer to them. In particular, we have the following definition.

Definition 1.1. An embedding G of an abstractly planar graph in \mathbb{R}^{3} is said to be almost unknotted (equivalently almost trivial, minimally knotted, or Brunnian) if G is nonplanar but $G-\{e\}$ is planar for any edge e of G.

One of the most significant results in the study of almost unknotted graphs is the result obtained by Kawauchi [4] and Wu [14] that every abstractly planar graph without valence one vertices has an almost unknotted embedding.

We are now interested in a larger class of embedded graphs defined below.
DEFINITION 1.2 . An embedding G of an abstractly planar graph in \mathbb{R}^{3} is said to be a ravel if G is non-planar but contains no non-trivial knots or links.

[^0]Any almost unknotted graph G is a ravel, unless G is topologically a nontrivial knot or a Brunnian link. However, the converse is not true. For example, starting with an almost unknotted embedding of a graph G, add an additional edge e^{\prime} parallel to an existing edge e to get a new embedded graph G^{\prime}. Since G was almost unknotted, G^{\prime} will contain no nontrivial knots or links. However, the removal of the edge e^{\prime} will not make G^{\prime} planar, and hence G^{\prime} is a ravel that is not almost unknotted.

The term ravel was originally coined as a way to describe hypothetical molecular structures whose complexity results from "an entanglement of edges around a vertex that contains no knots or links" [1]. The first molecular ravel to be identified was a metal-ligand complex synthesized by Feng Li et al. in 2011 [6]. In order to formalize the notion of entanglement about a vertex, we require the "entanglement" to be properly embedded in a ball. If we bring the endpoints of the edges in the boundary sphere together into a single vertex, we obtain a spatial graph which is known as the vertex closure $V(T)$ of the entanglement T. In Figure 1.1, we illustrate an entanglement whose vertex closure is a ravel.

Figure 1.1. The entanglement on the left becomes a ravel when the endpoints are brought together on the right.

In this paper, we characterize when a Montesinos tangle can become a ravel as the resuit of vertex closure with and without replacing some number of crossings by vertices. In particular, our main results are the following.

Theorem 3.3. Let $T=T_{1}+\cdots+T_{n}$ be a Montesinos tangle such that n is minimal and not both T_{1} and T_{n} are trivial vertical tangles. If T is rational, then the vertex closure $V(T)$ is planar. If T is not rational and some rational subtangle T_{i} has ∞-parity, then $V(T)$ contains a nontrivial knot or link. Otherwise, $V(T)$ is a ravel.

THEOREM 4.7. Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form, and let T^{\prime} be obtained from T by replacing at least one crossing by a vertex. Then the vertex closure $V\left(T^{\prime}\right)$ is a ravel if and only if T^{\prime} is an exceptional vertex insertion.

While we postpone defining an exceptional vertex insertion until Section 4, Theorem 4.7 has the following more easily stated corollary.

Corollary 4.8. Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form, and let T^{\prime} be obtained from T by replacing at least one crossing by a vertex. If $V\left(T^{\prime}\right)$ is a ravel, then precisely one T_{i} has ∞-parity.

2. Background

For completeness we include some well-known definitions and results about knots, links, and tangles.

Definition 2.1. A 2 -string tangle T in a ball B is said to be rational if there is an ambient isotopy of B setwise fixing ∂B that takes T to a trivial tangle.

Definition 2.2. The sum and product of tangles R and S are shown in Figure 2.1.

Figure 2.1. The sum and product of tangles R and S.

Definition 2.3. A tangle is said to be Montesinos if it can be written as the sum of finitely many rational tangles. A tangle is said to be algebraic or arborescent if it can be written in terms of sums and products of finitely many rational tangles.

Note that Montesinos tangles and algebraic tangles are not necessarily 2 -string tangles since they may contain simple closed curves in addition to the two strings.

Definition 2.4. Let T be a 2 -string tangle. The knot or link obtained by joining the NE and SE points together and the NW and SW points together is called the denominator closure of T, and denoted by $D(T)$. The knot or link obtained by joining the NW and NE points together and the SW and SE points together is called the numerator closure of T, and denoted by $N(T)$.

DEFINITION 2.5. A 2 -string tangle is said to have ∞-parity if the NW and SW boundary points are on the same strand, and 0-parity if the NW and NE boundary points are on the same strand.

DEFINITION 2.6. Any tangle obtained from a trivial horizontal tangle by twisting together the NE and SE ends is said to be a horizontal tangle.

We will use the following results repeatedly in our proofs.
Wolcott's Theorem ([13]). Let T be a rational tangle. Then $D(T)$ is the unknot if and only if T is a horizontal tangle; and $D(T)$ is an unlink if and only if T is a trivial vertical tangle.

Schubert's Theorem ([9]). Let L_{1} and L_{2} be knots or links. Then $L_{1} \# L_{2}$ is trivial if and only if both L_{1} and L_{2} are trivial.

Thistlethwaite's Theorem ([12]). A reduced alternating projection of a link has the minimum number of crossings.

3. Vertex closure of rational and Montesinos tangles

Definition 3.1. Let T be a 1 -string or 2 -string tangle (possibly with additional closed components) in a ball B. The embedded graph $V(T)$ obtained by bringing the endpoints of the string(s) together into a single vertex w in ∂B is said to be the vertex closure of T and w is said to be the closing vertex.

We begin with the following observation about when the vertex closure of a tangle is planar.

Lemma 3.2. Let T be a 2 -string tangle with tangle ball B. Then the vertex closure $V(T)$ of T is planar if and only if T is rational.

Proof. It follows from the definition of rational that T is rational if and only if it can be made planar by moving the endpoints of the strands of T around in ∂B. However, moving the endpoints of the strands around in ∂B corresponds to moving the edges of $V(T)$ about the closing vertex. So T is rational if and only if $V(T)$ can be made planar by moving the edges of $V(T)$ about the vertex.

The following theorem characterizes when the vertex closure of a Montesinos tangle is a ravel.

Theorem 3.3. Let $T=T_{1}+\cdots+T_{n}$ be a Montesinos tangle such that n is minimal and not both T_{1} and T_{n} are trivial vertical tangles. If T is rational, then the vertex closure $V(T)$ is planar. If T is not rational and some rational subtangle T_{i} has ∞-parity, then $V(T)$ contains a non-trivial knot or link. Otherwise, $V(T)$ is a ravel.

Proof. We know by Lemma 3.2 that if T is rational, then $V(T)$ is planar. So we assume that $n>1$. Since n is minimal, none of the T_{i} is horizontal. Without loss of generality we can assume that T_{n} is not a trivial vertical tangle.

First suppose that at least one of the rational subtangles has ∞-parity. Let T_{i} be the rightmost such tangle in the sum $T=T_{1}+\cdots+T_{n}$. Thus both ends of the NE-SE strand of T_{i} can be extended to the right until they are joined together at the closing vertex w, giving us a loop L_{1} (illustrated in grey on the left in Figure 3.1), though we may have $i=n$.

Suppose that $i<n$. Then the loop L_{1} is a connected sum of the denominator closure $D\left(T_{n}\right)$ together with a (possibly trivial) knot to the left. Since T_{n} does not have ∞-parity, $D\left(T_{n}\right)$ has a single component. Now since T_{n} is not horizontal, by Wolcott's Theorem $D\left(T_{n}\right)$ is a non-trivial knot, and hence by Schubert's Theorem, L_{1} is a non-trivial knot contained in $V(T)$.

Figure 3.1. On the left T_{i} has ∞-parity and on the right no subtangle has ∞-parity.

Next suppose that $i=n$ and T_{n} is the only T_{j} with ∞-parity. Then we can extend both ends of the NW-SW strand of T_{n} to the left until they join together at the closing vertex w. We denote this loop by L_{2}. Since $n>1, L_{2}$ is the connected sum of $D\left(T_{1}\right)$ and another (possibly trivial) knot. Now since T_{1} is not horizontal, by Wolcott's Theorem and Schubert's Theorem L_{2} is a nontrivial knot in $V(T)$.

Now suppose that some rational subtangle in addition to T_{n} has ∞-parity. Let T_{i} be the tangle with ∞-parity that is closest to T_{n}. Then both ends of the NE-SE strand of T_{n} can be extended rightward to w to obtain a loop L_{1}; and both ends of the NW-SW strand of T_{n} can be extended leftward until they are joined together in T_{i}, to obtain a loop L_{2}. Then the link $L=L_{1} \cup L_{2}$ is the connected sum of $D\left(T_{n}\right)$ with some possibly trivial knot. Now since T_{n} is not a trivial vertical tangle, by Wolcott's Theorem and Schubert's Theorem, L is a nontrivial link in $V(T)$.

Finally, suppose that no T_{i} has ∞-parity. Then $V(T)$ is an embedding of the wedge of two circles and hence $V(T)$ cannot contain a two component link. Let L denote the vertex closure of a single strand of T. Since no T_{i} has ∞-parity, L passes through each T_{i} exactly once, as illustrated by the grey arcs on the right side of Figure 3.1. Now since each T_{i} is rational, by Lemma 3.2, each individual $V\left(T_{i}\right)$ is planar. It follows that the vertex closure of each of the single strands $T_{i} \cap L$ is unknotted. Now the loop L is the connected sum of the loops $V\left(T_{1} \cap L\right), \ldots, V\left(T_{n} \cap L\right)$, each of which is unknotted. Hence L is a trivial knot. Thus $V(T)$ contains no non-trivial knots or links. However, since T is not rational, we know by Lemma 3.2 that $V(T)$ is non-planar. Hence in this case $V(T)$ is a ravel.

The tangle in Figure 3.2 illustrates why Theorem 3.3 has the hypothesis that not both T_{1} and T_{n} are trivial vertical tangles. In this case, $V\left(T_{1}+T_{2}\right)$ is planar even though $T_{1}+T_{2}$ is a non-rational Montesinos tangle.

Figure 3.2. A Montesinos tangle where both T_{1} and T_{2} are trivial vertical tangles.

Corollary 3.4. Let T be a non-rational algebraic tangle written as the sum and product of rational tangles T_{1}, \ldots, T_{n} where either $n>2$ or not both T_{1} and T_{2} are trivial vertical tangles. If each strand of T passes through each T_{i} exactly once, then $V(T)$ is a ravel.

Proof. Observe that by our hypotheses, $V(T)$ must be a wedge of two circles. Thus the argument is analogous to the last case in the proof of Theorem 3.3.

The algebraic tangle T in Figure 3.3 illustrates that the converse of Corollary 3.4 does not hold. In particular, the grey strand does not pass through T_{1} or T_{2}. Observe that the vertex closure $V(T)$ contains no non-trivial knots or links. However, since T is non-rational, it follows from Lemma 3.2 that $V(T)$ is non-planar. Thus $V(T)$ is a ravel.

Figure 3.3. A counterexample to the converse of Corollary 3.4.

4. Vertex closure with crossing replacement

We are now interested in whether we can obtain a ravel from a projection of a Montesinos tangle by replacing some number of crossings by vertices and taking the vertex closure. In this case, we need to specify what types of projections we are considering.

Definition 4.1. A projection of a rational tangle T is said to be in alternating 3braid form if it is alternating and has the form of Figure 4.1, where each box A^{i} consists of some number of horizontal twists, and this number is non-zero for all $i>1$.

FIGURE 4.1. The 3-braid form of a rational tangle.

It follows from Schubert [10] and more recently Kauffman and Lambropoulou [3] that every rational tangle has a projection in alternating 3-braid form.

Definition 4.2. A projection of a Montesinos tangle T is said to be in standard form if it is expressed as $T=T_{1}+\cdots+T_{n}$, where each T_{i} is a non-trivial rational tangle in alternating 3-braid form and n is minimal.

Note that every Montesinos tangle with no trivial vertical tangle as a summand has a projection in standard form, though this projection may not be alternating.

Definition 4.3. Let T be a projection of a knot, link, or tangle. The embedded graph obtained from T by replacing some number of crossings by vertices of valence 4 is denoted by T^{\prime} and referred to as an insertion of vertices into T.

Note that if T is a tangle then T^{\prime} is not technically an embedded graph, because its endpoints are not vertices. However, for convenience we will abuse notation and refer to T^{\prime} as an embedded graph. Now let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form. Then T_{i}^{\prime} denotes the subgraph of T^{\prime} obtained from T_{i} by vertex insertion, and ($\left.A_{i}^{j}\right)^{\prime}$ denotes the subgraph obtained from the j th box of twists A_{i}^{j} in T_{i} by vertex insertion. If there are no vertices in T_{i}^{\prime} or in $\left(A_{i}^{j}\right)^{\prime}$, then we write $T_{i}^{\prime}=T_{i}$ or $\left(A_{i}^{j}\right)^{\prime}=A_{i}^{j}$, respectively.

The following result shows that a ravel cannot occur in the special case where a single crossing is replaced by a vertex and $V\left(T^{\prime}\right)$ is a θ_{4} graph (i.e., the graph consists of two vertices and four edges between them).

Theorem 4.4 (Farkas, Flapan, Sullivan [2]). Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form with $n>1$, and let T^{\prime} be obtained from T by replacing a single crossing by a vertex such that the vertex closure $V\left(T^{\prime}\right)$ is a θ_{4} graph. Then $V\left(T^{\prime}\right)$ contains a non-trivial knot and hence is not a ravel.

To see the necessity of the hypothesis that $V\left(T^{\prime}\right)$ is a θ_{4} graph consider the Montesinos tangle in standard form illustrated on the left in Figure 4.2. By replacing a crossing in T_{2} with a vertex and taking the vertex closure as illustrated on the right, we obtain a ravel which is not a θ_{4} graph.

Figure 4.2. A Montesinos tangle which becomes a ravel by inserting one vertex and taking the vertex closure.

We will now consider the case where we replace any number of crossings of a Montesinos tangle in standard form by vertices. We begin with some technical definitions.

DEFINITION 4.5. Let T be a projection of a rational tangle in alternating 3-braid form with boxes A^{1}, \ldots, A^{m} as illustrated in Figure 4.1. A vertex or crossing x of T^{\prime} is said to be to the right of a vertex or crossing y if either x and y are in the same box $\left(A^{i}\right)^{\prime}$ and y is to the right of x in $\left(A^{i}\right)^{\prime}$, or x is in the box $\left(A^{i}\right)^{\prime}$ and y is in the box $\left(A^{j}\right)^{\prime}$ and $i>j$.

Observe that given a rational tangle T in 3-braid form, a subtangle R of T containing consecutive boxes A^{j}, \ldots, A^{m} (illustrated in Figure 4.3) is itself a rational tangle in 3-braid form.

Figure 4.3. The subtangle R is itself a rational tangle in 3-braid form.

DEFINITION 4.6. Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form, and let T^{\prime} be obtained by replacing some non-zero number of crossings by vertices. Then T^{\prime} is said to be an exceptional vertex insertion if all of the following conditions hold.
(1) There exists precisely one T_{j} with ∞-parity, and T_{j}^{\prime} has no vertices.
(2) For all $k \neq j, T_{k}^{\prime}$ contains exactly one vertex v_{k}, and v_{k} is in $\left(A_{k}^{2}\right)^{\prime}$ or possibly in $\left(A_{k}^{3}\right)^{\prime}$ if A_{k}^{2} has a single crossing.
(3) For all $k \neq j$, the subtangle $R_{k} \subseteq T_{k}$ containing the boxes of T_{k} to the right of the vertex v_{k} has at least two crossings.
(4) For all $k \neq j, T_{k}^{\prime}$ has a loop containing v_{k}.

We see as follows that the insertion of vertices illustrated for the tangle in Figure 4.2 is exceptional.
(1) T_{1} is the only T_{i} with ∞-parity, and T_{1}^{\prime} has no vertices.
(2) T_{2}^{\prime} contains exactly one vertex, and it is in the second box of T_{2}^{\prime}. (Note that the first box of T_{2}^{\prime} has zero crossings).
(3) The subtangle $R_{2} \subseteq T_{2}$ has two crossings.
(4) T_{2}^{\prime} has a loop containing its vertex.

Figure 4.4 illustrates a generalization of the exceptional vertex insertion in Figure 4.2. Here T_{3} is any tangle with ∞-parity; for each $k \neq 3, T_{k}^{\prime}$ contains exactly one vertex and it replaces the only crossing in A_{k}^{2}; and R_{k} is any rational tangle containing at least two crossings
such that T_{k}^{\prime} has a loop containing v_{k}. As in Figure 4.2, we obtain a ravel by taking the vertex closure of this exceptional vertex insertion.

FIGURE 4.4. A ravel obtained by an exceptional vertex insertion together with vertex closure.

The remainder of the paper is devoted to proving the following theorem.
THEOREM 4.7. Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form, and let T^{\prime} be obtained from T by replacing at least one crossing by a vertex. Then the vertex closure $V\left(T^{\prime}\right)$ is a ravel if and only if T^{\prime} is an exceptional vertex insertion.

Observe that requirement (4) of an exceptional vertex insertion implies that if T^{\prime} is an exceptional vertex insertion, then $V\left(T^{\prime}\right)$ cannot be a θ_{4} graph. Thus Theorem 4.7 is a generalization of Theorem 4.4. Theorem 4.7 immediately implies the following more simply stated corollary.

Corollary 4.8. Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form, and let T^{\prime} be obtained from T by replacing at least one crossing by a vertex. If $V\left(T^{\prime}\right)$ is a ravel, then precisely one T_{i} has ∞-parity.

Observe that if $T=T_{1}+\cdots+T_{n}$ is a projection of a non-rational Montesinos tangle in standard form, then no T_{i} is horizontal since otherwise n would not be minimal. Also, by the definition of standard form, no T_{i} is a trivial tangle. Finally, because every vertex in $V\left(T^{\prime}\right)$ has valence 4 , no arc in T^{\prime} is forced to terminate at a vertex. This means that any arc in a T_{i}^{\prime} can be extended to go from one of the points NE, SE, NW, SW of T_{i}^{\prime} to another. We will make use of these facts together with the following simplifying assumptions that allow us to remove unnecessary crossings in any T_{i}^{\prime}.

Simplifying Assumptions

(1) If there are vertices in some box $\left(A_{i}^{j}\right)^{\prime}$ of T_{i}^{\prime}, then we can untwist about them to remove all of the crossings of $\left(A_{i}^{j}\right)^{\prime}$. Thus we assume that there are no crossings in any box containing a vertex.
(2) If there is a single crossing to the right of the rightmost vertex of some T_{i}^{\prime}, then the crossing can be removed by untwisting about the vertex as illustrated in Figure 4.5. Thus we assume that there are either zero crossings or at least two crossings to the right of the rightmost vertex in any T_{i}^{\prime}.

Figure 4.5. A single crossing to the right of the rightmost vertex of T_{i}^{\prime} can be removed.

The rest of the paper is organized as follows. In Section 5, we prove two lemmas that we will use to prove the forward direction of Theorem 4.7. We then prove the forward direction in Section 6, and prove the backward direction in Section 7.

5. Lemmas for the Forward Direction

Lemma 5.1. Let T be a projection of a non-trivial rational tangle in 3-braid form. Suppose that T^{\prime} has at least one vertex and there are no crossings to the right of its rightmost vertex v^{R}. Then for any pair of distinct points p_{1} and p_{2} in T^{\prime}, there is a simple path between p_{1} and p_{2} in T^{\prime}.

Proof. Observe from Figure 4.1 that if a path P starts at the NE point of T and goes leftward, it will go through the rightmost box A^{m} precisely once. In particular, once a path exits from A^{m}, it cannot return to A^{m}. Thus both strands of T must go through A^{m}.

Recall that for all $i \neq 1$, the box A^{i} contains a non-zero number of crossings. Since there are no crossings to the right of v^{R}, this means that v^{R} occurs in the rightmost box $\left(A^{m}\right)^{\prime}$ of T^{\prime} as illustrated in Figure 5.1. Thus both strands of T are involved in the crossing that becomes v^{R}.

Figure 5.1. Both strands of T are part of the crossing that becomes v^{R}.

Now consider distinct points p_{1} and p_{2} in T^{\prime}. Since both strands of T are part of the crossing that becomes v^{R}, there are paths P_{1} and P_{2} in T^{\prime} joining both p_{1} and p_{2} to v^{R}. Thus $P=P_{1} \cup P_{2}$ is a path in T^{\prime} between p_{1} and p_{2}. By removing any loops in P we obtain a simple path joining p_{1} and p_{2}.

It follows from Lemma 5.1 that if there are no crossings to the right of the rightmost vertex of T^{\prime}, then there is a simple path in T^{\prime} between any pair of the NW, SW, NE, SE points of T^{\prime}. We use Lemma 5.1 to prove our next lemma.

Lemma 5.2. Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle written in standard form, and let T^{\prime} be obtained from T by replacing at least one crossing by a vertex. Suppose that every T_{i}^{\prime} containing a vertex has at most one crossing to the right of its rightmost vertex v_{i}^{R}. Then $V\left(T^{\prime}\right)$ is not a ravel.

Proof. We assume that $V\left(T^{\prime}\right)$ does not contain any non-trivial knots or links, and we will prove that $V\left(T^{\prime}\right)$ can be isotoped into the plane.

By Simplifying Assumption (2), we can assume that no T_{i}^{\prime} has any crossings to the right of its rightmost vertex v_{i}^{R}. Thus any T_{i}^{\prime} that contains a vertex must have v_{i}^{R} in its rightmost box $\left(A_{i}^{m}\right)^{\prime}$. Now we see in Figure 5.2 that we can remove all of the crossings between v_{i}^{R} and the next vertex to its left in T_{i}^{\prime}, or all of the crossings in T_{i}^{\prime} if v_{i}^{R} is the only vertex in T_{i}^{\prime}. Thus we assume there are no such crossings.

Figure 5.2. We remove all of the crossings between v_{i}^{R} and the next vertex to the left in T_{i}^{\prime}.

We now sequentially prove the following list of claims showing that we can remove all of the crossings of $V\left(T^{\prime}\right)$ to obtain a planar embedding.
(1) Every T_{i}^{\prime} contains a vertex.
(2) $V\left(T^{\prime}\right)$ can be simplified so that there is at most one crossing between any pair of adjacent vertices in each T_{i}^{\prime}.
(3) All crossings to the left of the leftmost vertex in each T_{i}^{\prime} can be removed.
(4) All of the crossings of $V\left(T^{\prime}\right)$ can be removed.

Claim 1. Every T_{i}^{\prime} contains a vertex.
First we consider the case where T_{1}^{\prime} is the only T_{i}^{\prime} containing a vertex. Then there are no crossings to the right of its rightmost vertex, and hence by Lemma 5.1 there is a simple path L_{1} in T_{1}^{\prime} between its NE and SE points. Now we extend the ends of L_{1} to the right until either they meet in some T_{i} with ∞-parity or at the closing vertex w. This gives us a simple closed curve L. Since there are no crossings in T_{1} to the right of its rightmost vertex, L is
the connected sum of $D\left(T_{2}\right)$ together with a possibly trivial knot to its right. Now, since T is in standard form, T_{2} is not horizontal and not a trivial vertical tangle. Thus by Wolcott's Theorem, $D\left(T_{2}\right)$ is a non-trivial knot or link. It now follows from Schubert's Theorem that L is a non-trivial knot or link. As this is contrary to our assumption, this case does not occur.

Thus we now assume that for some i, T_{i+1}^{\prime} contains a vertex and T_{i}^{\prime} does not. Let v_{i+1}^{R} be the rightmost vertex of T_{i+1}^{\prime}. Since there are no crossings in T_{i+1}^{\prime} to the right of v_{i+1}^{R}, we can apply Lemma 5.1 to obtain a simple path L_{1} in T_{i+1}^{\prime} between its NW and SW points. We will now argue that there is also a simple path between the NW and SW points of T_{i} whose interior is to the left of T_{i}.

Suppose no T_{k}^{\prime} to the left of T_{i}^{\prime} contains a vertex or has ∞-parity. Then there are disjoint simple paths P_{i} and Q_{i} going leftwards from the NW and SW points of T_{i} to the closing vertex w. In this case, $L_{2}=P_{i} \cup Q_{i}$ is a simple path between the NW and SW points of T_{i} whose interior is to the left of T_{i}.

Thus we assume that either some T_{k}^{\prime} to the left of T_{i}^{\prime} contains a vertex or some T_{k}^{\prime} to the left of T_{i}^{\prime} has ∞-parity and contains no vertices. Let T_{k}^{\prime} be the closest such subgraph to the left of T_{i}. If T_{k}^{\prime} contains a vertex, then there are no crossings to the right of its rightmost vertex, and hence by Lemma 5.1 there is a simple path in T_{k}^{\prime} between its NE and SE points. If $T_{k}=T_{k}^{\prime}$ has ∞-parity, then the NE-SE strand is a simple path in T_{k}. Thus in either case T_{k}^{\prime} contains a simple path between its NE and SE points. By combining this path in T_{k}^{\prime} with the strands of all T_{j} with $k<j<i$ and the arcs between these T_{j} from T_{k}^{\prime} to T_{i}^{\prime}, we obtain a simple path L_{2} between the SW and NW points of T_{i} whose interior is to the left of T_{i}. Figure 5.3 illustrates the paths L_{1} and L_{2} as dotted arcs.

Figure 5.3. On the left, T_{k}^{\prime} contains a vertex; and on the right, T_{k}^{\prime} has ∞-parity.

Now in any of the above cases, let L denote the $\operatorname{arc} L_{1}\left(\right.$ in $\left.T_{i+1}^{\prime}\right)$ together with the arc L_{2} (to the left of T_{i+1}^{\prime}), as well as the strands of T_{i}, and the arcs joining T_{i}^{\prime} and T_{i+1}^{\prime}. If T_{i} has ∞-parity, then L has two components, and otherwise L has a single component. In either case, observe that L is the connected sum of some (possibly trivial) knot that lies to the left of T_{i}, together with the denominator closure $D\left(T_{i}\right)$, and some (possibly trivial) knot that lies to the right of T_{i}. Now, as in the case at the beginning of the claim, L is a non-trivial knot or link. As this is contrary to our assumption, this proves Claim 1.

Hence from now on we assume that for every i, T_{i}^{\prime} contains a vertex, and hence v_{i}^{R} is in the rightmost box of T_{i}^{\prime}. Thus it follows from Lemma 5.1 that every pair of distinct points in any T_{i}^{\prime} is joined by a simple path in T_{i}^{\prime}.

Claim 2. $\quad V\left(T^{\prime}\right)$ can be simplified so that there is at most one crossing between any pair of adjacent vertices in each T_{i}^{\prime}.

Suppose that some T_{i}^{\prime} has two or more crossings between a pair of adjacent vertices v_{1} and v_{2} contained in boxes $\left(A_{i}^{j}\right)^{\prime}$ and $\left(A_{i}^{k}\right)^{\prime}$, respectively. Note that by Simplifying Assumption (1), we can assume that there are no crossings in any box containing a vertex. Thus the boxes $\left(A_{i}^{j}\right)^{\prime}$ and $\left(A_{i}^{k}\right)^{\prime}$ must be distinct. Hence without loss of generality $j<k$. Thus v_{2} is to the right of v_{1}. Also, as we saw at the beginning of the proof, we can assume that there are no crossings between v_{i}^{R} and the next vertex to its left. Hence v_{2} cannot be the rightmost vertex of T_{i}^{\prime}.

Now let B be a ball containing v_{1} and v_{2} together with the portion of T_{i}^{\prime} between v_{1} and v_{2} as illustrated in Figure 5.4; and let a and b be the points of $\partial B \cap T_{i}^{\prime}$ which are separated from v_{1} and v_{2} by crossings, as indicated in the figure. Note that since v_{1} and v_{2} are adjacent vertices, there are no other vertices in B. Thus either $T_{i}^{\prime} \cap B$ contains two edges which go between v_{1} and v_{2} creating a simple closed curve K and a disjoint arc A going from a to b (as illustrated on the left in Figure 5.4), or $T_{i}^{\prime} \cap B$ contains a single arc A joining a and b which goes through both v_{1} and v_{2} (as illustrated on the right in Figure 5.4).

Figure 5.4. The ball B contains the portion of T_{i}^{\prime} between v_{1} and v_{2}.

Now since v_{1} is contained in the box $\left(A_{i}^{j}\right)^{\prime}$, there is a path P_{1} going leftward from a to the NW, SW, or SE point of T_{i}^{\prime} which does not pass through any box $\left(A_{i}^{t}\right)^{\prime}$ with $t \geq j$. Also, there is a path P_{2} going rightward from b to the rightmost vertex v_{i}^{R}, and then to the NE point of T_{i}^{\prime} which does not pass through any $\left(A_{i}^{s}\right)^{\prime}$ with $s \leq k$. In particular, neither P_{1} nor P_{2} contains v_{1} or v_{2}.

We will now define a simple closed curve J that contains $P_{1} \cup P_{2} \cup A$. We first do this in the case where P_{1} goes from a to the SE point of T_{i}^{\prime} as illustrated by the dotted arc in Figure 5.5. In this case, if $i \neq n$, we extend P_{1} and P_{2} rightward to the SW and NW points of T_{i+1}^{\prime} respectively. Then by Claim 1 and Lemma 5.1 applied to T_{i+1}^{\prime}, we can join P_{1} and P_{2}
by a simple path in T_{i+1}^{\prime}. If $i=n$, then we can extend P_{1} and P_{2} rightward until they meet at w. Thus either way we can join P_{1} and P_{2} by a simple path. This gives us a simple path P from a to b whose interior is disjoint from B. Now let J denote the simple closed curve $P \cup A$. Then J meets ∂B only in the points a and b.

Figure 5.5. There is a simple path P from a to b consisting of P_{1}, P_{2}, and an arc in T_{i+1}^{\prime}.

Next suppose that P_{1} does not go to the SE point of T_{i}^{\prime}. Since P_{1} does not go to the NE point of T_{i}^{\prime}, without loss of generality we can assume P_{1} goes from a to the SW point of T_{i}^{\prime} as illustrated by the dotted arc in Figure 5.6. By Claim 1 and Lemma 5.1, we can now extend P_{1} and P_{2} leftward and rightward respectively until they meet at the closing vertex w giving us a simple path P from a to b whose interior is disjoint from B. Now let J denote the simple closed curve $P \cup A$. Again J meets ∂B only in the points a and b.

Figure 5.6. We extend P_{1} leftward and P_{2} rightward until they meet at the closing vertex w.

In either of the above cases, if the arc A contains v_{1} and v_{2}, we let $L=J$, and otherwise we let $L=J \cup K$. Now since T_{i}^{\prime} has at least two crossings between v_{1} and v_{2}, the vertex closure $V(L \cap B)$ contains at least two crossings and is reduced and alternating. Thus it follows from Thistlethwaite's Theorem and Schubert's Theorem that L is a non-trivial knot or link in $V\left(T^{\prime}\right)$. As this is contrary to our assumption, we have proven Claim 2.

Hence from now on we assume that there is at most one crossing between any pair of adjacent vertices in each T_{i}^{\prime}.

Claim 3. All crossings to the left of the leftmost vertex in each T_{i}^{\prime} can be removed.

If T is rational, then we can remove all of the crossings to the left of the leftmost vertex v^{L} by untwisting about the closing vertex w from left to right, as illustrated in Figure 5.7. Thus for the rest of the proof of this claim we assume that T is not rational, and hence $n>1$.

FIGURE 5.7. If T is rational, we can remove all of the crossings to the left of v^{L}.

Let T_{i}^{\prime} be the leftmost subgraph of T^{\prime} that contains at least one crossing to the left of its leftmost vertex v_{i}^{L}. By Simplifying Assumption (1), there are no crossings in the box with v_{i}^{L}. Thus $\left(A_{i}^{1}\right)^{\prime}$ cannot contain any vertices, and hence $A_{i}^{1}=\left(A_{i}^{1}\right)^{\prime}$. Suppose that A_{i}^{1} contains a crossing. Let c denote the leftmost crossing of A_{i}^{1}; let R denote a ball whose intersection with $V\left(T^{\prime}\right)$ is $\left(T_{1}+\cdots+T_{i-1}\right)^{\prime}$; and let F denote the part of T_{i}^{\prime} to the right of c (see the left side of Figure 5.8).

Figure 5.8. Removing a crossing of A_{i}^{\prime}.

We flip R over to remove the crossing c. This adds a crossing to the left of R which can be removed by untwisting the strands around the closing vertex w. Thus we get the illustration on the right of Figure 5.8.

We repeat this operation until we have removed all of the crossings in A_{i}^{1}. This proves the claim in the case where v_{i}^{L} is in $\left(A_{i}^{1}\right)^{\prime}$ or $\left(A_{i}^{2}\right)^{\prime}$. Thus we assume for the sake of contradiction that v_{i}^{L} is not in $\left(A_{i}^{1}\right)^{\prime}$ or $\left(A_{i}^{2}\right)^{\prime}$.

Next suppose there is only one crossing in T_{i}^{\prime} to the left of v_{i}^{L}. Since every box $\left(A_{i}^{k}\right)^{\prime}$ with $k>1$ must either contain a crossing or a vertex, this means that $\left(A_{i}^{2}\right)^{\prime}$ contains one crossing and v_{i}^{L} is in $\left(A_{i}^{3}\right)^{\prime}$. Hence $\left(A_{i}^{2}\right)^{\prime}$ has no vertices and $\left(A_{i}^{3}\right)^{\prime}$ has no crossings. Thus we have the illustration on the left of Figure 5.9 , where the ball R contains the subgraphs T_{1}^{\prime}, \ldots,
T_{i-1}^{\prime} and the ball F contains the boxes $\left(A_{i}^{j}\right)^{\prime}$ with $j>3$. We can now remove the crossing in A_{i}^{2} by flipping both R and F and untwisting the strands around w as illustrated on the right side of Figure 5.9. Thus we assume there are at least two crossings in T_{i}^{\prime} to the left of v_{i}^{L}.

Figure 5.9. Removing a single crossing in A_{i}^{2} when v_{i}^{L} is in $\left(A_{i}^{3}\right)^{\prime}$.

Now let B be a ball containing v_{i}^{L} together with the part of T_{i}^{\prime} that is to the left of v_{i}^{L} as illustrated in Figure 5.10. Since T_{i}^{\prime} contains the vertex v_{i}^{R} in its rightmost box, the arc marked x can be extended rightward by a simple path to the NE point of T_{i}^{\prime}. Now the NW and SW points of T_{i}^{\prime} are joined together either by an arc through v_{i-1}^{R} or through w in the case where $i=1$, and the NE and SE points of T_{i}^{\prime} are joined together either by an arc through T_{i+1}^{\prime} or through w if $i=n$. These arcs, together with the bold black and grey arcs in Figure 5.10, give us one or two simple closed curves which we denote by L. Since $V(L \cap B)$ is reduced and alternating and has at least two crossings, it follows from Thistlethwaite's Theorem and Schubert's Theorem that L is a non-trivial knot or link. As this contradicts our assumption, this case cannot arise.

Figure 5.10. We can extend the bold black and grey arcs to get one or two simple closed curves.

Thus we have proven Claim 3. Hence from now on we assume that there are no crossings to the left of the leftmost vertex in every T_{i}^{\prime}.

It follows from our hypotheses together with Claims 1-3 that the only crossings remaining in $V\left(T^{\prime}\right)$ are isolated crossings between two adjacent vertices within a single T_{i}^{\prime}.

Let x denote the leftmost crossing in $V\left(T^{\prime}\right)$. Then x is between a pair of vertices v_{a} and v_{b} in some T_{i}^{\prime}. Since there is at most one crossing between any pair of adjacent vertices v_{a}
and v_{b} are in boxes $\left(A_{i}^{j}\right)^{\prime}$ and $\left(A_{i}^{j+2}\right)^{\prime}$ respectively, and the crossing x is in the box $\left(A_{i}^{j+1}\right)^{\prime}=$ A_{i}^{j+1}. Let G denote a ball around all of the boxes $\left(A_{i}^{k}\right)^{\prime}$ with $k<j$ in T_{i}^{\prime}, and let F denote a ball around all of the boxes $\left(A_{i}^{k}\right)^{\prime}$ with $k>j+2$ in T_{i}^{\prime} (see Figure 5.11).

Figure 5.11. $\quad T_{i}^{\prime}$ has a single crossing between v_{a} and v_{b}.

Let B denote a ball containing all of the T_{s}^{\prime} such that $s<i$. Then $V\left(T^{\prime}\right)$ is the embedded graph illustrated on the top of Figure 5.12. Note that B and G contain no crossings since x is the leftmost crossing in $V\left(T^{\prime}\right)$. We now flip F over to remove the crossing x from $V\left(T^{\prime}\right)$ as illustrated on the bottom of Figure 5.12. We repeat the above argument to sequentially remove all of the remaining crossings in the projection of $V\left(T^{\prime}\right)$.

Figure 5.12. We can flip F over to remove the crossing between v_{a} and v_{b}.

This gives us a planar embedding of $V\left(T^{\prime}\right)$. Thus $V\left(T^{\prime}\right)$ is not a ravel.

6. Proof of the Forward Direction of Theorem 4.7

PROPOSITION 6.1. Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form, and let T^{\prime} be obtained from T by replacing at least one crossing by a vertex. Suppose that the vertex closure $V\left(T^{\prime}\right)$ is a ravel. Then T^{\prime} is an exceptional vertex insertion.

Proof. Given any k such that T_{k}^{\prime} contains a vertex, let v_{k}^{R} denote the rightmost vertex of T_{k}^{\prime}. Then T_{k}^{\prime} has the form illustrated in Figure 6.1, where v_{k}^{R} may be in the top or the bottom row, and R_{k} is a ball containing all of the boxes of T_{k}^{\prime} that are to the right of v_{k}^{R}.

FIGURE 6.1. v_{k}^{R} is the rightmost vertex of T_{k}^{\prime}, and R_{k} contains all of the crossings of T_{k}^{\prime} that are to the right of v_{k}^{R}.

We now prove that T^{\prime} is an exceptional vertex insertion by sequentially proving the following list of claims.
(1) Some T_{j} has ∞-parity, and T_{j}^{\prime} has no vertices.
(2) For all $k \neq j, T_{k}$ does not have ∞-parity, T_{k}^{\prime} has at least one vertex, and R_{k} has at least two crossings.
(3) For all $k \neq j, T_{k}^{\prime}$ contains exactly one vertex v_{k}.
(4) For all $k \neq j$, the vertex v_{k} is in $\left(A_{k}^{2}\right)^{\prime}$ or possibly in $\left(A_{k}^{3}\right)^{\prime}$ if A_{k}^{2} has a single crossing.
(5) For all $k \neq j$, the tangle T_{k}^{\prime} has a loop containing v_{k}.

We begin by proving Observation 1 which will be used in the proof of Claim 1.
Observation 1. If for some k, there are at least two crossings in R_{k}, then there is no path in T_{k}^{\prime} between its NE and SE point. Hence T_{k}^{\prime} contains paths from its NE and SE points to its NW and SW points.

To prove Observation 1, suppose that there are at least two crossings in R_{k} and there is a path in T_{k}^{\prime} between its NE and SE point. Then we can extend this path rightward until its ends meet either at a vertex in some T_{j}^{\prime}, in some T_{j} with ∞-parity, or at the closing vertex w. This gives us a simple closed curve L_{1}. If L_{1} contains v_{k}^{R}, then all of the crossings of R_{k} are in L_{1}. In this case, let $L=L_{1}$. Otherwise, as can be seen in Figure 6.1, there is a grey simple closed curve $L_{2} \subseteq T_{k}^{\prime}$ containing v_{k}^{R} such that all of the crossings in R_{k} are contained in $L_{1} \cup L_{2}$. In this case, we let $L=L_{1} \cup L_{2}$.

Now let B_{k} denote the tangle ball for T_{k}. Then L is the union of $L \cap B_{k}$ together with an arc outside of B_{k}. Since $L \cap B_{k}$ contains at least two crossings and is reduced and alternating, by Thistlethwaite's Theorem L is a non-trivial knot or link. However, this contradicts the hypothesis that $V\left(T^{\prime}\right)$ is a ravel. Thus we have proven the observation.

Claim 1. Some T_{j} has ∞-parity, and T_{j}^{\prime} has no vertices.

Since $V\left(T^{\prime}\right)$ is a ravel, we know by Lemma 5.2 that some T_{k}^{\prime} containing a vertex has at least two crossings in R_{k}. Now by Observation 1 , there is an $\operatorname{arc} P_{k}$ in T_{k}^{\prime} from its NE point to its SW or NW point. Suppose the endpoints of P_{k} can be extended rightward and leftward to w, so that we obtain a simple closed curve L_{1}. If L_{1} contains v_{k}^{R}, let $L=L_{1}$. Otherwise, there is another simple closed curve $L_{2} \subseteq T_{k}^{\prime}$ containing v_{k}^{R} such that all of the crossings in R_{k} are contained in $L_{1} \cup L_{2}$. In this case, we let $L=L_{1} \cup L_{2}$. Now as in the proof of Observation 1, this implies that L is a non-trivial knot or link contradicting the hypothesis that $V\left(T^{\prime}\right)$ is a ravel. Thus P_{k} cannot be extended so that it passes through every T_{j}^{\prime}.

Thus there must exist some j such that T_{j} has ∞-parity. Now suppose that T_{j}^{\prime} has at least one vertex. If there are less than two crossings to the right of the rightmost vertex v_{j}^{R}, then by Simplifying Assumption (2), we can assume there are no crossings in T_{j}^{\prime} to the right of v_{j}^{R}. Hence by Lemma 5.1, we could again extend P_{k} through T_{j}. On the other hand if there are at least two crossings to the right of v_{j}^{R}, then by Observation 1, there are paths from the NE and SE points of T_{j}^{\prime} to the NW and SW points of T_{j}^{\prime}. Thus we could again extend P_{k} through T_{j}^{\prime}. Hence T_{j}^{\prime} cannot have any vertices. Thus we have proven Claim 1.

We now prove Observation 2, which will be used in the proof of Claim 2.
OBSERVATION 2. A single strand of T_{j} cannot be extended to a simple closed curve in T^{\prime}.

Suppose that some strand of T_{j} can be extended to a simple closed curve L_{1} in T^{\prime}. We now extend the ends of the other strand of T_{j} until they meet at or before w. Since T_{j} has ∞-parity, this gives us a simple closed curve L_{2} which is disjoint from L_{1}. Then $L=L_{1} \cup L_{2}$ is the connected sum of $D\left(T_{j}\right)$ and two (possibly trivial) knots. Since T_{j} has ∞-parity, $D\left(T_{j}\right)$ is a link; and because T_{j} is non-trivial, by Wolcott's Theorem $D\left(T_{j}\right)$ is non-trivial. Hence L is also a non-trivial link. As this contradicts the hypothesis that $V\left(T^{\prime}\right)$ is a ravel, Observation 2 follows.

CLAIM 2. For all $k \neq j, T_{k}$ does not have ∞-parity, T_{k}^{\prime} has at least one vertex, and R_{k} has at least two crossings.

Suppose that there is some $k \neq j$ such that T_{k} has ∞-parity. Without loss of generality, $k>j$. Then we can extend one of the strands of T_{j} to the right so that the ends meet either in T_{k} or before. As this violates Observation 2, no T_{k} with $k \neq j$ can have ∞-parity.

Suppose that some T_{k}^{\prime} with $k \neq j$ has no vertices. Without loss of generality, $k>j$. Since T_{j} has ∞-parity, we can extend the western endpoints of T_{k} leftward until they meet at or before T_{j}, and we can extend the eastern endpoints of T_{k} rightward until they meet at or before w. Let L be the simple closed curve obtained as the union of T_{k} with these rightward and leftward extensions. Now L is the connected sum of $D\left(T_{k}\right)$ with (possibly trivial) knots on the right and left. Recall that since T is in standard form, T_{k} is not horizontal. Thus by

Wolcott's Theorem L is a non-trivial knot. As this is contrary to our hypothesis, T_{k}^{\prime} must have at least one vertex.

Finally, suppose that some T_{k}^{\prime} has at most one crossing in R_{k}. Then by Simplifying Assumption (2), T_{k}^{\prime} has no crossings to the right of v_{k}^{R}. Hence by Lemma 5.1, there is a simple path in T_{k}^{\prime} between its NW and SW point. Thus again we can extend one of the strands of T_{j} to a simple closed curve in T^{\prime}. As this again violates Observation $2, R_{k}$ must have at least two crossings.

Claim 3. For all $k \neq j, T_{k}^{\prime}$ contains exactly one vertex.

Suppose that some T_{k}^{\prime} contains at least two vertices. Without loss of generality $k>j$. Let v_{k}^{L} be the leftmost vertex in T_{k}^{\prime}. Then we can illustrate T_{k}^{\prime} by Figure 6.2 , where all of the crossings of T_{k}^{\prime} are in the balls Q_{k}, S_{k}, and R_{k}, and any other vertices of T_{k}^{\prime} are contained in S_{k}. Note that in spite of the way we have illustrated them, v_{k}^{L} and v_{k}^{R} can each be in either the top or the bottom row.

Figure 6.2. $\quad L_{1}$ intersects T_{k}^{\prime} in disjoint $\operatorname{arcs} C_{1}$ and C_{2}.

Now we extend the ends of the NE-SE strand of T_{j} rightward until they meet. This must occur at the closing vertex w or else it would violate Observation 2. After removing any loops, we obtain a simple closed curve L_{1} which intersects T_{k}^{\prime} in a pair of disjoint arcs C_{1} and C_{2} each going between an eastern and western point of T_{k}^{\prime}. Without loss of generality, we assume the endpoints of C_{1} are the NE and NW points of T_{k}^{\prime} and the endpoints of C_{2} are the SE and SW points of T_{k}^{\prime} as illustrated in Figure 6.2.

Observe that two arcs of C_{2} enter Q_{k} from the left. Since Q_{k} has no vertices and does not contain the rightmost box of T_{k}, an arc that enters on the left must leave on the right. Thus two arcs of C_{2} must exit Q_{k} on the right. Now C_{1} also exits Q_{k} on the left, and hence must enter Q_{k} on the right. Since C_{1} and C_{2} are disjoint, this means that the two arcs entering v_{k}^{L} from the left must belong to C_{2} and the dotted black arc in Figure 6.2 belongs to C_{1}. Furthermore, since C_{2} does not contain any loops, C_{2} cannot continue rightward beyond v_{k}^{L}. In particular, v_{k}^{R} cannot be in C_{2}.

Next suppose that the arc of C_{1} from R_{k} to S_{k} passes through v_{k}^{R}. Then T_{k}^{\prime} is illustrated in Figure 6.3, where the grey dotted arcs entering S_{k} on the right are connected in some way
to the grey dotted arcs exiting S_{k} on the left. In this case, there is a path in T_{k}^{\prime} going from its NE endpoint passing through both v_{k}^{L} and v_{k}^{R} and exiting T_{k}^{\prime} from its SE endpoint. However, by Claim 2 we know that R_{k} contains at least two crossings, and hence by Observation 1 no such path can exist. Thus the arc of C_{1} from R_{k} to S_{k} cannot pass through v_{k}^{R} as it does in Figure 6.3.

Figure 6.3. $\quad L_{1}$ intersects T_{k}^{\prime} in disjoint $\operatorname{arcs} C_{1}$ and C_{2}.

Hence either C_{1} goes through v_{k}^{R} and then reenters R_{k}, or T_{k}^{\prime} contains a simple closed curve L_{2} that goes through v_{k}^{R} and is disjoint from C_{1}. In the first case, since R_{k} is alternating and contains at least two crossings, L_{1} is a non-trivial knot. As this is contrary to our assumption, the second case must occur. However, R_{k} is itself a rational tangle in alternating 3-braid form, and by Simplifying Assumption 1 there are no crossings in the same box as v_{k}^{R}. Thus there must be at least two crossings between L_{1} and L_{2}. But this implies that $L_{1} \cup L_{2}$ is a non-trivial link. As this is again contrary to our hypothesis, T_{k}^{\prime} must contain exactly one vertex.

Claim 4. For all $k \neq j$, the vertex v_{k} is in $\left(A_{k}^{2}\right)^{\prime}$ or possibly in $\left(A_{k}^{3}\right)^{\prime}$ if A_{k}^{2} has a single crossing.

If some T_{k}^{\prime} has its vertex in the first box, as illustrated in Figure 6.4, then there would be a path in T_{k}^{\prime} between its NE and SE points, which would violate Observation 1.

Figure 6.4. If v_{k} is in A^{1}, then there are paths in T_{k}^{\prime} joining the NW and SW points and joining the NE and SE points.

Now suppose that some T_{k}^{\prime} has its vertex v_{k} in a box $\left(A_{k}^{p}\right)^{\prime}$ where either $p>3$ or $p=3$ and A_{k}^{2} has more than one crossing. Let W_{k} be the tangle consisting of v_{k} and the part of T_{k}^{\prime}
to the left of v_{k}, as illustrated in Figure 6.5 (though v_{k} could be in a box to the right of A_{3}^{k}). Note that W_{k} includes the black arcs to the left of v_{k} but not the grey arcs to the right of v_{k}. Then W_{k} is a rational tangle; and since there are at least two crossings in $A_{k}^{2}, \ldots, A_{k}^{p-1}$, the tangle W_{k} is neither a horizontal tangle nor a trivial vertical tangle.

FIGURE 6.5. $\quad W_{k}$ is a rational tangle which is neither a horizontal tangle nor a trivial vertical tangle.

Now there is a path that goes from the NW and SW points of W_{k} leftward until its ends meet in T_{j}, at w, or at some other vertex. Also there is a path that goes rightward from the NE and SE points of W_{k} until the ends meet in T_{j}, at w, or at some other vertex. Note that since T_{j} has ∞-parity, at most one of these paths contains w. The union of the two strands of W_{k} together with these leftward and rightward paths is the connected sum of $D\left(W_{k}\right)$ with two (possibly trivial) knots. Since W_{k} is neither horizontal nor a trivial vertical tangle, this connected sum is a non-trivial knot or link. Thus the vertex v_{k} must either be in $\left(A_{k}^{2}\right)^{\prime}$ or possibly in ($\left.A_{k}^{3}\right)^{\prime}$ if A_{k}^{2} has only one crossing.

CLAIM 5. For all $k \neq j, T_{k}^{\prime}$ has a loop containing v_{k}.
It follows from Claim 4 that T_{k}^{\prime} has one of the forms illustrated in Figure 6.6.

Figure 6.6. $\quad T_{k}^{\prime}$ has one of these forms.

First we consider the illustration on the left in Figure 6.6. In this case, if R_{k} has 0 -parity, then the strands going into v_{k} from the right are connected together in R_{k}. Hence they are part of a loop in T_{k}^{\prime}. On the other hand, if R_{k} does not have 0 -parity, then there is a path from the NE point of R_{k} to v_{k}. We can then extend this path to get a path in T_{k}^{\prime} from its NE point to its SE point. As this violates Observation 1, this cannot occur.

Next we consider the illustration on the right in Figure 6.6. Now if R_{k} has ∞-parity, then the strands going into v_{k} from the right are connected together in R_{k}. Hence they are part of a loop in T_{k}^{\prime}. But if R_{k} does not have ∞-parity, then there is a path from the NE point of R_{k} to v_{k}. Again we can extend this path to get a path in T_{k}^{\prime} from its NE point to its SE point violating Observation 1 . Thus in either case, T_{k}^{\prime} has a loop containing v_{k}.

Now it follows from Claims 1 through 5 that T^{\prime} is an exceptional vertex insertion.

7. The Proof of the Backward Direction of Theorem 4.7

In order to prove the backward direction of Theorem 4.7, we make use of the following definition and theorem due to Sawollek [8].

Definition 7.1. Let G be a 4 -valent graph embedded in \mathbb{R}^{3}. The set of associated links $S(G)$ consists of all knots and links that can be obtained from G by replacing a neighborhood of each vertex of G by a rational tangle.

Sawollek's Theorem ([8]). Let G be a 4 -valent graph embedded in \mathbb{R}^{3}. The set of associated links $S(G)$ is an isotopy invariant of G.

Proposition 7.2. Let $T=T_{1}+\cdots+T_{n}$ be a projection of a Montesinos tangle in standard form, and suppose that T^{\prime} is obtained from T by an exceptional vertex insertion. Then the vertex closure $V\left(T^{\prime}\right)$ is a ravel.

Proof. By the definition of an exceptional vertex insertion, there is a single T_{j} with ∞-parity, and T_{j}^{\prime} has no vertices. Without loss of generality we assume that $1<j \leq n$. Also, for all $k \neq j, T_{k}^{\prime}$ has a single vertex v_{k} which is either in $\left(A_{k}^{2}\right)^{\prime}$ or possibly in $\left(A_{k}^{3}\right)^{\prime}$ if A_{k}^{2} has only one crossing. Furthermore, R_{k} (the subtangle of T_{k} consisting of the boxes to the right of v_{k}) is a rational tangle with at least two crossings and T_{k}^{\prime} has a loop containing v_{k}. Now for each k such that v_{k} is in $\left(A_{k}^{3}\right)^{\prime}$, we move v_{k} to $\left(A_{k}^{2}\right)^{\prime}$ by flipping R_{k} as illustrated in Figure 7.1.

Next, for each sequential $k>1$ such that $k \neq j$, we flip the part of the projection of $V\left(T^{\prime}\right)$ to the left of A_{k}^{1} repeatedly to move the crossings of A_{k}^{1} to A_{1}^{1}. Then we remove all of the accumulated crossings from A_{1}^{1} by twisting the strands around w. We illustrate this in Figure 7.2, where A_{1}^{1} begins with zero crossings and A_{2}^{1} begins with three crossings. In the second picture we have moved the three crossings of A_{2}^{1} to A_{1}^{1}, and in the third picture we have removed all of the crossings from A_{1}^{1}. This gives us a projection of $V\left(T^{\prime}\right)$ such that for each $k \neq j$, the vertex v_{k} is in $\left(A_{k}^{2}\right)^{\prime}$ and all of the crossings of T_{k}^{\prime} are in R_{k}.

Figure 7.1. When v_{k} is in A_{k}^{3}, we flip R_{k} to move v_{k} to $\left(A_{k}^{2}\right)^{\prime}$.

Figure 7.2. We can remove the crossings from the first box of each T_{k}^{\prime} with $k \neq j$.

After doing the moves illustrated in Figure 7.1 and Figure 7.2, there are four different ways that the edges can go in and out of each R_{k}, which we illustrate in Figure 7.3.

Figure 7.3. The possibilities for how the strands enter and exit each R_{k}, with the loop c_{k} indicated in grey.

The leftmost illustration occurs if v_{k} was originally in the second box so we did not have to flip R_{k} as in Figure 7.1, and in moving the crossings in the first boxes of the T_{i}^{\prime} to the left as in Figure 7.2 we flipped S_{k} zero or an even number of times. The second illustration in Figure 7.3 occurs if v_{k} was originally in the third box so we flipped R_{k} as in Figure 7.1, and in moving the crossings in the first boxes of the T_{i}^{\prime} to the left as in Figure 7.2 we flipped S_{k} zero or an even number of times. The third illustration occurs if v_{k} was in the second box so we did not flip R_{k} as in Figure 7.1, but in moving the crossings in the first boxes of the T_{i}^{\prime} to the left as in Figure 7.2 we flipped S_{k} an odd number of times. The rightmost illustration in Figure 7.3 occurs if v_{k} was in the third box so we flipped R_{k} as in Figure 7.1, and in moving
the crossings in the first boxes of the T_{i}^{\prime} to the left as in Figure 7.2 we flipped S_{k} an odd number of times.

Observe that regardless of which of the four illustrations occur, the only difference between the edges outside of S_{k} is that the "dangling edge" at the left of S_{k} (that is the one not going into v_{k}) may be above or below the vertex v_{k}.

In Figure 7.4 we define a labeling of the edges of $V\left(T^{\prime}\right)$, keeping in mind that T_{j} has ∞-parity and none of the T_{k} with $k \neq j$ have ∞-parity. In particular, we label the loop containing v_{k} by c_{k} and label the edges which are not loops consecutively as follows. Let a_{1} be the edge from w to v_{1}, and let a_{2} be the other edge with one endpoint at v_{1}. We label the rest of the edges whose vertices are to the left of T_{j} consecutively from one vertex to the next as a_{3}, \ldots, a_{j}. Then a_{j} will have one endpoint at w, and hence $a=a_{1} \cup a_{2} \cup \cdots \cup a_{j}$ will be a simple closed curve. Similarly, let b_{n} be the edge of $V\left(T^{\prime}\right)$ from w to the rightmost vertex v_{n}, and then consecutively label the edges whose endpoints are to the right of T_{j} as b_{n-1}, \ldots, b_{j}. Then b_{j} will also have an endpoint at w. Thus $b=b_{n} \cup b_{n-1} \cup \cdots \cup b_{j}$ will also be a simple closed curve.

Figure 7.4. We label the edges of $V\left(T^{\prime}\right)$ in this way.

In Figure 7.4, for $k=1$ and $k=2$ we illustrate the dangling edge at the left of S_{k} above v_{k}, while for $k=4$ we illustrate the dangling edge at the left of S_{k} below v_{4}. In fact, it makes no difference which of these illustrations occur.

Now observe from Figure 7.4 that there are no crossings between the projections of any pair of grey loops c_{k} and c_{i} with $i \neq k$, and hence no such pair can be linked. Also, observe from Figure 7.3 that each individual c_{k} is the numerator or denominator closure of a single strand of the rational tangle R_{k}, and so must be unknotted. In addition, the loops a and b are each connected sums of numerator or denominator closures of single strands of rational tangles. Hence a and b are also each unknotted. Finally, a has no crossings with any c_{k} with $k>j$ and meets every c_{k} with $k<j$ at the vertex v_{k}. Hence a cannot be linked with any c_{k}. Similarly, b cannot be linked with any c_{k}. It follows that $V\left(T^{\prime}\right)$ contains no non-trivial knots or links.

In order to show that $V\left(T^{\prime}\right)$ is non-planar we will show that the subgraph G obtained by deleting the loops c_{k} and vertices v_{k} for all $k>1$ with $k \neq j$ is non-planar. The possibilities for S_{k} with c_{k} and v_{k} deleted are illustrated in Figure 7.5. Observe that since R_{k} is rational,
after the deletion of c_{k}, the tangle R_{k} is left with a single unknotted strand. Thus in G, each S_{k} with $k>1$ and $k \neq j$ is a trivial horizontal tangle.

Figure 7.5. The forms of S_{k} after c_{k} and v_{k} have been deleted.

Figure 7.6. G has one of these forms.

It now follows that the spatial graph G has one of the forms illustrated in Figure 7.6. Since T_{j} has ∞-parity, regardless of which form G has, as an abstract graph G is isomorphic to the illustration on the left of Figure 7.7. We now let G_{0} denote the planar embedding of G illustrated on the right side of Figure 7.7, and obtain the set of associated links $S\left(G_{0}\right)$ by replacing the two vertices of G_{0} by rational tangles P and Q.

Figure 7.7. G as an abstract graph on the left, and a planar embedding G_{0} on the right.

The denominator closure of a rational tangle is a 2-bridge knot or link. Thus all of the non-trivial, non-split links in $S\left(G_{0}\right)$ are either the connected sum of two 2-bridge knots or links or a single 2-bridge knot or link. Hence, by Sawollek's Theorem, to show that the
spatial graph G is non-planar, it suffices to show that the set of associated links $S(G)$ contains some prime knot or link which is not 2-bridge.

In Figure 7.8, we replace the vertices w and v_{1} of G by the rational tangles P and Q to get the elements of $S(G)$. Then in Figure 7.9, we group the rational tangles R_{1} and Q together to create a single tangle U.

Figure 7.8. The elements of $S(G)$ have one of these forms.

Figure 7.9. We group R_{1} and Q together into a single tangle U.

Recall that R_{1} is an alternating rational tangle with at least two crossings. Thus we can choose a rational tangle Q so that U is a non-trivial rational tangle which is not horizontal. Note that the choice of Q will depend on R_{1} as well as on which form U has.

Now since T_{j} has ∞-parity, it cannot be horizontal; and by hypothesis T_{j} cannot be trivial. Thus for any rational tangle P, the knot or link $L=N\left(P+U+T_{j}\right)$ will be the numerator closure of a Montesinos tangle, where neither U nor T_{j} is horizontal or trivial.

It follows that the double branched cover $\Sigma(L)$ is a Seifert fibered space over S^{2}, and as long as P is not horizontal or trivial, $\Sigma(L)$ has three exceptional fibers. Now by the classification of Seifert manifolds [7], we can choose a rational tangle P such that $\Sigma(L)$ is irreducible, not $S^{1} \times S^{2}$, and has infinite fundamental group. For such a P, we know that L will be a prime link which is not 2-bridge. Thus $S(G)$ contains a link which is not in $S\left(G_{0}\right)$. It follows that G is non-planar, and hence $V\left(T^{\prime}\right)$ must also be non-planar. Thus we have shown that $V\left(T^{\prime}\right)$ is a ravel.

Propositions 6.1 and 7.2 together prove Theorem 4.7.

References

[1] T. Castle, M. E. Evans and S. T. Hyde, Ravels: Knot free but not free. Novel entanglements of graphs in 3-space, New Journal of Chemistry 32 (2008), 1457-1644.
[2] C. FARKAS, E. Flapan and W. Sullivan, Unravelling tangled graphs, Journal of Knot Theory and its Ramifications 20 (2012), 1250074, 9 pp.
[3] L. KaUffman and S. Lambropoulou, On the classification of rational tangles, Advances in Applied Mathematics 33 (2004), 199-237.
[4] A. KAWAUCHI, Hyperbolic imitation of 3-manifolds, Osaka Journal of Mathematics 26 (1989), 447-464.
[5] S. Kinoshita, On elementary ideals of polyhedra in the 3-sphere, Pacific J. Math. 42 (1972), 89-98.
[6] F. Li, J. Clegg, L. Lindoy, R. Macquart and G. Meehan, Metallosupramolecular self-assembly of a universal 3-ravel, Nature Communications 2 (2011), 5 pp.
[7] P. Orlik, E. Vogt and H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64.
[8] J. SAWOLLEK, Embeddings of 4-regular graphs into 3-space, Journal of Knot Theory and its Ramifications 6 (1997), 727-749.
[9] H. Schubert, Die eindeutige Zerlegbarkeit eines knots in prime knoten, S. B. Heidelberger Akad. Wiss. Math. Natur. Kl. 1949 (1949), 57-104.
[10] H. Schubert, Knoten mit zwei brüken, Math. Z. 65 (1956), 133-170.
[11] S. SuZUKi, On linear graphs in 3-sphere, Osaka J. Math. 7 (1970), 375-396.
[12] M. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), 297-309.
[13] K. Wolcott, The Knotting of Theta-Curves and Other Graphs in S^{3}, PhD thesis, University of Iowa (1986).
[14] Y. Q. WU, Minimally knotted embeddings of planar graphs, Math. Z. 214 (1993), 653-658.

Present Addresses:

ERICA Flapan Department of Mathematics, Pomona College, Claremont, CA 91711, USA. e-mail: ELF04747@pomona.edu
Allison N. Miller
Department of Mathematics, University of Texas, AUSTIN, TX 78712, USA.

[^0]: Received January 11, 2016; revised November 10, 2016
 1991 Mathematics Subject Classification: 57M25, 57M15, 05C10
 Key words and phrases: Spatial graphs, almost unknotted graphs, minimally knotted graphs, Brunnian graphs, tangles, ravels, Montesinos tangles
 The first author was partially supported by NSF Grant DMS-1607744.

