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Abstract. Let A be an abelian variety defined over a number field k and p a prime number. Under some
natural and not-too-stringent conditions on A and p we show that certain invariants associated to Iwasawa-theoretic
p-adic Selmer groups control the Krull-Schmidt decompositions of the p-adic completions of the groups of points of
A over finite extensions of k.

Introduction

Let A be an abelian variety defined over a number field k. We also let p denote a fixed
prime number.

If k′ is a finite extension of k and F/k′ is a finite Galois extension with Galois group G,
we wish to study the structure of A(F)p := Zp ⊗Z A(F) as a Zp[G]-module. We recall that,
if p divides the degree of F/k′, then describing the explicit Krull-Schmidt decomposition of
Zp[G]-lattices that occur naturally in arithmetic is known to be a very difficult problem (see,
for example, the considerable difficulties already encountered by Rzedowski-Calderón et al
in [13] when considering the pro-p completion of the ring of algebraic integers of F ).

Explicit structure results in this direction can have various kinds of important conse-
quences, as discussed in the introduction of [5]. For example, they play an essential role
in attempts to understand and investigate certain equivariant refinements of the Birch and
Swinnerton-Dyer conjecture. We refer the reader to [6] and [1], where an understanding of
such explicit structures is crucial in obtaining both theoretical and numerical verifications of
certain instances of the equivariant Tamagawa number conjecture.

In [5] Burns, Wuthrich and the author give characterisations of certain properties, such as
that of being projective or that of being a trivial source module, for a p-primary Selmer group,
associated to a fixed extension F/k′, that is closely related to A(F)p. Burns then investigates
in [4] the multiplicities of indecomposable modules in the Selmer groups of general critical
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motives as F varies in rank one pro-p p-adic analytic families of extensions of k that satisfy
a certain additional condition.

In this note we focus on Mordell-Weil groups and also investigate properties of their
Krull-Schmidt decompositions that go beyond the type of algebraic questions considered in
[5]. Although our results have consequences for more general extensions F/k′, we choose
for simplicity to only explicitly discuss those for which G is isomorphic to cyclic groups of
order pn for natural numbers n (which we henceforth denote by Cn). We will let F/k′ (and n)
vary inside rank one pro-p p-adic analytic extensionsK∞ of k without any further restrictions
and instead impose certain natural, not-too-stringent conditions on the choice of prime p. In
this way, we obtain a number of results that link invariants of the Iwasawa-theoretic Selmer
groups associated to intermediate Zp-extensions of K∞/k to the multiplicities with which
indecomposable lattices can occur in the Krull-Schmidt decompositions of modules of the
form A(F)p.

We recall that Heller and Reiner [9, 10] have proved that, if n > 2, then there are infin-
itely many isomorphism classes of indecomposableZp[Cn]-lattices. However, a consequence
of our general results is a finiteness statement, for the number of isomorphism classes of such
lattices that can occur in modules of the form A(F)p, that holds whenever the μ-invariants
of the relevant Selmer groups vanish (see Corollary 2.3). We wish to emphasize that, even in
such cases, our methods do not depend on the Selmer groups being torsion, and so the rank of
A(F) can be unbounded as F varies.

We also illustrate (in Examples 2.6 and 2.8) how, by considering additional restrictions
on the Iwasawa-theoretic structures of the relevant Selmer groups that go beyond the vanishing
of their μ-invariants, one can also gradually improve the precision of our general statements
concerning the Krull-Schmidt decompositions of Mordell-Weil groups. Furthermore, since
even these improvements are not necessarily best possible, we also discuss how by increasing
the value of n inductively (rather than letting it be arbitrary) one could do even better. We refer
the reader to Theorem 2.10 for an instance in which one can give strikingly sharp bounds on
the number of isomorphism classes of indecomposableZp[C3]-lattices that can occur as direct
summands of modules of the form A(F)p.

Our algebraic methods, based on a result of Yakovlev [14], can be applied to other arith-
metic groups and in particular one could use them to improve the precision of [3, Cor. 2.12]
and [4, Thm 1.1].

It is a pleasure to thank David Burns for many interesting discussions and correspon-
dence, as well as the anonymous referee for pointing out an error in a previous version.

1. Preliminaries and notation

For any Zp-module M we write Mtor for the torsion submodule of M and M∨ for the
Pontryagin dual HomZp (M,Qp/Zp). If M is finitely generated we also write rkp(M) for the
p-rank dimZ/pZ(M/pM).

For any profinite Galois extension of fields F/E we abbreviate Gal(F/E) to GF/E and
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write Zp[[GF/E]] for the associated p-adic Iwasawa algebra.

1.1. Abelian varieties. We first introduce some basic notation relating to abelian va-
rieties. Let A be an abelian variety defined over a number field k and fix a prime number
p.

For a finite extension field F of k we write Xp(A/F) for the Pontryagin dual of the p-
adic Selmer group Selp(A/F) ofA overF andX(A/F)p for thep-primary Tate-Shafarevich
group of A over F . If F/k is Galois we regard Selp(A/F), Xp(A/F) and X(A/F)p as
Zp[GF/k]-modules in the natural way. For a profinite extension F ′/k we write Xp(A/F ′) for
the limit lim←−F Xp(A/F) where F runs over all finite extensions of k in F ′ and the transition

morphisms are the natural corestriction maps.
We recall that, following Mazur [11], the reduction of A at a p-adic place v of k is said-

to-be ‘non-anomalous’ if the number of points of A over the residue field of v is prime to p. It
is straightforward to describe examples of abelian varieties A for which there are only finitely
many such anomalous places (see, for example, the result of Mazur and Rubin in [12, Lemma
A.5]).

We also note that, if p does not divide the order of the torsion subgroup of A(k) and E
is a finite extension of k that is contained in a pro-p extension of k, then it is straightforward
to show that p does not divide the order of the torsion subgroup of A(E), and therefore that
A(E)p := Zp⊗ZA(F) is torsion-free. We will often use this fact in the sequel without further
explicit comment.

For any finite extensions of fields E/k and F/E we set

T F(A/E) := ker(X(A/E)p
πFE−→X(A/F)p)

where πFE denotes the natural restriction map. We sometimes refer to groups of the form

T F(A/E) as the ‘kernel of capitulation’ (the author is grateful to Christian Wuthrich for point-
ing out this convenient terminology).

1.2. Integral representations. We next introduce convenient notation concerning in-
tegral representations. Given a finite group G, by a ‘Zp[G]-lattice’ we shall mean a Zp[G]-
module that is both finitely generated and free over Zp.

For each non-negative integer n we write Cn for the cyclic group Z/pnZ. For each non-
negative integer m with m < n we regard Cm as a quotient of Cn in the obvious way. We
then also follow [4, §1.2] in fixing a set IMp,n of representatives of all of the isomorphism
classes of indecomposable Zp[Cn]-lattices which do not contain Zp[Cm] for any integer m
with 0 ≤ m ≤ n. Then, by a classical result of Diederichsen [7] one knows that |IMp,1| = 1,
whilst the results of Heller and Reiner in [9, 10] imply that |IMp,2| = 4p − 2 and that IMp,n

is infinite for all n > 2.
For each extension of fields M/k′ with k′ a finite extension of k, each natural number n

and each lattice I in IMp,n we write mI(A,M/k′) for the maximal multiplicity with which
I occurs in the Krull-Schmidt decomposition of A(F)p as F ranges over extensions of k′ in
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M that are cyclic of degree pn and for which X(A/F)p is finite and, in each case, A(F)p is
regarded as a Zp[Cn]-module via some choice of isomorphism of GF/k′ with Cn.

Similarly, we write mtriv
I (A,M/k′) for the maximal multiplicity with which I occurs in

the Krull-Schmidt decomposition of A(F)p as F ranges over extensions of k′ in M that are
both cyclic of degree pn with X(A/F)p finite and such that the natural action of GF/k′ on

the abelian group T F(A/E) is trivial for all intermediate fields E of F/k′.
Finally, we writemcyc

I (A,M/k′) for the maximal multiplicity with which I occurs in the

Krull-Schmidt decomposition of A(F)p as F ranges over extensions of k′ in M that are both

cyclic of degree pn with X(A/F)p finite and such that the module T F(A/E) is cyclic as an
abelian group for all intermediate fields E of F/k′.

1.3. Explicit bounds. Given natural numbers n and d , we first writeMd
n for the finite

set of n × d-matrices with integer entries (mi,j )1≤i≤n,1≤j≤d which, for each index i with
1 ≤ i ≤ n, satisfy

(AG(i)) 0 ≤ mi,1 ≤ mi,2 ≤ · · · ≤ mi,d ≤ i
as well as, for each index i with 1 ≤ i ≤ n−1, each of the properties (RK(i+1)), (EX(i+1))
and (OR(i + 1)) that will be introduced in Definition 4.1 below.

Given a matrix M = (mi,j ) in Md
n we then set aM := ∏n

i=1 aM,i , where aM,i denotes

the number of conjugacy classes in Aut(
∏d
j=1 Cmi,j ) comprising elements of order dividing

pn−i . We also set HM := p2·∑n−1
i=1

∑
1≤k,l≤d min{mi,k ,mi+1,l }.

We finally set η0
n := 1, ηd1 := d + 1 and, for d > 0 and n > 1, define a non-negative

integer

ηdn :=
∑

M∈Md
n

HM · aM .

We also write T dn ⊂ Md
n for the finite set of n × d-matrices with integer entries which

satisfy (AG(i)), for each index i, as well as each of the properties (RK(i + 1)), (EX(i + 1))
and (OR(i + 1)) and each of the obvious analogous conditions (RK(i − 1)), (EX(i − 1)) and
(OR(i − 1)).

We then set τ 0
n := 1, τd1 := d+1 and, for d > 0 and n > 1, define a non-negative integer

τdn :=
∑

T ∈T dn
HT .

We finally write Rn for the finite set of vectors of length n with integer entries (ri)1≤i≤n
which, for every index i, satisfy the following properties:

(a) 0 ≤ ri ≤ i;
(b) ri − 1 ≤ ri+1 ≤ ri + 1.
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Given a vector (ri ) in Rn we then set, for each index i with 1 ≤ i ≤ n− 1,

(1) hri,ri+1 :=

⎧
⎪⎪⎨

⎪⎪⎩

3, if ri+1 = 1 = ri
2, if ri+1 = ri > 1

1, if ri+1 = ri − 1 or ri+1 = ri + 1 or ri+1 = 0 = ri .

We then set ρ1 := 2 and, if n is greater than 1, define a non-negative integer

ρn :=
∑

(ri )∈Rn

(
n−1∏

i=1

hri,ri+1

)

· p
∑n−1
i=1 max{0,min{ri−1,n−i}} .

REMARK 1.1. The non-negative integer ηdn (and consequently also τdn ) is smaller than

the upper bound of the form pn(n−1)d2 · κdn that occurs in [4, Thm. 1.1]. Indeed, in the

definition of κdn given just before the statement of [4, Thm. 1.1], the sum runs over all n× d-
matrices with integer entriesM = (mi,j ) on which one only imposes conditions (AG(i)), and
each of the summands is larger than or equal to aM . Furthermore, each one of our terms HM

is smaller than or equal to pn(n−1)d2
. For example, even in the smallest non-trivial case (with

d = 1 and n = 2) one computes pn(n−1)d2 · κdn = 2p3 + 4p2, while η1
2 = p3 + p2 + 3 and

τ 1
2 = 2p2 + 3.

For a given natural number n, the non-negative integer ρn is smaller than η1
n. Each

term p
∑n−1
i=1 max{0,min{ri−1,n−i}} is in fact equal to aR for any given R ∈ Rn ⊆ M1

n . To give
an explicit example of its value, we compute the equalities ρ2 = 7, ρ3 = 4p + 24 and

ρ4 = 12p2 + 21p+ 82. In fact, it is easy to see that the largest exponent of p occurring in ρn
is ((n− 2)/2)2 + (n− 2)/2 if n is even and ((n− 1)/2)2 if n is odd.

2. Statement of the main results

2.1. The general case. We can now state our main result.

THEOREM 2.1. Let A be an abelian variety defined over a number field k. Let p be
an odd prime that does not divide the order of the torsion subgroup of A(k) or any Tamagawa
number of A and is such that at every p-adic place of k the reduction of A is good, ordinary
and non-anomalous.

Let k∞/k be a Zp-extension and K/k a finite Galois p-extension unramified at every
place of bad reduction for A. For each intermediate field N of K/k, write N∞ for the com-
positum of N and k∞.

Then there exist non-negative integers λ and μ, which depend only upon the structure of
the Zp[[GN∞/N ]]-module Xp(A/N∞) as N varies over intermediate fields of K/k, and are
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such that for every finite extension k′ of k in K∞ and every natural number n one has

(2)
∑

I∈IMp,n

mI (A,K∞/k′) ≤ ηdn ,

with d = λ+ pn[k′ : k]μ.

REMARK 2.2. (i) The conditions imposed on p are mainly motivated by a result of
Greenberg in [8] (see also Lemma 3.2 below, as well as [5, Rem. 2.1]). Our approach allows
us to work in the context of an arbitrary Zp-extension k∞ of k, and in particular avoids the
hypothesis concerning decomposition subgroups that occurs in [4, Thm. 1.1, Cor 1.4] when
studying similar properties for the Selmer groups of critical motives. The approach of loc. cit.
however avoids our restrictions on the choice of prime p.
(ii) It is straightforward, using certain ideas from [2], to obtain a generalised version of The-
orem 2.1 in which K∞ is replaced by any pro-p, p-adic analytic extension of k of arbitrary
finite rank that is unramified at every place of bad reduction for A, but we have elected not to
state it explicitly for simplicity.

2.2. Vanishing of μ-invariants. The proof of Theorem 2.1 is constructive in that
structural invariants of natural Iwasawa modules can be used to give formulas for λ and μ.
To illustrate this fact we will explain how it directly leads to the following result. Here and
throughout the sequel, by the μ-invariant (or the λ-invariant) of a finitely generated Iwasawa
module we will mean the μ-invariant (or the λ-invariant) of its torsion submodule.

COROLLARY 2.3. We assume the hypotheses and notation of Theorem 2.1. Then for
every intermediate fieldN ofK/k the Zp[[GN∞/N ]]-moduleXp(A/N∞) is finitely generated,
and we assume further that its μ-invariant vanishes. We fix a natural number n. Then all of
the following claims hold:

(i) The bound on
∑
I∈IMp,n

mI (A,K∞/k′) given by the right hand side of (2) is indepen-

dent of the choice of field k′.
(ii) There exists a non-negative integer δn which depends only upon A,K∞/k and n with

the following property: for any cyclic extension F/k′ of degree pn with k ⊆ k′ ⊆ F ⊂
K∞ and both of k′/k and X(A/F)p finite, there is an isomorphism of Zp[GF/k′ ]-
lattices of the form

(3) A(F)p ∼=
( i=n⊕

i=0

Zp[Ci]sF/k′,i
)

⊕ RF/k′

where the Zp-rank of RF/k′ is at most δn (for suitable non-negative integers sF/k′,i).

(iii) There are only finitely many isomorphism classes of indecomposable Zp[Cn]-lattices
that can occur in the Krull-Schmidt decompositions of the modules A(F)p which arise
as F runs over all cyclic extensions F/k′ of degree pn with k ⊆ k′ ⊆ F ⊂ K∞
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and both of k′/k and X(A/F)p finite. (Here in each case A(F)p is regarded as a
Zp[Cn]-module via some choice of isomorphism of GF/k′ with Cn).

REMARK 2.4. (i) The finiteness assertions of Corollary 2.3(iii) are of interest since
they do not assume Xp(A/k∞) is a torsion Zp[[Gk∞/k]]-module and so the rank of A(F)
can be unbounded as the field F varies. They therefore raise interesting questions of the kind
considered explicitly in [4, Rem. 1.5(i)].
(ii) The arguments used in the proof are constructive in that they could be combined with
knowledge of the structure of certain Iwasawa-theoretic Selmer groups to give an explicit
upper bound on the number of isomorphism classes of indecomposable Zp[Cn]-lattices oc-
curring as direct summands of A(F)p as in Corollary 2.3(iii) (see Remark 5.1, as well as the
results in §2.5). However, they do not give explicit information about the upper bounds δn
that occur in Corollary 2.3(ii) (for more details in this regard see [4, Rem. 1.5(ii)]).
(iii) It is possible to extend the finiteness assertions of Corollary 2.3(iii), replacingCn with any
abstract finite group G (and considering Galois extensions contained in K∞/k that have Ga-
lois group isomorphic to G). This could be done, for example, through some of the algebraic
methods developed in [2].

2.3. Kernels of capitulation with trivial action. The upper bounds on the values of
sums

∑
I∈IMp,n

mI (A,K∞/k′) given in Theorem 2.1 are in general fairly coarse and, after

further specialisation, one can do considerably better.
For example, if in the setting of Theorem 2.1 one only considers extensions F/k′ that

are both cyclic of degree pn and such that the kernel of capitulation T F(A/E) vanishes for
each intermediate field E of F/k′, then our methods imply that no lattice in IMp,n occurs in
the Krull-Schmidt decomposition of A(F)p.

In the next result we consider a slightly more general case.

THEOREM 2.5. We assume the hypotheses and notation of Theorem 2.1. Then for
every finite extension k′ of k in K∞ and every natural number n one has

∑

I∈Mp,n

mtriv
I (A,K∞/k′) ≤ τdn

with d = λ+ pn[k′ : k]μ.

EXAMPLE 2.6. Let A be an abelian variety defined over a number field k. Let p be
an odd prime that satisfies the hypotheses of the first paragraph of Theorem 2.1. Let k∞/k be
a Zp-extension and write Λ := Zp[[Gk∞/k]] for the associated p-adic Iwasawa algebra. For
any non-negative integerm, we also write km for the extension of k in k∞ of degree pm.

Then Xp(A/k∞) is a finitely generated Λ-module. We write Xp(A/k∞)T for the
Λ-torsion submodule of Xp(A/k∞) and Xp(A/k∞)TF for the quotient of Xp(A/k∞) by
Xp(A/k∞)T. We assume that the μ-invariant of Xp(A/k∞) vanishes and that Xp(A/k∞)TF

is a free Λ-module. Then the torsion Λ-module Xp(A/k∞)T is finitely generated over Zp,
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and we assume further that Gk∞/ka acts trivially on Xp(A/k∞)T for a given non-negative
integer a.

Then, for any non-negative integer b, the module of co-invariants
H0(Gk∞/kb ,Xp(A/k∞)TF) is Zp-free and so one has canonical isomorphisms

(4) (X(A/kb)
∨
p)tor ∼= Xp(A/kb)tor ∼= H0(Gk∞/kb ,Xp(A/k∞))tor

∼= H0(Gk∞/kb,Xp(A/k∞)T)tor

(where the second isomorphism, induced by the dual of the natural restriction map, is indeed
bijective by Lemma 3.2 (ii) below). Each module (X(A/kb)

∨
p)tor is therefore canonically

isomorphic to a submodule of a quotient of Xp(A/k∞)T, and so has both trivial action of
Gk∞/ka and p-rank bounded by

(5) λ := dimZ/pZ(Xp(A/k∞)T[p])+ λ(Xp(A/k∞))
= dimZ/pZ(Xp(A/k∞)T[p])+ dimQp (Qp ⊗Zp Xp(A/k∞)T) = rkp(Xp(A/k∞)T) ,

where λ(Xp(A/k∞)) denotes the λ-invariant of Xp(A/k∞).
It follows that, for any m ≥ a, for any natural number n and for any I in IMp,n one has

mI (A, k∞/km) = mtriv
I (A, k∞/km), and furthermore in Theorem 2.5 one can take (μ := 0

and also) λ as defined by (5).
Theorem 2.5 therefore gives, for every natural number n, an inequality

∑

I∈Mp,n

mI (A, k∞/km) ≤ τλn

which in particular is an upper bound on
∑
I∈Mp,n

mI (A, k∞/km) that both is independent of

the choice ofm ≥ a and is sharper than the upper bound ηλn obtained by simply setting μ := 0
in (2).

2.4. Cyclic kernels of capitulation. In the following result we consider yet another
more general condition than the vanishing of the relevant kernels of capitulation.

THEOREM 2.7. We assume the hypotheses and notation of Theorem 2.1. Then for
every finite extension k′ of k in K∞ and every natural number n one has

∑

I∈Mp,n

m
cyc
I (A,K∞/k′) ≤ ρn .

EXAMPLE 2.8. We keep the notation of Example 2.6 and also assume that the μ-
invariant of Xp(A/k∞) vanishes.

We write N2 for the maximal finite Λ-submodule of Xp(A/k∞)T and also assume that
one may choose Λ-modules N1 and N3, both of them finitely generated over Zp and fitting
into short exact sequences 0 → Xp(A/k∞)TF → Y → N1 and 0 → Xp(A/k∞)T/N2 →
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E → N3 with Y a free Λ-module and E an elementary Λ-module, with the property that the
non-negative integer

λ(Xp(A/k∞))+ rkp(N1)+ rkp(N2)+ rkp(N3)

is equal to 1. (Finite modules fitting into such short exact sequences always exist).
Then the isomorphism (X(A/kb)

∨
p)tor ∼= H0(Gk∞/kb ,Xp(A/k∞))tor described in (4)

combines with the proof of [4, Lem. 3.6] to imply that (X(A/kb)
∨
p)tor is cyclic as an abelian

group for every non-negative integer b.
It follows that, for any non-negative integer m, for any natural number n and for any I

in IMp,n one has mcyc
I (A, k∞/km) = mI (A, k∞/km). Theorem 2.7 therefore gives, for every

natural number n, an inequality
∑

I∈Mp,n

mI (A, k∞/km) ≤ ρn

which in particular is an upper bound on
∑
I∈Mp,n

mI (A, k∞/km) that both is independent of

the choice of m and is sharper than the upper bound η1
n obtained by simply setting d := 1 in

(2).

2.5. Indecomposable Zp[C3]-lattices. In the special case given by n = 2, Lemma
3.3 below directly combines with an important representation-theoretic theorem of Heller and
Reiner in [9] (see also, for example, Table 2 in [13]) to give the following:

THEOREM 2.9. We assume the hypotheses and notation of Theorem 2.1, and fix a finite

extension k′ of k in K∞ and a cyclic extension F of k′ in K∞ of degree p2. We write F ′ for
the (unique) non-trivial intermediate field of F/k′.

Then, in the notation of Table 2 in [13], the Krull-Schmidt decomposition of A(F)p as a
Zp[GF/k′ ]-module is given by a direct sum of indecomposable Zp[C2]-modules of the form

Ra2 ⊕ Rb1 ⊕ Zc ⊕ Ed ⊕ (R2, Z; 1)e ⊕
p−2⊕

i=0

(R2, R1; λi0)gi ⊕
p−1⊕

i=0

(R2, E; λi0)hi

⊕
p−2⊕

i=0

(R2, Z ⊕ R1; 1⊕ λi0)ji ⊕
p−2⊕

i=1

(R2, Z ⊕ E; 1⊕ λi0)ki

for suitable non-negative exponents which satisfy both of the equalities

ap + e(p − 1)+
p−2∑

i=0

gi (i + 1)+
p−1∑

i=1

hii +
p−2∑

i=0

ji(i + 1)+
p−2∑

i=1

kii = rkp(T F(A/F ′))

and

a + b + g0 + 2
p−2∑

i=1

gi +
p−1∑

i=1

hi +
p−2∑

i=0

ji = rkp(T F(A/k′)) .
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The Iwasawa-theoretic invariants μ and λ in the statement of Theorem 2.1 are defined
during the proof as a means of providing explicit upper bounds, of the form λ+ pn[k′ : k]μ,
on the p-ranks of the kernels of capitulation occurring in the above equalities. Theorem
2.9 therefore leads, in the special case n = 2, to much sharper bounds on the values of the
relevant sums of the form

∑
I∈IMp,n

mI (A,K∞/k′) than are given by (2), as well as to much

more precise statements than the finiteness claim provided by Corollary 2.3(iii).
Furthermore, by increasing inductively the value of n, one can use our methods to obtain

similar such improvements for any given, arbitrarily large natural number n. In the following
result, in order to illustrate how to obtain statements as sharp as possible, we consider only
the simplest (non-trivial) instance of this phenomenom, namely with n = 3, μ = 0 and λ = 1
(so that all the relevant kernels of capitulation are actually cyclic as abelian groups), and leave
the computation of any other such examples to an interested reader.

Before proceeding, we define two Zp[Cn] lattices to be ‘isomorphic up to permutation
module’ if there are isomorphisms of Zp[Cn]-modules of the form

(6) M ∼= R ⊕
i=n⊕

i=0

Zp[Ci ]ai and N ∼= R ⊕
i=n⊕

i=0

Zp[Ci]bi

for a suitable Zp[Cn]-lattice R and non-negative integers ai and bi .
For any extensionM of k and each natural number n we define a set of Zp[Cn]-modules

by setting

MWM,n := {A(F)p : F/k′ cyclic of degree pn, k ⊆ k′ ⊂ F ⊆ M , k′/k finite }
(with, in each case, A(F)p regarded as a Zp[Cn]-module via some choice of isomorphism
of GF/k′ with Cn). For each lattice I in IMp,n we also write mI (A,M) for the maximal
multiplicity with which I occurs in the Krull-Schmidt decompositions of the elements of
MWM,n.

THEOREM 2.10. We assume the hypotheses and notation of Theorem 2.1. We assume

further that, for every cyclic extension L/E of degree dividing p3 with k ⊆ E ⊂ L ⊆ K∞
and E/k finite, the module T L(A/E) is cyclic as an abelian group.

Then the set of Zp[C3]-lattices MWK∞,3 contains only finitely many isomorphism up to
permutation module classes, and in fact at most p + 20 of them.

Furthermore, mI (A,K∞) ≤ 1 for every I ∈ IMp,3, and there at most p + 15 elements
of IMp,3 for which mI (A,K∞) = 1. In particular,

∑

I∈IMp,3

mI(A,K∞) ≤ p + 15 .

REMARK 2.11. (i) If one fixes a finite extension k′ of k in K∞ and only assumes that
the module T L(A/E) is cyclic as an abelian group for all extensions L/E that are contained
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in cyclic extensions of k′ in K∞ of degree p3, then our methods still prove that
∑

I∈IMp,3

mI (A,K∞/k′) ≤ p + 15 .

(ii) The upper bound p + 15 improves upon the corresponding bound ρ3 = 4p + 24 given in
Theorem 2.7. In particular, in the situation of Example 2.8, the hypotheses of Theorem 2.10
are satisfied (withK∞ = k∞) and therefore the latter result leads to an improvement upon the
upper bound for

∑
I∈IMp,3

mI (A, k∞/km) given there.

(iii) Let A be an abelian variety defined over a number field k. Let p be an odd prime that
does not divide the order of the torsion subgroup of A(k) and let M be a pro-p extension
of k. In this greater level of generality, our proof of Theorem 2.10 still leads to the same
conclusions (with M in place of K∞) if one imposes the cyclicity hypothesis on all relevant

Tate-cohomology groups of the form Ĥ−1(GL/E,A(L)p).

3. The invariants μ and λ

Throughout this section, we assume the notation and hypotheses of Theorem 2.1 and
prove the following intermediate result.

PROPOSITION 3.1. There exist non-negative integers λ and μ, which depend only
upon the structure of the Zp[[GN∞/N ]]-module Xp(A/N∞) as N varies over intermediate
fields of K/k, with the following property: for every finite extension k′ of k in K∞, every
natural number n, every cyclic extension F of k′ in K∞ of degree pn with X(A/F)p finite
and every subgroup J of GF/k′ one has

rkp(Ĥ−1(J,A(F )p)) ≤ λ+ pn[k′ : k]μ .
Furthermore, each Zp[[GN∞/N ]]-module Xp(A/N∞) is finitely generated and, if each of
their respective μ-invariants vanishes, then the claim above remains valid if one sets μ := 0.

Let k′, n, F and J determine data as in the statement of Proposition 3.1. We write FJ∞
for the Zp-extension FJ k∞ of FJ and also then set ΛFJ := Zp[[GFJ∞/F J ]].

In order to prove Proposition 3.1, we will require the following intermediate results.

LEMMA 3.2. (i) The natural restriction map Selp(A/FJ ) → Selp(A/F)J is an iso-
morphism of Zp[GFJ/k′ ]-modules.

(ii) The (dual of) the natural restriction map

H0(GFJ∞/F J ,Xp(A/F
J∞))→ Xp(A/F

J )

is an isomorphism of Zp-modules.

PROOF. The conditions imposed in the first paragraph of Theorem 2.1, combined with
(the proof of) [5, Lem. 3.4], ensure that A satisfies the hypotheses of Greenberg’s result [8,
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Prop. 5.6] with respect to both the field extension F/k′ and the field extension FJ∞/FJ , and
so the latter result precisely gives both of the required claims. �

The following result is a natural modification of [5, Prop. 3.1].

LEMMA 3.3. The Tate cohomology group Ĥ−1(J,A(F )p) is isomorphic as a

Zp[GFJ/k′ ]-module to T F(A/FJ ).

PROOF. We have a commutative diagram of Zp[GFJ/k′ ]-modules

0 �� Qp/Zp ⊗Z A
(
FJ
)

��

ιF
FJ��

Selp(A/FJ ) ��

resF
J

F
��

X(A/FJ )p ��

πF
FJ

��

0

0 ��
(
Qp/Zp ⊗Z A(F)

)J �� Selp(A/F)J �� X(A/F)p .

In this diagram the rows are exact and ιF
FJ

denotes the homomorphism that is induced by the

inclusion A(FJ ) ⊆ A(F). Since the map resF
J

F is bijective by Lemma 3.2(i), we may apply

the snake lemma to the diagram to deduce that T F(A/FJ ) is naturally isomorphic to cok(ιF
FJ
)

and so it is enough to show that the latter module is also isomorphic to Ĥ−1(J,A(F )p).
Now the fact that p does not divide the order of the torsion subgroup of A(k) ensures

that A(F) has no p-torsion and hence that there is a natural short exact sequence

0 ��A(F)p ��Qp ⊗Z A(F) ��Qp/Zp ⊗Z A(F) ��0 .

Taking cohomology this sequence in turn gives a natural exact sequence of Zp[GFJ /k′ ]-
modules

0 ��Qp/Zp ⊗Z A
(
FJ
) ιF

FJ ��
(
Qp/Zp ⊗Z A(F)

)J
��Ĥ 1

(
J,A(F)p

)
��0

and hence an isomorphism cok(ιF
FJ
) ∼= Ĥ 1(J,A(F )p). But, since GF/k′ is cyclic, the latter

module is isomorphic to Ĥ−1(J,A(F )p). �

LEMMA 3.4. rkp(Ĥ−1(J,A(F )p)) ≤ rkp(H0(GFJ∞/F J ,Xp(A/F
J∞))tor).

PROOF. Lemma 3.3, the definition of T F(A/FJ ), the fact that Ĥ−1(J,A(F )p) is a
finite group and the assumption that so is X(A/F)p combine to imply that

rkp(Ĥ−1(J,A(F )p)) = rkp(T F(A/FJ ))

≤ rkp(X(A/FJ )p)

= rkp(X(A/FJ )∨p)

= rkp(Xp(A/FJ )tor)



MORDELL-WEIL GROUPS 365

= rkp(H0(GFJ∞/F J ,Xp(A/F
J∞))tor) ,

where the last equality is a consequence of Lemma 3.2(ii). �

In order to prove Proposition 3.1, we first note that Lemma 3.2(ii) ensures that the ΛFJ -

module Xp(A/FJ∞) is finitely generated. In particular, if N is any intermediate field of K/k,

any choice of data k′, n, F, J with FJ = N (such as, for example, taking k′ to be N itself
and taking the subgroup J to be the groupGF/k′ = GF/N itself) implies that theΛN -module
Xp(A/N∞) is finitely generated, as was explicitly claimed in Proposition 3.1.

Furthermore, we may now apply the general result of [4, Lem. 3.6] (in the special case
of a complex comprising a single non-trivial, finitely generated moduleXp(A/FJ∞)) to obtain
a natural analogue

rkp(H0(GFJ∞/F J ,Xp(A/F
J∞))tor) ≤ μFJ (Xp(A/FJ∞))+ λFJ∞

of the inequality [4, (15)], where μFJ (Xp(A/F
J∞)) is the μ-invariant of the ΛFJ -module

Xp(A/F
J∞) and λFJ∞ is a non-negative integer that depends only upon the field FJ∞. By

arguing exactly as in the two paragraphs that follow [4, (15)], one then finds that the rational
number

μFJ∞ :=
μFJ (Xp(A/F

J∞))
[FJ : k]

depends only on the field FJ∞ rather than on FJ , and therefore also that the maximum values
μ and λ of the respective sets of non-negative integers {[N : k] ·μN∞} and {λN∞} asN ranges
over the finitely many intermediate fields of K/k satisfy the inequality

rkp(H0(GFJ∞/F J ,Xp(A/F
J∞))tor) ≤ μFJ (Xp(A/FJ∞))+ λFJ∞
= [FJ : k]μFJ∞ + λFJ∞ ≤ [F : k]μ+ λ = pn[k′ : k]μ+ λ .

This inequality now combines with Lemma 3.4 to complete the proof of Proposition 3.1.

4. Yakovlev’s theorem and counting diagrams

In this section we recall a crucial representation-theoretic result due to Yakovlev [14] and
refine a counting argument due to Burns [4, §3.2].

Before proceeding, we introduce the defining properties (RK(i + 1)), (EX(i + 1)) and
(OR(i + 1)) for the set of matricesMd

n (and T dn ) that were mentioned in §1.3.

DEFINITION 4.1. Given an n× d-matrix with integer entriesM = (mi,j )1≤i≤n,1≤j≤d
which satisfies conditions (AG(1)) as well as (AG(i+1)), for each index i with 1 ≤ i ≤ n−1,
we write α(i) for the integer 0 ≤ α(i) ≤ d withmi,α(i) = 0 andmi,α(i)+1 �= 0. We then define
the following conditions on the pair (M, i):
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(RK(i + 1)) mi+1,1,mi+1,2, . . . ,mi+1,α(i) ∈ {0, 1} ;
(EX(i + 1)) mi+1,α(i)+1,mi+1,α(i)+2, . . . ,mi+1,d

∈ {0, 1} ∪ {x ∈ Z : mi,α(i)+1 − 1 ≤ x ≤ mi,d + 1} ;
(OR(i + 1))

∑d
j=1mi+1,j ≤ (∑d

j=1mi,j )+ d .

We now fix a cyclic groupG of order pn and for each integer i with 1 ≤ i ≤ n write Gi
for the subgroup of G of order pi .

Then the results of [14, Th. 2.4 and Lem. 5.2] combine to imply that if M and N are
any Zp[G]-lattices for which, for each i with 1 ≤ i ≤ n, there exists an isomorphism of

Zp[G/Gi]-modules θi : Ĥ−1(Gi,M)→ Ĥ−1(Gi,N) that lies in commutative diagrams (of
Zp[G]-modules)

(7) Ĥ−1(Gi,M)
CiM ��

θi
��

Ĥ−1(Gi+1,M)

θi+1
��

Ĥ−1(Gi,N)
CiN �� Ĥ−1(Gi+1,N)

Ĥ−1(Gi,M)

θi
��

Ĥ−1(Gi+1,M)
RiM��

θi+1
��

Ĥ−1(Gi,N) Ĥ−1(Gi+1,N)
RiN��

where the horizontal arrows are the natural corestriction and restriction homomorphisms, then
M and N are isomorphic up to permutation modules (in the sense of (6)).

In the sequel we follow [4, §3.2] in referring to finite ‘double chains’ of homomorphisms
of Zp[G]-modules

(8) X1
ψ1→ X2

ψ2→ · · · ψn−2→ Xn−1
ψn−1→ Xn , X1

φ1← X2
φ2← · · · φn−2← Xn−1

φn−1← Xn

and

X′1
ψ ′1→ X′2

ψ ′2→ · · · ψ
′
n−2→ X′n−1

ψ ′n−1→ X′n , X′1
φ′1← X′2

φ′2← · · · φ
′
n−2← X′n−1

φ′n−1← X′n

as ‘equivalent’ if there exist isomorphisms of Zp[G]-modules ιi : Xi → X′i for each index i
which together give commutative diagrams

X1
ψ1−−−−→ X2

ψ2−−−−→ . . .
ψn−2−−−−→ Xn−1

ψn−1−−−−→ Xn

ι1

⏐
⏐
� ι2

⏐
⏐
� ιn−1

⏐
⏐
� ιn

⏐
⏐
�

X′1
ψ ′1−−−−→ X′2

ψ ′2−−−−→ . . .
ψ ′n−2−−−−→ X′n−1

ψ ′n−1−−−−→ X′n



MORDELL-WEIL GROUPS 367

and

X1
φ1←−−−− X2

φ2←−−−− . . .
φn−2←−−−− Xn−1

φn−1←−−−− Xn

ι1

⏐
⏐
� ι2

⏐
⏐
� ιn−1

⏐
⏐
� ιn

⏐
⏐
�

X′1
φ′1←−−−− X′2

φ′2←−−−− . . .
φ′n−2←−−−− X′n−1

φ′n−1←−−−− X′n .

We also fix a natural number d . In the sequel, given a double chain of the form (8), we
will consider the following conditions on it, for each index i:

(ai) Xi is finite of exponent less than or equal to pi .
(bi) rkp(Xi) ≤ d .

(bi’) rkp(Xi) ≤ 1.
(ci) Gi acts trivially on Xi .

(ci’) G acts trivially on Xi .
(di) ψi ◦ φi is given by multiplication by p on Xi+1.

(di’) ψi◦φi is given by multiplication by p onXi+1 and φi◦ψi is given by multiplication
by p on Xi .

We then write Θd
n , resp. Θd,triv

n , resp. Θcyc
n for the number of non-equivalent double chains

of homomorphisms of Zp[G]-modules of the form (8) which satisfy all of the conditions (ai),
(bi), (ci) and (di), resp. (ai), (bi), (ci’) and (di’), resp. (ai), (bi’), (ci) and (di’).

The following result refines [4, Lem. 3.1].

LEMMA 4.2. Θd
n ≤ ηdn , Θd,triv

n ≤ τdn andΘcyc
n ≤ ρn.

PROOF. We write e(X) for the exponent of a finite abelian p-group.

Given any index i, the category of Zp[G]-modules X that are finite with e(X) ≤ pi ,

rkp(X) ≤ d and trivial action of Gi is equivalent to the category of pairs (X̃, α) where X̃ is

an abelian p-group satisfying e(X̃) ≤ pi and rkp(X̃) ≤ d and α is an element of AutZp (X̃)

of order dividing pn−i .
If one fixes a generator g ofG, then this equivalence is induced by the assignmentX �→

([X], gX) where [X] is the abelian p-group underlying X and gX corresponds to the action

of g on X̃ and Zp[G]-homomorphisms θ : X → Y correspond to group homomorphisms

[θ ] : [X] → [Y ] which satisfy [θ ] ◦ gX ◦ [θ ]−1 = gY .
This implies, in particular, that the isomorphism classes of Zp[G]-modules X that are

finite with e(X) ≤ pi , rkp(X) ≤ d and trivial action of Gi are represented by pairs

(
∏d
j=1 Cmi,j , βi) as (mi,j )1≤j≤d runs over all vectors of length d with integer entries satisfy-

ing 0 ≤ mi,1 ≤ mi,2 ≤ · · · ≤ mi,d ≤ i and βi over the set A((mi,j )1≤j≤d)n−i of conjugacy

classes of AutZp (
∏d
j=1 Cmi,j ) comprising elements of order dividing pn−i .

A trivial version of this same argument implies that the isomorphism classes of Zp[G]-
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modulesX that are finite with e(X) ≤ pi , rkp(X) ≤ d and trivial action ofG are represented

by the modules
∏d
j=1 Cti,j as (ti,j )1≤j≤d runs over all vectors of length d with integer entries

satisfying 0 ≤ ti,1 ≤ ti,2 ≤ · · · ≤ ti,d ≤ i.
Via Lemma 4.3 below, it is then clear that any double chain of the form (8) which satisfies

all of the conditions (ai), (bi), (ci) and (di) is equivalent to a double chain of the form
[ d∏

j=1

Cm1,j , β1

]
ψ1→
[ d∏

j=1

Cm2,j , β2

]
ψ2→ . . .

ψn−2→
[ d∏

j=1

Cmn−1,j , βn−1

]
ψn−1→

[ d∏

j=1

Cmn,j , βn

]

,

[ d∏

j=1

Cm1,j , β1

]
φ1←
[ d∏

j=1

Cm2,j , β2

]
φ2← · · · φn−2←

[ d∏

j=1

Cmn−1,j , βn−1

]
φn−1←

[ d∏

j=1

Cmn,j , βn

]

where each [∏d
j=1 Cmi,j , βi] is the Zp[G]-module which corresponds to some choice of ma-

trix M := (mi,j )1≤i≤n,1≤j≤d that belongs to Md
n and of βi in A((mi,j )1≤j≤d)n−i .

Similarly, via double applications of Lemma 4.3 below, any double chain of the form (8)
which satisfies all of the conditions (ai), (bi), (ci’) and (di’) is equivalent to a double chain of
the form

[ d∏

j=1

Ct1,j

]
ψ1→
[ d∏

j=1

Ct2,j

]
ψ2→ · · · ψn−2→

[ d∏

j=1

Ctn−1,j

]
ψn−1→

[ d∏

j=1

Ctn,j ,

]

,

[ d∏

j=1

Ct1,j

]
φ1←
[ d∏

j=1

Ct2,j

]
φ2← · · · φn−2←

[ d∏

j=1

Ctn−1,j

]
φn−1←

[ d∏

j=1

Ctn,j

]

where each [∏d
j=1 Cti,j ] is the Zp[G]-module which corresponds to some choice of matrix

T := (ti,j )1≤i≤n,1≤j≤d that belongs to T dn .

It is therefore clear that Θd
n is at most

∑

(M,β1,...,βn)

n−1∏

i=1

∣
∣
∣
∣HomZp[G]

([ d∏

k=1

Cmi,k , βi

]

,

[ d∏

l=1

Cmi+1,l , βi+1

])∣
∣
∣
∣ ·
∣
∣
∣
∣HomZp[G]

([ d∏

l=1

Cmi+1,l , βi+1

]

,

[ d∏

k=1

Cmi,k , βi

])∣
∣
∣
∣

≤
∑

(M,β1,...,βn)

n−1∏

i=1

∣
∣
∣
∣HomZ

( d∏

k=1

Cmi,k ,

d∏

l=1

Cmi+1,l

)∣
∣
∣
∣ ·
∣
∣
∣
∣HomZ

( d∏

l=1

Cmi+1,l ,

d∏

k=1

Cmi,k

)∣
∣
∣
∣

=
∑

M∈Md
n

( n∏

i=1

aM,i

) n−1∏

i=1

∣
∣
∣
∣HomZ

( d∏

k=1

Cmi,k ,

d∏

l=1

Cmi+1,l

)∣
∣
∣
∣ ·
∣
∣
∣
∣HomZ

( d∏

l=1

Cmi+1,l ,

d∏

k=1

Cmi,k

)∣
∣
∣
∣
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=
∑

M∈Md
n

aM

n−1∏

i=1

∏

1≤k,l≤d

∣
∣
∣
∣HomZ

(

Cmi,k , Cmi+1,l

)∣
∣
∣
∣ ·
∣
∣
∣
∣HomZ

(

Cmi+1,l , Cmi,k

)∣
∣
∣
∣

=
∑

M∈Md
n

aM

n−1∏

i=1

∏

1≤k,l≤d
(pmin{mi,k ,mi+1,l })2

=
∑

M∈Md
n

aM · p2·∑n−1
i=1

∑
1≤k,l≤d min{mi,k ,mi+1,l } ,

which is precisely the definition of ηdn .

Similarly, Θd,triv
n is at most

∑

T ∈T dn

n−1∏

i=1

∣
∣
∣
∣HomZp[G]

([ d∏

k=1

Cti,k

]

,

[ d∏

l=1

Cti+1,l

])∣
∣
∣
∣·
∣
∣
∣
∣HomZp[G]

([ d∏

l=1

Cti+1,l

]

,

[ d∏

k=1

Cti,k

])∣
∣
∣
∣

=
∑

T ∈T dn

n−1∏

i=1

∣
∣
∣
∣HomZ

( d∏

k=1

Cti,k ,

d∏

l=1

Cti+1,l

)∣
∣
∣
∣ ·
∣
∣
∣
∣HomZ

( d∏

l=1

Cti+1,l ,

d∏

k=1

Cti,k

)∣
∣
∣
∣

=
∑

T ∈T dn
p2·∑n−1

i=1
∑

1≤k,l≤d min{ti,k ,ti+1,l} ,

which is precisely the definition of τdn .

In order to prove that Θcyc
n ≤ ρn, we first note that Rn = T 1

n ⊆ M1
n and that an explicit

computation proves that, for any R = (ri ) ∈ Rn, one has

(9) aR,i = pmax{0,min{ri−1,n−i}} .

Now, using once again Lemma 4.3 below, it is elementary to show that any double chain
of the form (8) which satisfies all of the conditions (ai), (bi’), (ci) and (di’) is equivalent to a
double chain of the form

[Cr1, β1] ψ1→ [Cr2, β2] ψ2→ · · · ψn−2→ [Crn−1, βn−1] ψn−1→ [Crn, βn] ,
[Cr1, β1] φ1← [Cr2, β2] φ2← · · · φn−2← [Crn−1, βn−1] φn−1← [Crn, βn]

where each [Cri , βi] is the Zp[G]-module which corresponds to some choice of vector R :=
(ri )1≤i≤n that belongs to Rn and of βi in A((ri))n−i , and furthermore in which each of the
arrows can be taken to be as follows:

• If ri+1 = 1 = ri , then (ψi, φi) is either (0, 0) or (0, 1) or (1, 0).
• If ri+1 = ri > 1, then (ψi, φi) is either (1, p) or (p, 1).
• If ri+1 = ri − 1, then (ψi, φi) is (1, p).
• If ri+1 = ri + 1, then (ψi, φi) is (p, 1).
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• If ri+1 = 0 = ri , then (ψi, φi) is (0, 0).

Recalling the explicit definition (1) of hri,ri+1 and using (9), it is therefore clear thatΘcyc
n

is at most

∑

(R,β1,...,βn)

n−1∏

i=1

hri ,ri+1=
∑

R∈Rn
aR

n−1∏

i=1

hri,ri+1=
∑

R∈Rn

( n−1∏

i=1

hri,ri+1

)

p
∑n−1
i=1 max{0,min{ri−1,n−i}} ,

which is precisely the definition of ρn. �

LEMMA 4.3. Let M = (mk,j )k∈{i,i+1},1≤j≤d be a 2 × d matrix with integer en-
tries which satisfy 0 ≤ mk,j ≤ mk,j+1 for every k and j . If there exist ψ ∈
HomZ(

∏d
j=1 Cmi,j ,

∏d
j=1 Cmi+1,j ) and φ ∈ HomZ(

∏d
j=1 Cmi+1,j ,

∏d
j=1 Cmi,j ) with the prop-

erty that ψ ◦ φ is given by multiplication by p on
∏d
j=1 Cmi+1,j , then M satisfies conditions

(RK(i + 1)), (EX(i + 1)) and (OR(i + 1)).

PROOF. Condition (RK(i + 1)) holds because rkp(p ·∏d
j=1 Cmi+1,j ) ≤ rkp(im(ψ)) ≤

rkp(
∏d
j=1 Cmi,j ).

To prove that condition (EX(i + 1)) holds, we first note that if there exists an index j

with 2 ≤ mi+1,j ≤ mi,α(i)+1 − 2, then there exists an element x of
∏d
j=1 Cmi+1,j that is not

divisible by p and has order larger than p with the property that φ(x) is divisible by p2. But

then p · x = ψ(φ(x)) would be divisible by p2, which would contradict the choice of x.
Similarly, ifmi+1,d ≥ mi,d+2, then the projection to Cmi+1,d of any element of im(ψ) ⊇

im(ψ ◦φ) is divisible by p2, contradicting our hypothesis. We have thus proved that condition
(EX(i + 1)) holds.

Condition (OR(i + 1)) holds because

p
(
∑d
j=1 mi,j )+d =

∣
∣
∣
∣

d∏

j=1

Cmi,j

∣
∣
∣
∣p
d ≥

∣
∣
∣
∣im(ψ)

∣
∣
∣
∣p
d ≥

∣
∣
∣
∣p ·

d∏

j=1

Cmi+1,j

∣
∣
∣
∣p
d

≥
∣
∣
∣
∣p ·

d∏

j=1

Cmi+1,j

∣
∣
∣
∣

∣
∣
∣
∣

( d∏

j=1

Cmi+1,j

)

[p]
∣
∣
∣
∣ =

∣
∣
∣
∣

d∏

j=1

Cmi+1,j

∣
∣
∣
∣ = p

∑d
j=1 mi+1,j .

�

For any natural number d we now write LatdG for the set of Zp[G]-lattices N for which

one has rkp(Ĥ−1(Gi,N)) ≤ d for all i with 1 ≤ i ≤ n. Similarly, we write Latd,trivG for the

set of Zp[G]-latticesN for which, for all 1 ≤ i ≤ n, one has both that rkp(Ĥ−1(Gi,N)) ≤ d
and that G acts trivially on Ĥ−1(Gi,N).

For each I in IMp,n we also write mdI , resp. md,trivI , for the maximal multiplicity with

which I occurs as a direct summand of any lattice in LatdG, resp. in Latd,trivG .
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The following result refines [4, Lem. 3.2].

LEMMA 4.4. For any natural number d , one has
∑
I∈IMp,n

mdI ≤ ηdn and also
∑
I∈IMp,n

m
d,triv
I ≤ τdn . Furthermore, we also have

∑
I∈IMp,n

m1
I ≤ ρn.

PROOF. The key point is that, for any N in LatdG, the double chain of homomorphisms

of Zp[G]-modules determined by the modules Ĥ−1(Gi,N) together with the homomor-

phisms CiN and RiN satisfies all of the conditions (ai), (bi), (ci) and (di). Indeed, all of them
are well-known facts in the Tate-cohomology theory of finite groups.

It is also well-known that RiN ◦ CiN is given by the action of the norm element NGi+1/Gi

on Ĥ−1(Gi,N) and, if either G acts trivially on Ĥ−1(Gi,N) or rkp(Ĥ−1(Gi,N)) ≤ 1, then
it is straightforward to verify that the action of NGi+1/Gi also coincides with multiplication

by p on Ĥ−1(Gi,N). It is therefore also true that for any N in Latd triv
G , resp. in Lat1G, the

double chain of homomorphisms of Zp[G]-modules determined by the modules Ĥ−1(Gi,N)

together with the homomorphisms CiN and RiN satisfies all of the conditions (ai), (bi), (ci’)
and (di’), resp. (ai), (bi’), (ci) and (di’).

Now, for each I in IMp,n, the lattice Im
d
I belongs to LatdG. In addition, for each I and J in

IMp,n and each pair of natural numbers a and b, the Zp[G]-lattices Ia and J b are isomorphic,
or equivalently (by Yakovlev’s Theorem) the respective double chains that they determine are
equivalent, if and only if I = J and a = b.

These observations imply that the modules N = Ia , for I in IMp,n and 1 ≤ a ≤ mdI ,

account for at least
∑
I∈IMp,n

mdI of the at mostΘd
n non-equivalent double chains satisfying all

of the conditions (ai), (bi), (ci) and (di) and so Lemma 4.2 in turn implies that
∑
I∈IMp,n

mdI ≤
ηdn .

The exact same considerations also lead one to conclude, via Lemma 4.2, that
∑
I∈IMp,n

m
d,triv
I ≤ τdn and that

∑
I∈IMp,n

m1
I ≤ ρn. �

5. The proofs of the main results

5.1. The proofs of Theorem 2.1, Theorem 2.5 and Theorem 2.7. Proposition 3.1
implies the existence of non-negative integers λ and μ of the kind specified in Theorem 2.1.
It furthermore implies that, for every finite extension k′ of k in K∞, every natural number n
and every cyclic extension F of k′ of degree pn with X(A/F)p finite, the Zp[GF/k′ ]-lattice

A(F)p belongs to the set LatdCn (as defined in §4) for d := λ + pn[k′ : k]μ. For any I in

IMp,n we therefore have that mI(A,K∞/k′) ≤ mdI and so by Lemma 4.4 we conclude that
∑

I∈IMp,n

mI (A,K∞/k′) ≤ ηdn .
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This completes the proof of Theorem 2.1.
Similarly, if F is chosen so that, for every intermediate field E of F/k′, the module

T F(A/E) has trivial (natural) action ofGF/k′ , resp. is cyclic as an abelian group, then Lemma
3.3 combines with Proposition 3.1 to ensure that the Zp[GF/k′ ]-lattice A(F)p belongs to the

set Latd,trivCn
for d := λ+ pn[k′ : k]μ, resp. directly implies that the Zp[GF/k′ ]-lattice A(F)p

belongs to the set Lat1Cn . For any I in IMp,n we therefore have thatmtriv
I (A,K∞/k′) ≤ md,trivI ,

resp. that mcyc
I (A,K∞/k′) ≤ m1

I , and so by Lemma 4.4 we conclude that
∑

I∈IMp,n

mtriv
I (A,K∞/k′) ≤ τdn ,

resp. that
∑

I∈IMp,n

m
cyc
I (A,K∞/k′) ≤ ρn .

We have therefore proved both Theorem 2.5 and Theorem 2.7.

5.2. The proof of Corollary 2.3. The choice of non-negative integers λ and μ as
specified by Theorem 2.1 is made via Proposition 3.1, and therefore the final claim of the
latter result leads, under the hypotheses of Corollary 2.3, to an inequality

(10)
∑

I∈IMp,n

mI (A,K∞/k′) ≤ ηλn

by setting μ := 0 in (2). This last inequality gives a bound on
∑
I∈IMp,n

mI (A,K∞/k′) that

does not depend on the choice of field k′, precisely as required by claim (i) of Corollary 2.3.
We next keep n fixed but allow k′ to vary over finite extensions of k in K∞ and F over

cyclic extension of k′ of degree pn inK∞ with X(A/F)p finite. The Krull-Schmidt theorem
then gives isomorphisms of Zp[Cn]-modules of the form

(11) A(F)p ∼=
( i=n⊕

i=0

Zp[Ci]sF/k′,i
)

⊕
⊕

I∈IMp,n

I
sF/k′ ,I

where each integer sF/k′,i is non-negative and each integer sF/k′,I is both non-negative and at

most mI(A,K∞/k′). In addition, since the inequality (10) implies that for each I in IMp,n

the maximal multiplicitymI (A,K∞/k′) is finite and is non-zero for only finitely many I , and
also that the sum

∑
I∈IMp,n

mI (A,K∞/k′) is bounded independently of k′, the Zp-rank of the

modules RF/k′ := ⊕I∈IMp,n
I
sF/k′ ,I is bounded as k′ and F range over all possible choices.

The isomorphism (11) is therefore a direct sum decomposition of the required form (3), and
this observation completes the proof of claim (ii) of Corollary 2.3.

Claim (iii) of Corollary 2.3 is now a direct consequence of the fact there are only finitely
many Zp[Cn]-lattices of any given rank up to isomorphism.
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REMARK 5.1. If, under the hypotheses of Corollary 2.3, for each intermediate field N
ofK/k one knowsXp(A/N∞) explicitly (as a Zp[[GN∞/N ]]-module), then one can compute

explicitly the upper bounds rkp(Ĥ−1(J,A(F )p)) ≤ λ = maxN {λN∞} given by Proposition
3.1. This is because, via the proof of [4, Lem. 3.6], each term λN∞ depends only upon the λ-
invariant ofXp(A/N∞) and upon the p-ranks of the finite modulesN1, N2 and N3 that occur
in loc. cit. (with the relevant complex comprising a single non-trivial module Xp(A/N∞)
placed in degree i). We also note in passing that, under the additional hypotheses of Example

2.6, one can equivalently obtain the upper bounds rkp(Ĥ−1(J,A(F )p)) ≤ λ by simply taking
λ to be as defined in (5).

The explicit computation of these bounds in turn gives an explicit bound on the sizes of
each of the groups that occurs in the diagrams (7). One can therefore also compute an explicit
upper bound for the total number of possible diagrams (7) and, via the isomorphisms (6), this
leads to an explicit upper bound for the number of isomorphism classes of indecomposable
Zp[Cn]-lattices which can arise as direct summands of A(F)p as F varies as in Corollary
2.3(iii).

6. Indecomposable Zp[C3]-lattices

6.1. The proof of Theorem 2.10. The validity of Theorem 2.10 will follow readily
from that of the following auxiliary result.

PROPOSITION 6.1. Assume the notation and hypotheses of Theorem 2.10. Let k′ be

a finite extension of k in K∞ and F be a cyclic extension of degree p3 of k′ in K . For
i ∈ {1, 2, 3} we write Gi for the subgroup of GF/k′ of order pi . Then the double chain of
homomorphisms of Zp[G3]-modules

Ĥ−1(G3, A(F )p)
R2
A(F)p→ Ĥ−1(G2, A(F )p)

R1
A(F)p→ Ĥ−1(G1, A(F )p) ,

Ĥ−1(G1, A(F )p)
C1
A(F)p→ Ĥ−1(G2, A(F )p)

C2
A(F)p→ Ĥ−1(G3, A(F )p)(12)

is equivalent (in the sense of §4) to one of the following:

(i) 0→ 0→ 0 , 0→ 0→ 0 .
(ii) C1 → 0→ 0 , 0→ 0→ C1 .

(iii) 0→ C1 → 0 , 0→ C1 → 0 .
(iv) 0→ 0→ C1 , C1 → 0→ 0 .
(v) C1 → 0→ C1 , C1 → 0→ C1.

(vi) 0→ C1
0→ C1 , C1

0→ C1 → 0 .

(vii) 0→ C1
1→ C1 , C1

0→ C1 → 0.

(viii) C1
0→ C1 → 0 , 0→ C1

0→ C1 .

(ix) C1
1→ C1 → 0 , 0→ C1

0→ C1 .
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(x) C1
0→ C1

0→ C1 , C1
0→ C1

0→ C1 .

(xi) C1
1→ C1

0→ C1 , C1
0→ C1

0→ C1 .

(xii) C1
0→ C1

1→ C1 , C1
0→ C1

0→ C1 .

(xiii) C1
0→ C1

1→ C1 , C1
0→ C1

1→ C1 .

(xiv) C1
1→ C1

1→ C1 , C1
0→ C1

0→ C1 .

(xv) C2
1→ C1 → 0 , 0→ C1

p→ C2 .

(xvi) C2
1→ C1

0→ C1 , C1
0→ C1

p→ C2 .

(xvii) C2
1→ C1

1→ C1 , C1
0→ C1

p→ C2 .

(xviii) C2
1→ C2

1→ C1 , C1
p→ C2

p→ C2 .

(xix) C2
p→ C2

1→ C1 , C1
p→ C2

1→ C2 .

(xx) C3
1→ C2

1→ C1 , C1
p→ C2

p→ C3 .

(r) C1
p→ C2(σ, r)

1→ C1 , C1
p→ C2(σ, r)

1→ C1 .

Here Ci always denotes the Zp[G3]-module given by the abelian group Ci with trivial action
ofG3. We have also fixed a choice of generator σ ofG3/G2 and, for any r with 0 ≤ r ≤ p−1,
written C2(σ, r) for the Zp[G3]-module given by the abelian group C2 with trivial action of
G2 and σ · 1 = rp + 1.

Before proceeding to prove Proposition 6.1, we explain how the claims given in Theorem
2.10 follow from its validity. In fact, Yakovlev’s result discussed in §4 directly implies that
the set of Zp[C3]-lattices MWK∞,3 contains at most p + 20 isomorphism up to permutation
module classes. Furthermore, since none of the p+20 double chains listed above is the direct
sum, in the obvious sense, of two or more copies of any possible single double chain, one finds
that mI (A/K∞) ≤ 1 for every I ∈ IMp,3. Finally, since some of the double chains listed
can be decomposed as direct sums of pairs (or triples) of some of the other double chains, it
is clear (using once again Yakovlev’s theorem) that not all of the p + 19 non-trivial double
chains can both occur as equivalent to a double chain (12) and be the analogous double chain
that would correspond to an indecomposable module. In fact, a closer analysis of the list
easily shows that at most p+15 of them could possibly do so, and hence there at most p+15
elements of IMp,3 for which mI (A/K) = 1, as required.

6.2. The proof of Proposition 6.1. We will require of all the following facts, which
are well known.

LEMMA 6.2. Let M be a Zp[G3]-lattice.

(i) Via an appropriate choice of generators of each group H 2(Gi,Z), cup products induce

isomorphisms of Zp[G3/Gi]-modules Ĥ−1(Gi,M)→ H 1(Gi,M) which commute with re-
striction and corestriction maps.
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(ii) For i ≤ j , Corji ◦ Resji coincides with multiplication by pj−i on H 1(Gj ,M) and Resji ◦
Corji coincides with the action of the norm element NGj/Gi on H 1(Gi,M).

(iii) The diagrams of Zp[G3]-modules

0 −−−−→ H 1(G3/G1,M
G1)

Inf3
1−−−−→ H 1(G3,M)

Res3
1−−−−→ H 1(G1,M)

G3/G1

Res3,1
2,1

⏐
⏐
� Res3

2

⏐
⏐
� id

⏐
⏐
�

0 −−−−→ H 1(G2/G1,M
G1)

Inf2
1−−−−→ H 1(G2,M)

Res2
1−−−−→ H 1(G1,M)

G2/G1

and

0 −−−−→ H 1(G2/G1,M
G1)

Inf2
1−−−−→ H 1(G2,M)

Res2
1−−−−→ H 1(G1,M)

G2/G1

Cor3,1
2,1

⏐
⏐
� Cor3

2

⏐
⏐
� NG3/G2

⏐
⏐
�

0 −−−−→ H 1(G3/G1,M
G1)

Inf3
1−−−−→ H 1(G3,M)

Res3
1−−−−→ H 1(G1,M)

G3/G1

are commutative and have exact rows.

We next note that the hypotheses of Theorem 2.10 combine with repeated applica-

tions of Lemma 3.3 to imply that all of the Tate cohomology groups Ĥ−1(G2, A(F )p),

Ĥ−1(G1, A(F )p), Ĥ−1(G3/G1, A(F
G1)p) and Ĥ−1(G2/G1, A(F

G1)p) have p-rank at

most 1. Theorem 2.9 therefore implies that A(FG1)p is isomorphic as a Zp[G3/G1]-module
to

Rb1 ⊕ Zc ⊕ Ed ⊕ (R2, R1; λ0
0)

g0 ⊕ (R2, E; λ0
0)
h0 ⊕ (R2, E; λ1

0)
h1

⊕ (R2, Z ⊕ R1; 1⊕ λ0
0)
j0 ⊕ (R2, Z ⊕ E; 1⊕ λ1

0)
k1

and that A(F)p is isomorphic as a Zp[G2]-module to

Rb
′

1 ⊕ Zc
′ ⊕ Ed ′ ⊕ (R2, R1; λ0

0)
g ′0 ⊕ (R2, E; λ0

0)
h′0 ⊕ (R2, E; λ1

0)
h′1

⊕ (R2, Z ⊕ R1; 1⊕ λ0
0)
j ′0 ⊕ (R2, Z ⊕ E; 1⊕ λ1

0)
k′1 ,

in each case for suitable non-negative exponents which satisfy b+ g0 + h1+ j0+ k1 ≤ 1 and
b′ + g ′0 + h′1 + j ′0 + k′1 ≤ 1 respectively.

Furthermore, by considering the structure of A(FG1)p as a Zp[G2/G1]-module, one
finds that the only compatible choices for the exponents b, g0, h1, j0, k1 and b′, g ′0, h′1, j ′0, k′1
are included in the following list of 18 cases: b+g0+h1+j0+k1 = 0 = b′+g ′0+h′1+j ′0+k′1;

b + g0 + h1 + j0 + k1 = 0 and h′1 = 1; b + g0 + h1 + j0 + k1 = 0 and k′1 = 1; b = 1 and

b′ + g ′0+h′1+ j ′0+ k′1 = 0; b = 1 = h′1; b = 1 = k′1; g0 = 1 = b′; h1 = 1 = b′; j0 = 1 = b′;
k1 = 1 = b′; g0 = 1 = g ′0; h1 = 1 = g ′0; j0 = 1 = g ′0; k1 = 1 = g ′0; g0 = 1 = j ′0;

h1 = 1 = j ′0; j0 = 1 = j ′0; k1 = 1 = j ′0.
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The proof of Proposition 6.1 now proceeds as a case by case analysis, through repeated
applications of Lemma 6.2 for M = A(F)p. In the process one further finds that the case
j0 = 1 = g ′0 and the case k1 = 1 = g ′0 can not actually occur. We will not give all of the
details, but rather just describe which of the p + 20 double chains listed in Proposition 6.1
can correspond to each of the remaining 16 cases.

If b + g0 + h1 + j0 + k1 = 0 = b′ + g ′0 + h′1 + j ′0 + k′1 then the double chain of
homomorphisms of Zp[G3]-modules (12) is equivalent to

(i) 0→ 0→ 0 , 0→ 0→ 0 .

If b + g0 + h1 + j0 + k1 = 0 and h′1 = 1 then (12) is equivalent to

(vii) 0→ C1
1→ C1 , C1

0→ C1 → 0

or to

(xiv) C1
1→ C1

1→ C1 , C1
0→ C1

0→ C1 .

If b + g0 + h1 + j0 + k1 = 0 and k′1 = 1 then (12) is equivalent to

(iv) 0→ 0→ C1 , C1 → 0→ 0 .

If b = 1 and b′ + g ′0 + h′1 + j ′0 + k′1 = 0 then (12) is equivalent to

(ii) C1 → 0→ 0 , 0→ 0→ C1 .

If b = 1 = h′1 then (12) is equivalent to

(xii) C1
0→ C1

1→ C1 , C1
0→ C1

0→ C1

or to

(xiii) C1
0→ C1

1→ C1 , C1
0→ C1

1→ C1

or to

(xvii) C2
1→ C1

1→ C1 , C1
0→ C1

p→ C2 .

If b = 1 = k′1 then (12) is equivalent to

(v) C1 → 0→ C1 , C1 → 0→ C1 .

If g0 = 1 = b′ then (12) is equivalent to

(xv) C2
1→ C1 → 0 , 0→ C1

p→ C2 .

If h1 = 1 = b′ then (12) is equivalent to

(ix) C1
1→ C1 → 0 , 0→ C1

0→ C1 .
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If j0 = 1 = b′ then (12) is equivalent to

(viii) C1
0→ C1 → 0 , 0→ C1

0→ C1 .

If k1 = 1 = b′ then (12) is equivalent to

(iii) 0→ C1 → 0 , 0→ C1 → 0 .

If g0 = 1 = g ′0 then (12) is equivalent to

(xix) C2
p→ C2

1→ C1 , C1
p→ C2

1→ C2

or to

(xx) C3
1→ C2

1→ C1 , C1
p→ C2

p→ C3 .

If h1 = 1 = g ′0 then (12) is equivalent to one of the diagrams

(r) C1
p→ C2(σ, r)

1→ C1 , C1
p→ C2(σ, r)

1→ C1

or to

(xviii) C2
1→ C2

1→ C1 , C1
p→ C2

p→ C2 .

If g0 = 1 = j ′0 then (12) is equivalent to

(xvi) C2
1→ C1

0→ C1 , C1
0→ C1

p→ C2 .

If h1 = 1 = j ′0 then (12) is equivalent to

(xi) C1
1→ C1

0→ C1 , C1
0→ C1

0→ C1.

If j0 = 1 = j ′0 then (12) is equivalent to

(x) C1
0→ C1

0→ C1 , C1
0→ C1

0→ C1 .

If k1 = 1 = j ′0 then (12) is equivalent to

(vi) 0→ C1
0→ C1 , C1

0→ C1 → 0 .
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