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Abstract. In this paper, we prove that, if a full irreducible infinite dimensional anti-Kaehler isoparametric
submanifold of codimension greater than one has J -diagonalizable shape operators, then it is an orbit of the action of
a Banach Lie group generated by one-parameter transformation groups induced by holomorphic Killing vector fields
defined entirely on the ambient Hilbert space.

1. Introduction

An infinite dimensional isoparametric submanifold is a proper Fredholm submanifold
of finite codimension in an infinite dimensional separable Hilbert space over the real number
field R such that its normal holonomy group is trivial and that the shape operator for each par-
allel normal vector field has constant eigenvalues, where “proper Fredholm” means that the
differential of the normal exponential map exp⊥ of the submanifold is a Fredholm operator
and that the restriction of exp⊥ to unit ball normal bundle is proper. Throughout this paper, all
Hilbert spaces mean infinite dimensional separable Hilbert spaces. In 1999, E. Heintze and
X. Liu ([13]) proved that all full irreducible infinite dimensional isoparametric submanifolds
of codimension greater than one in a Hilbert space are extrinsically homogeneous. In 2002,
by using this result of Heintze-Liu, U. Christ ([4]) claimed that all irreducible equifocal sub-
manifolds with flat section of codimension greater than one in a simply connected symmetric
space of compact type are extrinsically homogeneous. Let I (V ) be the group of all isometries
of the Hilbert space V and M a full irreducible isoparametric submanifolds of codimension
greater than one in V . Set H := {F ∈ I (V ) | F(M) = M}. The extrinsic homogeneity
of M in the result of [13] means that Hx = M (x ∈ M). Let Ib(V ) be the subgroup of
I (V ) generated by one-parameter transformation groups induced by the Killing vector fields
defined entirely on V . Note that Ib(V ) is a Banach Lie group. Set Hb := H ∩ Ib(V ), which
is a Banach Lie subgroup of I (V ). Recently, C. Gorodski and E. Heintze ([10]) proved that
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Hbx = M holds for any x ∈ M . This improved extrinsic homogeneity theorem closed a gap
in the proof of the above extrinsic homogeneity theorem by U. Christ.

In [20], we introduced the notion of a complex equifocal submanifold in a symmetric
space of non-compact type. In [21], we showed that the study of complex equifocal Cω-
submanifolds in symmetric spaces of non-compact type is converted to that of anti-Kaehler
isoparametric submanifolds in the infinite dimensional anti-Kaehler space, where Cω means
the real analyticity. In this paper, we shall investigate an anti-Kaehler isoparametric sub-
manifold with J -diagonalizable shape operators, which was called a proper anti-Kaehler
isoparametric submanifold in [21]. L. Geatti and C. Gorodski ([9]) introduced the notion
of an isoparametric submanifold with diagonalizable Weingarten operators in a finite dimen-
sional pseudo-Euclidean space. Note that anti-Kaehler isoparametric submanifolds with J -
diagonalizable shape operators give a subclass of the infinite dimensional version of isopara-
metric submanifolds with diagonalizable Weingarten operators. Let K be a maximal compact
subgroup of a finite dimensional non-compact semi-simple Lie group G and H a symmetric

subgroup of G. Define a Hilbert Lie group P(GC,HC × KC) by

P(GC,HC × KC) := {g ∈ H 1([0, 1],GC) | (g(0), g(1)) ∈ HC × KC} .

Then any principal orbit of the P(GC,HC × KC)-action on H 0([0, 1], gC) is an infinite
dimensional anti-Kaehler isoparametric submanifold with J -diagonalizable shape operators.
This fact is stated in Remark 1.1 of [22] and shown by Theorem 1.1 (ii) in [21] and Theo-
rem B in [22] because the H -action on G/K is an action of Hermann type. In Example 2 of
Section 4, we will state this fact in detail. In addition, for an involutive automorphism σ of

G, define a Hilbert Lie group P(GC,G(σ)C) by

P(GC,G(σ)C) := {g ∈ H 1([0, 1],GC) | (g(0), g(1)) ∈ G(σ)C} ,

where G(σ) := {(g, σ (g)) | g ∈ G}. Then any principal orbit of P(GC,GC(σ ))-action on

H 0([0, 1], gC) also is an infinite dimensional anti-Kaehler isoparametric submanifold with J -
diagonalizable shape operators. This fact also is shown by Theorem 1.1 in [21] and Theorem B
in [22] because the G(σ)-action on G = (G × G)/�G is an action of Hermann type. In
contrast let G = KAN be the Iwasawa’s decomposition of G, where A is the abelian part and

N is the nilpotent part. The inverse images of orbits of the natural action NC � GC/KC by
π ◦ φ are infinite dimensional anti-Kaehler isoparametric submanifolds which do not have J -

diagonalizable shape operators, where π is the natural projection of GC onto GC/KC and φ is

the parallel transport map for GC. See [21] (or Example 2 of Section 4) about the definition of
φ. Assume that a Cω-submanifold M in G/K has regular complex focal structure satisfying
the following two conditions:

(∗1) The complex focal structure of M is invariant under the parallel translation
with respect to the normal connection of M

and
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(∗2) The complex focal set of M at any point x(∈ M) consists of infinitely many
complex hyperplanes in the complexified normal space (T ⊥

x M)c and the group
generated by the complex reflections of order two with respect to the complex
hyperplanes is discrete. Also, for any unit normal vector v of M , the nullity spa-
ces of complex focal radii along the normal geodesic γv with γ ′

v(0) = v span(
(Ker Av ∩ Ker R(v))C

)⊥
.

Then each connected component of (π ◦φ)−1(MC) is an anti-Kaehler isoparametric subman-
ifold with J -diagonalizable shape operators.

Recently we have proved the following extrinsic homogeneity theorem ([26]):

Let M be a full irreducible anti-Kaehler isoparametric Cω-submanifold with
J -diagonalizable shape operators of codimension greater than one in an infinite dimensional
anti-Kaehler space. Then M is extrinsically homogeneous.

Let Ih(V ) be the group of all holomorphic isometries of an infinite dimensional anti-
Kaehler space V and set H := {F ∈ Ih(V ) | F(M) = M}. The extrinsic homogeneity of M

in the above result means Hx = M (x ∈ M). Let Ib
h (V ) be the subgroup of Ih(V ) generated

by one-parameter transformation groups induced by holomorphic Killing vector fields defined

entirely on V . Note that Ib
h (V ) is a Banach Lie group. Set Hb := H ∩ Ib

h (V ), which is a

Banach Lie subgroup of Ib
h (V ). In this paper, we prove the following extrinsic homogeneity

theorem similar to the result of [10].

THEOREM A. Let M be a full irreducible anti-Kaehler isoparametric Cω-submanifold
with J -diagonalizable shape operators of codimension greater than one in the infinite dimen-
sional anti-Kaehler space V . Then M = Hbx holds for any x ∈ M .

The assumption of the J -diagonalizability of shape operators is essential in our method to
prove Theorem A. It is still an open problem whether any submanifold in the statement of The-

orem A is given as a principal orbit of the above P(GC,HC×KC)-action or P(GC,G(σ)C)-
action for some G, H, K or some G, σ .

2. Basic notions and facts

In this section, we shall recall some basic notions and facts.

2.1. Some notions associated with anti-Kaehler isoparametric submanifolds. Let
(V , 〈 , 〉, J ) be an infinite dimensional anti-Kaehler space and M an anti-Kaehler isoparamet-
ric submanifold in V . See [21] and [26] about the definitions of an infinite dimensional anti-
Kaehler space and an anti-Kaehler isoparametric submanifold. Denote by (〈 , 〉, J ) the anti-
Kaehler structure of M and A the shape tensor of M . Fix a unit normal vector v of M . If there

exists X( �= 0) ∈ T M with AvX = aX + bJX, then we call the complex number a + b
√−1

a J -eigenvalue of Av (or a J -principal curvature of direction v) and call X a J -eigenvector
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for a + b
√−1. Also, we call the space of all J -eigenvectors for a + b

√−1 a J -eigenspace

for a + b
√−1. The J -eigenspaces are orthogonal to one another and they are J -invariant,

respectively. We call the set of all J -eigenvalues of Av the J -spectrum of Av and denote it
by SpecJ Av . Let {ei}∞i=1 be an orthonormal system of TxM . If {ei}∞i=1 ∪ {J ei}∞i=1 is an or-
thonormal base of TxM , then we call {ei}∞i=1 (rather than {ei}∞i=1 ∪{J ei}∞i=1) a J -orthonormal
base. If there exists a J -orthonormal base consisting of J -eigenvectors of Av , then we say
that Av is diagonalized with respect to a J -orthonormal base (or Av is J -diagonalizable).
If, for each v ∈ T ⊥M , the shape operator Av is J -diagonalizable, then we say that M has
J -diagonalizable shape operators. Let M be an anti-Kaehler isoparametric submanifold with
J -diagonalizable shape operators. The shape operators Av’s (v ∈ T ⊥

x M) are simultaneously
diagonalized with respect to a J -orthonormal base. Let {E0} ∪ {Ei | i ∈ I } be the family
of distributions on M such that, for each x ∈ M , {(E0)x} ∪ {(Ei)x | i ∈ I } is the set of all
common J -eigenspaces of Av’s (v ∈ T ⊥

x M), where (E0)x = ∩
v∈T ⊥

x M
Ker Av . For each x ∈ M ,

TxM is equal to the closure (E0)x ⊕
(

⊕
i∈I

(Ei)x

)
of (E0)x ⊕

(
⊕
i∈I

(Ei)x

)
. We regard T ⊥

x M

(x ∈ M) as a complex vector space by Jx |T ⊥
x M and denote the dual space of the complex

vector space T ⊥
x M by (T ⊥

x M)∗c . Also, denote by (T ⊥M)∗c the complex vector bundle over

M having (T ⊥
x M)∗c as the fibre over x. Let λi (i ∈ I ) be the section of (T ⊥M)∗c such that

Av = Re(λi)x(v)id + Im(λi)x(v)Jx on (Ei)x for any x ∈ M and any v ∈ T ⊥
x M . We call

λi (i ∈ I ) J -principal curvatures of M and Ei (i ∈ I ) J -curvature distributions of M . The
distribution Ei is integrable and each leaf of Ei is a complex sphere. Each leaf of Ei is called
a complex curvature sphere. It is shown that there uniquely exists a normal vector field ni of

M with λi(·) = 〈ni, ·〉 − √−1〈Jni, ·〉. We call ni (i ∈ I ) the J -curvature normals of M . Set
lxi := (λi)

−1
x (1). Then the tangential focal set of M at x is equal to ∪

i∈I
lxi ([[21], Theorem 2

(i)]). We call each lxi a complex focal hyperplane of M at x. Let ṽ be a parallel normal vector
field of M . If ṽx belongs to at least one li , then it is called a focal normal vector field of M .
For a focal normal vector field ṽ, the focal map fṽ is defined by fṽ(x) := x + ṽx (x ∈ M).
The image fṽ(M) is called a focal submanifold of M , which we denote by Fṽ . For each

x ∈ Fṽ , the inverse image f −1
ṽ (x) is called a focal leaf of M . Denote by T x

i the complex
reflection of order 2 with respect to lxi (i.e., the rotation of angle π having lxi as the axis),

which is an affine transformation of T ⊥
x M . Let Wx be the group generated by T x

i ’s (i ∈ I ),
which is an affine Weyl group. This group Wx is independent of the choice of x ∈ M (up
to group isomorphicness). Hence we simply denote it by W . We call this group the complex
Coxeter group associated with M . According to Lemma 3.8 of [23], W is decomposable (i.e.,
it is decomposed into a non-trivial product of two discrete complex reflection groups) if and
only if there exist two J -invariant linear subspaces P1 ( �= {0}) and P2 ( �= {0}) of T ⊥

x M such

that T ⊥
x M = P1 ⊕ P2 (orthogonal direct sum), P1 ∪ P2 contains all J -curvature normals of

M at x and that Pi (i = 1, 2) contains at least one J -curvature normal of M at x, where 0 is
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the zero vector of T ⊥
x M . Also, M is irreducible if and only if W is not decomposable ([[23],

Theorem 1]).
We note that the notions described in this subsection are defined also for a finite dimen-

sional anti-Kaehler space similarly.

2.2. Aks-representation. Let L/H be an irreducible anti-Kaehler symmetric space
and (l, τ ) the anti-Kaehler symmetric Lie algebra associated with L/H . See [24] and [26]
about the definitions of these notions. Also, set p := Ker(τ + id). The space Ker(τ − id)

is equal to the Lie algebra h of H and p is identified with TeK(L/H). Denote by AdL be
the adjoint representation of L. Define ρ : H → GL(p) by ρ(h) := AdL(h)|p (h ∈ H).
We call this representation ρ an aks-representation (associated with L/H ). Denote by adh
the adjoint representation of h. Let as be a maximal split abelian subspace of p (see [35] or
[31] about the definition of a maximal split abelian subspace) and p = p0 + ∑

α∈�+
pα the root

space decomposition with respect to as , where the space pα is defined by pα := {X ∈ p |
adl(a)2(X) = α(a)2X for all a ∈ as} (α ∈ a∗

s ) and �+ is the positive root system of the root
system � := {α ∈ a∗

s | pα �= {0}} under some lexicographic ordering of a∗
s . Set a := p0 (⊃

as), j := JeK and 〈 , 〉0 := 〈 , 〉eH . Note that (p, j, 〈 , 〉0) is a (finite dimensional) anti-
Kaehler space. It is shown that 〈 , 〉0|as×as is positive (or negative) definite, a = as ⊕ jas

and 〈 , 〉0|as×jas = 0. Note that pα = {X ∈ p | adl(a)2(X) = αC(a)2X for all a ∈ a}
holds for each α ∈ �+, where αC is the complexification of α : as → R (which is a complex

linear function over aCs = a) and αC(a)2X means Re(αC(a)2)X + Im(αC(a)2)jX. Let lα :=
(αC)−1(0) (α ∈ �) and D := a \ ∪

α∈�+
lα. Elements of D are said to be regular. Take x ∈ D

and let M be the orbit of the aks-representation ρ through x. From x ∈ D, M is a principal
orbit of this representation. Denote by A the shape tensor of M . Take v ∈ T ⊥

x M(= a). Then

we have TxM = ∑
α∈�+

pα and Av|pα = − αC(v)

αC(x)
id (α ∈ �+). Let ṽ be the parallel normal

vector field of M with ṽx = v. Then we can show that Aṽρ(h)(x)
|ρ(h)∗x(pα) = − αC(v)

αC(x)
id for any

h ∈ H . Hence M is an anti-Kaehler isoparametric submanifold with J -diagonalizable shape
operators.

3. Homogeneity theorem

In this section, we shall recall the extrinsic homogeneity theorem for an anti-Kaehler
isoparametric submanifold with J -diagonalizable shape operators, which was obtained in
[26], and the outline of its proof. Let M be an irreducible anti-Kaehler isoparametric sub-
manifold of codimension greater than one in an infinite dimensional anti-Kaehler space
(V , 〈 , 〉, J ). Denote by the same symbol (〈 , 〉, J ) the anti-Kaehler structure of M . As-
sume that M has J -diagonalizable shape operators. We use the notations in Subsection 2.1.

Denote by lxi the complex focal hyperplane (λi)
−1
x (1) of M at x. Also set (lxi )′ := (λi)

−1
x (0).
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Fix x0 ∈ M . Set li := lx0
i and l′i := (lx0

i )′. Let Q(x0) be the set of all points of M connected
with x0 by a piecewise smooth curve in M each of whose smooth segments is contained in
some complex curvature sphere (which may depend on the smooth segment). By using the
generalized Chow theorem (see Theorem D of [13]), we showed the following fact.

LEMMA 3.1 ([28]). The set Q(x0) is dense in M .

Here we note that the generalized Chow’s theorem is valid because the base manifold
M is a Hilbert manifold even if the metric of M is a pseudo-Riemannian metric. For each
complex affine subspace P of T ⊥

x0
M , define IP by

IP :=
{ {i ∈ I | (ni)x0 ∈ P } (0 /∈ P)

{i ∈ I | (ni)x0 ∈ P } ∪ {0} (0 ∈ P) .

Define a distribution DP on M by DP := ⊕
i∈IP

Ei , which is integrable. Denote by LP
x the leaf

through x of the foliation given by DP , and Li
x the leaf through x of the foliation given by Ei .

According to Lemma 4.3 of [26], if 0 /∈ P , then IP is finite and ( ∩
i∈IP

li ) \ ( ∪
i∈I\IP

li ) �= ∅, and,

if 0 ∈ P , then IP is infinite or IP = {0} and ( ∩
i∈IP \{0} l′i ) \ ( ∪

i∈I\IP

l′i ) �= ∅, where ∩
i∈IP \{0} l′i

means T ⊥
x0

M when IP = {0}. Set (WP )x := x+(DP )x⊕SpanC{(ni)x | i ∈ IP \{0}} (x ∈ M).
Let γ : [0, 1] → M be a piecewise smooth curve. Throughout this section, we assume that the
domains of all piecewise smooth curves are equal to [0, 1]. If γ̇ (t) ⊥ (DP )γ (t) for each t ∈
[0, 1], then γ is said to be perpendicular to DP (or DP -perpendicular). Fix i0 ∈ I ∪ {0} and

x0 ∈ M . For each geodesic γ : [0, 1] → L
i0
x0 in L

i0
x0 , we ([26]) constructed a one-parameter

family {Fγ |[0,t] }t∈[0,1] of holomorphic isometries of V satisfying Fγ |[0,t] (γ (0)) = γ (t) and

(Fγ |[0,t] )∗γ (0)|T ⊥
γ (0)

M = τ⊥
γ |[0,t] (t ∈ [0, 1]), where τ⊥

γ |[0,t] is the parallel translation along γ |[0,t ]
with respect to the normal connection of M . From Proposition 4.6 of [26], the following fact
holds.

LEMMA 3.2. The holomorphic isometry Fγ |[0,t] preserves M invariantly (i.e.,
Fγ |[0,t] (M) = M). Furthermore, it preserves Ei (i ∈ I ) invariantly (i.e., (Fγ |[0,t])∗(Ei) = Ei).

By using Lemmas 3.1 and 3.2, we can prove the following fact (see the proof of Theo-
rem A in [26]).

THEOREM 3.3. The submanifold M is extrinsically homogeneous, that is, Hx = M

(x ∈ M) holds, where H := {F ∈ Ih(V ) | F(M) = M}.

4. The affine root system associated with an irreducible anti-Kaehler isoparamet-
ric submanifold

In this section, we shall first recall the notions of the Weyl group, the affine Weyl group
and the root system associated with a certain kind of family of the affine hyperplanes in a
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finite dimensional Euclidean affine space E. Denote by (V, 〈 , 〉) the Euclidean vector space
associated with E. Let H be a family of affine hyperplanes in E and WH the group generated
by the (orthogonal) reflections with respect to members ofH. Assume that unit normal vectors
of the members of H span V and that H is invariant under WH. Then H is a finite family
of affine hyperplanes having a common point or a finite family of equidistant infinite parallel
families of affine hyperplanes. In the first case, WH is a Weyl group and hence H is described
as

(4.1) H = {α−1(0) | α ∈ �}
for some root system �(⊂ V∗) by translating H suitably. In the second case, W is an affine
Weyl group and hence H is described as

(4.2) H = {α−1(kaα) | α ∈ � & k ∈ Z}
for some root system �(⊂ V∗) and some positive constants aα by translating and homothet-

ically transforming H suitably. Set lα,k := α−1(kaα) ((α, k) ∈ � × Z). Define a system R
by

(4.3)

R := {(vα, lα,k) ∈ V × H | (α, k) ∈ � × Z}
∪

{(
1

2
vα, lα,k

)
∈ V × H

∣∣∣∣ (α, k) ∈ �′ × Z

}
,

where vα is the vector of V defined by α(•) = 〈vα, •〉 and �′ is a subset of �. If R is
W-invariant, then R is a root system in the sense of I.G. Macdonald [27] (see Definition 7.3
of [10] also). This root system R is called a root system associated with H. In particular,
if W is infinite, then it is called an affine root system associated with H. If �′ = ∅ (resp.
�′ �= ∅), then R is said to be reduced (resp. non-reduced). Also, if W is irreducible (resp.
reducible), then R is said to be irreducible (resp. reducible). Assume that R is a reduced
irreducible affine root system of rank greater than one. Then the Dynkin diagram of R is
defined as follows. Let Π be the simple root system of � with respect to some lexicographic
ordering of V ∗ and δ be the highest root of � with respect to the lexicographic ordering.
If W is finite (resp. infinite), then the family {lα,0 | α ∈ Π} (resp. {lα,0 | α ∈ Π} ∪
{lδ,1}) is the whole of walls of an alcove C of W-action. For any element (vα, lα,k) and

(vα′ , lα′,k′) of R,
||vα||
||vα′ || = 1, 2,

1

2
, 3 or

1

3
holds. We assign a white circle to each α ∈

Π or Π ∪ {δ} and link the white circles corresponding to α and α′ (α, α′ ∈ Π or Π ∪ {δ})
by 1, 2 or 3 edges in correspondence to

||vα||
||vα′ || = 1, 2±1 or 3±1. Also, in the case where

||vα||
||vα′ || = 2±1 or 3±1, we add the arrow pointing to the white circle corresponding to the

shorter length one of α and α′ to the 2 or 3 edges. The diagram obtained thus is called the
Dynkin diagram of R. All of reduced irreducible affine root systems of rank greater than one
are (Ãr) (r ≥ 2), (B̃r ) (r ≥ 3), (B̃v

r ) (r ≥ 3), (C̃r ) (r ≥ 2), (C̃v
r ) (r ≥ 2), (D̃r ) (r ≥
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4), (Ẽ6), (Ẽ7), (Ẽ8), (F̃4), (F̃ v
4 ), (G̃2) and (G̃v

2). See Table 1 of [10] in detail. Assume
that R (given by (4.3)) is a non-reduced irreducible affine root system of rank greater than
one. Define subsystems Rred and Rred′ by

(4.4)

Rred := {(vα, lα,k) ∈ V × H | (α, k) ∈ (� \ �′) × Z}
∪

{(
1

2
vα, lα,k

)
∈ V × H

∣∣∣∣ (α, k) ∈ �′ × Z

}
and

(4.5) Rred′ := {(vα, lα,k) ∈ V × H | (α, k) ∈ � × Z} .

Then the Dynkin diagram of R is defined as follows. We add the second smaller concen-
tric white circles to the white circles corresponding to α’s (α ∈ Π ∩ �′ or (Π ∪ {δ}) ∩ �′)
in the Dynkin diagram of Rred. The diagram obtained thus is called the Dynkin diagram
of R. All of non-reduced irreducible affine root systems of rank greater than one are
(B̃r , B̃

v
r ) (r ≥ 3), (C̃v

r , C̃′
r ) (r ≥ 2), (C̃′

r , C̃r ) (r ≥ 2), (C̃v
r , C̃r ) (r ≥ 2) and (C̃2, C̃

v
2 ),

where these notations denote the pairs of types of Rred and Rred′ . See Table 2 of [10] in
detail.

Next we shall introduce the notion of the root system associated with an anti-Kaehler
isoparametric submanifold with J -diagonalizable shape operators. Let M be an anti-Kaehler
isoparametric submanifold with J -diagonalizable shape operators in an anti-Kaehler space
V , where V may be of finite dimension. We use the notations in the previous section. Let
V = V−⊕V+ be the orthogonal decomposition of V such that 〈 , 〉|V−×V− (resp. 〈 , 〉|V+×V+)
is negative (resp. positive) definite and that JV− = V+. Note that such a decomposition is
unique. Denote by ∇ and ∇̃ the Riemannian connections of M and V , respectively. Since the
complex Coxeter group associated with M permutes {lxi | i ∈ I } and it is discrete, there exist a

finite family {μx
β | β ∈ B} of complex linear functions over the normal space T ⊥

x M (regarded

as a complex linear space by Jx) and a finite family {bβ | β ∈ B} of complex numbers such

that {(μx
β)−1(1 + bβj) | β ∈ B, j ∈ Z} is equal to {lxi | i ∈ I }. Set λx

(β,j) := 1
1+bβj

μx
β .

Note that (λx
(β,j))

−1(1) = (μx
β)−1(1 + bβj). Define sections λ(β,j) of (T ⊥M)∗C by assigning

λx
(β,j) to each x ∈ M . Set B0 := {β ∈ B | bβ = 0}. Then the set of all J -principal curvatures

of M is equal to

{λ(β,j) | (β, j) ∈ (B \ B0) × Z} ∪ {λ(β,0) | β ∈ B0} .

Hence, we have I = (B0 × {0}) ∪ ((B \ B0) × Z). Note that B = B0 when V is of
finite dimension. Let T M+ be the half-dimensional subdistribution of the tangent bundle
T M such that 〈 , 〉|T M+×T M+ is positive definite and that 〈T M+, JT M+〉 = 0, and set
T M− := JT M+. Note that such subdistributions are determined uniquely. Similarly, we de-
fine the half-dimensional subdistributions T ⊥M± (resp. (Ei)±) of the normal bundle T ⊥M
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(resp. J -curvature distributions Ei’s (i ∈ I ∪ {0})). Clearly we have

T M− = (E0)− ⊕
(

⊕
i∈I

(Ei)−
)

and

T M+ = (E0)+ ⊕
(

⊕
i∈I

(Ei)+
)

.

Fix x0 ∈ M . Set b := T ⊥
x0

M and b± := (T ⊥M±)x0 . Clearly we have b− = Jx0b+ and

b = b+ + b−(≈ bC+).

LEMMA 4.1. Let i1 and i2 be elements of I such that (ni1)x0 and (ni2)x0 are linearly
independent over C. Set b′ := SpanR{(ni1)x0, (ni2)x0}. Then we have Jx0b

′ ∩ b′ = {0}.
PROOF. Since (ni1)x0 and (ni2)x0 are linearly independent over C, there exists a com-

plex affine line P of T ⊥
x0

M which passes through (ni1)x0 and (ni2)x0 but does not pass through

0. Then LP
x0

(⊂ (WP )x0) is a (finite dimensional) anti-Kaehler isoparametric submanifold with
J -digonalizable shape operators of complex codimension greater two. Since the complex
codimension of LP

x0
is equal to two, it is irreducible or the product of two irreducible anti-

Kaehler isoparametric submanifolds L
Pi
x0 (⊂ (WPi )x0) (i = 1, 2) with J -diagonalizable shape

operators of complex codimension one, where we note that (WP )x0 = (WP1)x0 ⊕ (WP2)x0 .

Also, note that LPi (⊂ (WPi )x0) (i = 1, 2) are complex spheres because they are of complex
codimension one.

First we consider the case where LP
x0

is irreducible. Then, according to Theorem 4.4

of [26], LP
x0

is a principal orbit of the aks-representation associated with an irreducible anti-
Kaehler symmetric space of complex rank greater than one. Denote by L/H this irreducible

anti-Kaehler symmetric space. We use the notations in Subsection 2.2. Let LP
x0

= ρ(H) · w,
where ρ is the aks-representation associated with L/H and w is the element of p identified
with x0. Let as be the maximal split abelian subspace of p containing w and a the Cartan
subspace of p containing as . The space a is identified with the normal space of T ⊥

x0
LP

x0
of

LP
x0

(⊂ (WP )x0) at x0. Let �+ be the positive root system of the root system � (with respect

to as) under some lexicographic ordering of a∗
s . For each α ∈ �+, define the section λα of

the C-dual bundle (T ⊥LP
x0

)∗ of T ⊥LP
x0

by

(λα)ρ(h)(w) := −αC ◦ ρ(h)−1∗w

αC(w)
(h ∈ H) .

The set of all J -principal curvatures of LP
x0

is equal to {λα | α ∈ �+}. Let nα be the J -

curvature normal corresponding to λα . Since (λα)w = − αC

αC(w)
, we have (nα)x0 ∈ as for

any α ∈ �+. This fact implies that (ni1)x0 and (ni2)x0 belong to as . Hence we obtain
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Jx0b
′ ∩ b′ = {0}.
Next we consider the case of LP

x0
= L

P1
x0 × L

P2
x0 (⊂ (WP1)x0 ⊕ (WP2)x0). Then one of

(ni1)x0 and (ni2)x0 belongs to T ⊥
x0

L
P1
x0 and another belongs to T ⊥

x0
L

P2
x0 . From this fact, it follows

that Jx0b
′ ∩ b′ = {0}. This completes the proof. �

Define a linear subspace bR of b by

bR := SpanR{(ni)x0 | i ∈ I } .

From Lemma 4.1, it follows that Jx0bR ∩ bR = {0}. Furthermore, since M is full, bR is a real

form of b. For simplicity denote lx0
i by li . It is easy to show that li ∩ bR = ((λi)x0 |bR)−1(1).

Denote by lRi this affine hyperplane li ∩ bR of bR. Let WR be the group generated by the

reflections with respect to lRi ’s (i ∈ I ). It is clear that

FIGURE 1. Generators of the affine Weyl group associated to M

WR is isomorphic to W . Hence, WR is an affine Weyl group. Let B ′ be the set of all
elements β’s of B satisfying the following condition:

There exists β̂ ∈ B such that (n(β,0))x0 and (n
(β̂,0)

)x0 are linearly independent

over C, for the complex affine line P through (n(β,0))x0 and (n
(β̂,0)

)x0 , the

root system associated with LP
x0

(⊂ WP ) is of type (BC2) and the 1
2 -multiple

of the root α ∈ �+ (�+ : as in the proof of Lemma 4.1) corresponding to β

also belongs to �+.

Fix Z0 ∈ ∩
β∈B

lRβ . There exists a root system �M (⊂ (bR)∗) such that

{
− α

α(Z0)

∣∣∣∣ α ∈ (�M)+
}

∪
{
− α

2α(Z0)

∣∣∣∣ α ∈ (�M)+ such that
α

2
∈ (�M)+

}
= {λ(β,0)|bR | β ∈ B} ∪

{
1

2
λ(β,0)|bR

∣∣∣∣ β ∈ B ′
}

,
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where (�M)+ is the positive root system of �M under a lexicographic ordering of (bR)∗.
When α(∈ (�M)+) corresponds to β ∈ B (i.e., − α

α(Z0)
= λ(β,0)|bR), we denote λ(β,j), n(β,j),

l(β,j) and bβ by λ(α,j), n(α,j), l(α,j) and bα , respectively. Hence we may denote (�M)+ × Z

by I . In the sequel, I denotes (�M)+ × Z. Define a system RM by

RM := {((n(α,0))x0, lR(α,j)) | α ∈ (�M)+, j ∈ Z} .

This root system RM is a root system associated with H. In particular, if B0 �= B, then it is
an affine root system associated with H.

DEFINITION. We call RM the root system associated with M . In particular, if B �= B0,
then we call RM the affine root system associated with M .

For RM , the following fact holds.

PROPOSITION 4.2. If M is irreducible, then W is infinite and hence RM is the affine
root system.

PROOF. To show this statement, we suffice to show that B �= B0. Suppose that B =
B0. Then we have

Tx0M = (E0)x0 ⊕
(

⊕
β∈B

(E(β,0))x0

)
.

This implies that M is the cylinder over a finite dimensional anti-Kaehler isoparametric sub-
manifold of J -diagonalizable shape operators. This contradicts the fact that M is irreducible.
Hence we obtain B �= B0. �

EXAMPLE 1. Let (L,H) be an anti-Kaehler symmetric pair and ρ : H → GL(p)

the aks-representation associated with (L,H), where p is as in Subsection 2.2. We use the
notations in Subsection 2.2. Let M be the orbit of ρ(H)-action through a regular element
x0(∈ a) and V an infinite dimensional anti-Kaehler space. Then the cylinder M ×V (⊂ p×V )

over M is a (reducible) anti-Kaehler isoparametric submanifold with J -diagonalizable shape
operators. The set JPCM×V of all J -principal curvatures of M × V is given by

JPCM×V =
{

− α̃C

α(x0)

∣∣∣∣∣ α ∈ �+

}
,

where α̃C is the parallel section of (T ⊥M)∗C with
(
α̃C

)
x0

= αC. Hence we have

H = {α−1(−α(x0)) | α ∈ �+} ,

and

RM = {((nα)x0, α−1(−α(x0))) | α ∈ �+} ,

where (nα)x0 is the element of as with α(•) = 〈(nα)x0, •〉. Also, we have �M = �. Thus
both the types of �M and RM are equal to that of �.
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EXAMPLE 2. Let G/K be a symmetric space of non-compact type and H � G/K

a Hermann type action (i.e., H is a symmetric subgroup of G). Let g, k and h be the Lie
algebras of G,K and H , and θ (resp. σ ) the involution of G with (Fix θ)0 ⊂ K ⊂ Fix θ

(resp. (Fix σ)0 ⊂ H ⊂ Fix σ ). Denote by the same symbols the involutions of g induced
from θ and σ . Set p := Ker(θ + id) and q := Ker(σ + id). Assume that θ and σ commute.
Then we have p = p ∩ h + p ∩ q. Take a maximal abelian b′ of p ∩ q. Let p = zp(b

′) +∑
α∈�′+

pα be the root space decomposition with respect to b′, where zp(b′) is the centralizer

of b′ in p, �′+ is the positive root system of the root system �′ := {α ∈ b′∗ | ∃ X( �= 0) ∈
p such that ad(b)2(X) = α(b)2X (∀ b ∈ b′)} under some lexicographic ordering of b′∗ and

pα := {X ∈ p | ad(b)2(X) = α(b)2X (∀ b ∈ b′)} (α ∈ �′+). Also, let �′V+ := {α ∈ �′+ |
pα∩q �= {0}} and �′H+ := {α ∈ �′+ | pα∩h �= {0}}. Also, let φ : H 0([0, 1], gC) → GC be the

parallel transport map for GC and π : GC → GC/KC the natural projection. See [K2] about

the definition of the parallel transport map for GC. Let HC � GC/KC be the complexified

action of the H -action, M the principal orbit of the HC-action through Exp Z0 and M̃ a

connected component of (π ◦ φ)−1(M), where Z0 is a point of b := b′C(= T ⊥
eKC

M) (e : the

identity element of GC) and Exp is the exponential map of GC/KC at eKC. Note that M̃

is a principal orbit of the P(GC,HC × KC)-action stated in Introduction. This submanifold
M̃ is an anti-Kaehler isoparametric submanifold with J -diagonalizable shape operators in

H 0([0, 1], gC). In particular, if G/K is irreducible, then M̃ is (extrinsically) irreducible. Fix
u0 ∈ (π ◦ φ)−1(x0) ∩ M̃ . By the similar argument to Section 4 of [K6], it is shown that the
set J PCM̃ of all J -principal curvatures of M̃ is given by

(4.6)

J PCM̃ =
{

− α̃C

α(Z0) + kπ
√−1

∣∣∣∣∣ α ∈ �′V+, k ∈ Z

}

∪
{

− α̃C

α(Z0) + (k + 1
2 )π

√−1

∣∣∣∣∣ α ∈ �′H+ , k ∈ Z

}
,

where α̃C is the parallel section of (T ⊥M̃)∗C with
(
α̃C

)
u0

= αC. Here the normal space

T ⊥
u0

M̃ of M̃ at u0 is identified with T ⊥
x0

M(= b) through (π ◦ φ)∗u0 . Define a complex linear

function λ(α,0) over b(= b′C) by λ(α,0) := − α̃C

α(Z0)
, which is a J -principal curvature of M̃ .

Let n(α,0) be the J -curvature normal of M̃ corresponding to λ(α,0). From (4.6), we have

H =
{
α−1(−α(Z0) + kπ

√−1)

∣∣∣ α ∈ �′V+, k ∈ Z
}

∪
{
α−1(−α(Z0) + (k + 1

2
)π

√−1)

∣∣∣∣ α ∈ �′H+ , k ∈ Z

}
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and

RM =
{(

(n(α,0))u0, α−1(−α(Z0) + kπ
√−1)

) ∣∣∣ α ∈ �′V+, k ∈ Z
}

∪
{(

(n(α,0))u0, α−1(−α(Z0) + (k + 1

2
)π

√−1)

) ∣∣∣∣ α ∈ �′H+ , k ∈ Z

}
,

∪
{(

1

2
(n(α,0))u0, α−1(−α(Z0) + kπ

√−1)

) ∣∣∣∣ α ∈ (�′V+)′, k ∈ Z

}
,

∪
{(

1

2
(n(α,0))u0, α−1(−α(Z0) + (k + 1

2
)π

√−1)

) ∣∣∣∣ α ∈ (�′H+ )′, k ∈ Z

}
,

where (�′V+)′ := {α ∈ �′V+ | 1
2α ∈ �′+} and (�′H+ )′ := {α ∈ �′H+ | 1

2α ∈ �′+}. Also, we

have �M = �′.

5. Proof of Theorem A

Let M(⊂ V ) be as in Theorem A. We use the notations in Sections 3 and 4. Note that
I = (�M)+ × Z. For simplicity denote RM by R. Let P be a complex affine subspace of
b = T ⊥

x0
M and DP a distribution on M defined in Section 3. Then it is easy to show that DP

is a totally geodesic distribution on M . We call the integral manifold LP
x of DP through x a

slice of M . Denote by 0 the origin of b. If 0 /∈ P , then LP
x is a focal leaf. Then, since LP

x0

is a finite dimensional anti-Kaehler isoparametric submanifold with J -diagonalizable shape
operators of codimension greater than one in (WP )x0 , it is the product of principal orbits
of the aks-representations associated with some irreducible anti-Kaehler symmetric spaces
by Theorem 4.4 in [26], where we use also the fact that a finite dimensional anti-Kaehler
isoparametric (complex) hypersurface is a complex sphere (i.e., a principal orbit of the aks-
representation associated with an anti-Kaehler symmetric space of complex rank one). If 0 ∈
P , then the slice LP

x0
is an infinite dimensional anti-Kaehler isoparametric submanifold with

J -diagonalizable shape operators in (WP )x0 . Take any w0 ∈ (Ei)x0 (i ∈ I ). Let γ : [0, 1] →
Li

x0
be the geodesic in Li

x0
with γ ′(0) = w0 and {Fγ |[0,t] }t∈R the one-parameter family of

holomorphic isometries of V stated in Section 3. For simplicity set F
w0
t := Fγ[0,t] . Let

Xw0 be the holomorphic Killing field associated with the one-parameter transformation group

{Fw0
t }t∈R, that is, Xw0

x := d

dt

∣∣∣∣
t=0

F
w0
t (x), where x moves over the set (which we denote

by U ) of all elements x’s where
d

dt

∣∣∣∣
t=0

F
w0
t (x) exists. Set Aw0 := d

dt

∣∣∣∣
t=0

(F
w0
t )∗x0 and

bw0 := (Xw0)0, where 0 in (Xw0)0 is the zero element of V (i.e., (Xw0)x = Aw0x + bw0).
Clearly we have (

⊕
i∈I∪{0}

(Ei)x0

)
⊕ b ⊂ U ,
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where we regard the left-hand side as a subspace of V under the identification of Tx0V and
V . However, U does not necessarily coincide with the whole of V . For simplicity we set

V ′
x0

:=
(

⊕
i∈I∪{0}

(Ei)x0

)
⊕ b and (V ′

x0
)T := ⊕

i∈I∪{0}
(Ei)x0 . Define a map Γ w0 : (V ′

x0
)T → V

by Γ w0(w) := d

dt

∣∣∣∣
t=0

(F
w0
t )∗x0(w)(= Aw0w) (w ∈ (V ′

x0
)T ) and a map Γw0 : (V ′

x0
)T →

Tx0M by Γw0w := (Γ w0w)T (w ∈ (V ′
x0

)T ), where (·)T is the Tx0M-component of (·).
Also, by using Γ w’s (w ∈ ∪

i∈I
(Ei)x0 ), we define a map Γ

x0 :
(

⊕
i∈I

(Ei)x0

)
× (V ′

x0
)T → V

by setting Γ
x0
w1

w2 := Γ w1(w2) (w1 ∈ ∪
i∈I

(Ei)x0, w2 ∈ (V ′
x0

)T ) and extending linearly with

respect to the first component. Similarly, by using Γw’s (w ∈ ∪
i∈I

(Ei)x0), we define a map

Γ x0 :
(

⊕
i∈I

(Ei)x0

)
× (V ′

x0
)T → Tx0M. This map Γ x0 is called the homogeneous structure of

M at x0.
In this section, we prove the following fact.

THEOREM 5.1. The holomorphic Killing field Xw0 is defined on the whole of V .

For simplicity we denote the extrinsically homogeneous structure Γ x0 by Γ . Denote by

h the second fundamental form of M . It is clear that Γ w0w = Γw0w + h(w0, w) (w ∈ V ′
T )

and that h(w0, ·) is defined on the whole of Tx0M . Hence, in order to show this theorem, we
suffice to show that Γw0(: (V ′

x0
)T → Tx0M) is defined (continuously) on the whole of Tx0M .

Since (Tx0M, 〈 , 〉) is an anti-Kaehler space, (Tx0M, −pr∗(Tx0M)−〈 , 〉 + pr∗(Tx0M)+〈 , 〉) is

a Hilbert space, where pr(Tx0M)± is the orthogonal projection of Tx0M onto (Tx0M)±. Set

〈 , 〉± := −pr∗(Tx0M)−〈 , 〉 + pr∗(Tx0M)+〈 , 〉. Denote by || • || the norm of a vector of Tx0M

with respect to 〈 , 〉± and the operator norm of a linear transformation from (V ′
x0

)T to Tx0M

with respect to 〈 , 〉±. To show that Γw0(: (V ′
x0

)T → Tx0M) is defined (continuously) on the
whole of Tx0M , we suffice to show that it is bounded with respect to || • ||. In the sequel,
we shall prove the boundedness of Γw0 with respect to || • || by the similar argument to [10].
Even if the proof is similar to that of [10], we need to discuss it carefully. For the domain
of Γ is an anti-Kaehler space but there exist some parts discussed on a special real form of
the space. Some of facts corresponding to lemmas and propositions in Sections 3–6 and 8 of
[10] are shown in the same methods as their proofs in [10]. We shall state the facts as lemmas
without the proof.

For Γ , we can show the following fact.

LEMMA 5.2. Let i1 ∈ I and i2, i3 ∈ I ∪ {0}.
(i) For any wk ∈ (Eik )x0 (k = 1, 2, 3), we have

〈Γw1w2, w3〉 + 〈w2, Γw1w3〉 = 0 ,
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(ii) For any wk ∈ (Eik )x0 (k = 1, 2) and any holomorphic isometry f of V preserving
M invariantly, we have

f∗Γw1w2 = Γf∗w1f∗w2 .

Also, for F
w0
t , we have the following fact.

LEMMA 5.3. Let L be a slice of M , i0 an element of I ∪ {0} with (Ei0)x0 ⊂ Tx0L

and W the complex affine span of L. If w0 ∈ (Ei0)x0 , then F
w0
t (L) = L holds for all

t ∈ [0, 1] and Xw0 is tangent to W along W . Furthermore, if L is irreducible and is of
rank greater than one, then F

w0
t |W = LF

w0
t holds for all t ∈ [0, 1], where LF

w0
t is the

one-parameter transformation group of W defined for L in similar to F
w0
t , and hence the

extrinsically homogeneous structure of L(⊂ W) at x0 is the restriction of Γ .

These lemmas are proved in the methods of the proofs of Lemmas 3.4 and 3.5 of [10],
respectively. Let ṽ be a (non-focal) parallel normal vector field of M , ηṽ : M → V the
end-point map for ṽ (i.e., ηṽ(u) := exp⊥ (̃vu) (u ∈ M)) and Mṽ the parallel submanifold
for ṽ (i.e., the image of ηṽ). Denote by ṽΓ the extrinsically homogeneous structure of Mṽ at
ηṽ(x0). Then we have the following fact.

LEMMA 5.4. For any w1 ∈ (Ei1)x0 (i1 ∈ I) and any w2 ∈ (Ei2)x0 (i2 ∈ I ∪ {0}), we
have

ṽΓ(ηṽ)∗w1w2 = (ηṽ)∗(Γw1w2) ,

where we note that Tx0M = Tηṽ(x0)Mṽ under the parallel translation in V . Also, we have
(ηṽ)∗w1 = (1 − (λi1)x0 (̃v0))w1.

PROOF. From (ηṽ)∗x0 = id − Aṽ0 , the second relation follows directly, where A is the
shape tensor of M . Since (ηṽ)∗x0 maps the J -curvature distributions of M to those of Mṽ , ηṽ

maps the complex curvature spheres of M through x0 to those of Mṽ through ηṽ(x0). On the
other hand, since F

w1
t preserves M inavariantly and its differential at a point of M induces

the parallel translation with respect to the normal connection of M , we have ηṽ ◦ F
w1
t |M =

F
w1
t ◦ ηṽ . By using these facts and the properties of F

w1
t , we can show that F

w1
t coincides

with F
(ηṽ)∗w1
t . From this fact, the first relation follows. �

We have the following fact for a principal orbit of an aks-representation of complex rank
greater than one.

LEMMA 5.5. Let N be a principal orbit of an aks-representation of complex rank
greater than one, {ni | i ∈ I } the set of all J -curvature normals of N , Ei the J -curvature
distribution corresponding to ni and Γ the extrinsically homogeneous structure of N at x.
If the 2-dimensional complex affine subspace P through ni1 , ni2 and ni3 which does not pass
through 0, then, for any wk ∈ (Eik )x (k = 1, 2, 3), we have

Γw1Γw2w3 − Γw2Γw1w3 = Γ(Γw1w2−Γw2 w1)w3 .
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PROOF. Let L/H be an irreducible anti-Kaehler symmetric space and (l, τ ) the anti-
Kaehler symmetric Lie algebra associated with L/H . We use the notations in Subsection 2.2.
Note that I = �+ × {0}(= �+). Let N be the principal orbit of the aks-representation
ρ := AdL|p : H → GL(p) through a regular element x(∈ D). Take any α ∈ �+ and any
w ∈ (Eα)x(= pα). Then, according to the proof of Lemma 4.6.3 of [26], the holomorphic
isometry Fw

t is equal to ρ(expL(tw)), where w is the element of hα such that adl(a)(w) = w

for all a ∈ a, where hα := {X ∈ h | adl(a)2(X) = αC(a)2X for all a ∈ a}. Hence we have

(5.1) Γw = adl(w) .

Therefore we can derive the desired relation in the method of the proof of Proposition 3.8 of
[10]. �

For each i ∈ I , denote by Wi the complex affine subspace x0 + ((Ei)x0 ⊕SpanC{(ni)x0})
of V . Also, let fi be the focal map having L

Ei
u ’s (u ∈ M) as fibres, Φi the normal holonomy

group of the focal submanifold fi(M) at fi(x0) and (Φi)x0 the isotropy group of Φi at x0.
This group (Φi)x0 preserves (Ei)x0 invariantly. The irreducible decomposition of the action
(Φi)x0 � (Ei)x0 is given by the form (Ei)x0 = (Ei)

′
x0

⊕ (Ei)
′′
x0

, where dimC(Ei)
′′
x0

=
0, 1 or 3, and dimC(Ei)

′
x0

is even in case of dimC(Ei)
′′
x0

= 1 or 3. Set mi := dimCEi .
Note that Φi is orbit equivalent to the aks-representation associated with one of the following
irreducible complex rank one anti-Kaehler symmetric spaces:

SO(mi + 2,C)/SO(mi + 1,C), SL(mi+1
2 + 1,C)/SL(mi+1

2 ,C) · C∗ ,

Sp(
mi+1

4 + 1,C)/Sp(1,C) × Sp(
mi+1

4 ,C)

and that

dimC(Ei)
′′
x0

=

⎧⎪⎨⎪⎩
0 ((Φi)x0 = SO(mi + 1,C))

1 ((Φi)x0 = SL(
mi+1

2 ,C) · C∗)
3 ((Φi)x0 = Sp(1,C) × Sp(mi+1

4 ,C)) .

By using Lemma 5.3 and (5.1), we can derive the following fact corresponding to Proposi-
tion 3.11 of [10].

LEMMA 5.6. Let i ∈ I . Then we have

Γ(Ei)′′x0
(Ei)

′′
x0

= 0, Γ(Ei)′x0
(Ei)

′′
x0

⊂ (Ei)
′
x0

,

Γ(Ei)′′x0
(Ei)

′
x0

⊂ (Ei)
′
x0

and Γ(Ei)′x0
(Ei)

′
x0

⊂ (Ei)
′′
x0

.

Also, we have the following facts corresponding to Propositions 3.12 and 3.13 of [10].

LEMMA 5.7. For i1 ∈ I and i2 ∈ I ∪ {0} with i2 �= i1, we have
〈Γ(Ei1 )x0

(Ei2)x0, (Ei2)x0〉 = 0.

LEMMA 5.8. Let i1 ∈ I and i2, i3 ∈ I ∪ {0}. For wk ∈ (Eik )x0 (k = 1, 2, 3), we have

(∇w1 h̃)(w2, w3) = 〈Γw1w2, w3〉((ni2)x0 − (ni3)x0) and Γw1w2 = ∇̃w1w̃2 (mod (Ei2)x0),
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where ∇ is the connection of the tensor bundle T ∗M ⊗ T ∗M ⊗ T ⊥M induced from ∇ and
the normal connection ∇⊥ of M , and w̃2 is a local section of Ei2 with (w̃2)x0 = w2.

Let i1, i2, i3 ∈ I ∪ {0} with i2 �= i3. Then we define
ni1 − ni3

ni2 − ni3

by

ni1 − ni3

ni2 − ni3

:=

⎧⎪⎪⎨⎪⎪⎩
b

(
(when (ni1)x0 − (ni3)x0 = b((ni2)x0 − (ni3)x0)

for some b ∈ C

)
0

(
when (ni1)x0 − (ni3)x0 and (ni2)x0 − (ni3)x0)

are linearly independent over C

)
.

Note that this value is independent of the choice of x0 ∈ M . Denote by wk the (Ek)x0 -
component of w ∈ Tx0M . We can derive the following fact corresponding to Proposition 3.15
of [10] from the first relation in Lemma 5.8 and the Codazzi equation.

LEMMA 5.9. Let i1, i2 ∈ I and i3 ∈ I ∪ {0} with i3 �= i2. For any wk ∈ (Eik )x0

(k = 1, 2), we have

(Γw1w2)
i3 = ni1 − ni3

ni2 − ni3

(Γw2w1)
i3 .

Also, we have the following fact corresponding to Lemma 3.16 of [10].

LEMMA 5.10. (i) Let i1 ∈ I and i2, i3 ∈ I ∪ {0}. If (Γw1w2)
i3 �= 0 for some w1 ∈

(Ei1)x0 and w2 ∈ (Ei2)x0 , then (ni1)x0, (ni2)x0 and (ni3)x0 are contained in a complex affine
line.

(ii) Let i1, i2, i3 ∈ I . The condition (Γ(Ei1 )x0
(Ei2)x0)

i3 �= 0 is symmetric in i1, i2, i3.

Also, we have the following fact corresponding to Theorem 4.1 of [10].

LEMMA 5.11.
∑

i1,i2∈I s.t. i1 �=i2

Γ(Ei1 )x0
(Ei2)x0 is dense in Tx0M and includes

∑
i∈I

(Ei)x0 .

By using this lemma, we can derive the following fact corresponding to Corollary 4.2 of
[10].

LEMMA 5.12. (i) For each i1 ∈ I , we have∑
i2,i3∈I s.t. ni2 ,ni3 /∈SpanC{ni1 }

(Γ(Ei2 )x0
(Ei3)x0)

i1 = (Ei1)x0 .

(ii)
∑

i1,i2∈I s.t. ni1 ,ni2 : lin. dep.

(Γ(Ei1 )x0
(Ei2)x0)

0 is dense in (E0)x0 , where “lin. dep.” means

“linearly dependent”.

Notation. In the sequel, for w ∈ (Ei)x0 (i ∈ I ∪ {0}), w̃ denotes a local section of Ei with
w̃x0 = w.

For w1 ∈ (Ei1)x0 and w2 ∈ (Ei2)x0 (i1, i2 ∈ I ∪ {0}), define ∇′̃
w1

w̃2 by (∇′̃
w1

w̃2)x :=
(∇w̃1w̃2)x −Γ x

(w̃1)x
(w̃2)x , where x moves over the common domain of w̃1 and w̃2. Denote by
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R the curvature tensor of M . Let i1, i2, i3 ∈ I, i4 ∈ I ∪ {0} and wk ∈ (Eik )x0 (k = 1, . . . , 4).
According to the Gauss equation, we have

(5.2) 〈R(w1, w2)w3, w4〉 = (〈w1, w4〉〈w2, w3〉 − 〈w1, w3〉〈w2, w4〉)〈ni1 , ni2〉 .

Also, from the definition of ∇′, we have
(5.3)

〈R(w1, w2)w3, w4〉 = 〈Γw1w3, Γw2w4〉 − 〈Γw2w3, Γw1w4〉 − 〈(∇[w̃1,w̃2]w̃3)x0, w4〉
+w1〈(∇w̃2w̃3)x0, w4〉 − 〈(∇′̃

w2
w̃3)x0, (∇w̃1w̃4)x0〉 − 〈Γw2w3, (∇′̃

w1
w̃4)x0〉

−w2〈(∇w̃1w̃3)x0, w4〉 + 〈(∇′̃
w1

w̃3)x0, (∇w̃2w̃4)x0〉 + 〈Γw1w3, (∇′̃
w2

w̃4)x0〉 .

For ∇′ and Γ , we have the following relations.

LEMMA 5.13. Let i1, i2, i3 ∈ I and i4 ∈ I ∪ {0}.
(i) For any wk ∈ (Eik )x0 (k = 1, 2, 3), we have

w1〈w̃2, w̃3〉 = 〈(∇′̃
w1

w̃2)x0, w̃3〉 + 〈w2, (∇′̃
w1

w̃3)x0〉 .

(ii) If i1 �= i2, then we have ∇′̃
w1

w̃2 = (∇w̃1w̃2)
i2 for any wk ∈ (Eik )x0 (k = 1, 2).

(iii) For any wk ∈ (Eik )x0 (k = 1, 2, 3), we have(
∇′̃

w1
( ˜(Γw2w3)i3)

)
x0

=
(
Γ(∇′̃

w1
w̃2)x0

w3

)i3 + (
Γw2(∇′̃

w1
w̃3)x0

)i3 .

PROOF. The relations in (i) and (ii) are trivial. From (ii) of Lemma 5.2, the relation in
(iii) is shown in the method of the proof of Lemma 5.2 of [10]. �

Let i1 ∈ I and i2 ∈ I ∪ {0}. For w ∈ Tx0M, w1 ∈ (Ei1)x0 and w2 ∈ (Ei2)x0 , we define
〈Γww1, w2〉 by

(5.4)

〈Γww1, w2〉 := −
∑
i∈I

〈
Γw1w2,

ni − ni2

ni1 − ni2

wi

〉
⎛⎜⎝= lim

m→∞
∑

i∈I s.t. |wi |> 1
m

〈
Γw1w2,

ni − ni2

ni1 − ni2

wi

〉⎞⎟⎠ .

According to (i) of Lemma 5.2 and Lemma 5.9, this definition is valid. From the relation in
(iii) of Lemma 5.13, we can show the following fact in the method of the proof of Theorem 5.7
of [10].

LEMMA 5.14. Let i1, i2, i3 ∈ I and i4 ∈ I ∪ {0} with i4 �= i3. For any wk ∈ (Eik )x0

(k = 1, . . . , 4), we have〈(
[Γw1, Γw2] − ΓΓw1w2−Γw2w1

)
w3, w4

〉
= −(〈w1, w4〉〈w2, w3〉 − 〈w1, w3〉〈w2, w4〉)〈ni1 , ni2〉 .

By using Lemmas 5.9 and 5.14, we can show the following fact.
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LEMMA 5.15. Let (i1, i2, i3) be an element of I 2 × (I ∪ {0}) such that there exists no
complex affine line containing (ni1)x0, (ni2)x0 and (ni3)x0 , and i4 an element of I . For any
wk ∈ (Eik )x0 (k = 1, . . . , 4), we have

〈Γw1w2, Γw4w3〉 = 〈Γw4w2, Γw1w3〉 + c〈Γw1w4, Γw2w3〉 ,

where c is a constant. Furthermore, if i1 = i4 or the intersection of the complex affine
line through (ni1)x0 and (ni4)x0 and the complex affine line through and (ni2)x0 and (ni3)x0

contains no J -curvature normal, then we have c = 0. On the other hand, if their intersection
contains a J -curvature normal (ni5)x0 , then we have

c = ni3 − ni5

ni2 − ni3

× ni1 − ni4

ni1 − ni5

.

We can show the following fact in the method of the proof of Corollary 5.11 of [10].

LEMMA 5.16. Let i1, i2, i3 ∈ I satisfying i3 �= i1, i2 and
ni2
ni3

�= −ni1 −ni2
ni1 −ni3

. Assume that

〈(Γ(Ei1 )x0
(Ei2)x0)

i4 , Γ(Ei1 )x0
(Ei3)x0〉 = 0 for any i4 ∈ I and (Γ(Ei1 )x0

(Ei2)x0)
i3 = 0 (these

conditions hold if Γ(Ei1 )x0
(Ei2)x0 ⊂ (E0)x0). Then we have 〈Γ(Ei1 )x0

(Ei2)x0, Γ(Ei1 )x0
(Ei3)x0〉

= 0.

Also, we can derive the following fact.

LEMMA 5.17. Let i1, i2 ∈ I with i1 �= i2. For any wk ∈ (Eik )x0 (k = 1, 2), we have∑
i3∈(I∪{0})\{i1}

Re

(
ni2 − ni3

ni1 − ni3

)
||(Γw1w2)

i3 ||2 = 1

2
〈ni1 , ni2〉 〈w1, w1〉 ||w2||2 .

PROOF. Let w2 = (w2)− + (w2)+ ((w2)− ∈ ((Ei2)−)x0, (w2)+ ∈ ((Ei2)+)x0). In
similar to Corollary 5.13 of [10], we can show

(5.5)

∑
i3∈(I∪{0})\{i1}

〈
(Γw1(w2)ε)

i3 ,
ni2 − ni3

ni1 − ni3

(Γw1(w2)ε)
i3

〉
= 1

2
〈ni1 , ni2〉 〈w1, w1〉 〈(w2)ε, (w2)ε〉 ,

where ε = − or +. On the other hand, since F
w1
t ’s preserve Ei’s invariantly and they are

holomorphic isometries, Γw1 preserves ((Ei)−)x0’s and ((Ei)+)x0 invariantly, respectively.

Hence we have Γw1(w2)ε = (Γw1w2)ε. Also, it is clear that ((Γw1w2)ε)
i3 = ((Γw1w2)

i3)ε.
From these relations, we have〈

(Γw1(w2)ε)
i3,

ni2 − ni3

ni1 − ni3

(Γw1(w2)ε)
i3

〉
= Re

(
ni2 − ni3

ni1 − ni3

)
〈((Γw1w2)

i3)ε, ((Γw1w2)
i3)ε〉 .



320 NAOYUKI KOIKE

By summing the (−1)-multiples of (5.5)’s for ε = ± and using this relation, we have the
desired relation. �

By using Lemmas 5.3, 5.7, 5.10 and 5.17, we can show the following fact.

LEMMA 5.18. Assume that the complex Coxeter group W associated with M is of
type Ã, D̃ or Ẽ. Let i1 and i2 be elements of I such that ni1 and ni2 are linearly independent.

(i) If ni1 and ni2 are orthogonal, then we have Γw1w2 = 0 for any wk ∈ (Eik )x0 (k =
1, 2).

(ii) If ni1 and ni2 are not orthogonal, then we have ||Γw1w2|| ≤ 1

2
||w1|| ||w2|| ||ni1 || for

any wk ∈ (Eik )x0 (k = 1, 2).

PROOF. Let P be the complex affine line in b through (ni1)x0 and (ni2)x0 . Since ni1 and

ni2 are linearly independent, we have 0 /∈ P . Hence the slice LP
x0

is a finite dimensional anti-
Kaehler isoparametric submanifold with J -diagonalizable shape operators (of codimension
two in (WP )x0 ). Hence, since W is isomorphic to an affine Weyl group of type Ã, D̃ or Ẽ,

the root system (which we denote by �P ) associated with LP
x0

is of type A1 × A1 or A2. First
we shall show the statement (i). Assume that (ni1)x0 and (ni2)x0 are orthogonal. Then �P is
of type A1 × A1 and hence P contains no other J -curvature normal. By using this fact and

Lemma 5.3, we can show Γw1w2 = LP
x0 Γw1w2 = 0 for any wk ∈ (Eik )x0 (k = 1, 2), where

LP
x0 Γ is the extrinsically homogeneous structure of LP

x0
. Next we shall show the statement (ii).

Assume that (ni1)x0 and (ni2)x0 are not orthogonal. Then �P is of type A2 and hence there
exists i3 ∈ I \{i1, i2} with (ni3)x0 ∈ P . The set li1 ∩li2 ∩li3 ∩SpanC{(ni1)x0, (ni2)x0} consists of
the only one point. Denote by p0 this point. Let e1, e2 and e3 be a unit normal vector of li1 , li2
and li3 , respectively. Since �P is of type (A2), we may assume that e3 = e1 + e2 by replacing

some of these vectors to the (−1)-multiples of them if necessary. Since
(ni1 )x0〈(ni1 )x0 ,(ni1 )x0 〉 ∈ li1 ,

we have (ni1)x0 = e1

〈−→0p0,e1〉
, where 0 is the origin of b. Similarly we have (ni2)x0 = e2

〈−→0p0,e2〉
and (ni3)x0 = e3

〈−→0p0,e3〉
. By using these facts, Lemmas 5.7, 5.10 and 5.17, we can show

||Γw1w2||2 = ||(Γw1w2)
i3 ||2 ≤ 1

2
Re

(
ni1 − ni3

ni2 − ni3

)
|〈ni1 , ni2〉| ||w1||2 ||w2||2

≤ 1

4
||w1||2 ||w2||2 ||ni1 ||2 .

Thus we obtain the desired relation. �

By using Lemmas 5.3, 5.4, 5.7 and 5.10, we can show the following fact.

LEMMA 5.19. We have

sup
i∈I

sup
P∈Hi

sup
(w1,w2)∈(Ei)x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(ni)x0||

< ∞ ,
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where Hi is the set of all complex affine subspaces P in Tx0M with 0 /∈ P and (ni)x0 ∈ P .

PROOF. Let Hirr
i be the set of all elements P of Hi such that LP

x0
(⊂ (WP )x0) is irre-

ducible. First we shall show

(5.6) sup
i∈I

sup
P∈Hirr

i

sup
(w1,w2)∈(Ei)x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(ni)x0 ||

< ∞ .

Fix i0 ∈ I and P0 ∈ Hirr
i0

. If the complex codimension of L
P0
x0 (⊂ (WP0)x0) is equal to

one, then we can take P ′
0 ∈ Hirr

i0
such that P0 ⊂ P ′

0 and that the complex codimension of

L
P ′

0
x0 (⊂ (WP ′

0
)x0) is greater than one. Then we have

sup
(w1,w2)∈(Ei0 )x0×(DP0 )x0

||Γw1w2||
||w1|| ||w2|| ||(ni0)x0||

≤ sup
(w1,w2)∈(Ei0 )x0×(DP ′

0
)x0

||Γw1w2||
||w1|| ||w2|| ||(ni0)x0||

.

and hence

(5.7)

sup
i∈I

sup
P∈Hirr

i

sup
(w1,w2)∈(Ei)x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(ni)x0 ||

= sup
i∈I

sup
P∈Hirr,≥2

i

sup
(w1,w2)∈(Ei)x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(ni)x0 ||

,

where Hirr,≥2
i is the set of all elements P ’s of Hirr

i such that the complex codimension

of LP
x0

(⊂ (WP )x0) is greater than one. Fix α1 ∈ (�M)+ and P1 ∈ Hirr,≥2
(α1,0). Take any

j1 ∈ Z. For each P ∈ Hirr
(α1,0), there exists P ′ ∈ Hirr

(α1,j1)
such that {α ∈ (�M)+ |

∃ j ∈ Z s.t. (n(α,j))x0 ∈ P } = {α ∈ (�M)+ | ∃ j ∈ Z s.t. (n(α,j))x0 ∈ P ′}. Then, since

dimC(WP )x0 = dimC(WP ′ )x0 , and since the root systems associated with LP
x0

and LP ′
x0

co-
incide, they are regarded as principal orbits of the aks-representation of the same irreducible

anti-Kaehler symmetric space. That is, LP ′
x0

is regarded as a parallel submanifold of LP
x0

under
a suitable identification of (WP )x0 and (WP ′)x0 . Therefore, by using Lemmas 5.3 and 5.4, we
can show

sup
P∈Hirr

(α1,0)

sup
(w1,w2)∈(E(α1,0))x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(n(α1,0))x0 ||

= sup
P∈Hirr

(α1,j1)

sup
(w1,w2)∈(E(α1,j1))x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(n(α1,j1))x0 ||

.
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Hence it follows from the arbitrariness of j1 that

sup
i∈I

sup
P∈Hirr

i

sup
(w1,w2)∈(Ei)x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(ni)x0 ||

= sup
α∈(�M)+

sup
P∈Hirr

(α,0)

sup
(w1,w2)∈(E(α,0))x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(n(α,0))x0||

< ∞ .

Thus we obtain (5.6). For simplicity set

C := sup
i∈I

sup
P∈Hirr

i

sup
(w1,w2)∈(Ei)x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(ni)x0 ||

.

Fix i0 ∈ I and P0 ∈ Hi0 \Hirr
i0

. Let L
DP0
x0 = L1 ×· · ·×Lk be the irreducible decomposition of

L
DP0
x0 . Take any i1, i2 ∈ I with (ni1)x0, (ni2)x0 ∈ P0. If (ni1)x0 and (ni2)x0 are not orthogonal,

then (Ei1)x0 ⊕ (Ei2)x0 ⊂ Tx0La for some a ∈ {1, . . . , k}. Hence we have

sup
(w1,w2)∈(Ei1 )x0×(Ei2 )x0

||Γw1w2||
||w1|| ||w2|| ||(ni1)x0 ||

≤ C .

If (ni1)x0 and (ni2)x0 are orthogonal, then the complex affine line through (ni1)x0 and (ni2)x0

does not contain other J -curvature normal. Hence it follows from Lemma 5.7 and (i) of
Lemma 5.10 that Γ(Ei1 )x0

(Ei2)x0 = 0. Therefore, we obtain

sup
i∈I

sup
P∈Hi

sup
(w1,w2)∈(Ei)x0×(DP )x0

||Γw1w2||
||w1|| ||w2|| ||(ni)x0 ||

= C .

This completes the proof. �

By using Lemma 5.19, we can show the following fact.

LEMMA 5.20. Let i0 = (α0, j0) ∈ I and w ∈ (Ei0)x0 . Then Γw can be extended
continuously to Tx0M if and only if the restriction of Γw to ⊕

j∈Z
(E(α0,j))x0 can be extended

continuously to ⊕
j∈Z

(E(α0,j))x0 .

PROOF. Set V0 := (E0)x0 , V1 := ⊕
i∈I\{(α0,j)|j∈Z}

(Ei)x0 and V2 := ⊕
j∈Z

(E(α0,j))x0 .

Clearly we have Tx0M = V0 ⊕ V 1 ⊕ V 2. Since Γw is a closed operator by the definition
and since (E0)x0 is closed in the domain of Γw, Γw|(E0)x0

also is a closed operator. Hence,

according to the closed graph theorem, Γw|(E0)x0
is bounded (hence continuous). Easily we

can show

V1 = ⊕
l

(
⊕

i∈I\{(α0,j)|j∈Z} s.t. (ni )x0∈l
(Ei)x0

)
,
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where l runs over the set of all complex affine lines in b \ {0} through (ni0)x0 . For simplicity
set

V1,l := ⊕
i∈I\{(α0,j)|j∈Z} s.t. (ni)x0∈l

(Ei)x0 .

According to Lemma 5.19, for each l, we have

sup
w′∈V1,l

||Γww′||
||w′|| ≤ C||(ni0)x0 || ||w|| ,

where C is the positive constant as in the proof of Lemma 5.19, and hence

sup
w′∈V1

||Γww′||
||w′|| ≤ C||(ni0)x0|| ||w|| .

Therefore the restriction of Γw to V1 is bounded and hence it can be extended continuously to

V 1. From these facts, the statement of this lemma follows. �

According to Lemma 6.4 of [10], we have the following fact.

LEMMA 5.21. Let W be a Hilbert space, W = ⊕
i∈Z

Wi the orthogonal decomposition

of W and f a linear map from ⊕
i∈Z

Wi to W . Assume that there exists a positive constant C

such that ||f (w)|| ≤ C||w|| for all w ∈ ∪
i∈ZWi and that there exist injective maps μa : Z → Z

(a = 1, . . . , r) such that 〈f (Wi), f (Wj )〉 = 0 for any j /∈ {μ1(i), . . . , μr(i)}. Then we have

||f || ≤ √
rC and hence f can be extended continuously to W .

Easily we can show that

(5.8)
n(α,j1) − n(α,j3)

n(α,j2) − n(α,j3)

= j1 − j3

j2 − j3
× 1 + j2bαi

1 + j1bαi
.

By using (5.8) and Lemma 5.17, we can show the following fact.

LEMMA 5.22. Let α ∈ (�M)+ and j1, j2 ∈ Z. For any w1 ∈ (E(α,j1))x0 and any
w2 ∈ (E(α,j2))x0 , we have∑

j∈Z\{j1}

j − j2

j − j1
||(Γw1w2)

(α,j)||2 + ||(Γw1w2)
0||2

= 1

2

(
Re

(
1 + j1bαi
1 + j2bαi

))−1

Re

(
1

(1 + j1bαi)(1 + j2bαi)

)
×〈(n(α,0))x0, (n(α,0))x0〉 〈w1, w1〉 ||w2||2 .

Also, we can show the following fact.

LEMMA 5.23. Let P be the complex affine line through 0 and (n(α0,0))x0 for some
α0 ∈ (�M)+.
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(i) If the affine root system R is of type (Ãm) (m ≥ 2), (D̃m) (m ≥ 4), (Ẽm) (m = 6, 7, 8)
or (F̃4), then there exists a (complex) 2-dimensional complex affine subspace P ′ including P

such that the affine root system associated with LP ′
x0

(⊂ (WP ′)x0) is of type (Ã2).

(ii) If the affine root system R is of type (B̃m), (B̃v
m) or (B̃m, B̃v

m) (m ≥ 2), then there
exists a (complex) 2-dimensional complex affine subspace P ′ including P such that the affine

root system associated with LP ′
x0

(⊂ (WP ′ )x0) is of type “(Ã2) or (C̃2)”, “(Ã2) or (C̃v
2 )” or

“(Ã2) or (C̃2, C̃
v
2 )”, respectively.

(iii) If the affine root system R is of type (C̃m), (C̃v
m), (C̃′

m), (C̃v
m, C̃′

m), (C̃′
m, C̃m),

(C̃v
m, C̃m) or (C̃m, C̃v

m) (m ≥ 2), then there exists a (complex) 2-dimensional complex affine

subspace P ′ including P such that the affine root system associated with LP ′
x0

(⊂ (WP ′)x0)

is of type “(Ã2) or (C̃2)”, “(Ã2) or (C̃v
2 )”, “(Ã2) or (C̃′

2)”, “(Ã2) or (C̃v
2 , C̃′

2)”, “(Ã2) or

(C̃′
2, C̃2)”, “(Ã2) or (C̃v

2 , C̃2)” or “(Ã2) or (C̃2, C̃
v
2 )”, respectively.

PROOF. First we shall show the statement (i). Let Π(⊂ (�M)+) be a simple root sys-
tem of �M . Without loss of generality, we may assume that α0 is one of the elements of Π .
Since R is of (Ãm) (m ≥ 2), (D̃m) (m ≥ 4), (Ẽm) (m = 6, 7, 8) or (F̃4), it follows from
their Dynkin diagrams that there exists α1 ∈ Π such that the angle between (n(α0,0))x0 and

(n(α1,0))x0 is equal to 2π
3 . Let P1 be the complex affine line through (n(α0,0))x0 and (n(α1,0))x0 ,

and P ′ the (complex) 2-dimensional complex affine subspace through 0, (n(α0,0))x0 and
(n(α1,0))x0 . It is clear that P1 ⊂ P ′. Also, it is easy to show that the root system associ-

ated with L
P1
x0 is of type (A2) and hence the affine root system associated with LP ′

x0
is of type

(Ã2). This completes the proof of the statement (i).
Next we shall show the statement (ii). Since �M is of type (Bm), the positive root system

(�M)+ is described as

(�M)+ = {θa |1 ≤ a ≤ m} ∪ {θa ± θb |1 ≤ a < b ≤ m}
for an orthonormal base θ1, . . . , θm of the dual space b∗ of b, the simple root system Π is
equal to {θi − θi+1 | 1 ≤ i ≤ n − 1} ∪ {θn} and the highest root is equal to θ1 + θ2, where we
need to replace the inner product 〈 , 〉|bR×bR to its suitable constant-multiple. Without loss of
generality, we may assume that α0 is one of the elements of Π . In the case where α0 is other
than θn, there exists α1 ∈ Π such that the angle between (n(α0,0))x0 and (n(α1,0))x0 is equal

to 2π
3 . Let P1 be the complex affine line through (n(α0,0))x0 and (n(α1,0))x0 , and P ′ the (com-

plex) 2-dimensional complex affine subspace through 0, (n(α0,0))x0 and (n(α1,0))x0 . Then it

is shown that the root system associated with L
P1
x0 is of type (A2) and hence the affine root

system associated with LP ′
x0

is of type (Ã2). In the case where α0 is equal to θn, we can take

α1 ∈ Π such that the angle between (n(α0,0))x0 and (n(α1,0))x0 is equal to 3π
4 . Let P1 be the

complex affine line through (n(α0,0))x0 and (n(α1,0))x0 , and P ′ the (complex) 2-dimensional
complex affine subspace through 0, (n(α0,0))x0 and (n(α1,0))x0 . Then it is shown that, in cor-
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respondence to W is of type (B̃m), (B̃v
m) or (B̃m, B̃v

m) (m ≥ 2), the root system associated

with L
P1
x0 is of type (C2), (Cv

2 ) or (C2, C
v
2 ) and hence the affine root system associated with

LP ′
x0

is of type (C̃2), (C̃v
2 ) or (C̃2, C̃

v
2 ).

Next we shall show the statement (iii). Since �M is of type (Cm), the positive root
system (�M)+ is described as

(�M)+ = {2θa |1 ≤ a ≤ m} ∪ {θa ± θb |1 ≤ a < b ≤ m}
for an orthonormal base θ1, . . . , θm of the dual space b∗, the simple root system Π is
equal to {θi − θi+1 | 1 ≤ i ≤ n − 1} ∪ {2θn} and the highest root is equal to 2θ1,
where we need to replace the inner product 〈 , 〉|bR×bR to its suitable constant-multiple.
Without loss of generality, we may assume that α0 is one of the elements of Π . In
the case where α0 is other than 2θn, there exists α1 ∈ (�M)+ such that the angle be-

tween (n(α0,0))x0 and (n(α1,0))x0 is equal to 2π
3 . Let P1 be the complex affine line through

(n(α0,0))x0 and (n(α1,0))x0 , and P ′ the (complex) 2-dimensional complex affine subspace
through 0, (n(α0,0))x0 and (n(α1,0))x0 . Then it is shown that the root system associated with

L
P1
x0 is of type (A2) and hence the affine root system associated with LP ′

x0
is of type (Ã2).

In the case where α0 is equal to 2θn, we can take α1 ∈ (�M)+ such that the angle between

(n(α0,0))x0 and (n(α1,0))x0 is equal to 3π
4 . Let P1(⊂ bC) be the complex affine line through

(n(α0,0))x0 and (n(α1,0))x0 , and P ′ the (complex) 2-dimensional complex affine subspace
through 0, (n(α0,0))x0 and (n(α1,0))x0 . Then it is shown that, in correspondence to W is of type

(C̃m), (C̃v
m), (C̃′

m), (C̃v
m, C̃′

m), (C̃′
m, C̃m), (C̃v

m, C̃m) or (C̃m, C̃v
m) (m ≥ 2), the root system

associated with L
P1
x0 is of type (C2), (Cv

2 ), (C′
2), (Cv

2 , C′
2), (C′

2, C2), (Cv
2 , C2) or (C2, C

v
2 )

and hence the affine root system associated with LP ′
x0

is of type (C̃2), (C̃v
2 ), (C̃′

2), (C̃v
2 , C̃′

2),

(C̃′
2, C̃2), (C̃v

2 , C̃2) or (C̃2, C̃
v
2 ). �

Also, we can show the following fact.

LEMMA 5.24. If the affine root system R is of type (G̃2) and if 〈ni1 , ni2〉 = 0, then
Γwi1

wi2 = 0 for any wi1 ∈ (Ei1)x0 and wi2 ∈ (Ei2)x0 .

PROOF. Let ik = (αk, jk) (k = 1, 2). Let P be the complex affine line through (ni1)x0

and (ni2)x0 . Since 〈ni1 , ni2〉 = 0, we have 〈(ni1)x0, (ni2)x0〉 = 0. If there does not exist further

i3 ∈ I with (ni3)x0 ∈ P , then the root system associated with the slice LP
x0

is of type (A1×A1).
Hence we have Γ(Ei1 )x0

(Ei2)x0 = 0. Otherwise, it is shown that {i ∈ I | (ni)x0 ∈ P } consists

of exactly six elements because �M is of type (G2), where we note that {i ∈ I | (ni)x0 ∈
P } = {i ∈ I | (ni)x0 ∈ P ∩ bR} and that each P ∩ bR is a real affine line in bR. The root

system �P associated with the slice LP
x0

(⊂ (WP )x0) is of type (G2). The slice LP
x0

is regarded
as a principal orbit of the isotropy action of an anti-Kaehler symmetric space L/H whose root
system is of type (G2). Let l = h + p be the canonical decomposition of the Lie algebra l of
L associated with the symmetric pair (L,H). The space p is identified with (WP )x0 and the
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normal space of LP
x0

(⊂ (WP )x0) at x0 is identified with a maximal abelian subspace b′ of p.

Denote by pα(⊂ p) and hα(⊂ h) be the root spaces for α ∈ �P . The restriction αk := αk |b′
of αk to b′ (k = 1, 2) are elements of �P , where b′ is regarded as a linear subspace of b under
the identification of b′ and the normal space T ⊥

x0
LP

x0
of LP

x0
in (WP )x0 . For any wk ∈ (Eik )x0

(k = 1, 2), we have

Γw1w2 ∈ [hα1, pα2] ⊂ pα1+α2 + pα1−α2 .

Since α1 and α2 are orthogonal and �P is of type (G2), we have α1 ± α2 /∈ �P . Hence we
have Γw1w2 = 0. This completes the proof. �

By using Lemmas 5.6, 5.7, 5.10, 5.11, 5.14, 5.23, 5.24 and Lemma 8.3 of [10], we can
show the following fact.

THEOREM 5.25. If R is of type (Ãm) (m ≥ 2), (D̃m) (m ≥ 4), (Ẽ6), (Ẽ7), (Ẽ8), (F̃4)

or (G̃2), then Γ(E(α,j1))x0
(E(α,j2))x0 ⊂ (E0)x0 holds for any α ∈ (�M)+ and j1, j2 ∈ Z.

PROOF. According to Lemma 5.23, we may assume that R is of type (Ã2) or (G̃2).
Furthermore, according to Lemma 5.6, we may assume that j1 �= j2. Set ik := (α, jk)

(k = 1, 2). Suppose that (Γw1w2)
i3 �= 0 for some wk ∈ (Eik )x0 (k = 1, 2) and some

i3 ∈ I . Take wk ∈ (Eik )x0 (k = 1, 2) with (Γw1w2)
i3 �= 0. Let P be the complex affine

line through 0 and (ni1)x0 . Since LP
x0

is totally geodesic in M , we have (Ei3)x0 ⊂ Tx0M

and hence (ni3)x0 ∈ P . Hence i3 is expressed as i3 = (α, j3) for some j3 ∈ Z. Accord-
ing to Lemma 5.7, we have j3 �= j1, j2. According to Lemma 5.11, there exists i4, i5 ∈ I

such that (ni4)x0 and (ni5)x0 are C-linearly independent and that 〈(Γw1w2)
i3, Γw5w4〉 �= 0

for some w4 ∈ (Ei4)x0 and some w5 ∈ (Ei5)x0 . Since 〈(Γw1w2)
i3 , Γw5w4〉 �= 0, we have

(Γw5w4)
i3 �= 0. Hence it follows from Lemma 5.10 that (ni3)x0, (ni4)x0 and (ni5)x0 are con-

tained in a complex affine line P1. Since P ∩P1 = {(ni3)x0}, it follows from Lemma 5.10 that

〈Γw1w2, Γw5w4〉 = 〈(Γw1w2)
i3, (Γw5w4)

i3〉 �= 0. Also, it is clear that arbitrarily chosen three
of (ni1)x0, (ni2)x0, (ni4)x0 and (ni5)x0 are not contained in any complex affine line. Hence, it
follows from Lemma 5.15 that

〈Γw1w2, Γw5w4〉 = 〈Γw5w2, Γw1w4〉 + c〈Γw1w5, Γw2w4〉 ,

where c is as in Lemma 5.15. Hence we have

(I) 〈Γw5w2, Γw1w4〉 �= 0 or (II) 〈Γw1w5, Γw2w4〉 �= 0 .

We consider the case of (I). According to Lemma 5.10, this fact implies that the complex
affine line through (ni2)x0 and (ni5)x0 intersects with the complex affine line through and
(ni1)x0 and (ni4)x0 and the only intersection point is equal to (ni6)x0 for some i6 ∈ I . Then,
since (ni1)x0, (ni2)x0 and (ni3)x0 are C-linearly dependent pairwisely, the complex focal hy-
perplanes li1 , li2 and li3 are mutually parallel. Note that they are complex lines because we
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assume that R is of type (Ã2) or (G̃2). Hence the (real) lines lRi1, lRi2 and lRi3 (in bR) are mu-

tually parallel. Also, since (ni3)x0, (ni4)x0 and (ni5)x0 are contained in a complex line which

does not pass 0, we have li3, li4 and li5 have a common point. Hence the lines lRi3 , lRi4 and lRi5
have a common point. Denote by p345 this common point. Similarly, since (ni2)x0, (ni5)x0

and (ni6)x0 are contained in a complex line which does not pass 0, we have li2 , li5 and li6 have

a common point. Hence the lines lRi2 , lRi5 and lRi6 have a common point. Denote by p256 this

common point. Also, since (ni1)x0, (ni4)x0 and (ni6)x0 are contained in a complex line which

does not pass 0, li1 , li4 and li6 have a common point. Hence the lines lRi1 , lRi4 and lRi6 have a

common point. Denote by p146 this common point. These three intersection points p345, p256

and p146 lie in no line in b− because of i4 �= i5. On the other hand, in the case where R is

of type (Ã2), it is clear that the angle between arbitrarily chosen two of lRik (k = 1, . . . , 6) is

equal to an integer-multiple of π
6 other than π

2 . Also, in the case where R is of type (G̃2),

it follows from Lemmas 5.10 and 5.24 that the angle between arbitrarily chosen two of lRik
(k = 1, . . . , 6) is equal to an integer-multiple of π

6 other than π
2 . Hence, it follows from (i) of

Lemma 5.25 that p345, p256 and p146 lie in a line in bR. Thus a contradiction arises. Similarly,
in case of (II), we can drive a contradiction. Therefore we obtain (Γw1w2)

i3 = 0. It follows
from the arbitrariness of i3 that Γw1w2 ∈ (E0)x0 . This completes the proof. �

From Lemmas 5.17 and 5.21 and Theorem 5.25, we have the following fact.

PROPOSITION 5.26. If R is one of the following types:

(Ãm) (m ≥ 2), (D̃m) (m ≥ 4), (Ẽ6), (Ẽ7), (Ẽ8), (F̃4), (F̃ v
4 ), (G̃2), (G̃v

2) ,

then Γw can be extended continuously to Tx0M for any w ∈ ∪
i∈I

Ei .

PROOF. Let α ∈ (�M)+ and j1, j2 ∈ Z. Set ik := (α, jk) (k = 1, 2). From
Lemma 5.17 and Theorem 5.25, we have

||Γw1w2||2 = 1

2
Re

(
ni1 − 0

ni2 − 0

)
〈ni1 , ni2〉 〈w1, w1〉 ||w2||2

for any wk ∈ (Eik )x0 (k = 1, 2). Clearly we have

sup
j∈Z

∣∣∣∣Re

(
ni1 − 0

n(α,j) − 0

)
〈ni1 , n(α,j)〉

∣∣∣∣ < ∞ .

Denote by C this supremum. Then we have

||Γw1w2|| ≤
√

C

2
|||w1|| ||w2|| .

Hence, it follows from the arbitrarinesses of w2 and j2 that

||Γw1w|| ≤
√

C

2
|||w1|| ||w||
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for any w ∈ ∪
j∈Z(E(α,j))x0 . On the other hand, since Γ(Ei1 )x0

(E(α,j))x0 ⊂ (E0)x0 (j ∈ Z) by

Theorem 5.25, it follows from Lemma 5.16 that

〈Γ(Ei1 )x0
(E(α,j))x0, Γ(Ei1 )x0

(E(α,j ′))x0〉 = 0

for any j ′ ∈ Z satisfying j ′ �= j1, j, 2j1 − j . Therefore, by using Lemma 5.21, we can show
that

||Γw1w|| ≤
√

3C

2
|||w1|| ||w||

for any w ∈ ⊕
j∈Z

(E(α,j))x0 . Thus the restriction of Γw1 to ⊕
j∈Z

(E(α,j))x0 is bounded and hence

it can be extended continuously to ⊕
j∈Z

(E(α,j))x0 . Therefore, according to Lemma 5.20, Γw1

can be extended continuously to Tx0M . �

From Lemmas 5.10, 5.11, 5.15 5.21, 5.23, Theorem 5.25 and Lemma 8.3 of [10], we
have the following fact.

LEMMA 5.27. For any α ∈ (�M)+ and any j1, j2 ∈ Z, we have

Γ(E(α,j1))x0
(E(α,j2))x0 ⊂ (E0)x0 ⊕ (E(α,2j1−j2))x0 ⊕ (E(α,2j2−j1))x0 ⊕ (E

(α,
j1+j2

2 )
)x0 ,

where the last term is omitted in the case where j1 + j2 is odd.

PROOF. For simplicity set ik := (α, jk) (k = 1, 2). According to Lemma 5.23 and
Theorem 5.25, we suffice to show in the case where (R) is of type (C̃2), (C̃

v
2 ), (C̃′

2), (C̃
v
2 , C̃′

2),

(C̃′
2, C̃2), (C̃

v
2 , C̃2) or (C̃2, C̃

v
2 ). Let P be the complex affne line through 0 and (n(α,0))x0 .

Since LP
x0

is totally geodesic in M , we have

Γ(E(α,j1))x0
(E(α,j2))x0 ⊂ (E0)x0 ⊕

(
⊕

j∈Z
(E(α,j))x0

)
.

Assume that (Γw1w2)
(α,j3) �= 0 for some wk ∈ (Eik )x0 (k = 1, 2) and some j3 ∈ Z. Set

i3 := (α, j3). Then it follows from Lemma 5.7 that j3 �= j1, j2. According to Lemma 5.11,
there exist ik = (αk, jk) (k = 4, 5) such that 〈(Γw1w2)

i3 , Γw4w5〉 �= 0 for some wk ∈ (Eik )x0

(k = 4, 5). As in the proof of Theorem 5.25, we can show

(I) 〈Γw5w2, Γw1w4〉 �= 0 or (II) 〈Γw1w5, Γw2w4〉 �= 0

in terms of Lemmas 5.10 and 5.15. We consider the case of (I). According to Lemma 5.10,
this fact implies that the complex affine line through (ni2)x0 and (ni5)x0 intersects with the
complex affine line through (ni1)x0 and (ni4)x0 and the only intersection point is equal to

(ni6)x0 for some i6 ∈ I . Then, as in the proof of Theorem 5.25, we can show that lRi1 , lRi2
and lRi3 are mutually parallel, that lRi3 , lRi4 and lRi5 have the common point (which we denote by
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p345), that lRi2 , lRi5 and lRi6 have the common point (which we denote by p256) and that lRi1 , lRi4
and lRi6 have the common point (which we denote by p146). These three intersection points

p345, p256 and p146 are lie in no line in bR because of i4 �= i5. Hence, it follows from (ii) of
Lemma 5.25 that one of lRi1 , lRi2 , lRi3 lies in the half way distant between the other two, that is,

one of j1, j2, j3 is equal to the half of the sum of the other two (i.e., j3 = j1+j2
2 , 2j1 − j2 or

2j2 − j1). Thus we obtain the desired relation. Similarly, in case of (II), we can derive the
desired relation. �

By using Lemmas 5.16, 5.21 and 5.27, we can show the following fact in the method of
the proof of Corollary 8.7 of [10].

LEMMA 5.28. Let α ∈ (�M)+ and jk ∈ Z (k = 1, 2, 3) with j1 �= j2. Then we have
〈Γ(E(α,j1))x0

(E(α,j2))x0, Γ(E(α,j1))x0
(E(α,j3))x0〉 = 0 if j3 is not one of

4j2 − 3j1, 2j2 − j1, j2,
j1 + j2

2
,

3j1 + j2

4
,

3j1 − j2

2
, 2j1 − j2, 3j1 − 2j2 .

Let P be a complex affine line in b containing exactly four J -curvature normals
(n(αk,jk))x0 (k = 1, . . . , 4) at x0 and b′ the (complex) 2-dimensional complex linear sub-
space of b spanned by (n(αk,jk))x0 (k = 1, . . . , 4). Set ik := (αk, jk) (k = 1, . . . , 4). Then the

root system (which we denote by �P ) of the slice LP
x0

is of type (B2) or (BC2). Hence �P is
given by

�P =
⎧⎨⎩

{±αk|b′∩bR | k = 1, . . . , 4} (when �P : (B2)−type)
{±αk|b′∩bR | k = 1, . . . , 4}
∪{±2αk|b′∩bR | k = 1, 2} (when �P : (BC2)−type) ,

where we need to permute i1, . . . , i4 suitably if necessary. If �P is of type (B2), then Eik

(k = 1, . . . , 4) are irreducible with respect to (Φik )x0 , respectively, where Φik is the normal
holonomy group of the focal submanifold fik (M) corresponding to Eik at x0 and (Φik )x0 is
the isotropy group of Φik at x0. Also, if �P is of type (BC2), then Eik (k = 1, 2) are reducible
with respect to (Φik )x0 , respectively, and Eik (k = 3, 4) are irreducible with respect to (Φik )x0 ,
respectively. We can show the following lemma in the method of the proof of Lemma 8.8 of
[10].

LEMMA 5.29. Let P be as above and (Eik )x0 = (E′
ik
)x0 ⊕ (E′′

ik
)x0 the irreducible

decomposition of the action (Φik )x0 � (Eik )x0 , where dimC(E′′
ik
)x0 = 0, 1 or 3.

(i) If �P is of type (B2), then we have Γ(Ei3 )x0
(Ei4)x0 = 0.

(ii) If �P is of type (BC2), then the (Eik )
′
x0

-component of Γ(Ei3 )x0
(Ei4)x0 vanishes, where

k = 1, 2.
(iii) If �P is of type (BC2), then we have Γ(Ei1 )′′x0

(Ei2)x0 = Γ(Ei1 )x0
(Ei2)

′′
x0

= 0.

By using Lemmas 5.10, 5.23, 5.27, 5.29, Theorem 5.25 and Lemma 8.3 of [10], we can
show the following fact corresponding to Theorem 8.12 and Proposition 8.13 of [10].
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LEMMA 5.30. (i) If E(α,j1) is irreducible and if j1 − j2 is divisible by 4 or the

affine root system R associated with M is not of type (C̃n) (n ≥ 2), then we have
Γ(E(α,j1))x0

(E(α,j2))x0 ⊂ (E0)x0 .

(ii) If E(α,j1) is irreducible and if j1 − j2 is even, then we have Γ(E(α,j1))x0
(E(α,j2))x0 ⊂

(E0)x0 ⊕ (E
(α,

j1+j2
2 )

)x0 .

(iii) If E(α,j1) is reducible and if j1 − j2 is even (j1 �= j2), then we have

(Γ(E′′
(α,j1))x0

(E(α,j2))x0)
(α,

j1+j2
2 ) = 0 .

Furthermore, if j1 − j2 is divisible by 4, then E
(α,

j1+j2
2 )

is reducible and the (E′
(α,

j1+j2
2 )

)x0-

component of each element of Γ(E(α,j1))x0
(E(α,j2))x0 vanishes.

For α ∈ (�M)+, we set

Cα := sup
j,j ′∈Z

∣∣∣∣∣Re

(
1 + j ′bαi
1 + jbαi

)−1

× Re

(
1

(1 + jbαi)(1 + j ′bα i)

)∣∣∣∣∣
1
2

.

Clearly we have Cα < ∞. By using Lemmas 5.22 and 5.27, we can show the following
fact.

LEMMA 5.31. Let ik = (α, jk) (k = 1, 2) and wk ∈ (Eik )x0 (k = 1, 2). If j1 − j2 is
not divisible by 2m, then we have

||Γw1w2|| ≤ 2m−1Cα ||(n(α,0))x0 || ||w1|| ||w2|| ,
where m is a positive integer.

PROOF. From Lemmas 5.22 and 5.27, we have

2||(Γw1w2)
(α,2j1−j2)||2 + 1

2
||(Γw1w2)

(α,2j2−j1)||2

−||(Γw1w2)
(α,

j1+j2
2 )||2 + ||(Γw1w2)

0||2

= 1

2
Re

(
1 + j2bαi
1 + j1bαi

)−1

Re

(
1

(1 + j1bα i)(1 + j2bαi)

)
×〈(n(α,0))x0, (n(α,0))x0〉〈w1, w1〉||w2||2 .

By multiplying 2 to both sides and adding 3||(Γw1w2)
(α,

j1+j2
2 )||2 to both sides, we obtain

(5.9)

||Γw1w2||2 ≤
∣∣∣∣∣Re

(
1 + j2bα i
1 + j1bα i

)−1

Re

(
1

(1 + j1bαi)(1 + j2bαi)

)∣∣∣∣∣
×||(n(α,0))x0 ||2||w1||2||w2||2
+3||(Γw1w2)

(α,
j1+j2

2 )||2
≤ C2

α||(n(α,0))x0||2||w1||2||w2||2 + 3||(Γw1w2)
(α,

j1+j2
2 )||2 .
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We use the induction on m. In case of m = 1, the statement of this lemma is derived from
(5.9) directly. Now we assume that the statement of this lemma holds for m(≥ 1) and that

j1 − j2 is not divisible by 2m+1. Set w := (Γw1w2)
(α,

j1+j2
2 ). Since F

w1
t ’s are holomorphic

isometries, Γw1 preserves (Tx0M)− and (Tx0M)+ invariantly, respectively. Hence we have
Γw1((w2)ε) = (Γw1w2)ε (ε = − or +). Also, it follows from the definitions of (Tx0M)ε

(ε = − or +) that ((Γw1w2)ε)
(α,

j1+j2
2 ) = ((Γw1w2)

(α,
j1+j2

2 ))ε (ε = − or +). From (i) of
Lemma 5.2 and these relations, we have

〈(Γw1w2)ε, wε〉 = 〈Γw1w2, wε〉 = −〈(w2)ε, (Γw1w)ε〉 .

Hence we have

(5.10) 〈Γw1w2, w〉± = −〈w2, Γw1w〉± .

Since j1 − j1+j2
2 is not divisible by 2m, it follows from (5.10) and the assumption in the

induction that

||(Γw1w2)
(α,

j1+j2
2 )||2 = 〈Γw1w2, w〉± = −〈w2, Γw1w〉±

≤ ||w2|| ||Γw1w|| ≤ 2m−1Cα||(n(α,0))x0 || ||w1|| ||w|| ||w2|| ,
that is,

||(Γw1w2)
(α,

j1+j2
2 )|| ≤ 2m−1Cα||(n(α,0))x0|| ||w1|| ||w2|| .

From this inequality and (5.9), we obtain

||Γw1w2|| ≤ 2mCα||(n(α,0))x0 || ||w1|| ||w2|| .
Thus the statement of this lemma holds for m + 1. Therefore the statement of this lemma is
true for all m ∈ Z. �

By using Lemmas 5.7, 5.19, 5.21, 5.22, 5.27, 5.28, 5.30 and 5.31, we shall prove Theo-
rem 5.1.

PROOF OF THEOREM 5.1. Let i = (α, j) ∈ I and w ∈ (Ei)x0 . We suffice to show
that Γw is bounded in order to show that Xw is defined on the whole of V .
(Step I) First we shall show that, in the case where j ′ is an integer with j ′ �= j such that

j ′ − j is divided by 4, there exists a positive constant C̄α depending on only α such that

(5.11) ||(Γww′)(α,
j+j ′

2 )|| ≤ C̄α||(n(α,0))x0 || ||w|| ||w′||
holds for any w′ ∈ (E(α,j ′))x0 . If (Ei)x0 is irreducible with respect to (Φi)x0 or “(Ei)x0 is

reducible with respect to (Φi)x0 and w ∈ (E′′
i )x0”, then the left-hand side of (5.11) vanishes

by (i) and (iii) of Lemma 5.30. In the sequel, we consider the case where (Ei)x0 is reducible

and where w ∈ (E′
i )x0 . Set i ′ := (α, j ′), i ′′ := (α,

j+j ′
2 ) and w′′ := (Γww′)i′′ . According to
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(iii) of Lemma 5.30, we have w′′ ∈ (E′′
i′′)x0 . In similar to (5.10), we have

(5.12) 〈Γww′, w′′〉± = −〈w′, Γww′′〉± .

From this relation, we have

(5.13) ||(Γww′)i′′ ||2 = 〈Γww′, w′′〉± = −〈w′, (Γww′′)i′ 〉± ≤ ||w′|| ||(Γww′′)i′ || .
On the other hand, it follows from Lemma 5.27 that

Γww′′ = (Γww′′)0 + (Γww′′)i′ + (Γww′′)(α,(3j−j ′)/2) + (Γww′′)(α,(3j+j ′)/4) .

Hence, by using Lemma 5.22, we can show

1

2
||(Γww′′)i′ ||2 + 2||(Γww′′)(α,(3j−j ′)/2)||2

−||(Γww′′)(α,(3j+j ′)/4)||2 + ||(Γww′′)0||2

≤ 1

2

∣∣∣∣∣Re

(
1 + jbαi

1 + ((j + j ′)/2)bαi

)−1

Re

(
1

(1 + ((j + j ′)/2)bαi)(1 + jbαi)

)∣∣∣∣∣
×||(n(α,0))x0 ||2||w′′||2||w||2 .

Also, it follows from (iii) of Lemma 5.30 that (Γw′′w)(α,(3j+j ′)/4) = 0. Hence we obtain

(5.14)

||(Γww′′)i′ ||

≤
∣∣∣∣∣Re

(
1 + jbα i

1 + ((j + j ′)/2)bαi

)−1

Re

(
1

(1 + ((j + j ′)/2)bαi)(1 + jbαi)

)∣∣∣∣∣
1
2

×||(n(α,0))x0 || ||w′′|| ||w|| .
Easily we can show

sup
j,j ′∈Z

∣∣∣∣∣Re

(
1 + jbαi

1 + ((j + j ′)/2)bαi

)−1

Re

(
1

(1 + ((j + j ′)/2)bαi)(1 + jbαi)

)∣∣∣∣∣
1
2

< ∞ .

Denote by C̄α this supremum. From (5.13) and (5.14), it follows that the inequality (5.11)

holds for this constant C̄α .

(Step II) From the fact shown in (Step I), Lemmas 5.19, 5.21, 5.28, 5.30 and 5.31, it follows
that there exists a positive constant Ĉα depending on only α such that

||Γww′|| ≤ Ĉα||w|| ||w′||
for any w′ ∈ (E0)

⊥
x0

. Assume that w′ ∈ (E0)x0 . Then, since Γww′ ∈ (E0)
⊥
x0

by Lemma 5.7,

we can find a sequence {w′′
k } in ⊕

î∈I

(E
î
)x0 with lim

k→∞ w′′
k = Γww′ (with respect to || · ||). Then
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we have

||Γww′||2 = lim
k→∞〈Γww′, w′′

k 〉± = − lim
k→∞〈w′, Γww′′

k 〉±
≤ lim

k→∞ ||w′|| ||Γww′′
k || ≤ Ĉα||w|| ||w′|| ||Γww′|| ,

that is,

||Γww′|| ≤ Ĉα||w|| ||w′|| ,
where Ĉα is as above. Thus Γw is bounded. Therefore, Xw is defined on the whole of V . �

By using Theorem 3.3, its proof (see the proof of Theorem A in [26]) and Theorem 5.1,
we shall prove Theorem A.

PROOF OF THEOREM A. Take any i ∈ I and any w0 ∈ (Ei)x0 . According to Theo-

rem 5.1, Xw0 is defined over the whole of V , that is, F
w0
1 ∈ Ib

h (V ). On the other hand, F
w0
1

preserves M invariantly. Hence we have F
w0
1 ∈ Hb. Since the holomorphic isometries fk’s in

the proof of Theorem A in [26] are given as the composition of the holomorphic isometries of
F

w0
1 -type, it is then shown that fk’s are elements of Hb and hence so is also the holomorphic

isometry f̂ in Step IV of the proof of Theorem A in [26] (see the construction of f̂ in Step
IV). Therefore we obtain Hb · x = M for any x ∈ M . �

Appendix

In this Appendix, we give examples of elements of Ih(V ) \ Ib
h (V ). Denote by Kh the Lie

algebra of all holomorphic Killing fields on the whole of V . Also, denote by oAK(V ) the
Lie algebra of all continuous skew-symmetric complex linear maps from V to oneself. Any
X ∈ Kh is described as Xu = Au + b (u ∈ V ) for some A ∈ oAK(V ) and some b ∈ V .
Hence Kh is identified with oAK(V ) × V . Give oAK(V ) the operator norm (which we denote
by || · ||op) associated with 〈 , 〉± and Kh the product norm of this norm || · ||op of oAK(V )

and the norm || · || of V . The space Kh is a Banach Lie algebra with respect to this norm.

The group Ib
h (V ) is a Banach Lie group consisting of all holomorphic isometry f ’s of V

which admit a one-parameter transformation group {ft | t ∈ R} of V such that each ft is

a holomorphic isometry of V , that f1 = f and that
d

dt

∣∣∣∣
t=0

(ft )∗ is an element of oAK(V ).

Note that, for a general holomorphic isometry f of V ,
d

dt

∣∣∣∣
t=0

(ft )∗ is not necessarily defined

on the whole of V (but it can be defined on a dense linear subspace of V ). It is clear that the

Lie algebra of this Banach Lie group Ib
h (V ) is equal to Kh.

EXAMPLE. We shall give an example of an element of Ih(V )\ Ib
h (V ). Let V be a com-

plex linear topological space consisting of all complex number sequences {zk}∞k=1’s satisfying
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FIGURE 2. The Banach Lie subgroup of the isometry group of V

∑∞
k=1 |zk|2 < ∞, and 〈 , 〉 a non-degenerate inner product of V defined by

〈{zk}∞k=1, {wk}∞k=1〉 := 2Re

( ∞∑
k=1

zkwk

)
({zk}∞k=1, {wk}∞k=1 ∈ V ) .

The pair (V , 〈 , 〉) is an infinite dimensional anti-Kaehler space. Define a complex linear
transformation At (t ∈ R) of V by assigning {wk}∞k=1 defined by(

w2k−1

w2k

)
:=

(
cos 2kπt − sin 2kπt

sin 2kπt cos 2kπt

)(
z2k−1

z2k

)
(k ∈ N)

to each {zk}∞k=1 ∈ V . It is clear that each At is a holomorphic linear isometry of V . Define
ft ∈ Ih(V ) by ft (u) := Atu + bt (u ∈ V ), where bt is a curve in V with b0 = 0. Set

B := d

dt

∣∣∣∣
t=0

ft∗ = d

dt

∣∣∣∣
t=0

At .

It is easy to show that B is a skew-symmetric complex linear map from a dense linear subspace
U of V to V assigning {wk}∞k=1 defined by(

w2k−1

w2k

)
:=

(
0 −2kπ

2kπ 0

)(
z2k−1

z2k

)
(k ∈ N) ,

to each {zk}∞k=1 ∈ U , where U is the set of all elements {zk}∞k=1’s of V satisfying B({zk}∞k=1)

∈ V . Let {ak}∞k=1 be an element of V defined by ak := 1
[ k+1

2 ] (k ∈ N), where [·] is the
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Gauss’s symbol of ·. Then we can show B({ak}∞k=1) /∈ V , that is, {ak}∞k=1 /∈ U . Thus B is

not an element of oAK(V ) and hence ft does not belong to Ib
h (V ) for positive numbers t’s

sufficiently close to 0, where we note that f1 = id ∈ Ib
h (V ).

FIGURE 3. An example of an element of Ih(V ) \ I b
h
(V )
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