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Morse–Bott Inequalities for Manifolds with Boundary

Ryuma ORITA

The University of Tokyo

(Communicated by K. Ahara)

Abstract. In the present paper, we define Morse–Bott functions on manifolds with boundary which are gener-
alizations of Morse functions and show Morse–Bott inequalities for these manifolds.

1. Introduction

In the early 1930s, M. Morse [12] showed the well-known Morse inequalities which
describe the relationship between the Betti numbers of manifolds and the number of critical
points of functions. Many authors found “Morse inequalities” for manifolds with non-empty
boundary. Recently, motivated by the Floer homology, M. Akaho [2] constructed the Morse
complex (which is derived from Witten’s work [16]) by setting specific conditions on the
boundary. F. Laudenbach [11] constructed the Morse complex by introducing the pseudo-
gradient vector fields adapted to the boundary which control flow lines near the boundary and
obtained Morse inequalities for manifolds with boundary.

In 1954, R. Bott [5] generalized the Morse theory for functions which have degenerate
critical points under some assumptions. Indeed, he [6, 7, 8] established degenerate Morse
inequalities (called Morse–Bott inequalities). After that, J.-M. Bismut [4], B. Helffer and
J. Sjöstrand [9] gave different proofs of these inequalities. Recently, A. Banyaga and D.
Hurtubise [3] published a proof by describing an explicit perturbation of a given Morse–
Bott function (called the perturbation technique) under the assumption that negative normal
bundles are all orientable. Such functions appear when the domain manifold M is equipped
with the action of a compact Lie group G. In that case, the critical set of any G-invariant
smooth function is a disjoint union of finitely many closed submanifolds.

In the present paper, by using the definition introduced by F. Laudenbach [11], we define
Morse–Bott functions on manifolds with boundary which are generalizations of Morse func-
tions. Then we formulate Morse–Bott inequalities for manifolds with boundary (Theorem 3)
and show them by using the perturbation technique.
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2. Preliminaries: Morse homology with local coefficients

In this section, we define the Morse homology with local coefficients and state the Morse
homology theorem and the Morse inequalities for closed manifolds. Our main reference is
[13, Subsection 7.2].

Let M be an m-dimensional connected closed manifold and f : M → R a Morse func-
tion on M . Let R be a ring and L a local system of R-modules over M . We define the Morse

complex
(
C∗(f ;L), ∂

f ;L∗
)

for f with local coefficients in L. For each k = 0, 1, . . . ,m, the
k-chain group is defined by

Ck(f ;L) =
⊕

p∈Critk(f )

Lp ,

where Lp is the fiber of L over p ∈ M . The boundary operator ∂
f ;L
k : Ck(f ;L) →

Ck−1(f ;L) is defined by

∂
f ;L
k (s ⊗ p) =

∑

q∈Critk−1(f )

( ∑

γ∈Mf (p,q)

nf (γ )Φγ̃ (s)

)
⊗ q ,

where p ∈ Critk(f ), s ∈ Lp, the set Mf (p, q) = Wu
f (p) ∩ Ws

f (q)/R is the moduli space

of unparametrized (minus) gradient flow lines of f from p to q , nf (γ ) is the sign of γ

determined by orientations of the unstable manifolds for f , the path γ̃ : [0, 1] → M is a
reparametrization of γ : R → M such that γ̃ (0) = p and γ̃ (1) = q , and Φγ̃ : Lp → Lq is
the R-isomorphism associated with γ̃ .

THEOREM 1 (Morse homology theorem [13]). The pair
(
C∗(f ;L), ∂

f ;L∗
)

is a chain

complex, i.e., ∂f ;L∗ is well-defined and ∂
f ;L
∗−1 ◦∂

f ;L∗ = 0. Moreover, its homology is isomorphic
to the singular homology of M with local coefficients in L. Namely, for every k = 0, 1, . . . ,m

we have

Hk

(
C∗(f ;L), ∂

f ;L∗
) ∼= Hk(M;L) .

We state the Morse inequalities for closed manifolds.

DEFINITION 1. The Morse counting polynomial of f is defined to be

Mt (f ) =
∑

p∈Crit(f )

t indf p ,

and the Poincaré polynomial Pt (M;L) of M with local coefficients in L by

Pt (M;L) =
m∑

k=0

rankR Hk(M;L) tk .
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THEOREM 2 (Morse inequalities for closed manifolds). Let M be a connected closed
manifold and f a Morse function on M . Let R be a ring and L a local system of R-modules
over M . Then there exists a polynomial R(t) with non-negative coefficients such that

Mt (f ) − 1

rankLPt (M;L) = (1 + t)R(t) .

The proof is straightforward by applying Theorem 1.

3. Main Theorem

In this section, we define Morse–Bott functions on manifolds with boundary in the sense
of Laudenbach and state our main theorem (Theorem 3). Let M be an m-dimensional compact
manifold with boundary.

DEFINITION 2. A C∞-function f : M → R is called a Morse–Bott function if f sat-
isfies the following conditions:

(1) The set of critical points Crit(f ) = { p ∈ M | df (p) = 0 } is a disjoint union
of connected submanifolds of the interior Int M and each connected component of
Crit(f ) is non-degenerate in the sense of Bott (see [5]).

(2) The restriction f |∂M : ∂M → R is a Morse–Bott function on ∂M .

Let f : M → R be a Morse–Bott function. Then the critical submanifolds of f |∂M are
divided into two types:

DEFINITION 3. A connected critical submanifold C ⊂ Crit(f |∂M) is said to be of type
N (resp. type D) if for some p ∈ C, hence for all p ∈ C, p is of type N (resp. type D), i.e.,
〈df (p), n(p)〉 is negative (resp. positive) where n(p) ∈ TpM is an outward normal vector to
the boundary at p (see [11]).

We denote the critical point sets by

I (f ) = Crit(f ) , N(f ) = { p ∈ Crit(f |∂M) | p is of type N}
and

D(f ) = { p ∈ Crit(f |∂M) | p is of type D} .

Let Cj (j = 1, . . . , �), Γs (s = 1, . . . , �N ) and Δu (u = 1, . . . , �D) be the connected com-
ponents of I (f ), N(f ) and D(f ), respectively. We prepare the following notation: For
j = 1, . . . , �, s = 1, . . . , �N and u = 1, . . . , �D , let

cj = dim Cj , dN
s = dim Γs , dD

u = dim Δu ,

λj = indf Cj , μN
s = indf |∂M Γs , μD

u = indf |∂M Δu .

For a non-degenerate critical submanifold C of the Morse–Bott function f , denote by
o(ν−C) the orientation bundle of the negative normal bundle ν−C, where ν−C is the maximal
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subbundle of the normal bundle of C in M such that the eigenvalues of the Hessian of f are
all negative. We think of o(ν−C) as a local system of Z-modules of rank one over C.

DEFINITION 4. The Morse–Bott counting polynomial of type N of f is defined to be

MBN
t (f ) =

�∑

j=1

Pt

(
Cj ; o(ν−Cj )

)
tλj +

�N∑

s=1

Pt

(
Γs; o(ν−Γs)

)
tμ

N
s ,

and the Morse–Bott counting polynomial of type D of f is defined to be

MBD
t (f ) =

�∑

j=1

Pt

(
Cj ; o(ν−Cj)

)
tλj +

�D∑

u=1

Pt

(
Δu; o(ν−Δu)

)
tμ

D
u +1 .

Our main result is the following theorem:

THEOREM 3 (Morse–Bott inequalities for manifolds with boundary). Let M be a
compact manifold with boundary and f a Morse–Bott function on M . Then there exists a
polynomial R(t) with non-negative integer coefficients such that

MBN
t (f ) − Pt (M; Z) = (1 + t)R(t) .

COROLLARY 1. Suppose that M , the critical submanifolds of f and their negative
normal subbundles are all oriented. Then there exists a polynomial R(t) with non-negative
integer coefficients such that

MBD
t (f ) − Pt (M, ∂M; Z) = (1 + t)R(t) .

PROOF. Since f is Morse–Bott, so is −f . The critical point sets of f are decomposed
into critical submanifolds as follows:

I (f ) =
�⊔

j=1

Cj , N(f ) =
�N⊔

s=1

Γs , D(f ) =
�D⊔

u=1

Δu .

Then the critical point sets of −f are

I (−f ) =
�⊔

j=1

Cj , N(−f ) =
�D⊔

u=1

Δu , D(−f ) =
�N⊔

s=1

Γs .

Moreover, for j = 1, . . . , � and u = 1, . . . , �D we have

ind−f Cj = dim M − dim Cj − indf Cj = m − cj − λj ,

ind−f |∂M Δu = dim ∂M − dim Δu − indf |∂M Δu = m − dD
u − (μD

u + 1).

Theorem 3 implies that there exists a polynomial Q(t) with non-negative integer coefficients
such that

MBN
t (−f ) − Pt (M; Z) = (1 + t)Q(t) .
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Since the negative normal bundles are all oriented, MBN
t (−f ) is computed as

MBN
t (−f ) =

�∑

j=1

Pt (Cj ; Z) t ind−f Cj +
�D∑

u=1

Pt (Δu; Z) t ind−f |∂M
Δu

=
�∑

j=1

Pt (Cj ; Z) tm−cj −λj +
�D∑

u=1

Pt (Δu; Z) tm−dD
u −(μD

u +1)

= tm
{ �∑

j=1

Pt (Cj ; Z) t−cj

(
1

t

)λj

+
�D∑

u=1

Pt (Δu; Z) t−dD
u

(
1

t

)μD
u +1 }

= tm
{ �∑

j=1

P1/t (Cj ; Z)

(
1

t

)λj

+
�D∑

u=1

P1/t (Δu; Z)

(
1

t

)μD
u +1 }

= tmMBD
1/t (f ) .

Here we used the fact that the critical submanifolds are all oriented and hence we have

Pt (Cj ; Z) t−cj =
( cj∑

k=0

rankZ Hk(Cj ; Z) tk
)

t−cj =
cj∑

k=0

rankZ Hk(Cj ; Z)

(
1

t

)cj −k

=
cj∑

k=0

rankZ Hcj−k(Cj ; Z)

(
1

t

)cj −k

= P1/t (Cj ; Z).

Similarly we have Pt (Δu; Z) t−dD
u = P1/t (Δu; Z).

Therefore we obtain

tmMBD
1/t (f ) − Pt (M; Z) = (1 + t)Q(t) ,

1

tm
MBD

t (f ) − P1/t (M; Z) =
(

1 + 1

t

)
Q

(
1

t

)
,

MBD
t (f ) − tmP1/t (M; Z) = (1 + t)tm−1Q

(
1

t

)
.

Note that the polynomial tm−1Q(1/t) is a polynomial with non-negative integer coefficients.
Since M is oriented, Lefschetz duality shows that

tmP1/t (M; Z) = tm
m∑

k=0

rankZ Hk(M; Z)

(
1

t

)k

=
m∑

k=0

rankZ Hm−k(M, ∂M; Z) tm−k = Pt (M, ∂M).

Thus we obtain the desired identity. �
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The perturbation technique of Section 4 is nothing but the morsification of f along its
critical set. Then, one reduces to the known case of a Morse function. Of course, there is still
some work to do, since the main theorem is stated in terms of the Bott critical sets. This is
done in the last four pages of the paper.

4. Proof of Main Theorem

Let M be an m-dimensional compact manifold with boundary and f a Morse–Bott func-
tion on M .

4.1. Adapted pseudo-gradient vector fields of Bott-type. Let X ∈ X(M) be a
vector field on M , i.e., a smooth section X : M → T M in the tangent bundle. For
any zero point p of X, the differential DX of the smooth map X defines a vector field
DX(p) : TpM → TX(p)T M . Let φ : TX(p)T M → TpM be an isomorphism. We call

Xlin
p = φ ◦ DX(p) : TpM → TpM the linear part of X at p. Let C be a submanifold

consisting of zero points of X. C is called a zero submanifold. The tangent bundle T M|C
splits as T M|C = T C ⊕ νC where νC is the normal bundle of C in M . For all p ∈ C and

V ∈ TpC, we have DX(p)(V ) = 0. Hence the linear part Xlin
p of X at p induces the linear

transformation
(
Xlin

p

)ν : νpC → νpC.

DEFINITION 5 ([1]). A zero submanifold C of X is said to be transversely hyperbolic

if for each p ∈ C, the linear transformation
(
Xlin

p

)ν has no pure imaginary eigenvalues.

DEFINITION 6. A vector field X ∈ X(M) is called a pseudo-gradient vector field of
Bott-type for the Morse–Bott function f adapted to the boundary if X satisfies the following
conditions:

(1) Xf < 0 except on the interior critical submanifolds and the boundary critical sub-
manifolds of type N of f .

(2) X points inwards along the boundary except a neighborhood of the boundary critical
submanifolds of type N where it is tangent to ∂M .

(3) For each interior critical submanifold C ⊂ I (f ), C is a transversely hyperbolic
zero submanifold of X, and for all p ∈ C, the Hessian of the Lie derivative X · f

restricted to the normal space νpC is negative definite.
(4) For each boundary critical submanifold Γ ⊂ N(f ) of type N and γ ∈ Γ , there

exist local coordinates x = (r, u, y) ∈ [0, 1) × Rdim Γ × Rm−dim Γ −1 of M around
γ such that M = {r ≥ 0} and f (x) = f (Γ )+q(y)+ r where q is a non-degenerate
quadratic form. Moreover, in these coordinates, X is tangent to the boundary, Γ is a
transversely hyperbolic zero submanifold of X, and the Hessian of the Lie derivative
X · f restricted to the normal bundle νΓ is negative definite.

REMARK 1. The conditions (1) and (2) are exactly the same as [11]. However, in our
setting, since the critical point set might be positive dimensional, the conditions (3) and (4)
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are certain generalizations of those of [11].

PROPOSITION 1. For any Morse–Bott function f , there exists an adapted pseudo-
gradient vector field of Bott-type X ∈ X(M) for f .

PROOF. The proof is similar to that of [11, Proposition of Subsection 2.1]. The exis-
tence of local coordinates of (4) follows from the Morse–Bott Lemma [5]. �

4.2. Perturbation technique [3]. In this subsection, we use the same notation as in
Section 3. We identify a collar neighborhood of the boundary ∂M with [0, 1) × ∂M . Let
r be the standard coordinate of [0, 1). Fix an adapted pseudo-gradient vector field of Bott-
type Xf ∈ X(M) for the Morse–Bott function f (Proposition 1). For all j = 1, . . . , � and

s = 1, . . . , �N , we choose open neighborhoods Uj ⊂ Int M of Cj and UN
s ⊂ ∂M of Γs such

that

Xf

∣∣
Uj

= − (grad f )|Uj
and Xf

∣∣
UN

s
= − (grad f |∂M)|UN

s
. (4.1)

By the condition (4) of Definition 6, we can choose a positive real number 0 < δ < 1/2 small
enough so that for any s = 1, . . . , �N and γ ∈ Γs , there exist local coordinates (r, u, y) ∈
[0, 1) × Rdim Γs × Rm−dim Γs−1 of M around γ and a non-degenerate quadratic form qs such
that

f |[0,2δ)×UN
s

= f (Γs) + qs(y) + r , (4.2)

Xf

∣
∣[0,2δ)×UN

s
= − (grad f |∂M)|UN

s
− r

∂

∂r
. (4.3)

For all j and s, let Tj ⊂ Int M be a tubular neighborhood of Cj of radius δj and T N
s ⊂ ∂M a

tubular neighborhood of Γs which satisfy the following conditions:

(1) For each j and s, we have Tj ⊂ Uj and T N
s ⊂ UN

s .

(2) For each j and s, Tj and T N
s are contained in the union of the charts from the

Morse–Bott Lemma [5].
(3) For distinct i and j , we have Ti ∩ Tj = ∅ and T N

i ∩ T N
j = ∅.

(4) For every pseudo-gradient flow line (i.e., flow line of Xf ) γ : [0, 1] → M from Ti

to Tj , we have

f
(
γ (0)

) − f
(
γ (1)

)

≥3 max
{

var(f, T1), . . . , var(f, T�), var(f, T N
1 ), . . . , var(f, T N

�N
)
}
.

Moreover, the similar conditions hold in the cases of “from Ti to T N
j ”, “from T N

i to

Tj ” and “from T N
i to T N

j ”.

(5) If f (Ci) �= f (Cj ), then var(f, Ti)+ var(f, Tj ) < 1/3
∣
∣f (Ci)−f (Cj )

∣
∣. Moreover,

the similar conditions hold in the cases of f (Γi) �= f (Γj ) and f (Cj ) �= f (Γs).
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(6) For all j , we have
(
(0, 1) × ∂M

) ∩ Tj = ∅.

Similarly, for all u = 1, . . . , �D , let T D
u ⊂ ∂M be a tubular neighborhood of Δu satisfying

the above conditions (2) and (3).
By the Kupka–Smale Theorem [10, 15], for each j , s and u, we can pick positive Morse

functions fj : Cj → R, f N
s : Γs → R and f D

u : Δu → R such that their gradient vector fields
satisfy the Morse–Smale condition, i.e., all the unstable manifolds and the stable manifolds
intersect transversely. We extend these functions to functions on Tj , T N

s and T D
u by making

constant in the direction normal to Cj , Γs and Δu respectively. For all j = 1, . . . , �, let

T̃j ⊂ Tj be a smaller tubular neighborhood of Cj of radius δ̃j (< δj ) in Int M .
Moreover, let ρ̂j : [0,∞) → [0, 1] be a C∞-function satisfying

ρ̂j =
{

1 on [0, δ̃j ) ,

0 outside of [0, δj ) ,

ρ̂j > 0 on [0, δj )

and we define a bump function ρj by the formula ρj (x) = ρ̂j

(
d(x,Cj )

)
where d is the

distance induced from a metric on M . Now we choose ε1 > 0 small enough so that for all
j = 1, . . . , �,

sup
Tj \T̃j

ε1
∥
∥ grad(ρj fj )

∥
∥ < inf

Tj \T̃j

∥
∥ grad f

∥
∥ �= 0 .

Similarly, for every s and u, we choose T̃ N
s , T̃ D

u , ρN
s , ρD

u , εN
1 and εD

1 . For each s and u, we

extend f N
s and f D

u to functions on [0, 1) × T N
s and [0, 1) × T D

u by making constant in the

r-coordinate, respectively. Similarly, we extend ρN
s and ρD

u to functions on [0, 1) × ∂M .
On the other hand, let ρ̂ : [0,∞) → [0, 1] be a C∞-function satisfying

ρ̂ =
{

1 on [0, 2δ) ,

0 outside of [0, 1) ,

ρ̂ > 0 on [0, 1)

and we define a bump function ρ by the formula ρ(r, y) = ρ̂(r) where (r, y) ∈ [0, 1) × ∂M .

By the condition (1) of Definition 2, we can choose εN
2 > 0 small enough so that for all

s = 1, . . . , �N ,

sup
[0,1)×T N

s

εN
2

∥∥ grad
(
ρρN

s f N
s

)∥∥ < inf
[0,1)×T N

s

∥∥ grad f
∥∥ �= 0 .

We can choose εD
2 satisfying a similar condition.
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Lastly, we set ε = min{ ε1, ε
N
1 , εD

1 , εN
2 , εD

2 } and define a C∞-function on M by

h = f + ε

⎧
⎨

⎩

�∑

j=1

ρjfj + ρ

( �N∑

s=1

ρN
s f N

s +
�D∑

u=1

ρD
u f D

u

)
⎫
⎬

⎭
.

The proof of the following lemma is straightforward:

LEMMA 1. The function h : M → R is Morse in the sense of Laudenbach [11]. For
all n = 0, 1, . . . ,m,

In(h) =
⊔

λj+k=n

Critk(fj ), Nn(h) =
⊔

μN
s +k=n

Critk(f
N
s )

and

Dn(h) =
⊔

μD
u +k=n

Critk(f
D
u ) .

Since the number of critical points is finite, we can choose δ̃ > 0 small enough so that

for all s = 1, . . . , �N and γ ∈ N(h) ∩ Γs , the open ball B4δ̃ (γ ) ⊂ T N
s of γ of radius 4δ̃

contains no other critical points. Let ˆ̃ρ : [0,∞) → [0, 1] be a C∞-function satisfying

ˆ̃ρ =
{

0 on [0, δ̃) ,

1 outside of [0, 2δ̃) ,

ˆ̃ρ > 0 on [0, 2δ̃)

and we define a bump function ρ̃ by the formula ρ̃(y) = ˆ̃ρ
(
d
(
y,N(h)

))
where y ∈ ∂M .

Then we extend ρ̃ to a function on [0, 1) × ∂M by making constant in the r-coordinate.
Now let us choose ε > 0 small enough so that for all s = 1, . . . , �N ,

sup
[0,2δ)×

(
T N

s \Bs

δ̃

) εδ |(grad(ρ̃r)) h| < inf
T N

s \Bs

δ̃

∥
∥ grad h|∂M

∥
∥2 �= 0 (4.4)

and

sup
[2δ,1)×T N

s

ε

∣
∣
∣Xf

(
ρρN

s f N
s

) − (grad f )
(
ρρN

s f N
s

) + δ
(

grad(ρρ̃r)
)
h

∣
∣
∣

< inf
[2δ,1)×T N

s

∣∣Xf f
∣∣ �= 0 ,

(4.5)

where

Bs

δ̃
=

⋃

γ∈N(h)∩Γs

Bδ̃(γ ) .
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We define a C∞-vector field on M by

G = Xf − ε grad

⎧
⎨

⎩

�∑

j=1

ρjfj + ρ

( �N∑

s=1

ρN
s f N

s +
�D∑

u=1

ρD
u f D

u − δρ̃r

)
⎫
⎬

⎭
.

LEMMA 2. The vector field G is an adapted pseudo-gradient vector field for the Morse
function h.

PROOF. We show that G satisfies the conditions (1)–(5) of the definition of the adapted
pseudo-gradient vector fields of [11], that is those of Definition 6 for a Morse function.

The condition (3) is verified as follows: For p ∈ I (h), there exists j = 1, . . . , � such
that p ∈ Cj ⊂ Tj . Since h = f + ερjfj and Xf = − grad f on Tj by (4.1), we have

G = Xf − ε grad(ρjfj ) = − grad f − ε grad(ρj fj ) = − grad h . (4.6)

Hence the Hessian of the Lie derivative G · h at p is negative definite since p is a non-
degenerate critical point of h by Lemma 1.

The condition (4) is verified as follows: For γ ∈ N(h), there exists s = 1, . . . , �N such
that γ ∈ Γs ⊂ T N

s . By Lemma 1 and (4.2), on [0, 2δ) × T N
s , there exist local coordinates

x = (r, y) ∈ [0, 1) × Rm−1 around γ in M and a non-degenerate quadratic form q such that

h(x) = h(γ ) + q(y) + r . (4.7)

By (4.3), on [0, 2δ) × T N
s , we obtain

G = Xf − ε grad
(
ρN

s f N
s − δρ̃r

)

=
(

− grad f |∂M − r
∂

∂r

)
− ε grad

(
ρN

s f N
s

) + εδ grad
(
ρ̃r

)

= − grad h|∂M − r
∂

∂r
+ εδ grad

(
ρ̃r

)
(4.8)

and in particular, on [0, 2δ) × Bδ̃(γ ), we have

G = − grad h|∂M − r
∂

∂r
= − grad q − r

∂

∂r
. (4.9)

Hence the Hessian of the Lie derivative G · h is negative definite.
The condition (2) is verified as follows: By (4.9), since G = − grad h|∂M on {0}×Bδ̃(γ ),

G is tangent to the boundary on the neighborhood Bδ̃(γ ) of a boundary critical point γ of type
N . On ∂M \ ⋃

s Bs

δ̃
, we have

G = Xf − ε grad

( �N∑

s=1

ρN
s f N

s +
�D∑

u=1

ρD
u f D

u

)
+ δ

(
r grad ρ̃ + ρ̃

∂

∂r

)
.

Due to the term δρ̃ ∂/∂r �= 0, G points inwards along the boundary outside of a neighborhood
containing

⋃
s Bs

δ̃
.
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The verification of the condition (1) divides into five cases: On a neighborhood Up \
{p} of a critical point p ∈ I (h) ∩ Cj ⊂ Tj , we have G = − grad h by (4.6) and Gh =
−(grad h)h = −∥∥ grad h

∥∥2
< 0. On the neighborhood [0, 2δ) × Bδ̃(γ ) of a critical point

γ ∈ N(h) ∩ Γs ⊂ T N
s , we have h = h|∂M + r by (4.7) and

Gh =
(

− grad h|∂M − r
∂

∂r

)
(h|∂M + r) = −∥∥ grad h|∂M

∥∥2 − r < 0

by (4.9). On [0, 2δ) ×
(
T N

s \ Bs

δ̃

)
, we have

Gh =
(

− grad h|∂M − r
∂

∂r
+ εδ grad

(
ρ̃r

)
)

(h|∂M + r)

= −∥
∥ grad h|∂M

∥
∥2 − r + εδ

(
grad

(
ρ̃r

))
h

< − inf
T N

s \Bs

δ̃

∥
∥ grad h|∂M

∥
∥2 + sup

[0,2δ)×
(
T N

s \Bs

δ̃

) εδ |(grad(ρ̃r)) h| < 0

by (4.7), (4.8) and (4.4). On a neighborhood [2δ, 1) × Uγ of the critical point γ , we have

h = f + ερρN
s f N

s and

Gh =
(
Xf − ε grad

(
ρρN

s f N
s

) + εδ grad
(
ρρ̃r

)) (
f + ερρN

s f N
s

)

= Xf f + ε
{
Xf

(
ρρN

s f N
s

) −
(

grad
(
ρρN

s f N
s

))
f

}

− ε2
∥
∥ grad

(
ρρN

s f N
s

)∥∥2 + εδ
(
grad

(
ρρ̃r

))
h

< − inf
[2δ,1)×T N

s

∣∣Xf f
∣∣ + ε

{
Xf

(
ρρN

s f N
s

) − (grad f )
(
ρρN

s f N
s

) + δ
(
grad

(
ρρ̃r

))
h
}

< − inf
[2δ,1)×T N

s

∣
∣Xf f

∣
∣

+ sup
[2δ,1)×T N

s

ε

∣
∣
∣Xf

(
ρρN

s f N
s

) − (grad f )
(
ρρN

s f N
s

) + δ
(
grad

(
ρρ̃r

))
h

∣
∣
∣

< 0 .

Here we used the fact that Xf f < 0 and (4.5). Outside of all the neighborhoods we have
considered till here, we have h = f and G = Xf . This implies that Gh = Xf f < 0.

According to [14], the condition (5) is generically fulfilled for vector fields satisfying
conditions (1)–(4). Thus we choose ε small enough so that G satisfies the condition (5) if
necessary. �

4.3. Lemmas. Let ∂h∗ be the boundary operator of the Morse complex for the Morse

function h defined in [11]. For j = 1, . . . , � and s = 1, . . . , �N , let ∂
j∗ = ∂

fj ;o(ν−Cj )
∗ and
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∂
s,N∗ = ∂

f N
s ;o(ν−Γs)∗ be the boundary operators for the Morse functions fj and f N

s with local

coefficients in o(ν−Cj) and o(ν−Γs) defined in Section 2, respectively.

Let us denote by o(ν−Cj )x ∼= Z the fiber of o(ν−Cj ) over a point x ∈ Cj . We fix
a base point ∗ ∈ Cj . For every p ∈ Crit(fj ), let cp : [0, 1] → Cj be a path such that
cp(0) = ∗ and cp(1) = p. Since the interval [0, 1] is contractible and then the pull-back

bundle c∗
po(ν−Cj ) → [0, 1] is trivial, we can choose bases 1p of o(ν−Cj )p, p ∈ Crit(fj ),

so that the associated isomorphism Φcp : o(ν−Cj )∗ → o(ν−Cj )p satisfies Φcp(1∗) = 1p.

Similarly, we choose bases 1p of o(ν−Γs)p, p ∈ Crit(f N
s ).

We note that an orientation of the unstable manifold Wu
fj

(p) of a critical point p is

determined by an orientation of the tangent space TpWu
fj

(p) at p. We fix orientations of the

unstable manifolds Wu
G(p), p ∈ Crit(h), where G is the adapted pseudo-gradient vector field

for h defined in Subsection 4.2. Since we have the direct sum TpWu
G(p) = TpWu

fj
(p)⊕ν−

p Cj

at p, we get an orientation of Wu
fj

(p). In the same manner, we choose orientations of Wu
f N

s
(p),

p ∈ Crit(f N
s ). The following lemmas are generalizations of [3, Lemma 9 and Corollary 10].

LEMMA 3. Let j = 1, . . . , � and s = 1, . . . , �N . For all critical points p, q ∈ Crit(fj )

(resp. Crit(f N
s )) of relative index one and all unparametrized (pseudo-)gradient flow lines γ

from p to q , we have

nh(γ )1q = nfj (γ )Φγ̃ (1p)

(resp. nh(γ )1q = nf N
s

(γ )Φγ̃ (1p)).

PROOF. We will focus on Cj . By the definition of h (and the choice of ε), the gradient
flow lines connecting two critical points in Cj are the same (see the proof of [3, Lemma 9]).

The signs nh(γ ) and nfj (γ ) are determined by the orientations of the unstable manifolds

Wu
G(p), Wu

G(q), Wu
fj

(p) and Wu
fj

(q) chosen above. We define a loop l : S1 = R/Z → Cj by

l(t) =

⎧
⎪⎪⎨

⎪⎪⎩

γ̃ (3t) if 0 ≤ t ≤ 1/3 ,

cq(2 − 3t) if 1/3 ≤ t ≤ 2/3 ,

cp(3t − 2) if 2/3 ≤ t ≤ 1 .

Since we have the direct sum TxW
u
G(p) = TxWu

fj
(p) ⊕ ν−

x Cj for every x ∈ Wu
G(p) ∩Cj , the

orientations of Wu
G(p) and Wu

fj
(p) is not compatible along the loop l as long as the pull-back

bundle l∗o(ν−Cj) → S1 is non-trivial. Hence the ambiguity of these orientations appears as
the multiplication by Φl(1p). Namely, we have

nh(γ )1p = nfj (γ )Φl(1p) .
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Therefore,

nh(γ )1q = nh(γ )Φcq

(
Φ−1

cp

(
1p

)) = Φcq

(
Φ−1

cp

(
nh(γ )1p

)) = Φcq

(
Φ−1

cp

(
nfj (γ )Φl(1p)

))

= nfj (γ )Φγ̃ (1p) .

This completes Lemma 3. �

Now we order C1, . . . , C�, Γ1, . . . , Γ�N by “height”. That is, for

{B1, . . . , B�+�N } = {C1, . . . , C�, Γ1, . . . , Γ�N } ,

we assume that the order of B1, . . . , B�+�N is ascending, i.e., f (Bi) ≤ f (Bj ) whenever

i ≤ j . On the other hand, by Lemma 1, for each n = 0, 1, . . . ,m, the n-chain group FN
n (h)

of the Morse complex (see [11] for the definition) of h is of the form:

FN
n (h) =

�⊕

j=1

Cn−λj (fj ; Z) ⊕
�N⊕

s=1

Cn−μN
s
(f N

s ; Z) ,

where Cn−λj (fj ; Z) and Cn−μN
s
(f N

s ; Z) are the free Z-modules generated by the elements of

Critn−λj (fj ) and Critn−μN
s
(f N

s ), respectively. Therefore any β ∈ FN
n (h)\{0} can be uniquely

decomposed into the sum of n-chains of Critn−λj (fj ) and Critn−μN
s
(f N

s ), β = βj1 +· · ·+βjr

where j1 < · · · < jr and for i = 1, . . . , r there exists j = 1, . . . , � or s = 1, . . . , �N such
that βji ∈ Cn−λj (fj ; Z) \ {0} or βji ∈ Cn−μN

s
(f N

s ; Z) \ {0} respectively. We call βjr the top

chain of β and denote by top β.

LEMMA 4. Let n = 0, 1, . . . ,m. If β ∈ Ker ∂h
n , then we have

1l ⊗ top β ∈ Ker ∂
j
n−λj

or 1l ⊗ top β ∈ Ker ∂
s,N

n−μN
s
,

where 1l = ∑
q∈top β 1q ∈ o(ν−Cj) (the sum is taken over generators) and top β ∈

Cn−λj (fj ; Z) for some j = 1, . . . , �, or 1l = ∑
1q ∈ o(ν−Γs) and top β ∈ Cn−μN

s
(f N

s ; Z)

for some s = 1, . . . , �N , respectively.

PROOF. Let β = ∑
i niqi where ni ∈ Z and qi ∈ Critn(h). If β ∈ Ker ∂h

n , we then
have

0 = ∂h
n (β) =

∑

i

ni∂
h
n (qi) =

∑

i

ni

⎧
⎨

⎩

∑

p∈In−1(h)∪Nn−1(h)

( ∑

γ∈MG(qi,p)

nh(γ )

)
p

⎫
⎬

⎭

=
∑

p∈In−1(h)∪Nn−1(h)

⎧
⎨

⎩

∑

i

ni

( ∑

γ∈MG(qi,p)

nh(γ )

)
⎫
⎬

⎭
p .
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Hence for every p ∈ In−1(h) ∪ Nn−1(h) we have

∑

i

ni

( ∑

γ∈MG(qi,p)

nh(γ )

)
= 0 .

From now on, we will focus on Cj ’s. Namely, we assume that top β ∈ Cn−λj (fj ; Z) for some
j = 1, . . . , �. Then, in particular, for every p ∈ In−1(h) ∩ Cj = Critn−λj −1(fj ) we have

0 =
∑

i

ni

( ∑

γ∈MG(qi,p)

nh(γ )

)
=

∑

qi∈Cj

ni

( ∑

γ∈MG(qi,p)

nh(γ )

)

since MG(qi, p) = ∅ for every qi �∈ Cj by the definition of top chains. Therefore, we have

∂
j
n−λj

(1l ⊗ top β) =
∑

qi∈Cj

ni∂
j
n−λj

(1qi ⊗ qi)

=
∑

qi∈Cj

ni

⎧
⎪⎨

⎪⎩

∑

p∈Critn−λj −1(fj )

( ∑

γ∈Mfj
(qi,p)

nfj (γ )Φγ̃ (1qi )

)
⊗ p

⎫
⎪⎬

⎪⎭

=
∑

p∈Critn−λj −1(fj )

⎧
⎪⎨

⎪⎩

∑

qi∈Cj

ni

( ∑

γ∈Mfj
(qi ,p)

nfj (γ )Φγ̃ (1qi )

)
⎫
⎪⎬

⎪⎭
⊗ p

=
∑

p∈In−1(h)∩Cj

⎧
⎨

⎩

∑

qi∈Cj

ni

( ∑

γ∈MG(qi,p)

nh(γ )1p

)
⎫
⎬

⎭
⊗ p

=
∑

p∈In−1(h)∩Cj

⎧
⎨

⎩

∑

qi∈Cj

ni

( ∑

γ∈MG(qi,p)

nh(γ )

)
⎫
⎬

⎭
(1p ⊗ p)

= 0.

Here we applied Lemma 3 and used the fact that MG(qi, p) coincides with Mfj (qi, p) when-
ever qi , p ∈ Cj . �

4.4. Proof of Main Theorem. Under these preparations, the remaining part of the
proof is based on a modification of [3].

PROOF OF THEOREM 3. Applying Theorem 2 for the Morse functions f1, . . . , f� and

f N
1 , . . . , f N

�N
, there exist polynomials R1(t), . . . , R�(t) and RN

1 (t), . . . , RN
�N

(t) with non-

negative integer coefficients, such that for j = 1, . . . , � and s = 1, . . . , �N ,

Mt (fj ) − Pt

(
Cj ; o(ν−Cj)

) = (1 + t)Rj (t)
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and

Mt (f
N
s ) − Pt

(
Γs; o(ν−Γs)

) = (1 + t)RN
s (t) ,

respectively. Here we note that rank o(ν−Cj) = rank o(ν−Γs) = 1. Moreover, by [11,
Corollary A], for the Morse function h, there exists a polynomial Rh(t) with non-negative
integer coefficients such that

MN
t (h) − Pt (M; Z) = (1 + t)Rh(t) ,

where

MN
t (h) =

∑

p∈I (h)

t indh p +
∑

γ∈N(h)

t indh|∂M
γ

is the Morse counting polynomial of type N of h. By Lemma 1, MN
t (h) can be computed as

follows:

MN
t (h) =

∑

j, k

# Critk(fj ) tλj +k +
∑

s, k

# Critk(f N
s ) tμ

N
s +k

=
�∑

j=1

Mt (fj ) tλj +
�N∑

s=1

Mt (f
N
s ) tμ

N
s .

Hence we have

MBN
t (f ) =

�∑

j=1

Pt

(
Cj ; o(ν−Cj )

)
tλj +

�N∑

s=1

Pt

(
Γs; o(ν−Γs)

)
tμ

N
s

=
�∑

j=1

{Mt (fj ) − (1 + t)Rj (t)
}
tλj +

�N∑

s=1

{
Mt (f

N
s ) − (1 + t)RN

s (t)
}

tμ
N
s

= MN
t (h) − (1 + t)

( �∑

j=1

Rj (t) tλj +
�N∑

s=1

RN
s (t) tμ

N
s

)

= Pt (M; Z) + (1 + t)

⎧
⎨

⎩
Rh(t) −

( �∑

j=1

Rj (t) tλj +
�N∑

s=1

RN
s (t) tμ

N
s

)
⎫
⎬

⎭
.

We set R(t) = Rh(t) −
(∑�

j=1 Rj (t) tλj + ∑�N

s=1 RN
s (t) tμ

N
s

)
. It is enough to show that all

the coefficients of the polynomial R(t) are non-negative.

According to the proof of [3, Theorem 3], R1(t), . . . , R�(t), RN
1 (t), . . . , RN

�N
(t) and
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Rh(t) have the following specific forms: For all j = 1, . . . , � and s = 1, . . . , �N ,

Rj (t) =
cj∑

k=1

(
ν

j
k − z

j
k

)
tk−1 , RN

s (t) =
dN
s∑

k=1

(
ν

s,N
k − z

s,N
k

)
tk−1

and Rh(t) =
m∑

n=1

(
νn + νN

n − zn

)
tn−1 ,

where

ν
j
k = # Critk(fj ) , z

j
k = rankZ Ker ∂

j
k ,

ν
s,N
k = # Critk(f N

s ) , z
s,N
k = rankZ Ker ∂

s,N
k ,

νn = #In(h) , νN
n = #Nn(h) , zn = rankZ Ker ∂h

n .

Therefore

R(t) =
m∑

n=1

(
νn + νN

n − zn

)
tn−1

−
{ �∑

j=1

cj∑

k=1

(
ν

j
k − z

j
k

)
tλj +k−1 +

�N∑

s=1

dN
s∑

k=1

(
ν

s,N
k − z

s,N
k

)
tμ

N
s +k−1

}

=
( �∑

j=1

cj∑

k=1

z
j
k t

λj +k−1 +
�N∑

s=1

dN
s∑

k=1

z
s,N
k tμ

N
s +k−1

)
−

m∑

n=1

znt
n−1

=
m∑

n=1

( ∑

λj +k=n

z
j
k +

∑

μN
s +k=n

z
s,N
k − zn

)
tn−1 .

Thus it is enough to show that for all n = 1, . . . ,m,
∑

λj +k=n

z
j
k +

∑

μN
s +k=n

z
s,N
k ≥ zn .

Fix n = 1, . . . ,m. If zn = 0, the inequality holds. Hence we may assume that zn > 0.

If zn = 1, there exists a non-zero element β1 in Ker ∂h
n . By Lemma 4, 1l ⊗ top β1 ∈

Ker ∂
j1
k1

(or 1l ⊗ top β1 ∈ Ker ∂
j1,N
k1

) where k1 and j1 are integers satisfying λj1 + k1 = n (or

μN
j1

+ k1 = n). Hence the inequality holds.

If zn = 2, we can find an element β2 ∈ Ker ∂h
n which is not in the group generated

by β1, and by adding a multiple of β1 to β2 if necessary, we can choose β2 whose top part

1l ⊗ top β2 ∈ Ker ∂
j2
k2

(or 1l ⊗ top β2 ∈ Ker ∂
j2,N
k2

) is not in the group generated by 1l ⊗ top β1
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where k2 and j2 are integers satisfying λj2 + k2 = n (or μN
j2

+ k2 = n). Hence the inequality

holds.
Repeating this argument finitely many times, we get generators in Ker ∂h

n whose the
tensor products of 1l and top parts are linearly independent in

⊕

λj+k=n

Ker ∂
j
k ⊕

⊕

μN
s +k=n

Ker ∂
s,N
k .

Thus
∑

λj+k=n

rankZ Ker ∂
j
k +

∑

μN
s +k=n

rankZ Ker ∂
s,N
k ≥ rankZ Ker ∂h

n .

This completes the proof. �
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