On the Semi-simple Case of the Galois Brumer-Stark Conjecture for Monomial Groups

Xavier-François ROBLOT
Université Claude Bernard Lyon 1
(Communicated by M. Kurihara)

Abstract

In a previous work, we stated a conjecture, called the Galois Brumer-Stark conjecture, that generalizes the (abelian) Brumer-Stark conjecture to Galois extensions. Other generalizations of the Brumer-Stark conjecture to non-abelian Galois extensions are due to Nickel. Nomura proved that the Brumer-Stark conjecture implies the weak non-abelian Brumer-Stark conjecture of Nickel when the group is monomial. In this paper, we use the methods of Nomura to prove that the Brumer-Stark conjecture implies the Galois Brumer-Stark conjecture for monomial groups in the semi-simple case.

1. Introduction

Let K / k be an abelian extension of number fields. The Brumer-Stark conjecture [14] predicts that a group ring element, called the Brumer-Stickelberger element, constructed from special values of L-functions associated to K / k, annihilates (after multiplication by a suitable factor) the ideal class group of K and specifies special properties for the generators obtained. In [5], we introduced a generalization of the conjecture to Galois extensions, called the Galois Brumer-Stark conjecture. Later, in [6], we introduced a refined version of the conjecture that focused on the contribution of the non-linear irreducible characters. Since the new version in [6] supersedes the version in [5], we will from now on refer to it as the Galois Brumer-Stark conjecture (and not call it anymore the refined Galois Brumer-Stark conjecture). Also, to avoid confusion, we call the original conjecture the abelian Brumer-Stark conjecture.

In [10], Nickel introduced another generalization of the abelian Brumer-Stark conjecture to Galois extensions and in [12], Nomura proved, among other things, that the abelian BrumerStark conjecture implies the (weak) non-abelian Brumer-Stark conjecture of Nickel when the Galois group of K / k is monomial. In this paper, we adapt the method used by Nomura to prove that the abelian Brumer-Stark conjecture implies the Galois Brumer-Stark conjecture in the semi-simple case when the Galois group of K / k is monomial (see Theorem 3.1). Furthermore, using the fact that the local abelian Brumer-Stark conjecture is known to hold in several cases, we prove unconditionally some cases of the local Galois Brumer-Stark conjecture (see Corollary 3.3).

2. The Galois Brumer-Stark conjecture

Before stating the Galois Brumer-Stark conjecture, we recall the statement of the abelian Brumer-Stark conjecture, see [15, IV. §6] or [14]. Let K / k be an abelian extension of number fields. Denote by G its Galois group. Let S be a finite set of places of k containing the infinite places and the finite places ramified in K. To simplify matters, we assume that the cardinality of S is at least 2. The interested reader can refer to [15, Sec. IV. §6] for the statement of the conjecture when $|S|=1$. For $\chi \in \hat{G}$, where \hat{G} denotes the group of irreducible characters of G, denote by $L_{K / k, S}(s, \chi)$ the Hecke L-function of the character χ with Euler factors associated to prime ideals in S deleted. The Brumer-Stickelberger element associated to the extension K / k and the set S is defined by

$$
\theta_{K / k, S}:=\sum_{\chi \in \hat{G}} L_{K / k, S}(0, \chi) e_{\bar{\chi}}
$$

where $e_{\chi}:=\frac{1}{|G|} \sum_{\sigma \in G} \chi(\sigma) \sigma^{-1}$ is the idempotent of χ. It follows from [7] (see also [4]) that

$$
\begin{equation*}
\xi \theta_{K / k, S} \in \mathbb{Z}[G] \tag{2.1}
\end{equation*}
$$

for any $\xi \in \operatorname{Ann}_{\mathbb{Z}[G]}\left(\mu_{K}\right)$, the annihilator in $\mathbb{Z}[G]$ of the group μ_{K} of roots of unity in K. In particular, we have $w_{K} \theta_{K / k, S} \in \mathbb{Z}[G]$ where w_{K} denotes the cardinality of μ_{K}. We need one last notation before stating the abelian Brumer-Stark conjecture. We say that a non-zero element $\alpha \in K$ is an anti-unit if all its conjugates have absolute value equal to 1 . The group of anti-units of K is denoted by K°.

Conjecture 2.1 (The abelian Brumer-Stark conjecture $\mathbf{B S}(K / k, S)$). For any fractional ideal \mathfrak{A} of K, the ideal $\mathfrak{A}^{w_{K} \theta_{K / k, s}}$ is principal and admits a generator $\alpha \in K^{\circ}$ such that $K\left(\alpha^{1 / w_{K}}\right) / k$ is abelian.

We refer to [5, §2] for a review of the current state of the abelian Brumer-Stark conjecture. The following consequence of the abelian Brumer-Stark conjecture will be useful later on. (The conclusion of the proposition is known as the Brumer conjecture; thus, the proposition just states the well-known fact that the Brumer-Stark conjecture implies the Brumer conjecture.)

Proposition 2.2. Assume that the abelian Brumer-Stark conjecture $\mathbf{B S}(K / k, S)$ holds. Let $\xi \in \mathrm{Ann}_{\mathbb{Z}[G]}\left(\mu_{K}\right)$. Then, $\xi \theta_{K / k, S}$ annihilates the class group Cl_{K} of K.

Proof. Under the assumption that $\mathbf{B S}(K / k, S)$ holds, there exists by [14, Proposition §2] a family $\left(a_{i}\right)_{i \in I}$ of elements of $\operatorname{Ann}_{\mathbb{Z}[G]}\left(\mu_{K}\right)$, generating $\operatorname{Ann}_{\mathbb{Z}[G]}\left(\mu_{K}\right)$, and such that $a_{i} \theta_{K / k, S}$ annihilates Cl_{K} for all $i \in I$. The result follows directly.

We now introduce the Galois Brumer-Stark conjecture (more precisely, as noted in the introduction, the refined version stated in [6]). Assume now that K / k is a Galois extension of
number fields. Denote by G its Galois group. Let S be a finite set of places of k containing the infinite places and the finite places ramified in K. Assume that the cardinality of S is at least 2. Denote by $\hat{G}^{(>1)}$ the set of non-linear irreducible characters of G and define the non-linear Brumer-Stickelberger element by

$$
\begin{equation*}
\theta_{K / k, S}^{(>1)}:=\sum_{\chi \in \hat{G}^{(>1)}} L_{K / k, S}(0, \chi) e_{\bar{\chi}} \tag{2.2}
\end{equation*}
$$

where, for $\chi \in \hat{G}^{(>1)}, L_{K / k, S}(s, \chi)$ denotes the Artin L-function of χ with Euler factors associated to prime ideals in S deleted, and

$$
e_{\chi}:=\frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) \sigma^{-1}
$$

is the central idempotent of χ. It follows from the principal rank zero Stark conjecture, proved by Tate [15], that the non-linear Brumer-Stickelberger element lies in $\mathbb{Q}[G]$. Denote by $[G, G]$ the commutator subgroup of G, i.e., the subgroup of G generated by the commutators $\left[g_{1}, g_{2}\right]:=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$ with $g_{1}, g_{2} \in G$. Let $G^{\mathrm{ab}}:=G /[G, G]$ be the maximal abelian quotient of G and let $K^{\text {ab }}:=K^{[G, G]}$ be the maximal sub-extension of K / k that is abelian over k; we have $\operatorname{Gal}\left(K^{\mathrm{ab}} / k\right)=G^{\mathrm{ab}}$. Let s_{G} denote the order of $[G, G]$, let m_{G} be the lcm of the cardinalities of the conjugacy classes of G, and let d_{G} be the lcm of m_{G} and s_{G}.

Conjecture 2.3 (The Galois Brumer-Stark conjecture $\mathbf{B S}_{\text {Gal }}(K / k, S)$). Let K / k be a Galois extension of number fields and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \geq 2$. Then, $\mathbf{B S}\left(K^{\mathrm{ab}} / k, S\right)$ holds, we have $d_{G} \theta_{K / k, S}^{(>1)} \in \mathbb{Z}[G]$ and, for any fractional ideal \mathfrak{A} of K, the ideal $\mathfrak{A}^{d_{G} \theta_{K / k, S}^{(>1)}}$ is principal and admits a generator in K°.

For p a prime, denote by $\mathrm{Cl}_{K}\{p\}$ the p-part of Cl_{K}, that is the subgroup of Cl_{K} of classes of p-power order.

Conjecture 2.4 (The local Galois Brumer-Stark conjecture $\mathbf{B S}_{\text {Gal }}^{(p)}(K / k, S)$). Let K / k be a Galois extension of number fields and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \geq 2$. Then, the local abelian Brumer-Stark conjecture at p for the extension K^{ab} / k and the set of places S holds, we have $d_{G} \theta_{K / k, S}^{(>1)} \in \mathbb{Z}_{p}[G]$ and, for any fractional ideal \mathfrak{A} of K whose class lies in $\mathrm{Cl}_{K}\{p\}$, the ideal $\mathfrak{A}^{d_{G} \theta_{K / k, S}^{(>1)}}$ is principal and admits a generator in K°.

The statement of the local abelian Brumer-Stark conjecture at p is that, for all ideals \mathfrak{A} whose class lies in $\mathrm{Cl}_{K}\{p\}$, the ideal $\mathfrak{A}^{w_{K} \theta_{K / k, S}}$ is principal and admits a generator $\alpha \in K^{\circ}$ such that $K\left(\alpha^{1 / w_{K, p}}\right) / k$ is abelian where $w_{K, p}$ is the order of the p-part of the group of roots of unity in K, see [8]. One checks readily that the Galois Brumer-Stark conjecture is
equivalent to the local Galois Brumer-Stark conjecture at p for all primes p. Some evidence for these conjectures is given in [6]. Relations between the Galois Brumer-Stark conjecture and the weak non-abelian Brumer-Stark conjecture of Nickel are discussed in the appendix of [5]. To conclude this section, we prove that the local versions of the weak non-abelian Brumer-Stark conjecture and of the Galois Brumer-Stark conjecture are equivalent for primes p not dividing $w_{K}|G|$. First, we recall briefly the statement of the local weak non-abelian Brumer-Stark conjecture, see [10] for more details.

Let K / k be a Galois CM-extension with group G. Let S be a finite set of places of k such that S contains the infinite places of k and the finite places of k that ramify in K / k. Let $\operatorname{Hyp}(S)$ denote the set of finite sets T of places of k such that: S and T are disjoint, and the group $E_{K}(S, T)$ is torsion-free. Here, $E_{K}(S, T)$ denotes the group of (S, T)-units of K, that is the group of elements $u \in K^{\times}$such that $v_{\mathfrak{P}}(u)=0$ for all prime ideals \mathfrak{P} of K such that $(\mathfrak{P} \cap k) \notin S$ and $u \equiv 1(\bmod \mathfrak{Q})$ for all prime ideals \mathfrak{Q} of K such that $(\mathfrak{Q} \cap k) \in T$. For $T \in \operatorname{Hyp}(S)$, define

$$
\delta_{T}:=\operatorname{nr}\left(\prod_{\mathfrak{p} \in T} 1-\sigma_{\mathfrak{P}}^{-1} \mathcal{N}(\mathfrak{p})\right)
$$

where \mathfrak{P} is a fixed prime ideal of K above $\mathfrak{p}, \sigma_{\mathfrak{P}}$ is the Frobenius element of \mathfrak{P} in G, and $\mathrm{nr}: \mathbb{Q}[G] \rightarrow Z(\mathbb{Q}[G])$ is the reduced norm (see $[13, \S 9])$. Let Λ^{\prime} denote a fixed maximal order of $\mathbb{Q}[G]$ containing $\mathbb{Z}[G]$ and denote by $\mathfrak{F}(G):=\left\{x \in Z\left(\Lambda^{\prime}\right): x \Lambda^{\prime} \subset \mathbb{Z}[G]\right\}$ the central conductor of Λ^{\prime} over $\mathbb{Z}[G]$.

Conjecture (The local weak non-abelian Brumer-Stark conjecture [10]).
Let $\mathfrak{w}_{K}:=\operatorname{nr}\left(w_{K}\right)$. Then $\mathfrak{w}_{K} \theta_{K / k, S} \in Z\left(\Lambda^{\prime}\right) \otimes \mathbb{Z}_{p}$. Furthermore, for any fractional ideal \mathfrak{A} of K whose class lies in $\mathrm{Cl}_{K}\{p\}$ and for each $x \in \mathfrak{F}(G)$, there exists an anti-unit $\alpha_{x} \in K^{\circ}$ such that

$$
\mathfrak{A}^{x \mathfrak{w}_{K} \theta_{K / k, S}}=\alpha_{x} \mathcal{O}_{K}
$$

and, for any set of places $T \in \operatorname{Hyp}\left(S \cup S_{\alpha_{x}}\right)$, there exists $\alpha_{x, T} \in E_{K}\left(S_{\alpha_{x}}, T\right)$ such that, for all $z \in \mathfrak{F}(G)$

$$
\alpha_{x}^{z \delta_{T}}=\alpha_{x, T}^{z \mathfrak{w}_{K}}
$$

where $S_{\alpha_{x}}$ is the set of prime ideals \mathfrak{p} of k such that $v_{\mathfrak{p}}\left(N_{K / k}\left(\alpha_{x}\right)\right) \neq 0$.
Observe that the conjecture stated above is slightly different from the original conjecture given by Nickel in [10]. Indeed, Nickel does not state explicitly the local conjecture in this paper but writes instead that one should restrict to ideals whose class lies in $\mathrm{Cl}_{K}\{p\}$ in the global conjecture to get the local conjecture at p. In particular, the local conjecture does not have a specific statement on where $\mathfrak{w}_{K} \theta_{K / k, S}$ should lie. However, it seems reasonable to only ask for $\mathfrak{w}_{K} \theta_{K / k, S}$ to be in $Z\left(\Lambda^{\prime}\right) \otimes \mathbb{Z}_{p}$ in this case.

Theorem 2.5. Let K / k be a Galois CM-extension of number fields with Galois group G and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \geq 2$. Let p be a prime number not dividing $w_{K}|G|$. Then, the local Galois Brumer-Stark conjecture $\mathbf{B S}_{\text {Gal }}^{(p)}(K / k, S)$ is equivalent to the local weak non-abelian Brumer-Stark conjecture at p for the extension K / k and the set of prime ideals S.

Proof. We will use the following fact several times whose proof is direct and left to the reader: let t be an integer not divisible by p and let H be a group of fractional ideals containing the principal ideals and all the ideals \mathfrak{B}^{t} where \mathfrak{B} runs through the fractional ideals of K whose class lies in $\mathrm{Cl}_{K}\{p\}$. Then, H is the group of fractional ideals whose class lies in $\mathrm{Cl}_{K}\{p\}$.

Assume that $\mathbf{B S} \mathbf{S}_{\text {Gal }}^{(p)}(K / k, S)$ holds. Then, $\theta_{K / k, S} \in Z\left(\mathbb{Z}_{p}[G]\right)$ and therefore we have $\mathfrak{w}_{K} \theta_{K / k, S} \in Z\left(\Lambda^{\prime}\right) \otimes \mathbb{Z}_{p}=Z\left(\mathbb{Z}_{p}[G]\right)$. Let \mathfrak{B} be a fractional ideal of K whose class lies in $\mathrm{Cl}_{K}\{p\}$. By [5, Prop. A.1], for any $x \in \mathfrak{F}(G)$, there exists $\beta_{x} \in K^{\circ}$ such that

$$
\mathfrak{B}_{G}^{d_{G} x \mathfrak{w}_{K} \theta_{K / k, S}}=\beta_{x} \mathcal{O}_{K}
$$

and, for any set of places $T \in \operatorname{Hyp}\left(S \cup S_{\beta_{x}}\right)$, there exists $\beta_{x, T} \in K^{\times}$with $\beta_{x, T}^{w_{K}} \in E_{K}\left(S_{\beta_{x}}, T\right)$ such that, for all $z \in \mathfrak{F}(G)$

$$
\beta_{x}^{z \delta_{T}}=\beta_{x, T}^{z \mathfrak{v}_{K}}
$$

Observe that the proof of [5, Prop. A.1] uses the original formulation of the (global) Galois Brumer-Stark conjecture but that is not a concern since the refined version that we use now implies the original conjecture; furthermore, one can check readily that the local version of the conjecture is enough for the proof of the result in this case. Let $\mathfrak{A}:=\mathfrak{B}^{d_{G} w_{K}}$. We set $\alpha_{x}:=\beta_{x}^{w_{K}}$ and $\alpha_{x, T}:=\beta_{x, T}^{w_{K}} \in E_{K}\left(S_{\beta_{x}}, T\right)=E_{K}\left(S_{\alpha_{x}}, T\right)$ for all $T \in \operatorname{Hyp}\left(S \cup S_{\beta_{x}}\right)=$ $\operatorname{Hyp}\left(S \cup S_{\alpha_{x}}\right)$. Then, it is direct to check that these elements satisfy the required properties for the statement of the local weak non-abelian conjecture to be satisfied for the ideal \mathfrak{A}. Since it is proved in [10] that the set of ideals satisfying the properties of the weak non-abelian Brumer-Stark conjecture is a group containing the principal ideals, it follows by the above remark that the local weak non-abelian Brumer-Stark conjecture holds at p for the extension K / k and the set S.

Reciprocally, assume that the local weak non-abelian Brumer-Stark conjecture holds at p for the extension K / k and the set S. We first prove that this implies that the local abelian Brumer-Stark conjecture holds at p for the extension K^{ab} / k and the set S. Let \mathfrak{b} be a fractional ideal of K^{ab} whose class lies in $\mathrm{Cl}_{K^{\mathrm{ab}}}\{p\}$, thus the class of $\mathfrak{b} \mathcal{O}_{K}$ is in $\mathrm{Cl}_{K}\{p\}$. Thanks to [13, Th. 41.1], we can take $x=|G| \in \mathcal{F}(G)$ in the local weak non-abelian Brumer-Stark conjecture, and thus there exists $\beta_{0} \in K^{\circ}$ such that $\left(\mathfrak{b} \mathcal{O}_{K}\right)^{|G| \mathfrak{w}_{K} \theta_{K / k, S}}=\beta_{0} \mathcal{O}_{K}$. Taking norms down to K^{ab} and using the properties of the Brumer-Stickelberger element, we deduce that

$$
\mathfrak{b}^{s_{G}|G| w_{K} \theta_{K} \mathrm{ab} / k, S}=\mathfrak{a}^{w_{K} \theta_{K} \mathrm{ab} / k, S}=\alpha_{0} \mathcal{O}_{K^{\mathrm{ab}}}
$$

where $\mathfrak{a}:=\mathfrak{b}^{s_{G}|G|}$ and $\alpha_{0}:=N_{K / K^{\text {ab }}}\left(\beta_{0}\right) \in\left(K^{\mathrm{ab}}\right)^{\circ}$. Now, since p does not divide w_{K}, we have $w_{K, p}=1$ and thus $K^{\mathrm{ab}}\left(\alpha_{0}^{1 / w_{K, p}}\right)=K^{\mathrm{ab}}$ is abelian over k. The set of ideals that satisfy the local abelian Brumer-Stark conjecture is a group containing the principal ideals therefore, by the remark at the start of the proof, the local abelian Brumer-Stark conjecture holds at p for the extension K^{ab} / k and the set S. To prove the part of the statement of the local Galois Brumer-Stark conjecture concerning the non-linear Brumer-Stickelberger element, we proceed in a similar way. Observe that it follows from [5, Eq. (12)] that one can write $\theta_{K / k, S}=$ $\theta_{0}+\theta_{K / k, S}^{(>1)}$ with $s_{G} w_{K} \theta_{0} \in \mathbb{Z}[G]$. In particular, we have $\theta_{0} \in \mathbb{Z}_{p}[G]$ and thus $\theta_{K / k, S}^{(>1)} \in$ $\mathbb{Z}_{p}[G]$. Now, let \mathfrak{B} be a fractional ideal of K whose class is in $\mathrm{Cl}_{K}\{p\}$. Let ℓ be the maximum of the $\chi(1)$'s for $\chi \in \hat{G}$. Let

$$
x=|G|^{2} \sum_{\chi \in \hat{G}^{(>1)}} w_{K}^{\ell-\chi(1)} e_{\chi} \in|G| \mathbb{Z}[G] .
$$

As noted above $|G| \in \mathcal{F}(G)$, therefore $x \in \mathcal{F}(G)$ and there exists $\alpha \in K^{\circ}$ such that $\mathfrak{B}^{x \mathfrak{w}_{K} \theta_{K / k, S}}=\alpha \mathcal{O}_{K}$. Observe that

$$
x \mathfrak{w}_{K} \theta_{K / k, S}=|G|^{2} w_{K}^{\ell} \theta_{K / k, S}^{(>1)} .
$$

Let $\mathfrak{A}:=\mathfrak{B}^{|G|^{2} w_{K}^{\ell} / d_{G}}$. Then, we have $\mathfrak{A}^{d_{G} \theta_{K / k, S}^{(>1)}}=\alpha \mathcal{O}_{K}$. Since the set of ideals that satisfy the statement of the local Galois Brumer-Stark conjecture is group containing the principal ideals, it follows that the local Galois Brumer-Stark conjecture holds at p for the extension K / k and the set of places S. This concludes the proof.

3. The semi-simple case for monomial group

In this section, we prove the main result of this paper.
Theorem 3.1. Let K / k be a Galois extension of number fields with Galois group G and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \geq 2$. Assume that the group G is monomial and that the abelian BrumerStark conjecture $\mathbf{B S}\left(E / F, S_{F}\right)$ holds for any abelian extension E / F contained in K / k where S_{F} denotes the set of places of F above the places in S. Let p be a prime number such that $p \nmid|G|$. Then, the local Galois Brumer-Stark conjecture $\mathbf{B S}_{\mathrm{Gal}}^{(p)}(K / k, S)$ holds.

Proof. In order to prove Theorem 3.1, it is enough to prove the following two facts:

1. $\theta_{K / k, S}^{(>1)} \in \mathbb{Z}_{p}[G]$,
2. $\theta_{K / k, S}^{(>1)}$ annihilates $\mathrm{Cl}_{K}\{p\}$.

Indeed, d_{G} is a divisor of G and thus it is invertible in $\mathbb{Z}_{p}[G]$, therefore $d_{G} \theta_{K / k, S}^{(>1)} \in \mathbb{Z}_{p}[G]$ if and only if $\theta_{K / k, S}^{(>1)} \in \mathbb{Z}_{p}[G]$. Now, assume that $\theta_{K / k, S}^{(>1)}$ annihilates $\mathrm{Cl}_{K}\{p\}$ then, by the
previous remark, that means that $d_{G} \theta_{K / k, S}^{(>1)}$ also annihilates $\mathrm{Cl}_{K}\{p\}$. The only thing remaining to prove is that, for any ideal \mathfrak{A} of K whose class lies in $\mathrm{Cl}_{K}\{p\}$, one can find a generator of $\mathfrak{A}^{d_{G} \theta_{K / k, S}^{(>1)}}$ that is an anti-unit. But, since p is odd (otherwise the conjecture is trivially true, see Remark 2.2 of [6]), this is always possible using the trick explained on page 299 of [8].

We now prove the two assertions. As we mentioned in the introduction, the method we use is a direct adaptation of the method used by Nomura in [12]. Since the result is trivial if G is abelian, we assume from now on that G is non-abelian. Let v be a character defined on some subgroup H_{ν} of G. (From now on, we will always use the notation H_{ν} to denote the subgroup of G on which the character v is defined.) For $g \in G$, define the character $\nu[g]$ of $g^{-1} H_{\nu} g$ by $\nu[g](x):=\nu\left(g x g^{-1}\right)$ for all $x \in g^{-1} H_{\nu} g$. Note that $\chi[g]=\chi\left[g^{\prime}\right]$ if g and g^{\prime} are in the same right coset of G modulo H_{ν}. Observe that $\nu^{G}=(\nu[g])^{G}$ for all $g \in G$, where we denote by ν^{G} the induced character of v on G (see [9, Chapter 5]). In particular, for $\chi \in \hat{G}^{(>1)}$, the group G acts on the set of linear characters v defined on some subgroup H_{v} of G and such that $\nu^{G}=\chi$. (This is a non-empty set by hypothesis.) We denote by $\Omega(\chi)$ a fixed orbit of this set under the action of G. Then, we have

$$
\begin{equation*}
\chi=\sum_{v \in \Omega(x)} \dot{v} \tag{3.3}
\end{equation*}
$$

where \dot{v} denotes the function of G obtained by setting $\dot{v}(x):=v(x)$ if $x \in H_{\nu}$ and $\dot{v}(x):=0$ otherwise. In particular, it follows that

$$
\begin{equation*}
e_{\chi}=\sum_{v \in \Omega(\chi)} e_{v} \tag{3.4}
\end{equation*}
$$

For $v \in \Omega(\chi)$, we denote by $\pi_{\nu}: H_{\nu} \rightarrow H_{v} / \operatorname{Ker}(\nu)$ the canonical surjection and by \hat{v} the unique linear character of $H_{\nu} / \operatorname{Ker}(\nu)$ such that $v=\hat{v} \circ \pi_{\nu}$. We also associate to v two extensions: $E_{v}:=K^{\operatorname{Ker}(\nu)}$ and $F_{v}:=K^{H_{\nu}}$. Thus, E_{v} / F_{ν} is a cyclic extension with Galois group isomorphic to $H_{\nu} / \operatorname{Ker}(\nu)$. Finally, we define S_{ν} to be the set of places of F_{ν} above the places in S. From the properties of Artin L-functions, we see that

$$
\chi\left(\theta_{K / k, S}^{(>1)}\right)=L_{K / k, S}(\bar{\chi}, 0)=L_{K / F_{v}, S_{v}}(\bar{v}, 0)=L_{E_{v} / F_{v}, S_{v}}(\overline{\hat{v}}, 0)=\hat{v}\left(\theta_{E_{v} / F_{v}, S_{v}}\right) .
$$

Let $\Omega:=\bigcup_{\chi \in \hat{G}^{(>1)}} \Omega(\chi)$ (note that it is a disjoint union). Combining the previous equalities with (2.2) and (3.4), we obtain the following identity (which the non-linear equivalent of [12, Lemma 4.4])

$$
\begin{equation*}
\theta_{K / k, S}^{(>1)}=\sum_{\nu \in \Omega} \hat{\nu}\left(\theta_{E_{v} / F_{v}, S_{v}}\right) e_{\nu} . \tag{3.5}
\end{equation*}
$$

The following result plays a crucial role in the proof.

Lemma 3.2. Let $v \in \Omega$. Define $T_{v}:=\pi_{v}\left(H_{v} \cap[G, G]\right)$ and

$$
\mathcal{A}_{v}:=\sum_{c \in T_{v}}(1-c)
$$

Then, the element \mathcal{A}_{v} annihilates the group of roots of unity of E_{v} and we have $\hat{v}\left(\mathcal{A}_{v}\right)=t_{v}$ where $t_{v}:=\left|T_{\nu}\right|$.

Proof of The lemma. The first assertion follows from the fact that elements of T_{v} are image of elements of $[G, G]$, thus they act trivially on roots of unity. For the second assertion, fix $g \in G \backslash H_{v}$ (g exists since χ is non-linear). Since ν^{G} is irreducible, it follows from Mackey's irreducibility criterion that the restriction to $H_{\nu} \cap g^{-1} H_{\nu} g$ of ν and $\nu[g]$ do not have a common irreducible constituent. Since the characters v and $\nu[g]$ are linear characters, this implies that there exists $h \in H_{v} \cap g^{-1} H_{\nu} g$ such that $\nu[g](h) \neq v(h)$, i.e., $v\left(g h g^{-1} h^{-1}\right) \neq 1$. Therefore, $H_{v} \cap[G, G]$ is not contained in the kernel of v and T_{v} is non-trivial. It follows that

$$
\hat{v}\left(\mathcal{A}_{v}\right)=t_{v}-\sum_{c \in T_{v}} \hat{v}(c)=t_{v}
$$

and the lemma is proved.
We prove the first assertion, that is $\theta_{K / k, S}^{(>1)} \in \mathbb{Z}_{p}[G]$. Let $v \in \Omega$. First, note that $t_{\nu} \hat{v}\left(\theta_{E_{\nu} / F_{\nu}, S_{\nu}}\right)=\hat{v}\left(\mathcal{A}_{\nu} \theta_{E_{v} / F_{v}, S_{v}}\right)$ is an algebraic integer. Indeed, since the extension E_{ν} / F_{ν} is abelian, it follows from (2.1) and Lemma 3.2 that $\mathcal{A}_{v} \theta_{E_{v} / F_{v}, S_{v}}$ lies in $\mathbb{Z}\left[H_{v} / \operatorname{Ker}(v)\right]$. But, the integer t_{v} divides $|G|$ and therefore $|G| \hat{\nu}\left(\theta_{E_{v} / F_{v}, S_{v}}\right)$ is an algebraic integer for all $v \in$ Ω. Since $|G| e_{v}$ is also an algebraic integer for all $v \in \Omega$, we deduce using (3.5) that the coefficients of $|G|^{2} \theta_{K / k, S}^{(>1)}$ are all algebraic integers and, since it is rational, it lies in $\mathbb{Z}[G]$. Finally, since p does not divide $|G|$, we get that $\theta_{K / k, S}^{(>1)} \in \mathbb{Z}_{p}[G]$.

We prove the second assertion, i.e., $\theta_{K / k, S}^{(>1)}$ annihilates $\mathrm{Cl}_{K}\{p\}$. Let v be a character of a subgroup H_{v} of G and let $\sigma \in \Gamma:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. We denote by v^{σ} the character of H_{v} defined by $v^{\sigma}(x):=\sigma(v(x))$ for all $x \in H_{v}$. The group Γ acts on v via its quotient $\Gamma(v):=\Gamma / \operatorname{Stab}_{\Gamma}(v)$ which is also the Galois group of $\mathbb{Q}(v) / \mathbb{Q}$ where $\mathbb{Q}(v)$ is the extension of \mathbb{Q} generated by the values of ν. Assume now that $\nu \in \Omega(\chi)$ with $\chi \in \hat{G}^{(>1)}$. We see that $\Gamma(v)=\Gamma(\hat{v})$, but $\Gamma(\chi)$ is a quotient of $\Gamma(\nu)$ where $\chi:=v^{G}$ (although we will not use this fact). Observe that, for $\sigma \in \Gamma(v)$, we have $H_{\nu^{\sigma}}=H_{\nu}, \operatorname{Ker}\left(v^{\sigma}\right)=\operatorname{Ker}(\nu)$, $\pi_{\nu^{\sigma}}=\pi_{\nu}$, $T_{\nu^{\sigma}}=T_{\nu}, \mathcal{A}_{\nu^{\sigma}}=\mathcal{A}_{\nu}, E_{\nu^{\sigma}}=E_{\nu}, F_{\nu^{\sigma}}=F_{\nu}$, and $S_{\nu^{\sigma}}=S_{\nu}$. Let Ω_{0} be a set of representatives of Ω under the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Then, we can rewrite equation (3.5) as

$$
\begin{equation*}
\theta_{K / k, S}^{(>1)}=\sum_{\nu \in \Omega_{0}} \sum_{\sigma \in \Gamma(\nu)} \hat{v}^{\sigma}\left(\theta_{E_{v} / F_{v}, S_{\nu}}\right) e_{\nu}{ }^{\sigma} \tag{3.6}
\end{equation*}
$$

Now, for $\nu \in \Omega_{0}$ and $\sigma \in \Gamma(v)$, one checks readily that $e_{\nu^{\sigma}}=\iota_{\nu^{\sigma}} \mathcal{N}_{\operatorname{Ker}(\nu)}$ where $\iota_{v} \in \overline{\mathbb{Q}}\left[H_{\nu}\right]$ is such that $\pi_{\nu}\left(\iota_{\nu} \sigma\right)=e_{\hat{\nu}^{\sigma}}$ and $\mathcal{N}_{\operatorname{Ker}(\nu)}:=\sum_{x \in \operatorname{Ker}(\nu)} x$. Thus, we have

$$
\sum_{\sigma \in \Gamma(\nu)} \hat{v}^{\sigma}\left(\theta_{E_{\nu} / F_{\nu}, S_{\nu}}\right) e_{\nu^{\sigma}}=\left(\sum_{\sigma \in \Gamma(\nu)} \hat{\nu}^{\sigma}\left(\theta_{E_{\nu} / F_{\nu}, S_{\nu}}\right) \iota_{\nu^{\sigma}}\right) \mathcal{N}_{\operatorname{Ker}(\nu)}
$$

Let \mathcal{C} be a class in Cl_{K} of p-power order. We compute

$$
\begin{aligned}
t_{v} \sum_{\sigma \in \Gamma(v)} \hat{v}^{\sigma}\left(\theta_{E_{v} / F_{v}, S_{v}}\right) e_{\nu^{\sigma}} \mathcal{C} & =\left(\sum_{\sigma \in \Gamma(v)} t_{v} \hat{v}^{\sigma}\left(\theta_{E_{v} / F_{v}, S_{v}}\right) \iota_{\nu^{\sigma}}\right) \mathcal{N}_{\operatorname{Ker}(v)} \mathcal{C} \\
& =\left(\sum_{\sigma \in \Gamma(v)} \hat{v}^{\sigma}\left(\mathcal{A}_{v} \theta_{E_{v} / F_{v}, S_{v}}\right) \iota_{\nu^{\sigma}}\right) N_{K / E_{v}}(\mathcal{C}) \\
& =\pi_{v}\left(\sum_{\sigma \in \Gamma(v)} \hat{v}^{\sigma}\left(\mathcal{A}_{v} \theta_{E_{v} / F_{v}, S_{v}}\right) \iota_{\nu^{\sigma}}\right) N_{K / E_{v}}(\mathcal{C}) \\
& =\left(\sum_{\sigma \in \Gamma(v)} \hat{v}^{\sigma}\left(\mathcal{A}_{v} \theta_{E_{v} / F_{v}, S_{v}}\right) e_{\hat{v}^{\sigma}}\right) N_{K / E_{v}}(\mathcal{C}) \\
& =\left(\sum_{\sigma \in \Gamma(v)} \mathcal{A}_{v} \theta_{E_{v} / F_{v}, S_{v}} e_{\hat{v}^{\sigma}}\right) N_{K / E_{v}}(\mathcal{C}) \\
& =\mathcal{A}_{v} \theta_{E_{v} / F_{v}, S_{v}}\left(\sum_{\sigma \in \Gamma(v)} e_{\hat{v}^{\sigma}}\right) N_{K / E_{v}}(\mathcal{C})
\end{aligned}
$$

The element $\sum_{\sigma \in \Gamma(v)} e_{\hat{\nu}^{\sigma}}$ is p-integral and thus $\left(\sum_{\sigma \in \Gamma(v)} e_{\hat{\hat{\nu}}^{\sigma}}\right) N_{K / E_{v}}(\mathcal{C})$ is well-defined and is a class in $\mathrm{Cl}_{E_{v}}\{p\}$. But, by Lemma 3.2 and Proposition 2.2, $\mathcal{A}_{\nu} \theta_{E_{\nu} / F_{v}, S_{v}}$ annihilates $\mathrm{Cl}_{E_{v}}$. Since t_{v} is prime to p, we deduce that the element $\sum_{\sigma \in \Gamma(v)} \hat{v}^{\sigma}\left(\theta_{E_{v} / F_{v}, S_{v}}\right) e_{\hat{\nu}^{\sigma}}$ kills $\mathrm{Cl}_{K}\{p\}$. This is true for all $v \in \Omega_{0}$, hence we get by (3.6) that $\theta_{K / k, S}^{(>1)}$ annihilates $\mathrm{Cl}_{K}\{p\}$. This concludes the proof of Theorem 3.1.

The local abelian Brumer-Stark conjecture is known to hold unconditionally in many cases. Combining Theorem 3.1 and several results in [1] by Burns and Flach, and in [2] and [3] by Burns, Kurihara, and Sano, we can thus deduce cases where the local Galois BrumerStark conjecture is satisfied.

Corollary 3.3. Let K / k be a Galois CM-extension of number fields and let S be a finite set of places of k that contains the infinite places and the finite places that ramify in K with $|S| \geq 2$. Assume that $\operatorname{Gal}(K / k)$ is monomial. Then, for any odd prime p such that p does not divide $[K: k]$ and at least one of the two following condition is satisfied: (1) p is unramified in K / \mathbb{Q}, or (2) at most one prime ideal of k above p splits in K / K^{+}. Then, the local Galois Brumer-Stark conjecture $\mathbf{B S}_{\mathrm{Gal}}^{(p)}(K / k, S)$ holds.

Proof. Let E / F be an abelian CM-extension of number fields. It is known that the abelian Brumer-Stark conjecture for the extension E / F follows from the equivariant Tamagawa number conjecture [1] for the pair $\left(h^{0}(\operatorname{Spec}(E)), \mathbb{Z}[H]\right)$ where $H:=\operatorname{Gal}(E / F)$. For example, using the results of [3], we get that this special case of the equivariant Tamagawa number conjecture is equivalent to Conjecture 3.1 of ibid by Remark 3.2 of ibid, which is in turn equivalent to the 'leading term conjecture' (Conjecture 3.6 of ibid) and 'the leading term conjecture' implies the abelian Brumer-Stark conjecture by Remark 1.11(i) of ibid. More precisely, the equivariant Tamagawa number conjecture for $\left(h^{0}(\operatorname{Spec}(E)), \mathbb{Z}_{p}[H]^{-}\right)$implies the local abelian Brumer-Stark conjecture at p for E / F. (Here, $\mathbb{Z}_{p}[H]^{-}:=\mathbb{Z}_{p}[H] /(1+\tau)$ where τ is the complex conjugation in H.) Therefore, cases where this special case of the equivariant Tamagawa number conjecture is proved together with Theorem 3.1 yield cases where the local Galois Brumer-Stark conjecture holds unconditionally. Case (1) follows from Theorem 4 of [11]. Indeed, for any CM-subextension E / F of K / k, the prime p is unramified in E and thus the conditions of the theorem are satisfied by the remark just before the theorem; since $p \nmid[E: F]$, the condition on the vanishing of the Iwasawa μ-invariant is not necessary (see Remark 6 of ibid). For case (2), we use [2, Cor. 1.2] since, in every abelian subextension E / F of K / k, there is at most one prime ideal of F above p that splits in E / E^{+}; for the same reasons as in case (1), the condition on the vanishing of the Iwasawa μ-invariant is not necessary.

ACKNOWLEDGMENT. The author is grateful to the anonymous referee for suggesting the statement and the proof of Corollary 3.3.

References

[1] D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570.
[2] D. Burns, M. Kurihara and T. Sano, Iwasawa theory and zeta elements for \mathbb{G}_{m}, ArXiv e-prints (2015), ArXiv:1506.07935.
[3] D. Burns, M. Kurihara and T. Sano, On zeta elements for \mathbb{G}_{m}, Doc. Math. 21 (2016), 555-626.
[4] Pi. Cassou-NoguÈs, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Invent. Math. 51(1) (1979), 29-59.
[5] G. Dejou and X.-F. Roblot, A Brumer-Stark conjecture for non-abelian Galois extensions, J. Number Theory 142 (2014), 51-88.
[6] G. Dejou and X.-F. Roblot, The Galois Brumer-Stark conjecture for $\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$-extensions, Int. J. Number Theory 12(1) (2016), 165-188.
[7] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59(3) (1980), 227-286.
[8] C. Greither, X.-F. Roblot and B. Tangedal, The Brumer-Stark conjecture in some families of extensions of specified degree, Math. Comp. 73(245) (2004), 297-315.
[9] I. M. Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994.
[10] A. Nickel, On non-abelian Stark-type conjectures, Ann. Inst. Fourier 61(6) (2001), 2577-2608.
[11] A. Nickel, On the equivariant Tamagawa number conjecture in tame CM-extensions, Math. Z. 268(1-2) (2001), 1-35.
[12] J. Nomura, On non-abelian Brumer and Brumer-Stark conjecture for monomial CM-extensions, Int. J. Number Theory $\mathbf{1 0 (4)}$ (2014), 817-848.
[13] I. REINER, Maximal orders, volume 28 of London Mathematical Society Monographs. New Series, The Clarendon Press Oxford University Press, Oxford, 2003.
[14] J. TATE, Brumer-Stark-Stickelberger, Seminar on Number Theory (1981), Exp. No. 24. Univ. Bordeaux I, Talence.
[15] J. TATE, Les conjectures de Stark sur les fonctions L d'Artin en $s=0$, volume 47 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1984.

Present Address:
Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut CAMILLE JORDAN,
43 BLVD. DU 11 NOVEMBRE 1918 ,
F-69622 Villeurbanne Cedex, France.
e-mail: roblot@math.univ-lyon1.fr

