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Abstract. A family of smooth geometrically irreducible curves violates the Hasse principle if they have lo-
cal points everywhere, but they possesses no global points. In this paper, we show how to construct non-constant
algebraic families of forms of degree 4k that violate the Hasse principle. Some examples of non-constant algebraic
families of forms of degrees 12 and 24 that violate the Hasse principle are given to illustrate the method.

1. Introduction

A family of smooth geometrically irreducible curves (Cα)α over Q is said to be coun-
terexamples to the Hasse principle if Cα(Q) = ∅ but Cα(AQ) �= ∅ for each α. Equivalently,
we also say that the curves (Cα)α violate the Hasse principle. The failure for the Hasse princi-
ple on these curves is said to be explained by the Brauer–Manin obstruction if Cα(AQ)Br = ∅
for each α. See, for example, Jahnel [8] for an account of the Brauer–Manin obstruction. It is
well-known that the Hasse principle for curves fail in general. The first counterexamples of
cubic forms to the Hasse principle were discovered by Selmer [10]; for example, Selmer [10]

showed that the ternary cubic form defined by 3x3 + 4y3 + 5z3 = 0 is a counterexample to
the Hasse principle.

Bhargava [1] proved that for each n ≥ 1, a positive proportion of hyperelliptic curves

z2 = F(x) of genus n over Q, when ordered by height, fails the Hasse principle. Bhargava [1]
further showed that the failure can be explained by the Brauer–Manin obstruction. One can
ask whether a similar asymptotic result holds when hyperelliptic curves are replaced by forms
of degree ≥ 3 over Q. In this direction, Bhargava [2] proved that a positive proportion of
ternary cubic forms over Z, when ordered by the heights of their coefficients, fails the Hasse
principle. It is not known whether a similar asymptotic result hold when ternary cubic forms
are replaced by a more general form of degree ≥ 3.

In this paper, we are interested in the following weaker question.

QUESTION. For each integer n ≥ 3, does there exist a family of forms of degree n ≥ 3
that are counterexamples to the Hasse principle?
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For n = 3, Bhargava [2] answers this question in the affirmative as a special case of
his result, but does not explicitly describe such ternary cubic forms. An explicit algebraic
family of cubic curves is given in the work of Poonen [9]. In [5], the author constructed an
arithmetic family of quartic forms over Q that are counterexamples to the Hasse principle,
which affirmatively answers the question when n = 4. Fujiwara and Sudo [7] produced many
forms of degree n with n ≡ 5 (mod 10) that violate the Hasse principle. In [6], the author
proved that there are algebraic families of degree n with n ≡ 2 (mod 4) that violate the Hasse
principle.

The present work is a continuation of our previous work [6]. We will show how to
construct non-constant algebraic families of forms of degree n with n ≡ 0 (mod 4) that are
counterexamples to the Hasse principle. As an illustration, we explicitly construct a non-
constant algebraic family of forms of degree 12 and a non-constant algebraic family of forms
of degree 24 that violate the Hasse principle.

Our paper is organized as follows. In Section 2, we prove that for k ∈ Z≥0, m,n ∈
Z>0 with (k + 1)n > m, under certain conditions, there exist hyperelliptic curves of genus
2(k +1)n−1 that are counterexamples to the Hasse principle explained by the Brauer–Manin
obstruction (see Theorem 2.3). These curves are of the form

z2 = A(Bx2(k+1)n + C)2 + (Dx2m + E)2(1)

for certain choices of parameters A,B,C,D,E. In Section 3, we prove that under certain
conditions, there exist forms (Xζ )ζ of degree 4(k + 1)n parameterized by certain rational
numbers ζ such that each form Xζ admits a morphism to a hyperelliptic curve of genus 2(k +
1)n − 1. The latter is among the hyperelliptic curves of the form (1) in Theorem 2.3. It thus
follows from Theorem 2.3 that the form Xζ of degree 4(k + 1)n is a counterexample to the
Hasse principle (see Theorem 3.1). In Section 4, we show that under certain conditions, there
exist algebraic families of forms of degree 4(k + 1)n for a given non-negative integer k and
a given positive integer n (see Theorem 4.2). Using this result, we explicitly construct a non-
constant algebraic family of forms of degree 12 and a non-constant algebraic family of degree
24 that are counterexamples to the Hasse principle (see Examples 4.4 and 4.6).

2. Certain hyperelliptic curves violating the Hasse principle

In this section, for a prime p ≡ 1 (mod 8), a triple (k,m, n) of integers with k ≥
0,m ≥ 1 and n ≥ 1, we explicitly construct certain curves D of genus 2(k + 1)n − 1 that are
counterexamples to the Hasse principle explained by the Brauer–Manin obstruction. These
curves play a key role in constructing forms over Q that are counterexamples to the Hasse
principle.

We begin by proving the following lemma.

LEMMA 2.1. Let p be a prime. Let (α, β, γ, λ) ∈ Z4 be a quadruple of non-zero
integers, and let k,m, n be integers such that k ≥ 0, m ≥ 1 and n ≥ 1. Set

d := αmλ2(k+1)m(p(α + β))(k+1)n + (−1)m+1βmγ 2(k+1)n(pα + (p + 1)β)(k+1)n ,(2)
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and assume that the following are true:
(A1) (k + 1)n > m, and d �= 0.

(S) the polynomial Pp,α,β,λ,γ (x) ∈ Q[x] defined by

Pp,α,β,λ,γ (x) := p(αλ2(k+1)x2(k+1)n + β)2

+(
(pα + (p + 1)β)γ 2x2m − p(α + β)

)2

is separable, that is, Pp,α,β,λ,γ (x) has exactly 4(k + 1)n distinct roots over C.

Let C be the smooth projective model of the affine curve defined by

C : z2 = Pp,α,β,λ,γ (x) ,(3)

and let Q(C) be the function field of C. Let A ∈ Br(Q(C)) be the class of the quaternion
algebra defined by

A = (
p, (pα + (p + 1)β)γ 2x2m − p(α + β) + z

)
.(4)

Then the element A belongs to the subgroup Br(C) of Br(Q(C)). Furthermore,

B := (
p, (pα + (p + 1)β)γ 2x2m − p(α + β) − z

)

and

F :=
(

p,
(pα + (p + 1)β)γ 2x2m − p(α + β) + z

x2(k+1)n

)

all represent the same class as A in Br(Q(C)).

PROOF. The defining equation of C can be written in the form
(
(pα + (p + 1)β)γ 2x2m − p(α + β) + z

)(
(pα + (p + 1)β)γ 2x2m − p(α + β) − z

)

= −p(αλ2(k+1)x2(k+1)n + β)2 ,(5)

and thus
(
(pα + (p + 1)β)γ 2x2m − p(α + β) + z

)(
(pα + (p + 1)β)γ 2x2m − p(α + β) − z

)

= NormQ(
√

p)/Q

(√
p(αλ2(k+1)x2(k+1)n + β)

)
.

Thus we deduce that A + B = 0. Furthermore, we know that A − F = (p, x2(k+1)n) = 0.
Since A,B, and F belong to the 2-torsion part of Br(Q(C)), it follows that A = B = F .

Let U1 be the largest open subvariety of C in which the rational function F := (pα +
(p + 1)β)γ 2x2m − p(α + β) + z neither has a zero nor pole, and let U2 be the largest open

subvariety of C in which the rational function G := (pα + (p + 1)β)γ 2x2m − p(α + β) − z

neither has a zero nor pole. Since A = B, A belongs to Br(U1) and Br(U2). We prove that in
the affine part of C, the locus where both F and G have a zero is empty. Assume the contrary,
and let (X,Z) be a common zero of F and G. Then it follows from (5) that

αλ2(k+1)X2(k+1)n + β = 0 ,
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and thus

αλ2(k+1)X2(k+1)n = −β .(6)

On the other hand, we know that

2((pα + (p + 1)β)γ 2X2m − p(α + β)) = F + G = 0 ,

and thus

(pα + (p + 1)β)γ 2X2m = p(α + β) .(7)

Hence it follows from (6) and (7) that

(γ 2(k+1)n(pα + (p + 1)β)(k+1)n)(αmλ2(k+1)m)X2(k+1)nm

= (−1)mβmγ 2(k+1)n(pα + (p + 1)β)(k+1)n

= αmλ2(k+1)m(p(α + β))(k+1)n ,

and thus

d = αmλ2(k+1)m(p(α + β))(k+1)n + (−1)m+1βmγ 2(k+1)n(pα + (p + 1)β)(k+1)n = 0 ,

which contradicts (A1).
Let

H := (pα + (p + 1)β)γ 2x2m − p(α + β) + z

x2(k+1)n
,

and denote by ∞ = (X∞ : Y∞ : Z∞) be a point at infinity of C. We know that Y∞ = 0 and

Z∞ = ±p1/2αλ2(k+1)X
2(k+1)n∞ , where X∞ �= 0. Since (k + 1)n > m, we deduce that

H(∞) = (pα + (p + 1)β)γ 2X2m∞ Y
2(k+1)n−2m∞ − p(α + β)Y

2(k+1)n∞ + Z∞
X

2(k+1)n∞
,

= ±p1/2αλ2(k+1) �= 0 ,

and therefore H is regular and non-vanishing at the points at infinity of C.
Let U3 be the largest open subvariety of C in which the rational function H neither has a

zero nor pole. Since A = F , we deduce that A belongs to Br(U3). By what we have shown,
it follows that C = U1 ∪ U2 ∪ U3. Since A belongs to Br(Ui) for i = 1, 2, 3, we deduce that
A belongs to Br(C). Therefore our contention follows. �

THEOREM 2.2. We maintain the same notation and assumptions as in Lemma 2.1.
Assume that p is a prime such that p ≡ 1 (mod 8). Assume further that (A1), (S) in Lemma
2.1 are true, and that the following are true:

(A2) gcd(α, p) = 1, gcd(β, p) = 1, gcd(γ, p) = 1 and gcd(λ, p) = 1.
(A3) l is a quadratic residue in F×

p for any odd prime l dividing α.

(A4) β is a quadratic non-residue in F×
p .
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(A5) l is a quadratic residue in F×
p for any odd prime l dividing λ.

(A6) l is a quadratic residue in F×
p for any odd prime l dividing d .

Let C be the smooth projective model of the affine curve in Lemma 2.1. Then C(AQ)Br = ∅.

PROOF. Let Q(C) be the function field of C, and let A be the class of the quaternion
algebra defined by (4) in Lemma 2.1. For any Pl ∈ C(Ql), we will prove that

invl (A(Pl)) =
{

0 if l �= p

1/2 if l = p .
(8)

Suppose that l = 2, l = ∞, or l is an odd prime such that p is a square in Q×
l . We see

that for any t ∈ Q×
l , the local Hilbert symbol (p, t)l is 1. Thus invl(A(Pl)) is 0.

Suppose that l is an odd prime such that l �= p and p is not a square in Q×
l . By (A3) and

(A5), we deduce that α �≡ 0 (mod l) and λ �≡ 0 (mod l). We consider the following cases:
Case 1. vl(x) ≥ 0.
Assume that

{
(pα + (p + 1)β)γ 2x2m − p(α + β) + z ≡ 0 (mod l)

(pα + (p + 1)β)γ 2x2m − p(α + β) − z ≡ 0 (mod l) .
(9)

It follows that

(pα + (p + 1)β)γ 2x2m − p(α + β) ≡ 0 (mod l) ,

and thus

(pα + (p + 1)β)γ 2x2m ≡ p(α + β) (mod l) .(10)

Furthermore, it follows from (9) and (5) that

αλ2(k+1)x2(k+1)n + β ≡ 0 (mod l) ,

and hence

αλ2(k+1)x2(k+1)n ≡ −β (mod l) .(11)

Thus it follows from (10) and (11) that

αmλ2(k+1)m(pα + (p + 1)β)(k+1)nγ 2(k+1)nx2(k+1)mn

≡ αmλ2(k+1)m (p(α + β))(k+1)n (mod l)

and

αmλ2(k+1)m(pα + (p + 1)β)(k+1)nγ 2(k+1)nx2(k+1)mn

≡ (−1)mβm(pα + (p + 1)β)(k+1)nγ 2(k+1)n (mod l) .

Thus we deduce from the last two congruences that

αmλ2(k+1)m (p(α + β))(k+1)n ≡ (−1)mβm(pα + (p + 1)β)(k+1)nγ 2(k+1)n (mod l) ,
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and therefore

d = αmλ2(k+1)m (p(α + β))(k+1)n

+ (−1)m+1βm(pα + (p + 1)β)(k+1)nγ 2(k+1)n ≡ 0 (mod l) .

By (A6), we deduce that l is a quadratic residue in F×
p , and thus it follows from the quadratic

reciprocity law that p is a square in Q×
l , which is a contradiction. Thus at least one of

(pα + (p + 1)β)γ 2x2m − p(α + β) + z and (pα + (p + 1)β)γ 2x2m − p(α + β) − z is
non-zero modulo l, say U . Thus the Hilbert symbol (p,U)l is 1, and therefore invl (A(Pl)) is
0.

Case 2. ε := vl(x) < 0.
By (A3) and (A5), α �≡ 0 (mod l) and λ �≡ 0 (mod l). Hence

vl

(
pα2λ4(k+1)x4(k+1)n

) = 4(k + 1)nε ,

and thus it follows from (A1) and (3) that

vl(z) = vl(z
2)

2
= vl

(
pα2λ4(k+1)x4(k+1)n

)

2
= 2(k + 1)nε .

We have that

vl((pα+(p+1)β)γ 2x2m − p(α+β)) ≥ min
(
vl(p(α + β)), vl((pα + (p + 1)β)γ 2x2m)

)

≥ min
(
0, vl(pα + (p + 1)β) + 2vl(γ ) + 2mvl(x)

)

≥ min (0, 2mε)

= 2mε (since 2mε < 0)

> 2(k + 1)nε = vl(z) (since (k + 1)n > m) .

Hence we deduce that

vl((pα + (p + 1)β)γ 2x2m − p(α + β) + z) = vl(z) = 2(k + 1)nε ,

which is an even integer. Using Theorem 5.2.7 in [4], we see that the Hilbert symbol (p, (pα+
(p + 1)β)γ 2x2m − p(α + β) + z)l is 1. Thus invl (A(Pl)) is 0.

Suppose that l = p. If vp(x) < 0, then it follows from (A2) and (3) that

2vp(z) = vp(z2) = vp

(
pα2λ4(k+1)x4(k+1)n

)

= vp(p) + vp

(
α2λ4(k+1)x4(k+1)n

) = 1 + 4(k + 1)nvp(x) ,

which is a contradiction since the left-hand side is an even integer whereas the right-hand side
is an odd integer.

If vp(x) > 0, then it follows that vp(x) ≥ 1. Since α �≡ 0 (mod p), β �≡ 0 (mod p)

and λ �≡ 0 (mod p), we see that

vp

(
p(αλ2(k+1)x2(k+1)n + β)2) = vp(p) + vp

(
(αλ2(k+1)x2(k+1)n + β)2)
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= 1 + 2vp

(
αλ2(k+1)x2(k+1)n + β

)

= 1 + 2 min
(
vp(αλ2(k+1)x2(k+1)n), vp(β)

)

= 1 + 2 min
(
2(k + 1)nvp(x), 0

)

= 1 + 2 · 0 (since vp(x) ≥ 1)

= 1 .

On the other hand, we see that

vp

((
(pα + (p + 1)β)γ 2x2m − p(α + β)

)2
)

= 2vp

(
(pα + (p + 1)β)γ 2x2m − p(α + β)

)

≥ 2 min
(
vp

(
(pα + (p + 1)β)γ 2x2m

)
, vp (p(α + β))

)

≥ 2 min
(
vp(pα + (p + 1)β) + 2mvp(x), 1 + vp(α + β)

)

≥ 2 min
(
2mvp(x), 1

) (
since vp(pα + (p + 1)β) ≥ 0 and vp(α + β) ≥ 0

)

= 2 (since 2mvp(x) ≥ 2m ≥ 2 > 1) .

Hence we deduce from (3) that

2vp(z) = vp(z2)

= min
(
vp

(
p(αλ2(k+1)x2(k+1)n + β)2),

vp

((
(pα + (p + 1)β)γ 2x2m − p(α + β)

)2
))

= min
(

1, vp

((
(pα + (p + 1)β)γ 2x2m − p(α + β)

)2
))

= 1 (since vp

((
(pα + (p + 1)β)γ 2x2m − p(α + β)

)2
)

≥ 2
)

,

which is a contradiction since the left-hand side is an even integer whereas the right-hand side
is odd. This contradiction establishes that vp(x) = 0, and hence x is a unit in Z×

p . By (3), we

see that vp(z) ≥ 0.
Taking (5) modulo p, we deduce that

(pα + (p + 1)β)γ 2x2m − p(α + β) − z ≡ 0 (mod p)

or

(pα + (p + 1)β)γ 2x2m − p(α + β) + z ≡ 0 (mod p) .

We consider the following two cases:

Case I. (pα + (p + 1)β)γ 2x2m − p(α + β) − z ≡ 0 (mod p).
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We see that z ≡ (pα + (p + 1)β)γ 2x2m − p(α + β) (mod p), and hence it follows that

(pα + (p + 1)β)γ 2x2m − p(α + β) + z

≡ 2((pα + (p + 1)β)γ 2x2m − p(α + β)) ≡ 2βγ 2x2m �≡ 0 (mod p).

Using Theorem 5.2.7 in [4], we deduce from (A4) that the local Hilbert symbol

(
p, (pα + (p + 1)β)γ 2x2m − p(α + β) + z

)
p

=
(

2βγ 2x2m

p

)
=

(
2γ 2x2m

p

)(
β

p

)
= −1 ,

and therefore invp(A(Pp)) = 1/2. Case II. (pα + (p + 1)β)γ 2x2m − p(α + β) + z ≡ 0
(mod p).

We see that −z ≡ (pα + (p + 1)β)γ 2x2m − p(α + β) (mod p), and hence it follows
that

(pα + (p + 1)β)γ 2x2m − p(α + β) − z

≡ 2((pα + (p + 1)β)γ 2x2m − p(α + β)) ≡ 2βγ 2x2m �≡ 0 (mod p) .

Using Theorem 5.2.7 in [4], we deduce from (A4) that the local Hilbert symbol

(
p, (pα + (p + 1)β)γ 2x2m − p(α + β) − z

)
p

=
(

2βγ 2x2m

p

)
=

(
2γ 2x2m

p

) (
β

p

)
= −1 .

Since A and B represent the same class in Br(Q(C)), where B is the Azumaya algebra defined
in Lemma 2.1, we deduce that invp(A(Pp)) = 1/2.

Therefore
∑

l invlA(Pl) = 1/2 for any adelic point (Pl)l ∈ C(AQ). Hence C(AQ)Br =
∅. �

We now prove the main theorem in this section.

THEOREM 2.3. We maintain the same notation and assumptions as in Theorem 2.2.
Let λ = γ = 1 in Theorem 2.2, and let d be the integer defined by (2) with both of λ and γ

replaced by 1, that is, d is of the form

d = αm(p(α + β))(k+1)n + (−1)m+1βm(pα + (p + 1)β)(k+1)n .(12)

Set

q := β2 + p(α + β)2 .(13)

Assume (A1)–(A6), and (S) in Theorem 2.2, and assume further that the following is true.

(A7) let l be any odd prime dividing q . Then (k + 1)n − m �≡ 0 (mod l).

Let D be the smooth projective model of the affine curve defined by

D : z2 = p(αx2(k+1)n + β)2 + (
(pα + (p + 1)β

)
x2m − p(α + β)

)2
.(14)

Then D is a counterexample to the Hasse principle explained by the Brauer–Manin obstruc-
tion.
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REMARK 2.4. Note that condition (S) in Theorem 2.3 is equivalent to saying that the
polynomial Pp,α,β,1,1(x) ∈ Q[x] defined by

Pp,α,β,1,1(x) = p(αx2(k+1)n + β)2 + (
(pα + (p + 1)β)x2m − p(α + β)

)2

is separable.

REMARK 2.5. When λ = 1 and γ = 1, we see that gcd(γ, p) = gcd(λ, p) = 1, and
(A5) is trivially true. Hence it suffices to only assume that (S), (A1)–(A4), (A6), and (A7) are
true in Theorem 2.3.

REMARK 2.6. Substituting γ = λ = 1 into the defining equation (3) of C, we see that
(3) becomes the defining equation (14) of D. Hence it follows from Theorem 2.2 and the
assumptions in Theorem 2.3 that D(AQ)Br = ∅.

PROOF OF THEOREM 2.3. By Remark 2.6, D(AQ)Br = ∅. Hence it suffices to prove
that D(AQ) �= ∅. Since D is a proper scheme over Q, we know that

D(AQ) =
∏

p primes

D(Qp) .

(For the proof of this fact, see, for example, Jahnel [8, Lemma 1.9, p.121].) Thus in order to
prove that D(AQ) �= ∅, one only needs to show that D(Qp) �= ∅ for all primes p including
p = ∞, i.e., D is everywhere locally solvable. We consider the following cases:

Case 1. l is an odd prime such that p is a square in Q×
l .

We see that the curve D∗ defined by

D∗ : z2 =p(αx2(k+1)n+βy2(k+1)n)2+y4(k+1)n−4m
(
(pα + (p + 1)β)x2m − p(α + β)y2m

)2
.

is an open subscheme of D. One can check that the point P1 := (x : y : z) = (1 : 0 : α
√

p) ∈
D∗(Ql ) ⊂ D(Ql), and hence it follows that D is locally solvable at l.

Case 2. l is an odd prime such that q is a square in Q×
l .

By the definition of q , we see that the point P2 := (x, z) = (1,
√

q) lies on D. Since√
q ∈ Q×

l , it follows that P2 ∈ D(Ql ).

Case 3. l is an odd prime such that pq is a square in Q×
l .

We see that the point P3 := (x, z) = (0,
√

pq) ∈ D(Ql ), and thus D is locally solvable
at l.

Case 4. l = 2.
By assumption, one knows that p ≡ 1 (mod 8). Hence

√
p ∈ Q×

2 . Thus the point P1

defined in Case 1 belongs to D(Q2). Therefore D is locally solvable at 2.
Case 5. l = p.
By the definition of q , we see that

q = β2 + p(α + β)2 ≡ β2 (mod p) ,
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and hence q is a square in Q×
p . Thus p is among the odd primes in Case 2, and therefore

P2 ∈ D(Qp).
Case 6. l is any odd prime such that l divides q .
If l divides α, then it follows from (A3) that l is a square in F×

p , and hence we deduce

from the quadratic reciprocity law that p is a square in Q×
l . Thus the point P1 defined in Case

1 belongs to D(Ql ), which proves that D is locally solvable at l.
Assume now that α �≡ 0 (mod l). We consider the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(x, z) =p(αx2(k+1)n+β)2+((pα + (p + 1)β)x2m

− p(α + β))2 − z2 ≡ 0 (mod l)

∂F

∂x
(x, z)= 4(k + 1)npαx2(k+1)n−1(αx2(k+1)n + β)

+ 4m(pα + (p + 1)β)x2m−1((pα + (p + 1)β)x2m

− p(α + β)) �≡ 0 (mod l) .

(15)

We see that

F(1, 0) = q ≡ 0 (mod l)

and

∂F

∂x
(1, 0) = 4(k + 1)npα(α + β) + 4m(pα + (p + 1)β)β

= 4
(
p(α + β)(mβ + (k + 1)nα) + mβ2) .

Since q = β2 + p(α + β)2 ≡ 0 (mod l), it follows that β2 ≡ −p(α + β)2 (mod l). Hence
we deduce that

∂F

∂x
(1, 0) ≡ 4

(
p(α + β)(mβ + (k + 1)nα) − mp(α + β)2)

≡ 4pα(α + β)((k + 1)n − m) (mod l) .

We prove that 4pα(α + β) �≡ 0 (mod l). By the assumption above, we know that α �≡ 0

(mod l). By the definition of q and (A2), we know that q = β2 + p(α + β)2 ≡ β2 �≡ 0
(mod p), and hence it follows that p does not divide q . Thus we deduce that p �≡ 0 (mod l).
We assume that α + β ≡ 0 (mod l). Hence it follows from (13) that

β2 ≡ β2 + p(α + β)2 = q ≡ 0 (mod l) ,

and thus α ≡ (α + β) − β ≡ 0 (mod l), contradiction. Therefore we have shown that
4pα(α + β) �≡ 0 (mod l). Furthermore, we see from (A7) that (k + 1)n − m �≡ 0 (mod l),
and thus

∂F

∂x
(1, 0) ≡ 4pα(α + β)((k + 1)n − m) �≡ 0 (mod l) .
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Therefore we deduce that (x, z) = (1, 0) is a solution to the system (15). By Hensel’s lemma,
we deduce that D is locally solvable at l.

Case 7. l = ∞.
Since pq ≥ 0, we see that the point P3 = (x, z) = (0,

√
pq) ∈ D(R). Hence D is

locally solvable at ∞.
Therefore, by what we have shown, D is everywhere locally solvable, and hence our

contention follows. �

EXAMPLE 2.7. Let p = 17, (k,m, n) = (0, 1, 3), and let (α, β, λ, γ ) = (1, 5, 1, 1).
Then d = 7186423 is a prime such that d is a square in F×

17. We see that q = 637 = 72 · 13.
We know that (k + 1)n − m = 2 �≡ 0 (mod 7) and (k + 1)n − m = 2 �≡ 0 (mod 13). Thus
(A7) holds. By computation, we easily see that (A1)–(A6) are true. On the other hand, we
see that the polynomial P17,1,5,1,1(x) ∈ Q[x] defined by

P17,1,5,1,1(x) = 17(x6 + 5)2 + (107x2 − 102)2

is separable. Thus (S) holds.

Let D(0,1,3)
(17,1,5) be the smooth projective model of the affine curve defined by

D(0,1,3)
(17,1,5) : z2 = 17(x6 + 5)2 + (107x2 − 102)2 .

It then follows from Theorem 2.3 that D(0,1,3)
(17,1,5) is a counterexample to the Hasse principle

explained by the Brauer–Manin obstruction.

3. The Hasse principle for certain forms

In this section, we will use the curves D in Theorem 2.3 to construct forms X of degree
n with n ≡ 0 (mod 4) that are counterexamples to the Hasse principle. The next theorem is
the main result in this section.

THEOREM 3.1. Let p be a prime such that p ≡ 1 (mod 8). Let α, β be non-zero
integers, and let d and q be the integers defined by (12) and (13), respectively. Let k,m, n

be integers such that k ≥ 0,m ≥ 1 and n ≥ 1. Assume that (A1)–(A7), and (S) in Theorem
2.3 are true. Let (n1, n2, n3, n4, n5, n6, n7, n8) be an octuple of non-negative integers, and
let ζ ∈ Q be a non-zero rational number. Assume further that the following are true:

(C1) 2(k + 1)n − 1 = (2n1 + 1)n2 and 2n1 + 1 = n3 + n4.
(C2)

⎧
⎪⎪⎨

⎪⎪⎩

n1 ≥ 2

n2, n3, n4, n5, n6, n7 ≥ 1

n8 ≥ 0 ,

(16)
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and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n1 > n5

n1 > n6

n1 > n7 + n8

n5 > n8

n6 > n8 .

(17)

(C3) ζ ∈ Zl for any odd prime l dividing q .

Let (Δ,Ψ,Σ,Λ) ∈ Q4 be the quadruple defined by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δ = ζ

Ψ = −α2(n1−n5)pn1−n5ζ

Σ = −(pq)n1−n6ζ

Λ = qn5−n8
(
α2(n1−n5)pn1−n5 + pn1−n6qn1−n5 − qn1−n5

)
ζ ,

(18)

and set

Q(x, y, z) := x2n1+1 − xn3yn4 + y2n1+1 + Ψ x2(n1−n5)z2n5+1(19)

+ Σy2(n1−n6)z2n6+1 + Λx2(n1−n7−n8)y2n7z2n8+1 + Δz2n1+1.

Let X ⊂ P2 be the form of degree 4(k + 1)n defined by

X : (Q(x, y, z))2n2 z2 = p(αx2(k+1)n + βy2(k+1)n)2(20)

+ y4(k+1)n−4m
(
(pα + (p + 1)β)x2m − p(α + β)y2m

)2
.

Then X is a counterexample to the Hasse principle.

REMARK 3.2.
(i) By (18), Λ = −qn5−n8Ψ − qn6−n8Σ − qn1−n8Δ.

(ii) Since ζ �= 0, we see from (18) that ΔΨ ΣΛ �= 0.

PROOF. We first prove that X is everywhere locally solvable. It suffices to consider the
following cases:

Case 1. l is an odd prime such that p is a square in Q×
l .

Since Q(1, 0, α
√

p) = 1, the point P1 = (x, y, z) = (1, 0, α
√

p) belongs to X (Ql ),
which proves that X is locally solvable at l.

Case 2. l is an odd prime such that q is a square in Q×
l .

Since Q(1, 1,
√

q) = 1, the point P2 = (x, y, z) = (1, 1,
√

q) belongs to X (Ql ), which
proves that X is locally solvable at l.

Case 3. l is an odd prime such that pq is a square in Q×
l .

Since Q(0, 1,
√

pq) = 1, the point P3 = (x, y, z) = (0, 1,
√

pq) belongs to X (Ql ),
which proves that X is locally solvable at l.
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Case 4. l = 2.
By assumption, we know that p ≡ 1 (mod 8), and hence

√
p ∈ Q×

2 . Thus the point P1

defined in Case 1 belongs to X (Q2). Therefore X is locally solvable at 2.
Case 5. l = p.
By the definition of q , we know that q = β2 + p(α + β)2 ≡ β2 (mod p), and hence it

follows that q is a square in Q×
p . Thus p is among the odd primes in Case 2, and therefore the

point P2 in Case 2 belongs to X (Qp).
Case 6. l is any odd prime such that l divides q .
If l divides α, then it follows from (A3) that l is a square in F×

p , and hence we deduce

from the quadratic reciprocity law that p is a square in Q×
l . Thus the point P1 in Case 1

belongs to X (Ql ), which proves that X is locally solvable at l.
Assume now that α �≡ 0 (mod l). Set

F(x, y, z) = p(αx2(k+1)n + βy2(k+1)n)2

(21)

+ y4(k+1)n−4m
(
(pα + (p + 1)β)x2m − p(α + β)y2m

)2 − z2 (Q(x, y, z))2n2 ,

and consider the system of equations defined by
⎧
⎨

⎩

F(x, y, z) ≡ 0 (mod l)

∂F

∂x
(x, y, z) �≡ 0 (mod l) .

(22)

By (C3), we know that ζ ∈ Zl , and hence Q(x, y, z) ∈ Zl[x, y, z]. By (21), and since
q = β2 + p(α + β)2, we deduce that

F(1, 1, 0) = q ≡ 0 (mod l) .(23)

We see that
∂F

∂x
(x, y, z) = 4(k + 1)npαx2(k+1)n−1(αx2(k+1)n + βy2(k+1)n)(24)

+ 4m(pα + (p + 1)β)x2m−1y4(k+1)n−4m

× (
(pα + (p + 1)β)x2m − p(α + β)y2m

)

− z2
(

2n2
∂Q

∂x
(x, y, z) (Q(x, y, z))2n2−1

)
.

Note that since q = β2 +p(α +β)2 ≡ 0 (mod l), it follows that β2 ≡ −p(α +β)2 (mod l).
Therefore we deduce from (24) that

∂F

∂x
(1, 1, 0) ≡ 4

(
p(α + β)(mβ + (k + 1)nα) − mp(α + β)2)(25)

≡ 4pα(α + β)((k + 1)n − m) (mod l) .
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Using exactly the same arguments as in Case 6 of the proof of Theorem 2.3, we know that
4pα(α + β) �≡ 0 (mod l). On the other hand, by (A7) in Theorem 2.3, (k + 1)n − m �≡ 0
(mod l). Thus it follows from (25) that

∂F

∂x
(1, 1, 0) �≡ 0 (mod l) .(26)

Therefore it follows from (23) and (26) that (x, y, z) = (1, 1, 0) is a solution to the system
(22). By Hensel’s lemma, we deduce that X is locally solvable at l.

Case 7. l = ∞.
Since

√
p ∈ R, we see that the point P1 in Case 1 belongs to X (R). Therefore X is

locally solvable at ∞.
By what we have shown above, X is everywhere locally solvable.
We now prove that X has no rational points. Let D be the smooth projective model of the

affine curve defined by (14) in Theorem 2.3, and let φ : X → D be the rational map defined
by

φ : X −→ D
(x : y : z) −→ (

x : y : z(Q(x, y, z))n2
)

.

If x = y = z(Q(x, y, z))n2 = 0, then by (19), z(Δz2n1+1)n2 = 0. Since Δ = ζ �= 0, we

deduce that z = 0. Thus φ is regular at every point of X (Q̄), and therefore φ is a Q-morphism.
Recall from Theorem 2.3 that D(AQ)Br = ∅. In particular, this implies that D(Q) = ∅, and
thus X (Q) = ∅. �

4. Certain algebraic families of forms violating the Hasse principle

In this section, using Theorem 3.1 in Section 3, we will construct certain algebraic fami-
lies of forms of degree n with n ≡ 0 (mod 4) that are counterexamples to the Hasse principle.

The next lemma shows the existence of certain rational functions over Q that only take
values in ∩l∈SZl for a given finite set S of odd primes. Lemma 4.1 below is a special case of
Lemma 4.2 in [6].

LEMMA 4.1. Let S be a finite set of odd primes, and let Q(T ) be the field of rational
functions in the variable T over Q. Then there exist infinitely many rational functions F(T ) ∈
Q(T ) that satisfy the following conditions:

(i) F(T�) �= 0 for every rational number T� ∈ Q;
(ii) for each odd prime l ∈ S, F(T�) belongs to Zl for every rational number T� ∈ Q.

PROOF. By the Chinese Remainder Theorem, there exist infinitely many integers ε

such that ε is a quadratic non-residue in F×
l for each l ∈ S. Take such an integer ε, and define

F(T ) = 1

T 2 − ε
∈ Q(T ) .
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Following the ideas in the proof of Lemma 4.2 in [6], one can show that F(T ) satisfies (i) and
(ii) in Lemma 4.1. �

THEOREM 4.2. Let p be a prime such that p ≡ 1 (mod 8). Let k,m, n be integers
such that k ≥ 0,m ≥ 1 and n ≥ 1. Let α, β be non-zero integers, and let d and q be the
integers defined by (12) and (13), respectively. Assume that (A1)–(A7), and (S) in Theorem
2.3 are true. Let (n1, n2, n3, n4, n5, n6, n7, n8) be an octuple of non-negative integers such
that (C1) and (C2) in Theorem 3.1 hold. Then there are algebraic families of forms of degree
4(k + 1)n that are counterexamples to the Hasse principle.

PROOF. Set

S = {l | l is an odd prime dividing q} .

Applying Lemma 4.1 for the set S, we deduce that there exist infinitely many rational func-
tions F(T ) in Q(T ) that satisfy the following conditions:

(i) F(T�) �= 0 for every rational number T� ∈ Q; and
(ii) for each odd prime l ∈ S, F(T�) belongs to Zl for every rational number T� ∈ Q.

Take such a rational function F(T ), and let Δ(T ), Ψ (T ),Σ(T ),Λ(T ) be rational func-
tions in Q(T ) defined by

Δ(T ) = F(T ) ,

Ψ (T ) = −α2(n1−n5)pn1−n5F(T ) ,

Σ(T ) = −(pq)n1−n6F(T ) ,

Λ(T ) = qn5−n8
(
α2(n1−n5)pn1−n5 + pn1−n6qn1−n5 − qn1−n5

)
F(T ) ,

and set

Q(x, y, z)(T ) = x2n1+1 − xn3yn4 + y2n1+1 + Ψ (T )x2(n1−n5)z2n5+1

+ Σ(T )y2(n1−n6)z2n6+1 + Λ(T )x2(n1−n7−n8)y2n7z2n8+1 + Δ(T )z2n1+1 .

For each rational number T�, let XT� ⊂ P2 be the form of degree 4(k + 1)n defined by

XT� : (Q(x, y, z)(T�))
2n2 z2 = p(αx2(k+1)n + βy2(k+1)n)2

+ y4(k+1)n−4m
(
(pα + (p + 1)β)x2m − p(α + β)y2m

)2
.

Take an arbitrary rational number T� ∈ Q. Since F(T ) satisfies (i) and (ii) above, the
condition (C3) in Theorem 3.1 is satisfied with F(T�) in the role of ζ . Applying Theorem
3.1 with F(T�) in the role of ζ , we deduce that XT� is a counterexample to the Hasse princi-

ple. Hence each member in the algebraic family
(XT�

)
T�∈Q is a counterexample to the Hasse

principle, which completes our proof. �
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REMARK 4.3.
(i) Note that Theorem 4.2 does not imply that for each integer k ≥ 0, and each integer

n ≥ 1, there exists an algebraic family of forms of degree 4(k + 1)n that are
counterexamples to the Hasse principle.

(ii) Note that once one can choose integers k ≥ 0,m ≥ 1, n ≥ 1, α �= 0, β �= 0
for which conditions (A1)–(A7) and (S) are satisfied, it is not difficult to show the
existence of the octuples of non-negative integers (n1, n2, n3, n4, n5, n6, n7, n8)

that satisfy conditions (C1) and (C2) in Theorem 3.1. Thus Theorem 4.2 really
means that for each prime p ≡ 1 (mod 8), if one can choose integers k ≥ 0,m ≥
1, n ≥ 1, α �= 0, β �= 0 for which conditions (A1)–(A7) and (S) are satisfied,
then one can construct algebraic families of forms of degree 4(k + 1)n that are
counterexamples to the Hasse principle.

(iii) For a given prime p ≡ 1 (mod 8), using the Chinese Remainder Theorem, and
Dirichlet’s theorem on primes in arithmetic progressions, it is not difficult to show
that there are infinitely many tuples of integers (k,m, n, α, β) with k ≥ 0,m ≥
1, n ≥ 1, α �= 0, β �= 0 for which conditions (A1)–(A7) are satisfied. The only
difficulty is to show among those tuples, there exists at least one tuple that satisfies
condition (S) in Lemma 2.1, which is equivalent to showing the existence of one
tuple for which the polynomial Pp,α,β,λ,γ (x) is separable, where

Pp,α,β,λ,γ (x) = p(αλ2(k+1)x2(k+1)n + β)2

+(
(pα + (p + 1)β)γ 2x2m − p(α + β)

)2
.

For sufficiently large integers k,m, n, it seems a non-trivial question to determine
whether the polynomial Pp,α,β,λ,γ (x) is separable for a general couple of integers
(α, β).

4.1. Examples of algebraic families of forms of degree 4n with n odd. In this sub-
section, we will construct an explicit non-constant algebraic family of forms of degree 12 that
are counterexamples to the Hasse principle. Although we restrict ourself to constructing only
one non-constant algebraic family of forms of degree 12, the method presented here can be
easily extended to construct algebraic forms of degree 4n for other odd values of n.

Throughout this subsection, we maintain the same notation as in Theorem 2.3, Theorem
3.1 and Lemma 4.1.

EXAMPLE 4.4. We set p = 17, k = 0, and m = 1 as in Example 2.7. Let n = 3, and
let

(n1, n2, n3, n4, n5, n6, n7, n8) = (2, 1, 1, 4, 1, 1, 1, 0) .

Let (α, β) = (1, 5). Then d = 7186423 is a prime such that d is a square in F×
17. Thus (A6)

holds. We see that q = 637 = 72 · 13. We know that (k + 1)n − m = 2 �≡ 0 (mod 7) and
(k + 1)n − m = 2 �≡ 0 (mod 13). Thus (A7) holds. By computation, we easily see that



CERTAIN FORMS VIOLATE THE HASSE PRINCIPLE 293

(A1)–(A5) are true. Furthermore the polynomial defined by

17(x6 + 5)2 + (107x2 − 102)2 ∈ Q[x]
is separable over C, and thus condition (S) in Theorem 2.3 is satisfied. On the other hand, it
is not difficult to check that conditions (C1), (C2) are satisfied.

Since q = 637 = 72 · 13, we see that S = {7, 13}. Set ε = 5, and define

F(T ) := 1

T 2 − 5
∈ Q(T ) .

For each rational number T� ∈ Q, we see from Lemma 4.1 that (C3) is satisfied with F(T�)

in the role of ζ .
Let Δ(T ), Ψ (T ),Σ(T ),Λ(T ) be the rational functions defined by

Δ(T ) = F(T ) = 1

T 2 − 5
,

Ψ (T ) = −α2(n1−n5)pn1−n5F(T ) = − 17

T 2 − 5
,

Σ(T ) = −(pq)n1−n6F(T ) = − 10829

T 2 − 5
,

Λ(T ) = qn5−n8
(
α2(n1−n5)pn1−n5 + pn1−n6qn1−n5 − qn1−n5

)
F(T ) = 6503133

T 2 − 5
,

and let

Q(x, y, z)(T ) := x5 − xy4 + y5 − 17

T 2 − 5
x2z3 − 10829

T 2 − 5
y2z3

+ 6503133

T 2 − 5
x2y2z + 1

T 2 − 5
z5 .

For each rational number T� ∈ Q, let X (17)
(0,1,3),T�

⊂ P2 be the form of degree 12 defined

by

X (17)
(0,1,3),T�

: (Q(x, y, z)(T�))
2 z2 = 17(x6 + 5y6)2 + y8(107x2 − 102y2)2 .

Note that the defining equation of X (17)
(0,1,3),T�

can be written in the form

X (17)
(0,1,3),T�

:
(

x5 − xy4 + y5 − 17

T 2
� − 5

x2z3 − 10829

T 2
� − 5

y2z3(27)

+6503133

T 2
� − 5

x2y2z + 1

T 2
� − 5

z5
)2

z2

= 17(x6 + 5y6)2 + y8(107x2 − 102y2)2 .

By Theorem 3.1, we deduce that each member in the algebraic family
(
X (17)

(0,1,3),T�

)

T�∈Q
is a

counterexample to the Hasse principle.
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We show that the algebraic family
(
X (17)

(0,1,3),T�

)

T�∈Q
is non-constant, i.e., there exist

rational numbers T
(1)
� , T

(2)
� ∈ Q such that X (17)

(0,1,3),T
(1)
�

and X (17)

(0,1,3),T
(2)
�

are non-isomorphic.

The latter can be proved if one can show the existence of rational numbers T
(1)
� , T

(2)
� ∈ Q

such that

(i) both X (17)

(0,1,3),T
(1)
�

and X (17)

(0,1,3),T
(2)
�

are nonsingular projective curves of degree 12

and genus 55;

(ii) there exists a prime ℘ at which both X (17)

(0,1,3),T
(1)
�

and X (17)

(0,1,3),T
(2)
�

have good reduc-

tion, and the sets X (17)

(0,1,3),T
(1)
�

(F℘),X (17)

(0,1,3),T
(2)
�

(F℘) are different.

Set T
(1)
� = 0, and T

(2)
� = 1. Then X (17)

(0,1,3),0, and X (17)
(0,1,3),1 are the forms of degree 12

defined by

X (17)
(0,1,3),0 :

(
x5 − xy4 + y5 + 17

5
x2z3 + 10829

5
y2z3 − 6503133

5
x2y2z − 1

5
z5

)2

z2

= 17(x6 + 5y6)2 + y8(107x2 − 102y2)2 ,

and

X (17)
(0,1,3),1 :

(
x5 − xy4 + y5 + 17

4
x2z3 + 10829

4
y2z3 − 6503133

4
x2y2z − 1

4
z5

)2

z2

= 17(x6 + 5y6)2 + y8(107x2 − 102y2)2 .

We know that both X (17)
(0,1,3),0, and X (17)

(0,1,3),1 are non-singular projective curves of degree

12 and genus 55; furthermore they have good reduction at ℘ = 11.

By computation, the set of all points of X (17)
(0,1,3),0 over F11 is given by

X (17)
(0,1,3),0(F11) = {(0 : 1 : 1), (4 : 2 : 1), (0 : 3 : 1), (0 : 7 : 1), (8 : 7 : 1), (0 : 8 : 1),

(6 : 8 : 1), (2 : 10 : 1)} .

The set of all points of X (17)
(0,1,3),1 over F11 is given by

X (17)
(0,1,3),1(F11) = {(0 : 3 : 1), (10 : 5 : 1), (10 : 6 : 1), (0 : 7 : 1), (3 : 7 : 1), (0 : 8 : 1), (5 : 8 : 1),

(0 : 9 : 1), (7 : 9 : 1)} .

Hence

X (17)
(0,1,3),0(F11) �= X (17)

(0,1,3),1(F11) ,

which proves that X (17)
(0,1,3),0, and X (17)

(0,1,3),1 are non-isomorphic. Thus the algebraic family
(
X (17)

(0,1,3),T�

)

T�∈Q
is non-constant.
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REMARK 4.5. In order to find a prime ℘ at which both X (17)

(0,1,3),T
(1)
�

and X (17)

(0,1,3),T
(2)
�

have good reduction, and the sets X (17)

(0,1,3),T
(1)
�

(F℘),X (17)

(0,1,3),T
(2)
�

(F℘) are different, we used the

computational algebra software MAGMA [3] to search for small primes ℘ satisfying these
conditions.

4.2. Examples of algebraic families of forms of degree 4n with n even. In this
subsection, we will show how to construct algebraic families of forms of degree 4n that are
counterexamples to the Hasse principle, where n is an even integer such that n ≥ 6. Through-
out this subsection, we will keep the same notation as in Theorem 2.3, Theorem 3.1 and
Lemma 4.1.

Fix k = 0, and let m be a positive integer. Throughout this subsection, assume that n ≥ 1
is even. Let d be the integer defined by (12). Reducing d modulo p, we see that

d ≡ (−1)m+1βn+m (mod p) ,

and since p ≡ 1 (mod 8), it follows that
(

d

p

)
=

(
(−1)m+1βn+m

p

)
=

(
βn+m

p

)
.(28)

Here
( ·
·
)

denotes the Jacobi symbol. Note that in order to use Theorem 3.1 to produce

algebraic forms of degree 4n that are counterexamples to the Hasse principle, we need to
assume that conditions (A1)–(A7), and (S) are satisfied.

Assume now that (A1)–(A7), and (S) are satisfied. By (A4), we see that β is a quadratic
non-residue in F×

p . We contend that n + m is even; otherwise, we deduce that βn+m is a

quadratic non-residue in F×
p , and hence it follows from (28) that d is a quadratic non-residue

in F×
p . By (A6) and since p ≡ 1 (mod 8), we know that d is a quadratic residue in F×

p , which

is a contradiction. Thus n + m is an even integer, and therefore m is an even integer.
We contend that n + m ≡ 0 (mod 4). Assume the contrary, i.e., n + m = 2(2h + 1) for

some integer h. By (12), and since m,n are even, we see that

d = αm
(
p(α + β)

)n − βm
(
pα + (p + 1)β

)n

= (
αm/2(p(α + β)

)n/2 + βm/2(pα + (p + 1)β
)n/2)

× (
αm/2(p(α + β)

)n/2 − βm/2(pα + (p + 1)β
)n/2)

.

By (A6), and since 2 is quadratic residue in F×
p , d+ is a quadratic residue in F×

p , where

d+ = αm/2(p(α + β))n/2 + βm/2(pα + (p + 1)β)n/2 .

On the other hand, reducing d+ modulo p shows that

d+ ≡ β(n+m)/2 = β2h+1 (mod p) .
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Since β is a quadratic non-residue, it follows from the last congruence that d+ is not a square
in F×

p , which is a contradiction. Therefore n + m ≡ 0 (mod 4).

We contend that n ≥ 6 and m ≥ 2. Indeed, (A1) implies that n > m ≥ 1. Since m,n are
even, m ≥ 2 and n ≥ 4. If n = 4, then m = 2. Thus n + m = 6 �≡ 0 (mod 4), which is a
contradiction. Therefore m,n are even integers such that n ≥ 6, and m ≥ 2.

For the rest of this subsection, assume further that m = n − 4 ≥ 2. With this choice of
n and m, n − m = 4 �≡ 0 (mod l) for any odd prime l dividing q . Therefore (A7) is trivially
satisfied.

In order to use Theorem 3.1 to produce algebraic families of forms of degree 4n for an
even integer n ≥ 6 that are counterexamples to the Hasse principle, it suffices to find couples
(α, β) such that (A2), (A3), (A4), and (S) hold, and such that |d+| and |d−| are primes, where
| · | is the usual absolute value, and

d+ = αm/2(p(α + β))n/2 + βm/2(pα + (p + 1)β)n/2 ,

d− = αm/2(p(α + β))n/2 − βm/2(pα + (p + 1)β)n/2 .

With this choice of d+, d−, we contend that (A6) is satisfied. Indeed, reducing d+ and
d− modulo p, we see that

d+ ≡ β(n+m)/2 (mod p) ,

d− ≡ −β(n+m)/2 (mod p) .

Since (n + m)/2 is even and −1 is a square in F×
p , d+ and d− are quadratic residues in F×

p .

Since d = d+d−, (A6) is satisfied.
Once we can obtain quadruples (α, β, d, q) that satisfy (A1)–(A7), and (S), we can fol-

low Theorem 3.1 and Lemma 4.1 to construct algebraic families of forms of degree 4n for an
even integer n ≥ 6 that are counterexamples to the Hasse principle. As an illustration, we will
construct a non-constant algebraic family of forms of degree 24 such that each member in the
algebraic family is a counterexample to the Hasse principle.

EXAMPLE 4.6. Let p = 17, k = 0, m = 2, and n = 6, and set

(n1, n2, n3, n4, n5, n6, n7, n8) = (5, 1, 1, 10, 4, 4, 1, 3) .

Let (α, β) = (1, 20). Then d+ = 1117151953 and d− = −1026153367 satisfy the following:

(i) |d+| = 1117151953, |d−| = 1026153367 are primes;

(ii) d+ and d− are squares in F×
17.

Since d = d+d− = −1146369238021575751, (A6) is satisfied.
We see that q = 7897 = 53 · 149. We know that (k + 1)n − m = 4 �≡ 0 (mod 53) and

(k + 1)n − m = 4 �≡ 0 (mod 149). Thus (A7) holds. By computation, we easily see that
(A1)–(A5) are true. Furthermore the polynomial defined by

17(x12 + 20)2 + (377x4 − 357)2 ∈ Q[x]
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is separable over C, and thus (S) is satisfied. On the other hand, it is easy to see that (C1),
(C2) hold.

Since q = 7897 = 53 · 149, S = {53, 149}. Set ε = 3. Following Lemma 4.1, one
obtains the rational function F(T ) ∈ Q(T ) defined by

F(T ) = 1

T 2 − 3
∈ Q(T ) .

For each T� ∈ Q, it follows from Lemma 4.1 that (C3) is satisfied with F(T�) in the role
of ζ . Let Δ(T ), Ψ (T ),Σ(T ),Λ(T ) be the rational functions defined by

Δ(T ) = F(T ) = 1

T 2 − 3
,

Ψ (T ) = −α2(n1−n5)pn1−n5F(T ) = − 17

T 2 − 3
,

Σ(T ) = −(pq)n1−n6F(T ) = −134249

T 2 − 3
,

Λ(T ) = qn5−n8
(
α2(n1−n5)pn1−n5 + pn1−n6qn1−n5 − qn1−n5

)
F(T ) = 997935993

T 2 − 3
.

Set

Q(x, y, z)(T ) := x11 − xy10 + y11 − 17

T 2 − 3
x2z9 − 134249

T 2 − 3
y2z9

+997935993

T 2 − 3
x2y2z7 + 1

T 2 − 3
z11 .

For each T� ∈ Q, let X (17)
(0,2,6),T�

⊂ P2 be the form of degree 24 defined by

X (17)
(0,2,6),T�

: (Q(x, y, z)(T�))
2 z2 = 17(x12 + 20y12)2 + y16(377x4 − 357y4)2 .

By Theorem 3.1, each member in the algebraic family
(
X (17)

(0,2,6),T�

)

T�∈Q
is a counterexample

to the Hasse principle.

We show that the algebraic family
(
X (17)

(0,2,6),T�

)

T�∈Q
is non-constant, i.e., there exist

rational numbers T
(1)
� , T

(2)
� ∈ Q such that X (17)

(0,2,6),T
(1)
�

and X (17)

(0,2,6),T
(2)
�

are non-isomorphic.

The latter can be proved if one can show the existence of rational numbers T
(1)
� , T

(2)
� ∈ Q

such that

(i) both X (17)

(0,2,6),T
(1)
�

and X (17)

(0,2,6),T
(2)
�

are nonsingular projective curves of degree 12

and genus 55;

(ii) there exists a prime ℘ at which both X (17)

(0,2,6),T
(1)
�

and X (17)

(0,2,6),T
(2)
�

have good reduc-

tion, and the sets X (17)

(0,2,6),T
(1)
�

(F℘), X (17)

(0,2,6),T
(2)
�

(F℘) are different.
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Set T
(1)
� = 0 and T

(2)
� = 2. Then X (17)

(0,2,6),0 and X (17)
(0,2,6),2 are the forms of degree 24

defined by

X (17)
(0,2,6),0 :

(
x11 − xy10 + y11 + 17

3
x2z9 + 134249

3
y2z9 − 332645331x2y2z7 − 1

3
z11

)2

z2

= 17(x12 + 20y12)2 + y16(377x4 − 357y4)2 ,

and

X (17)
(0,2,6),2 : (x11 − xy10 + y11 − 17x2z9 − 134249y2z9 + 997935993x2y2z7 + z11)2z2

= 17(x12 + 20y12)2 + y16(377x4 − 357y4)2 ,

We know that both X (17)
(0,2,6),0 and X (17)

(0,2,6),2 are nonsingular projective curves of degree

24 and genus 253; furthermore they have good reduction at ℘ = 11.
By computation, the points (0 : 3 : 1), (5 : 4 : 1), (6 : 4 : 1), (0 : 8 : 1), (5 : 8 : 1),

(6 : 8 : 1), (0 : 10 : 1), (2 : 10 : 1), (9 : 10 : 1) are all the points of X (17)
(0,2,6),0 over F11. On the

other hand, the set of points of X (17)
(0,2,6),2 over F11 consists of the points (0 : 2 : 1), (3 : 2 : 1),

(8 : 2 : 1), (0 : 3 : 1), (0 : 4 : 1), (1 : 5 : 1), (10 : 5 : 1), (0 : 8 : 1), (1 : 8 : 1), (10 : 8 : 1).
Thus

X (17)
(0,2,6),0(F11) �= X (17)

(0,2,6),2(F11) ,

which proves that the algebraic family
(
X (17)

(0,2,6),T�

)

T�∈Q
is non-constant.

REMARK 4.7. In order to find a prime ℘ at which both X (17)

(0,2,6),T
(1)
�

and X (17)

(0,2,6),T
(2)
�

have good reduction, and the sets X (17)

(0,2,6),T
(1)
�

(F℘), X (17)

(0,2,6),T
(2)
�

(F℘) are different, we used the

computational algebra software MAGMA [3] to search for small primes ℘ satisfying these
conditions.
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