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Abstract. We derive a formula for the signature of the symmetrized Stokes matrix S + ST for the tt∗-Toda
equation, reminiscent of a formula of Beukers and Heckmann for the generalized hypergeometric equation. The

condition S +ST > 0 is prominent in the work of Cecotti and Vafa on the tt∗ equation; using our formula, we show
that the Stokes matrices S satisfying this condition are parameterized by the points of an open convex polytope.

1. Introduction

The classical Stokes phenomenon for meromorphic ODEs has begun to play an important
role in geometry, notably in singularity theory, Frobenius manifolds and mirror symmetry. For
a (real) Stokes matrix S, the symmetrized matrix S + ST arises in the context of Frobenius
manifolds and the tt∗ equation (e.g. [6, 7, 13, 14]).

The t t∗ equation is a nonlinear PDE which appeared in the work of Cecotti and Vafa
[2, 3, 4] on the classification of supersymmetric field theories in physics. It is a special case of
the harmonic map equation in differential geometry for maps from a surface to a noncompact
symmetric space [11]. Dubrovin [5] showed that it admits an isomonodromic deformation
interpretation, as well as a zero-curvature formulation. This leads to a Riemann-Hilbert corre-
spondence between (local) solutions and monodromy data of a meromorphic ODE. Clarifying
this correspondence is a subject of current research activity relating several fields of mathe-
matics, including Hodge theory and algebraic geometry.

There are very few examples where solutions can be found. A special case of the t t∗
equation, introduced by Cecotti and Vafa, and studied mathematically by Guest-Its-Lin [9, 10]
and Mochizuki [15], is the tt∗-Toda equation. This is, essentially, the well-known Toda field
equation (2-dimensional Toda lattice), although even in this case the existence of the solutions
predicted by Cecotti and Vafa was proved only recently (in the aforementioned references).

This article was motivated by the conjectures of Cecotti and Vafa regarding the sym-
metrized Stokes matrix S+ST, in the case of the t t∗-Toda equation. We shall give a necessary
and sufficient condition for S + ST to be positive definite, and a formula for the signature of
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S + ST, reminiscent of a formula of Beukers and Heckmann for the generalized hypergeo-
metric equation [1].

Let us now state the tt∗-Toda equation and explain the relevant Stokes matrix. The
equations are:

2(wi)zz̄ = −e2(wi+1−wi) + e2(wi−wi−1) , wi : C∗ → R (1.1)

subject to two further conditions:

1. the “anti-symmetry” condition: wi + wn−i = 0; and
2. the radial condition: wi = wi(|z|).

We use the convention that wi = wi+n+1 for all i ∈ Z. In what follows, we write n+ 1 = 2m
or n+ 1 = 2m+ 1.

This equation is the compatibility condition for the linear system:
{
Ψz = (wz + 1

λ
W)Ψ ,

Ψz̄ = (−wz̄ + λWT)Ψ ,

where:

w = diag (w0, . . . , wn) , W =

⎡
⎢⎢⎢⎢⎢⎣

ew1−w0

. . .

ewn−wn−1

ew0−wn

⎤
⎥⎥⎥⎥⎥⎦
.

If we write x = |z|, then the radial version of (1.1) is the compatibility condition for a linear
system, which may then be transformed to (see Equation (1.4) of [10]):

⎧⎨
⎩
Ψζ =

(
− 1
ζ 2 W − 1

ζ
xwx + x2WT

)
Ψ ,

Ψx =
(

1
xζ

W + xζWT
)
Ψ ,

(1.2)

where ζ = λ
z

.

The ζ -system of (1.2) is a meromorphic linear ODE in the complex variable ζ , with
poles of order two at both ζ = 0 and ζ = ∞. The Stokes matrices at these two poles are
equivalent, so we shall only consider the Stokes matrix at ζ = ∞, and denote it by S. By
the general theory of isomonodromic deformations (e.g. [8]), Stokes matrices S correspond
to local solutions near 0 (i.e. defined on intervals of the form (0, ε)) of the t t∗-Toda equation.
Further details and explanation may be found in [9, 10], where S is computed in terms of the
asymptotic behaviour of the functions wi .

It was conjectured by Cecotti and Vafa that the condition S + ST > 0 implies that the
corresponding local solution of the tt∗-Toda equation is globally defined on C

∗ (i.e. such that
ε = ∞). This was confirmed in [9, 10, 11, 15], and in Theorem 5.6 of [10], a stronger result
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(also suggested by Cecotti and Vafa) was shown: a necessary and sufficient condition for the
local solution of the tt∗-Toda equation to be globally defined on C∗ is that the eigenvalues of

the monodromy S(S−1)T are unimodular.
It is, therefore, of interest to describe the set of such Stokes matrices explicitly, and this is

our first main result. For such Stokes matrices, we prove the following explicit characteriza-
tion of the signature of S+ST, showing that they form an open convex polytope described by
simple equations, and we expect this result to be of use in future investigations of the t t∗-Toda
equation:

THEOREM. S + ST has the same signature as the diagonal matrix:

diag ((−1)n+1p(π0), . . . , (−1)n+1p(πn)) .

Here, πk are the n+ 1 roots of xn+1 − (−1)n+1, and the real polynomial p(x) is the charac-

teristic polynomial of a certain matrix R satisfying (−1)nRn+1 = SS−T.

COROLLARY. S + ST > 0 iff (−1)n+1p(πk) > 0 for all k, and the set of such Stokes
matrices is in 1-1 correspondence with an open, convex polytope of Rm.

Our second main result is a formula for the sign of p(πk) when the eigenvalues of
S(S−1)T are unimodular. We refer the reader to Corollary 2.13 for the precise statement
of this result. This characterizes the signature of S + ST in terms of the configurations of the
eigenvalues of R with respect to the roots πk on the unit circle.

These results are given in Section 2 for a conveniently defined, “idealized Stokes matrix”
S. In Section 3, we explain the precise relation between this “idealized Stokes matrix”, and
the “actual” Stokes matrices of [9, 10].

Notational remark: In this paper, N shall denote the natural numbers, Z the integers, Z≥0

the non-negative integers, R the real numbers, C the complex numbers, and C∗ = C \ {0} the
complex plane punctured at the origin. For a matrix A, its transpose is denoted AT, and A−T

will denote the inverse of AT.

ACKNOWLEDGMENT. The author wishes to thank Martin Guest, for explaining the t t∗-
Toda equation and suggesting the problem which is solved in this article, and the anonymous
referee for their comments and suggestions on improving this paper (especially § 3, and for
supplying a shorter proof of Proposition 2.2).

2. Main Results

Let ε := (−1)n and let Ei,j be the matrix
(
δi,kδj,�

)n
k,�=1. It will be convenient to write

Ei,j := 0 whenever at least one of i or j /∈ {1, . . . , n}. The following two matrices will be the
main focus of this section:
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DEFINITION 2.1. Let R ∈ SLnR be given by:

R := −
n∑
k=1

pn−kEk,1 +
n∑
k=1

Ek,k+1 =

⎡
⎢⎢⎢⎣

−pn−1 · . . . ·
...

... In−1
...

−p1 · . . . ·
−p0 0 . . . 0

⎤
⎥⎥⎥⎦ , (2.1)

where p0 := ε and:

pn−k = εpk ∀ 0 ≤ k ≤ n . (2.2)

Let S be the upper-triangular Toeplitz matrix:

S := ε

n∑
i,j=1

pj−iEi,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 εp1 . . . εpn−2 εpn−1

0 1
. . .

. . . εpn−2
...

. . .
. . .

. . .
...

...
. . .

. . . 1 εp1

0 . . . . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.3)

where, for notational convenience, pk := 0 whenever k < 0 or k > n.

Note that the characteristic polynomial p(x) = ∑n
k=0 pkx

k of R is a signed-palindromic
polynomial:

p(x) = (−x)np( 1
x

)
.

These matrices satisfy the following important relation:

PROPOSITION 2.2. −εRn = SS−T.

PROOF. Using our convention for the indices of the elementary matrices Ei,j and the
coefficients pk of p(x), we first observe that, due to (2.2):

εRST = −
n∑
k=1

pkEk,1 +
n∑

i,j=1

pj−iEj−1,i .

We claim that for all m ≥ 1:

εRmST = −
m∑
�=1

n∑
k=1

pkEk+�−m,� +
n∑

i,j=1

pj−iEj−m,i .

This follows by a straightforward proof by induction, with the above observation establishing
the base case form = 1. Hence, for m = n, we find that:

εRnST = −
n∑

k,�=1

pkEk+�−n,� +
n∑

i,j=1

pj−iEj−n,i .
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The second summation vanishes since j < n, and using (2.2), a simple manipulation of the
indices in the first summation yields εRnST = −S, as was to be shown. �

For the next proposition, let ω := e
2πi
n , and define Πε by:

Πε :=
[

0 In−1

ε 0

]
. (2.4)

Then the characteristic polynomial of Πε is xn − ε, and thus, its eigenvalues are:

πk :=
{
ωk , 0 ≤ k ≤ n− 1 , n = 2m ,

ωk+ 1
2 , 0 ≤ k ≤ n− 1 , n = 2m+ 1 .

PROPOSITION 2.3. The eigenvalues of ε(S + ST) are p(π0), . . . , p(πn−1).

PROOF. Since p(x) satisfies (2.2), it is evident that ε(S + ST) = p(Πε), and hence,
S + ST commutes with Πε , so they may be diagonalized simultaneously. To each πk, then,
we let vk denote the corresponding eigenvector of Πε:

vk := 1

n
(1, πk, π2

k , . . . , π
n−1
k )T , 0 ≤ k ≤ n− 1 , (2.5)

It then follows that ε(S + ST)vk = p(πk)vk for each k. �

COROLLARY 2.4. S + ST has the same signature as the diagonal matrix
diag (εp(π0), . . . , εp(πn−1)). In particular:

• S + ST is positive definite iff εp(πk) > 0 for all k.
• The number of zero eigenvalues is the number of common eigenvalues of R and Πε .

�

As before, let us write n = 2m for even n, and n = 2m+ 1 for odd n. We recall that a
complex number of unit norm is said to be unimodular.

PROPOSITION 2.5 (cf. [4], [10]). 　

1. If S + ST is positive definite, then the eigenvalues of R are unimodular.
2. The set of all R such that S + ST is positive definite is in 1-1 correspondence with the

bounded convex region of Rm defined by:

P :=
m⋂
k=0

{(p1, . . . , pm) ∈ R
m | εp(πk) > 0} .

PROOF. SS−T preserves the symmetric bilinear form defined by S + ST [4]:

(
SS−T)(S + ST)

(
SS−T)T = S + ST .
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Hence, SS−T must be orthogonal, and all eigenvalues of SS−T are unimodular. As a result, by
Proposition 2.2, the eigenvalues of R must be unimodular, as well.

Next, we establish that the set of all R defined by (2.1), such that S + ST > 0, is in 1-1
correspondence with P :

• By Corollary 2.4, εp(πk) > 0 for all k, and thus, the entries p1, . . . , pm of each such
R determine a unique point (p1, . . . , pm) ∈ P .

• Conversely, given a point P := (p1, . . . , pm) ∈ P , if we define R and S according to
(2.1), (2.2) and (2.3) via the components of P , it then follows by the definition of P
and by Corollary 2.4 that S + ST is positive definite. (Thus, by the first assertion (1)
of this proposition, all eigenvalues of R are unimodular.)

Since the entries p1, . . . , pm of R are the elementary symmetric polynomials of the

eigenvalues of R, all of which lie, by assumption, in the compact set S1, P is consequently
contained in the continuous image of a compact set, and hence, is bounded.

Lastly, as each inequality εp(πk) > 0 defines a convex region of Rm, and the intersection
of any collection of convex sets is convex, we see that P is convex. �

Taking S + ST non-degenerate, henceforth, we shall now consider the dependence of the
signature σ of S + ST on the eigenvalues of R, when R has only unimodular eigenvalues. By
Proposition 2.3 1, we note that σ is constant with respect to any variation (within S1) of an
eigenvalue of R such that the eigenvalue does not pass through a root of xn − ε. Hence, σ
is a function of only the number of eigenvalues of R between each root of xn − ε. When
n = 2m + 1, the conjugate symmetry of the eigenvalues implies that σ is also a function of

the number of eigenvalues in the arc {eiθ | θ ∈ [0, π
2m+1 )}. We now introduce some notation

to assist in discussing this:

DEFINITION 2.6. Assume R has only unimodular eigenvalues e±iθj , 1 ≤ j ≤ m.
(For n = 2m + 1, we do not include the guaranteed eigenvalue z = 1 in this list.) When
n = 2m, the configuration ρ of R is defined to be ρ = (ρ1, . . . , ρm) ∈ Z

m
≥0 such that

ρk := #
{
j θj ∈

(
(k−1)π
m

, kπ
m

)}
. For n = 2m + 1, the configuration ρ of R is defined to be

ρ = (ρ0, . . . , ρm) ∈ Z
m+1
≥0 such that:

ρk :=

⎧⎪⎨
⎪⎩

#
{
j θj ∈ [

0, π
2m+1

)}
, k = 0 ,

#
{
j θj ∈ (

(2k−1)π
2m+1 , (2k+1)π

2m+1

)}
, 1 ≤ k ≤ m .

Necessarily, the sum of the components of ρ is always m, for all n, and we say that two
matrices (for the same n) have the same configuration whenever their configuration sequences
agree.

1This was observed in [4, p.27] in the context of the general tt∗ equation.
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To find σ in terms of ρ, we shall apply Descartes’ Rule of Signs to a polynomial with
only real roots uniquely derived from p(x), and then relate this to a formula proved via an
adaptation of the proof of Theorem 4.5 of [1]. The result will then be, in principle, a formula
to determine σ from only the entries of S.

2.1. Recall that Descartes’ Rule of Signs is the following classical result, whose proof
we omit:

PROPOSITION 2.7 (cf. [12, Theorem 6.2d]). Let p(x) ∈ R[x] have degree n ∈ N,
with non-zero leading coefficient an, and let ν denote the number of sign changes in the
sequence of non-zero coefficients of p(x), starting with an and listed in decreasing order of
the power of x. If r denotes the number of real, positive roots of p(x), where each root is
counted according to its algebraic multiplicity, then ν − r is even and non-negative.

To refine this for polynomials with only real roots, we first prove:

LEMMA 2.8. Let p(x) = ∑n
k=0 akx

k ∈ R[x] be non-zero, and let ν andμ be the num-
ber of sign changes in the decreasing sequence of non-zero coefficients of p(x) and p(−x),
respectively. Then ν + μ ≤ n, and equality holds iff ak 	= 0 for all k.

PROOF. Let σ(ak, ak−1) denote the number of sign changes in the 2-term sequence
(ak, ak−1), allowing this to be 0 when at least one of ak or ak−1 are 0. Then by definition of
ν, ν = ∑n

k=1 σ(ak, ak−1). Now, by inspection:

χk := σ(ak, ak−1)+ σ((−1)kak, (−1)k−1ak−1) =
{

1 , ak 	= 0 and ak−1 	= 0 ,

0 , ak = 0 or ak−1 = 0 ,

so summing over all k, it follows that
∑n
k=1 χk = μ+ ν. But the left-hand side is an n-term

summation of 1s and 0s, so μ + ν ≤ n, and μ + ν = n iff all n terms of the sum are 1, iff
ak 	= 0 for all 0 ≤ k ≤ n. �

COROLLARY 2.9. If p(x) ∈ R[x] has only real roots, then ν = r .

PROOF. Let ν and μ be defined as in the lemma, and let r and s be the number of
positive roots of p(x) and p(−x), respectively. (Clearly, s is the number of negative roots of
p(x).) Then by Descartes’ Rule applied to both p(x) and p(−x), there are α, β ∈ Z≥0 such
that ν − r = 2α and μ− s = 2β.

First, assume that p(x) has only non-zero real roots, so that n = r + s. Then n =
ν + μ− 2(α + β), so by the lemma and non-negativity of α and β, α = β = 0.

Now suppose that p(x) has only real roots, and t of them zero. Then p(x)x−t has only
non-zero real roots, and the number of its positive roots is also r , so by the previous assertion,
if ν′ is the number of sign changes of p(x)x−t , then ν′ = r . But evidently, ν = ν′, which
proves the assertion. �
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Now, consider the following: for any p(x) ∈ R[x] satisfying (2.2), it may be shown by
induction that there is a unique monic p̃(x) ∈ R[x] such that:

{
p(x) = xmp̃

(
x + 1

x

)
, n = 2m ,

p(x) = (x − 1)xmp̃
(
x + 1

x

)
, n = 2m+ 1 ,

(2.6)

(For n = 2m+ 1, we note that p(1) = 0 by (2.2), so after factoring p(x) = (x − 1)q(x), we
see that q(x) satisfies (2.2), and thus, the even case factorization applies.)

As all eigenvalues of R are unimodular, p̃(x) has one root 2 cos θj for each conjugate

pair of roots e±iθj of p(x). This motivates the following:

PROPOSITION 2.10. Given p̃(x) as in (2.6), let p̃[0](x) := p̃(x + 2) for all n, and:

p̃[k](x) :=
{
p̃
(
x + 2 cos kπ

m

)
, 1 ≤ k ≤ m , n = 2m ,

p̃
(
x + 2 cos (2k−1)π

2m+1

)
, 1 ≤ k ≤ m+ 1 , n = 2m+ 1 .

Denote by νk the number of sign changes in the sequence of non-zero coefficients of p̃[k](x),
as in Descartes’ Rule. Then the configuration ρ of R satisfies:

νk − νk−1 =
⎧⎨
⎩
ρk , 1 ≤ k ≤ m , n = 2m ,

ρk−1 , 1 ≤ k ≤ m+ 1 , n = 2m+ 1 .

Conversely, νk is given by:

νk =
⎧⎨
⎩
∑k
j=1 ρj , 0 ≤ k ≤ m , n = 2m ,∑k−1
j=0 ρj , 0 ≤ k ≤ m+ 1 , n = 2m+ 1 .

PROOF. Evidently, when n = 2m, ρk is the number of roots of p̃(x) in the interval(
2 cos kπ

m
, 2 cos (k−1)π

m

)
, and when n = 2m+ 1, ρk is the number of roots of p̃(x) in:

⎧⎨
⎩
(2 cos π

2m+1 , 2] , k = 0 ,(
2 cos (2k+1)π

2m+1 , 2 cos (2k−1)π
2m+1

)
, 1 ≤ k ≤ m .

On the other hand, by construction of the p̃[k](x), the number of positive roots rk of p̃[k](x) is

the same as the number of roots of p̃(x) strictly greater than 2 cos kπ
m

when n = 2m, and when

n = 2m + 1, it is the same as the number of roots of p̃(x) strictly greater than 2, for k = 0,

or 2 cos (2k−1)π
2m+1 for all other k. Moreover, all m roots of p̃(x) are real, and thus, νk = rk by

Corollary 2.9. Applying Descartes’ Rule to p̃[k](x) and p̃[k−1](x), it then follows that:

νk − νk−1 =
{
ρk , 1 ≤ k ≤ m , n = 2m ,

ρk−1 , 1 ≤ k ≤ m+ 1 , n = 2m+ 1 .



STOKES MATRICES OF THE tt∗-TODA EQUATION 193

Conversely, given ρ, it follows from the above that, for all k:

νk =
⎧⎨
⎩
∑k
j=1 ρj , 0 ≤ k ≤ m , n = 2m ,

∑k−1
j=0 ρj , 0 ≤ k ≤ m+ 1 , n = 2m+ 1 .

�

For notational convenience, we shall always denote the sequence of the number of sign
changes of the p̃[k](x) by:

ν :=
{
(0, ν1, . . . , νm−1,m) , n = 2m ,

(0, ν1, . . . , νm,m) , n = 2m+ 1 .

REMARK 2.11. For the matrix R with characteristic polynomial p(x) = x2m + 1,
S + ST = 2I2m, and the configuration is ρ = (1, 1, . . . , 1), which corresponds to the sequence
ν = (0, 1, 2, . . . ,m−1,m). Hence, by connectedness of P in Proposition 2.5, for any R with
only unimodular eigenvalues when n = 2m, S + ST > 0 iff its configuration is (1, 1, . . . , 1),
which is iff its sequence of sign-change numbers is (0, 1, 2 . . . , m − 1,m). Similarly, for

the matrix R with characteristic polynomial p(x) = x2m+1 − 1, we have S + ST = 2I2m+1,
ρ = (0, 1, 1, . . . , 1), and ν = (0, 0, 1, 2, . . . ,m− 1,m), and this is the only configuration for
which S + ST > 0.

This observation has the interpretation (cf. Corollary 4.7 of [1]) that S + ST > 0 iff the

eigenvalues e±iθj of R interlace with the roots πk of ε (including the guaranteed root z = ei 0

when n = 2m+ 1), in the following sense:
{

0 < θ1 <
π
m
< θ2 <

2π
m
< · · · < (m−1)π

m
< θm < π , n = 2m ,

−π
2m+1 < 0 < π

2m+1 < θ1 <
3π

2m+1 < · · · < (2m−1)π
2m+1 < θm < π , n = 2m+ 1 .

2.2. Inspired by Sections 3 and 4 of [1], we prove a formula for σ using the sequence

ν of sign-change numbers of the p̃[k](x). Let ek ∈ C
n be the kth canonical unit vector. Before

proving the formula, we note the following:

1. Since the characteristic polynomial p(x) of R satisfies (2.2), it follows that det(xIn −
R−T) = p(x), as well.

2. Letting D := In − ΠεRT, we remark that D has rank 1, and for all x ∈ Cn, Dx =(
e∗
n(S + ST)x

)
en. Note, as well, that (ΠεRT)2 = In.

3. [1] If a rank one n × n matrix M acts on Cn as Mx = w(x)u for some linear form w

and for some u ∈ Cn, then det(In + M) = 1 +w(u).

4. Letting vk be defined as in (2.5), we note that
∑n−1
k=0 πkvk = Πεe1 = ε en.

We now prove what is essentially a special case of Theorem 4.5 of [1]:

PROPOSITION 2.12. For R with only unimodular eigenvalues such that S + ST is non-

degenerate, denote the eigenvalues of R as zk := e2πiθk , where θk ∈ [0, 1), for 0 ≤ k ≤ n−1.
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When n = 2m + 1, we take zm = 1, so θm = 0. If nj := #{k | θk < argπj } for each

0 ≤ j ≤ n− 1, then sgn(p(πj )) = (−1)nj−j .

PROOF. We adapt the proof of Theorem 4.5 of [1] as follows: Expanding p(x) and
xn − ε into their complex linear factors, we use the above remarks to obtain:

n−1∏
k=0

(zk − x)(πk − x)−1 = det(R−T − xIn) det(Πε − xIn)
−1

= det
(
(R−TΠ−1

ε − xΠ−1
ε )(In − xΠ−1

ε )−1)
= det

(
(−D + In − xΠ−1

ε )(In − xΠ−1
ε )−1)

= det
(
In − D(In − xΠ−1

ε )−1)
= 1 − e∗

n(S + ST)(In − xΠ−1
ε )−1en

= 1 − e∗
n(S + ST)(Πε − xIn)−1Πεen .

Using the expression for en in terms of the vk then yields:

n−1∏
k=0

(zk − x)(πk − x)−1 = 1 −
n−1∑
k,j=0

π2
j π̄k

πj − x
v∗
k(S + ST)vj = 1 −

n−1∑
j=0

πj

πj − x
v∗
j (S + ST)vj .

Taking the residue at x = πj , and inserting2 ε = i
∏n−1
k=0 π

1
2
k z

− 1
2

k , we find that:

ε v∗
j (S + ST)vj = −ε(zj − πj )π

−1
j

∏
k 	=j

(zk − πj )(πk − πj )
−1

= −
(
i

n−1∏
k=0

π
1
2
k z

− 1
2

k

)
(zk − πj )π

−1
j

∏
k 	=j

(zj − πj )(πk − πj )
−1

= −i
(
z

1
2
j

π
1
2
j

− π
1
2
j

z
1
2
j

)∏
k 	=j

(
z

1
2
k

π
1
2
j

− π
1
2
j

z
1
2
k

)(
π

1
2
k

π
1
2
j

− π
1
2
j

π
1
2
k

)−1

= 2 sinπ(θj − argπj )
∏
k 	=j

sinπ(θk − argπj )

sin(argπk − argπj )
.

The sign of the denominator is (−1)j , by inspection, and the sign of the numerator is (−1)nj ,
by definition of nj . Thus, sgn(p(πj ))=(−1)nj−j , by Proposition 2.3. �

COROLLARY 2.13. For R as in Proposition 2.12, let ν be the sequence of sign-change

numbers of the p̃[k](x), and let S + ST have signature σ = (n+, n−), where n+ and n− are

2Note that z
1
2
k z

1
2
n−k = −1 for all k, since θk ∈ [0, 1) and the zk come in conjugate pairs, except for zm = 1 when

n = 2m+ 1. A similar statement holds for the πk .
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the number of positive and negative eigenvalues, respectively. Then for n = 2m:
{
nj = νj , 0 ≤ j ≤ m ,

n2m−j = 2m− νj , 1 ≤ j ≤ m− 1 ,

and for n = 2m+ 1:
{
nj − 1 = νj+1 , 0 ≤ j ≤ m ,

n2m−j − 1 = 2m− νj+1 , 0 ≤ j ≤ m− 1 .

Consequently, for all j :

sgn(p(πj )) =
{
(−1)νj−j , n = 2m ,

(−1)νj+1−(j+1) , n = 2m+ 1 ,

and thus, for all n:

n+ −m− 1 =
{∑m−1

j=1 (−1)νj−j , n = 2m ,

−∑m
j=1(−1)νj−j , n = 2m+ 1 .

PROOF. The relations between nj and νj follow from the definition of nj and from
Proposition 2.10. (Note that, when n = 2m+ 1, nj ≥ 1 for all j due to the guaranteed root
zm = 1 of p(x).) By Proposition 2.12, the formula for sgn(p(πj )) then follows immediately.

Since n+ + n− = n whenever S + ST is non-degenerate, it follows by the above formula for
sgn(p(πj )) that:

ε(2n+ − n) = ε(n+ − n−) =
{
(−1)ν0 + (−1)νm−m + 2

∑m−1
j=1 (−1)νj−j , n = 2m ,

(−1)νm+1−(m+1) + 2
∑m
j=1(−1)νj−j , n = 2m+ 1 .

When n = 2m, νj = j for j = 0 and j = m, and hence:

n+ = m+ 1 +
m−1∑
j=1

(−1)νj−j .

When n = 2m+ 1, νm+1 = m for j = m, and hence:

n+ = m+ 1 −
m∑
j=1

(−1)νj−j .

�

REMARK 2.14. We now provide some sample calculations. When n = 4 (cf. [10]),
the relation between σ = (n+, n−) and ν = (0, ν1, 2) is:
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ν1 0 1 2
σ (2, 2) (4, 0) (2, 2)

When n = 6, the signatures may be tabulated as follows:

ν1 � ν2 0 1 2 3
0 (4, 2) (2, 4) (4, 2) (2, 4)
1 × (4, 2) (6, 0) (4, 2)
2 × × (4, 2) (2, 4)
3 × × × (4, 2)

3. Application to the tt∗-Toda equation

Now we shall apply the results of the previous section to the symmetrized Stokes matri-
ces of the t t∗-Toda equation, which were calculated in [9, 10, 15]. Let us consider the pole
at infinity (of order 2) of Equation (1.2), for arbitrary n + 1. In Section 4 of [9], the case
n + 1 = 4 was treated in detail. The same method applies for any n ≥ 3; for the sake of
exposition, we explain only the case n + 1 = 2m in detail, and point out major differences
from the n+ 1 = 2m+ 1 case in footnotes.

Recall that we wish to determine the Stokes data at ζ = ∞ for the ODE:

Ψζ =
(

− 1

ζ 2 W − 1

ζ
xwx + x2WT

)
Ψ , (3.1)

where w and W are defined before (1.2). If η := ζ−1, then we may re-write this as:

Ψη =
(

− 1

η2
x2WT +O

(
1

η

))
Ψ .

Letting ω := e
2πi
n+1 , dn+1 := diag (1, ω, . . . , ωn), andΩ := (

ωij
)n
i,j=0, we may use the matrix

P∞ := diag (ew0, . . . , ewn)Ω−1 to diagonalize WT as:

WT = P∞dn+1P−1∞ .

Then by Proposition 1.1 of [8], and reverting back to ζ , we see that there exists a unique
formal solution Ψ∞

f of (3.1) of the form:

Ψ∞
f = P∞

(
In+1 +

∑
j≥1

ψ∞
j ζ

−j
)
eΛ0 logη+x2ζdn+1 .

It may then be verified, by direct substitution into (3.1), thatΛ0 = 0. By Theorem 1.4 of [8],
there is then a unique holomorphic solution Ψ to (3.1), with asymptotic expansion Ψ∞

f , on

any Stokes sector based at ζ = ∞.
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There are 2(n+ 1) Stokes rays, given by all ζ ∈ C∗ satisfying:

cos
(
argζ + arg(ωj − ωk)

) = 0 , (3.2)

where ω := e
2πi
n+1 . As fundamental Stokes sectors, we take:

Ω∞
1 =

{
ζ ∈ C

∗
∣∣∣∣ − π

2
< argζ <

π

2
+ π

n+ 1

}
,

Ω∞
2 =

{
ζ ∈ C

∗
∣∣∣∣ π2 < argζ <

3π

2
+ π

n+ 1

}
.

The Stokes matrix S∞
1 is defined by Ψ∞

2 = Ψ∞
1 S∞

1 , where Ψ∞
j is the unique holomor-

phic solution asymptotic to Ψ∞
f on Ω∞

j (for j = 1, 2), and where the analytic continuation

of Ψ∞
1 to Ω∞

2 is taken in the positive direction.

Letting Π := ( 0 In
1 0

)
, and using the symmetries of (1.2), as in Section 4 of [9], we find

that:

S∞
1 = (

Q∞
1 Q∞

1 1
n+1
Π
)m
Π−m , S∞

2 = (S∞
1 )

−T ,

and the inverse of the monodromy of Ψ∞
1 is:

S∞
1 S∞

2 = (
Q∞

1 Q∞
1 1
n+1
Π
)n+1

.

Here, the matrices Q∞
k are the “Stokes factors” of S∞

1 and S∞
2 , defined with respect to the

Stokes sectorsΩ∞
k+1 = ekπiΩ∞

1 for all k ∈ 1
n+1Z (i.e. Ψ∞

k+ 1
n+1

= Ψ∞
k Q∞

k ).

As in Section 5 of [10], we may convert to real matrices S̃∞
k and Q̃∞

k by using the matrix

P̃∞ := P∞d∞, for d−1∞ := diag
(
1, ω

1
2 , ω, . . . , ω

n
2
)r

, r = 1
2 , in the diagonalization of WT.

We then obtain solutions Ψ̃k := Ψkd∞ asymptotic to Ψ̃∞
f := Ψ∞

f d∞ on their respective

Stokes sectors with corresponding real Stokes factors and real Stokes matrices:

Q̃∞
k := d−1∞ Q∞

k d∞ , S̃∞
k := d−1∞ S∞

k d∞ .

Letting:

Π̂ :=
[

0 In
−1 0

]
, R := Q̃∞

1 Q̃∞
1 1
n+1
Π̂ , (3.3)

J := Π̂m =
(

0 Im−Im 0

)
, (3.4)
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we then obtain3:

S := S̃∞
1 = RmJ −1 , SS−T = S̃∞

1 S̃∞
2 = −Rn+1 . (3.5)

We are now almost in the situation of Section 2 of this article, but to achieve exactly
those matrices, a further transformation is required. To find the correct transformation, we

need explicit expressions for the matrices Q̃∞
1 and Q̃∞

1 1
n+1

. Using (3.2) for the Stokes rays, it

can be deduced that:

LEMMA 3.1. The diagonal entries of Q̃∞
1 and Q̃∞

1 1
n+1

are 1, and the other entries sat-

isfy the rule ( for 1 ≤ i 	= j ≤ n+ 1) :
{

arg(ωi−1 − ωj−1) 	= nπ
n+1 mod 2π ⇒ (Q̃∞

1 )i,j = 0 ,

arg(ωi−1 − ωj−1) 	= (n−1)π
n+1 mod 2π ⇒ (Q̃∞

1 1
n+1
)i,j = 0 .

PROOF. We follow the proof of Lemma 4.4 of [9]. For the complex Stokes factors Q∞
k ,

k ∈ 1
n+1Z, we have:

Q∞
k = lim

ζ→∞(Ψ
∞
k )

−1Ψ∞
k+ 1

n+1
= lim
ζ→∞ e−ζx2dn+1

(
In+1 +O( 1

ζ
)
)
eζx

2dn+1 ,

and hence, (Q∞
k )ii = 1 for all i. On the other hand, for (i, j) such that 1 ≤ i 	= j ≤

n + 1, the entry (Q∞
k )ij = 0 so long as there is a path ζt → ∞ in Ωk ∩ Ω

k+ 1
n+1

such that

Re ζt (ωi−1 − ωj−1) < 0. Since Ωk ∩Ω
k+ 1

n+1
is a sector of angle π , it follows that (Q∞

k )ij

is necessarily zero only if (ωi−1 − ωj−1)Ωk ∩ Ω
k+ 1

n+1
is equal to the closed half-plane

{Re ζ ≤ 0}. This, in turn, occurs iff arg(ωi−1 − ωj−1) 	= (2n+1−(n+1)k)π
n+1 mod π .

It then follows by the definition of the Q̃(∞)
k that their entries satisfy the same conditions,

and by substituting k = 1 and k = 1
n+1 , the assertion of the lemma follows. �

Consequently, the potentially non-zero entries are:

(Q̃∞
1 )m−k,1+k , (Q̃∞

1 )m+1+k,n+1−k , (Q̃∞
1 1
n+1
)m−1−k,1+k , (Q̃∞

1 1
n+1
)m+k,n+1−k ,

for 0 ≤ k ≤ �, � := 
m2 �. Taking into account all of the symmetry conditions (see Section 5
of [10]), it is straightforward to deduce, using the above lemma, that:

3For n+ 1 = 2m+ 1, (3.5) holds for r = m+ 1, R := Q̃∞
1 Q̃∞

1 1
n+1

Π and J−1 := Q̃∞
1 Π−m.



STOKES MATRICES OF THE tt∗-TODA EQUATION 199

PROPOSITION 3.2. For 0 ≤ k ≤ �, the entries of Q̃∞
1 and Q̃∞

1 1
n+1

satisfy4:
⎧⎨
⎩

(Q̃∞
1 )m−k,1+k + (Q̃∞

1 )m+1+k,n+1−k = 0 ,
(Q̃∞

1 1
n+1
)m−1−k,1+k + (Q̃∞

1 1
n+1
)m+1+k,n+1−1−k = 0 . �

Hence, Q̃∞
1 and Q̃∞

1 1
n+1

are block-matrices of the form:

Q̃∞
1 =

⎡
⎢⎢⎣

L1
∞ 0

0
(
L1

∞)T

⎤
⎥⎥⎦ , Q̃∞

1 1
n+1

=

⎡
⎢⎢⎣

L∞
1 1
n+1

pmEm,m

0
(
L∞

1 1
n+1

)−T

⎤
⎥⎥⎦ ,

where L∞
1 ,L∞

1 1
n+1

are lower-triangular with only 1s on the diagonal, and where, for notational

convenience, we define pm := (Q̃∞
1 1
n+1
)m,n+1 and:

−pm−2k := (Q̃∞
1 1
n+1
)m−1−k,1+k , −pm−2k−1 := (Q̃∞

1 )m−k,1+k . (3.6)

To facilitate the next few propositions, we introduce the permutation matrix Δ :=∑n
k=0 En+1−k,1+k and the block-matrix5:

F :=
[

L[m] 0

0 U[m]

]
, (3.7)

where L[m] and U[m] are defined as follows:

L[m] := Im +
�−1∑
k=0

pm−2k−1

k∑
j=0

Em−2k+j,j+1 +
�−1∑
k=0

pm−2k−2

k∑
j=0

Em−2k−1+j,j+1 ,

U[m] :=
[

1 0

0 ΔL[m−1]Δ

]
.

4For n+ 1 = 2m+ 1, the row indices are increased by 1, and we instead have:

(Q̃∞
1 )m+1−k,1+k + (Q̃∞

1 1
n+1

)m+1+k,n+1−k = 0 and (Q̃∞
1 1
n+1

)m−k,1+k + (Q̃∞
1 )m+2+k,n+1−k = 0 .

5For n + 1 = 2m + 1, the upper-left block of F is L[m+1], and it is convenient to instead define pm−2k :=
(−1)m(Q̃∞

1 )m+1−k,1+k and p2m−k−1 := (−1)m−1(Q̃∞
1 1
n+1

)m−k,1+k .
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For example, when m = 4:

L[4] =

⎡
⎢⎢⎣

1
p1 1
p2 p1 1
p3 0 0 1

⎤
⎥⎥⎦ , U[4] =

⎡
⎢⎢⎣

1 0 0 0
1 0 p2

1 p1

1

⎤
⎥⎥⎦ .

LEMMA 3.3. The following block-matrix identities hold for all m ≥ 1:

FQ̃∞
1 =

[
L[m−1] 0

0 U[m+1]

]
, (3.8)

FQ̃∞
1 Q̃∞

1 1
n+1

=
[

L[m−2] 0

0 U[m+2]

]
. (3.9)

PROOF. These follow directly from (3.6) and (3.7). �

To make the connection with Section 2, we now define R as in (2.1) using the entries
p1, . . . , pm, defined above, and take pn+1−k := pk . Then:

PROPOSITION 3.4. R = FRF−1. Hence, the characteristic polynomial of R is:

p(x) = xn+1 +
n∑
k=1

pkx
k + 1 .

PROOF. Using (3.9), we obtain RFΠ̂−1 = FQ̃∞
1 Q̃∞

1 1
n+1

. �

PROPOSITION 3.5. Let S be defined as in (2.3) via the entries of R = FRF−1. Then
S = FSFT.

PROOF. Letting J−1
p := FJ −1FT, we find, by definition (3.5) of S and Lemma 3.4,

that FSFT = RmJ−1
p , so we shall prove the proposition by determining the entries of RmJ−1

p .

Inspecting J−1
p , first, we see that6:

J−1
p =

[
0 −L[m]U[m] T

U[m]L[m] T 0

]
.

Since Rek = ek−1 for all 1 ≤ k ≤ n, we then find that:

RmJ−1
p ek =

{
e1 , k = 1 ,

pk−1e1 + · · · + p1ek−1 + ek , 2 ≤ k ≤ m ,

6When n+ 1 = 2m+ 1, this follows by (3.8), and the bottom-left block is U[m+1]L[m+1] T.
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and the firstm columns of FSFT and S agree. We now determine the lastm columns of RmJ−1
p

by applying it to the flag:

F : 0 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn ∼= R
n+1 , Fk :=< en+1, . . . , en+1−k >R .

From the form of L[m]U[m] T, we observe that −J−1
p en+1 = em, and that:

−J−1
p en+1−k − em−k ∈< em, . . . , em−k+1 >R , ∀ 1 ≤ k ≤ m− 1 .

As a result, −J−1
p Fk = RmFk for all 0 ≤ k ≤ m − 1, and hence, RmJ−1

p Fk = SS−TFk by

Proposition 2.2. But Fk is fixed by S−T since it is lower-triangular with 1s on its diagonal, so

RmJ−1
p Fk = SFk for 0 ≤ k ≤ m − 1. Therefore, the last m columns of FSFT are the last m

columns of S, and this concludes the proof. �

We remind the reader that, bearing in mind the points in the footnotes, all of the above
results hold for all n+ 1 ≥ 4. Thus, we arrive at the following:

THEOREM 3.6. S + ST has the same signature as the diagonal matrix
diag ((−1)n+1p(π0), . . . , (−1)n+1p(πn)).

PROOF. By Proposition 3.5, S + ST and S + ST are congruent via FT. Since real
symmetric matrices are diagonalizable, congruence implies that they have equal rank and
signature, and thus, the theorem follows by Propositions 3.4 and 2.3. �

To conclude, we state what this means in terms of solutions to the t t∗-Toda equation
(1.1). It was shown in [9, 10, 11, 15] that solutionswi : C∗ → R are in one-to-one correspon-
dence with real numbers γi satisfying γi − γi−1 ≥ −2 for all i, where 2wi(z) ∼ γi log |z| as

|z| → 0. When n+1 = 2m, the corresponding eigenvalues of R are exp
(± iπ

n+1 (γj+2j+1)
)
,

0 ≤ j ≤ m− 1, with

0 ≤ π
2m(γ0 + 1) ≤ π

2m(γ1 + 3) ≤ · · · ≤ π
2m(γm−1 + 2m− 1) ≤ π .

The condition S + ST > 0 means that these points must interlace with the (n+ 1)th roots of
unity, implying that:

0 < γ0 + 1 < 2 < γ1 + 3 < 4 < · · · < 2m− 2 < γm−1 + 2m− 1 < 2m ,

and this means that |γj | < 1 for j = 0, . . . ,m− 1.
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