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Abstract. In this article, we consider an analogue of Noether’s problem for the fields of cross-ratios, and
discuss on a rationality problem which connects this with Noether’s problem. We show that the affirmative answer of
the analogue implies the affirmative answer for Noether’s Problem for any permutation group with odd degree. We
also obtain some negative results for various permutation groups with even degree.

1. Introduction

Let k be a field and consider the action of the symmetric group Sn on the rational func-
tion field Ln := k(x1, . . . , xn) of n variables over k by permutation; σ(xi) := xσ(i).

E. Noether [13, 14] proposed the following problem as a basic strategy for the inverse
Galois problem.

PROBLEM 1 (Noether’s Problem). For a subgroup H of Sn, is the fixed subfield LH
n

of Ln rational (i.e. purely transcendental) over k? That is, whether there exist t1, . . . , tn ∈ Ln

with LH
n = k(t1, . . . , tn)?

This problem is highly non-trivial even in the case of cyclic groups. The affirmative
answer for H implies the existence of a generic polynomial over k for H if k is infinite. This
problem is generalized to the following Rationality Problem, which is sometimes also called
General Noether Problem in this context:

PROBLEM 2 (Rationality Problem). For a finite subgroup H of Autk(Ln), is the fixed

subfield LH
n of Ln rational over k?

In this article we consider the subfield of Ln generated by cross-ratios of variables and
the action of Sn on it. The projective general linear group PGL(2, k) of degree two acts on

Ln from the left by diagonal linear transformation:

(
a b

c d

)
· xi := axi + b

cxi + d
. For n ≥ 3, let
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Kn := L
PGL(2,k)
n be the fixed field of Ln under the action of PGL(2, k). Then Kn is generated

by cross-ratios among xi’s, and is rational over k of transcendental degree n − 3. Since the
actions of PGL(2, k) and Sn on Ln commute with each other, Sn acts also on Kn, faithfully
for n ≥ 5. We assume n ≥ 5 throughout this article. Our interest is to consider an analogue
of Noether’s Problem for Kn.

PROBLEM 3 (Cross-Ratio Noether’s Problem). For a subgroup H of Sn, is the fixed
field KH

n rational over k? That is, whether there exist t1, . . . , tn−3 ∈ Kn with KH
n =

k(t1, . . . , tn−3)?

It has various importance to consider Cross-Ratio Noether’s Problem. First, it has a
geometric background, that is, Kn is the function field of the moduli space M0,n of projec-
tive lines with ordered n marked points. Secondly, an affirmative answer of this problem
yields a generic polynomial. By the theorem of Kemper-Mattig [10], if Cross-Ratio Noether’s
Problem over k for H is affirmative, we have a generic polynomial over k for H , while the
rationality of the fixed field under a general action of a finite group H does not necessarily
imply the existence of a generic polynomial over k for H . Thirdly, since the transcendental
degree of Kn over k is smaller than that of Ln, the actual calculation for Cross-Ratio Noether’s
Problem turns to be easier than that of Noether’s Problem, especially for small n. In fact, in
preceding works [7, 8] of Hashimoto and the author, they gave affirmative answers for all
transitive groups of degree 5 and for that of degree 6 except two cases. And last of all, it has
natural relationship with Noether’s Problem as follows. To connect Noether’s Problem and

Cross-Ratio Noether’s Problem, we consider the rationality of LH
n over KH

n .

PROBLEM 4. For a subgroup H of Sn, is the fixed field LH
n rational over KH

n ? That

is, whether there exist t1, t2, t3 ∈ LH
n with LH

n = KH
n (t1, t2, t3)?

If this is true, then the affirmative answer of Cross-Ratio Noether’s Problem for H im-
plies the affirmative answer of Noether’s Problem for H . We notice that, if this is true for Sn,

then it is true also for any subgroup H of Sn, since the same generators t1, t2, t3 ∈ L
Sn
n work

also for H .
To investigate this problem, we further divide it into three steps according to the sequence

of subgroups of PGL(2, k):

PGL(2, k) ⊃ B :=
{(∗ ∗

0 ∗
)}

� U :=
{(

1 ∗
0 1

)}
� {1} . (1)

Let us consider the fixed fields LU
n ,LB

n under the action of U,B respectively. Then each step
of the extension

Ln ⊃ LU
n ⊃ LB

n ⊃ Kn

is purely transcendental of transcendental degree 1. We consider the extension of the fixed
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fields

LSn
n ⊃ (LU

n )Sn ⊃ (LB
n )Sn ⊃ KSn

n

by Sn. As we shall see in Section 2, provided the characteristic of k does not divide n, the

extensions (Ln)
Sn/(LU

n )Sn and (LU
n )Sn/(LB

n )Sn are purely transcendental of transcendental

degree 1. Hence it is the remaining problem to see the extension (LB
n )Sn/K

Sn
n . We put

K̃n := LB
n . Our main problem in this article is the following:

PROBLEM 5. For a subgroup H of Sn, is the fixed field K̃H
n rational over KH

n ? That

is, whether there exists t ∈ K̃H
n with K̃H

n = KH
n (t)?

For the most important case of H = Sn, we show the following theorem:

THEOREM 1. Let n be an integer with n ≥ 5. Assume that a base field k is infinite.

(i) When n is odd, for any base field k (in particular, for k = Q), K̃
Sn
n is rational over

K
Sn
n .

(ii) Assume that the characteristic of k is not two. When n is even, for any base field k (in

particular, even when k = k), K̃
Sn
n is not rational over K

Sn
n .

The statements (i) and (ii) will be proved in Section 5 and 6 respectively.

Our theorem implies that K̃H
n is rational over KH

n for any subgroup H of Sn when n is
odd and n ≥ 5. Hence we have

COROLLARY 1. Let k be an infinite field whose characteristic does not divide n. For
an odd integer n with n ≥ 5 and a subgroup H of Sn, the affirmative answer for Cross-Ratio
Noether’s Problem for H implies that for Noether’s Problem for H .

Combining this with [7], we reprove the following:

COROLLARY 2. Let k be a field of characteristic 0. For all transitive subgroup H of
S5, Noether’s Problem for H is affirmative, that is, LH

5 is rational over k.

As the case of H = A5, this includes the characteristic zero case of Maeda’s outstanding
theorem [11], the affirmative answer of Noether’s Problem for A5.

It is a remaining problem that, for which subgroup H of Sn, K̃H
n is rational over KH

n

when n is even. We discuss some cases in Section 7.

THEOREM 2. Assume that k is infinite and of characteristic different from two. For
any transitive subgroup H of degree n = 2e (e ≥ 3), K̃H

n is not rational over KH
n .

THEOREM 3. Assume that k is infinite and of characteristic different from two. For
any transitive subgroup T of S6, K̃T

6 is not rational over KT
6 .

We must notice that the non-rationality of K̃H
n /KH

n necessarily imply neither the non-

rationality of LH
n /KH

n nor the negative answer for Noether’s Problem for H .
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2. Preliminaries

Throughout this article, we assume that n is an integer with n ≥ 5. The projective general
linear group G := PGL(2, k) acts on Ln := k(x1, . . . , xn) from the left as linear fractional
transformation diagonally: (

a b

c d

)
· xi := axi + b

cxi + d
.

The fixed field Kn := LG
n is generated by cross-ratios of the variables xi’s, and is a purely

transcendental extension (a rational function field) over k of transcendental degree (n− 3). In
fact, we have

Kn = k

(
xi − x1

xi − x2

/
x3 − x1

x3 − x2

∣∣∣∣ i = 4, . . . , n

)
, (2)

and Ln is purely transcendental over Kn of transcendental degree 3. We shall call Kn the field
of cross-ratios.

Since the actions of G and Sn on Ln commute with each other, Sn acts also on Kn.
When n ≥ 5, this action is faithful. Then Cross-Ratio Noether’s Problem asks, for a subgroup
H of Sn, whether the fixed field KH

n is rational over k or not (Problem 3).
To see the relationship between Noether’s Problem and Cross-Ratio Noether’s Problem,

we ask the rationality of LH
n over KH

n (Problem 4).

If both Problems 3 and 4 for H is affirmative (that is, KH
n is rational over k and LH

n

is rational over KH
n ), then LH

n is rational over k, hence also Noether’s Problem for H is
affirmative. We do not know whether the converse is true or not.

If Problem 4 for Sn is true, then there exists algebraically independent generators (mini-

mal bases) t1, t2, t3 ∈ L
Sn
n . For any subgroup H of Sn, we have LH

n = KH
n (t1, t2, t3). Hence

Problem 4 for Sn implies Problem 4 for H .

The extension LH
n /KH

n is of transcendental degree 3. We can subdivide this into three
steps as follows. Consider a sequence

G = PGL(2, k) ⊃ B :=
{(∗ ∗

0 ∗
)}

� U :=
{(

1 ∗
0 1

)}
� {1} (3)

of subgroups of G = PGL(2, k) and the fixed subfields of the action of them. Each step of the

sequence Ln ⊃ LU
n ⊃ LB

n ⊃ LG
n = Kn of the fixed fields is a purely transcendental extension

of transcendental degree 1. In fact, we have

LB
n = k

(
xi − x1

xi − x2

∣∣∣∣ i = 3, . . . , n

)
= Kn

(
x3 − x1

x3 − x2

)
, (4)

LU
n = k (xi − x1 | i = 2, . . . , n) = LB

n (x2 − x1) , (5)

Ln = LU
n (x1) . (6)
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We shall call LU
n the field of differences and LB

n the field of ratios of differences. In the fol-

lowing we denote LB
n also by K̃n. Our problem is whether the rationality of these extensions

descend to the fixed fields under permutation groups.
As mentioned below, for the upper two steps Ln ⊃ LU

n ⊃ K̃n, this is always true pro-

vided the characteristic of k does not divide n: each step of L
Sn
n ⊃ (LU

n )Sn ⊃ K̃
Sn
n is purely

transcendental.
Indeed, let si (1 ≤ i ≤ n) be the i-th fundamental symmetric polynomials of

x1, x2, . . . , xn, that is, the polynomials defined by

F(X) :=
n∏

i=1

(X + xi) =: Xn +
n∑

i=1

siX
n−i . (7)

Then we have L
Sn
n = k(s1, . . . , sn). For (LU

n )Sn and K̃
Sn
n , we have the following1

PROPOSITION 1. Assume that the characteristic of k does not divide n. Define the
polynomials ti (2 ≤ i ≤ n) in x1, x2, . . . , xn by

Xn +
n∑

i=2

tiX
n−i := F

(
X − s1

n

)
. (8)

Then

(i) (LU
n )Sn = k(t2, . . . , tn) and L

Sn
n = (LU

n )Sn (s1).

(ii) K̃
Sn
n = k

(
ti

(
t2

t3

)i
∣∣∣∣∣ 3 ≤ i ≤ n

)
and (LU

n )Sn = K̃
Sn
n

(
t2

t3

)
.

PROOF. (i) When we substitute xi by xi − a (a ∈ k), F(X) changes to

n∏
i=1

(
X + (xi − a)

) =
n∏

i=1

(
(X − a) + xi

) = F(X − a) ,

and
s1

n
changes to

s1

n
−a. Hence F

(
X − s1

n

)
is invariant under this translation, so are tj (2 ≤

i ≤ n). Since k(s1, . . . , sn) = k(s1, t2, . . . , tn) = k(t2, . . . , tn)(s1), we have k(s1, . . . , sn)
U =

k(t2, . . . , tn)(s1)
U = k(t2, . . . , tn).

(ii) When we substitute xi by cxi (c ∈ k×), tj changes to cj tj , and u := t2/t3 changes to

c−1u. Hence uj tj is invariant under this. Since

k(t2, . . . , tn) = k(u, t3, . . . , tn) = k(u, u3t3, . . . , u
ntn)

we have

1This fact was provided by K.Hashimoto to the author during their joint works [7, 8].
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FIGURE 1. The total picture

k(t2, . . . , tn)
B = k(u3t3, . . . , u

ntn)(u)B = k(u3t3, . . . , u
ntn) .

�

Hence our remaining problem is the lowest step: for a subgroup H of Sn, whether K̃H
n

is rational over KH
n or not (Problem 5). In Sections 5 and 6, we shall show the following:

THEOREM 1. Let n be an integer with n ≥ 5. Assume that a base field k is infinite.

(i) When n is odd, for any base field k, K̃
Sn
n is rational over K

Sn
n .

(ii) Assume that the characteristic of k is not two. When n is even, for any base field k,

K̃
Sn
n is not rational over K

Sn
n .

3. The action of permutations on cross-ratios

In this preparatory section, we introduce a concise way to choose suitable generators of
the field Kn of cross-ratios and the field K̃n of ratios of differences and to calculate the action
of Sn on them (cf. Hashimoto-Tsunogai [7, 8]).
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Let M0,n be the moduli space of projective lines with ordered n marked points:

M0,n = (
(P1)n � (weak diagonal)

)
/PGL(2) (9)

= {(x1, . . . , xn) | xi ∈ P1, xi �= xj (i �= j)}/PGL(2),

where PGL(2) = Aut(P1) acts on (P1)n diagonally. We denote the class of (x1, . . . , xn) by
[x1, . . . , xn]. The function field of M0,n is Kn:

k(M0,n) = k(x1, . . . , xn)
PGL(2) = Kn . (10)

The symmetric group Sn of degree n acts on M0,n from the left by permutation of compo-
nents:

σ · [x1, . . . , xn] := [xσ−1(1), . . . , xσ−1(n)] (σ ∈ Sn) . (11)

The action of Sn on Kn coincides with the action on k(M0,n) induced by the pull-back of the
above action:

σ · ϕ := ϕ ◦ σ−1 (σ ∈ Sn, ϕ ∈ K) . (12)

A point P = [x1, . . . , xn] of M0,n can be represented uniquely in the form, for example,
[y1, . . . , yn−3, 0, 1,∞] by normalizing with PGL(2)-action. We consider

yi(P ) = yi = xi − xn−2

xi − xn

/
xn−1 − xn−2

xn−1 − xn

(13)

as a function on M0,n. Then y1, . . . , yn−3 generate k(M0,n) and we have Kn = k(M0,n) =
k(y1, . . . , yn−3). The action of Sn on these generators is described as in the following exam-
ple.

EXAMPLE 1. For simplicity, we introduce an example in the case of n = 5. Let us
calculate the action of α = (1 2 3 4 5) on y1, y2. For P = [x1, . . . , x5] = [y1, y2, 0, 1,∞],
we have

α−1(P ) = [x2, x3, x4, x5, x1] = [y2, 0, 1,∞, y1] =
[

y2 − 1

y2 − y1
,

1

y1
, 0, 1,∞

]
, (14)

where we renormalize it by ξ 
→ ξ − 1

ξ − y1
. Hence it follows that

α : y1 
−→ y2 − 1

y2 − y1
, y2 
−→ 1

y1
. (15)

Next we describe the action of Sn on LB
n = K̃n in the similar way. We take an element

z := xn−1 − xn

xn−1 − xn−2
∈ K̃n as a generator over Kn; K̃n = Kn(z). Regarding z as a formal limit

z = lim
xn+1→∞

xn+1 − xn−2

xn+1 − xn

/
xn−1 − xn−2

xn−1 − xn

, (16)
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we can calculate the action on z simultaneously by putting z at the (n + 1)-th component,
since the operation taking a limit formally and the action of Sn commute with each other.

EXAMPLE 2. In the previous example, we have also

α−1([y1, y2, 0, 1,∞; z]) = [y2, 0, 1,∞, y1; z] =
[

y2 − 1

y2 − y1
,

1

y1
, 0, 1,∞; z − 1

z − y1

]
. (17)

Hence we obtain

α(z) = z − 1

z − y1
. (18)

REMARK 1. We can take a generating system by considering a normalization other
than [y1, . . . , yn−3, 0, 1,∞]. In fact, we take various ways in the following sections. This
geometric view is useful to choose a good generating system which is suitable for calculation
we are in face of.

4. Conditions for the descent of rationality

In this section, to consider the condition to descent the rationality of K̃n/Kn to K̃H
n /KH

n ,
we discuss on the descent condition in more general situation.

Let K be an arbitrary field and K̃ = K(X) be a rational function field of one variable
over K . Let H be a finite subgroup of Aut(K̃) (hence H acts on K̃ faithfully), and assume
that

(i) H stabilizes K (that is, σ(K) = K for any σ ∈ H ),
(ii) H acts on K faithfully.

Then K̃H is a rational function field of genus zero over KH , and KK̃H = K̃ . We ask the
rationality of K̃H over KH .

4.1. Descent to 2-Sylow subgroups. First we observe that

LEMMA 1. If K̃H is rational over KH , then, for any subgroup H1 of H , K̃H1 is ratio-
nal over KH1 .

PROOF. If we take an element z ∈ K̃H satisfying K̃H = KH(z), then we have K̃H1 =
KH1(z). �

As an intermediate step, it is useful to consider a 2-Sylow subgroup of H . Let S be a

2-Sylow subgroup of H . We subdivide the descent from K̃/K to K̃H/KH into the following
two steps:

(i) Is K̃S/KS rational? (2-Sylow descent)
(ii) If K̃S/KS is rational, is K̃H /KH rational? (odd degree descent)

The odd degree descent always holds from the following lemma:
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LEMMA 2. Let k be any field, K/k be an algebraic function field of one variable over
k and k̃/k be a finite extension of odd degree (say, 2m + 1). Then if the function field Kk̃/̃k

obtained by the extension of a constant field is rational (that is, there exists an element z ∈ Kk̃

satisfying Kk̃ = k̃(z)), K/k is rational (that is, one can choose z ∈ K).

PROOF. The divisor D := NKk̃/KP + mD0, where P is a prime divisor of a rational

function field Kk̃/̃k of degree one, NKk̃/K is the norm from Kk̃ to K , and D0 is a canonical

divisor2 of K/k, is a k-rational divisor of K of degree one. By Riemann-Roch Theorem,
there exists a k-rational function f ∈ K such that f ∈ L(D). Since the divisor D − (f ) is a
effective divisor of degree one, it is a k-rational prime divisor of degree one. Hence K/k is
rational. �

Gathering the above two lemmata, we have the following proposition (see also [18] The-
orem 5):

PROPOSITION 2. Let S be a 2-Sylow subgroup of H . Then K̃H is rational over KH if
and only if K̃S is rational over KS .

Thus what we must do is to distinguish, for a 2-group S in Aut(K̃) which acts on K

faithfully, whether the conic K̃S/KS is rational or not. Contrary to the odd degree descent,
the validity of 2-Sylow descent depends on a case.

4.2. The case of “semi-affine” action. Let K̃/K be as above, and S be a finite 2-
subgroup of Aut(K̃). If the action of S on K̃ is “semi-affine” over K , we have an affirmative
answer on the rationality of K̃S over KS . Although this is a special case of known results
([12] Lemma, [1] Theorem 3.1), here we give a more constructive proof for our case.

PROPOSITION 3. Let K be a field and K̃ = K(X) a rational function field over K . Let
S be a finite 2-subgroup of Aut(K̃), and assume that the following conditions are satisfied:

(i) S stabilizes K and acts on K faithfully,
(ii) for any σ ∈ S, there exists cσ , dσ ∈ K such that σ(X) = cσ X + dσ .

Then the fixed field K̃S is again rational over KS , that is, there exists Z ∈ K̃S such that
K̃S = KS(Z).

PROOF. Since S is a 2-group, there is a central sequence S = Z0 � Z1 � · · · �
Zl−1 � Zl = {1} with (Zi : Zi+1) = 2. The unique non-trivial element τ ∈ Zl−1 is central
in S and of order 2.

We prove the proposition by induction on the order of S, or l. The induction step is the
following lemma:

LEMMA 3. Let K̃ = K(X) and S be as in the proposition. Let τ ∈ S be a central ele-
ment of S of order 2. Then there exists an element Z ∈ K̃ satisfying the following conditions:

2Usually it is denoted by K, which causes the collision of notation here.
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(i) τ (Z) = Z,
(ii) K̃ = K(Z) (hence we have K̃〈τ 〉 = K〈τ 〉(Z)),

(iii) for any σ ∈ S, there exist cσ , dσ ∈ L〈τ 〉 such that σ(Z) = cσ Z + dσ .

PROOF. By the assumption (ii) of the proposition, there exist cτ , dτ ∈ K such that
τ (X) = cτX + dτ . If cτ �= −1, put Z := X + τ (X) = (cτ + 1)X + dτ . If cτ = −1, take
an element a ∈ K with τ (a) �= a and put Z := aX + τ (aX) = (a − τ (a))X + dτ τ (a).
Then we have τ (Z) = Z. Since the change of variables from X to Z is affine over K , it holds
that K̃ = K(Z) and also that for any σ ∈ S there exist unique elements cσ , dσ ∈ K such

that σ(Z) = cσ Z + dσ . Since τ is central in S, σ(Z) ∈ K〈τ 〉. The uniqueness of cσ and dσ

deduces that cσ , dσ ∈ K〈τ 〉. �

Applying this lemma for (K̃ = K(X)/K, S ⊃ 〈τ 〉), we obtain an element Z ∈ K̃〈τ 〉 such
that K̃ = K(Z). Then we have K̃〈τ 〉 = K〈τ 〉(Z) and the induced action of S/〈τ 〉 = S/Zl−1

on K〈τ 〉(Z) is semi-affine over K〈τ 〉 and faithful on K〈τ 〉. By the assumption of induction for
(K̃〈τ 〉 = K〈τ 〉(X)/K〈τ 〉, S/〈τ 〉), (K̃〈τ 〉)S/〈τ 〉 = K̃S is rational over (K〈τ 〉)S/〈τ 〉 = KS . �

4.3. A recipe for a group S of order two. For the cases not covered by the argument
of the previous subsection, we need the concrete determination of the fixed fields K̃S and KS ,
and an explicit description of the conic K̃S/KS . Here we shall give a recipe which will be
used in the proof of our theorems for the case S is of order two.

We consider the situation that S = 〈σ 〉 ⊂ Aut(K̃) satisfies the following conditions:

(i) #S = 2 (i.e. σ 2 = id),
(ii) S stabilizes K (i.e. σ(K) = K), and

(iii) S acts on K faithfully (i.e. σ |K �= id).

We want to know whether the conic K̃S/KS is rational or not.
Since also σ(X) generates K̃ = K(X) over K , the action of σ on K̃ = K(X) is “semi-

linear fractional” over K:

σ(X) = aX + b

cX + d
(a, b, c, d ∈ K, ad − bc �= 0) . (19)

Since

σ 2(X) = σ

(
aX + b

cX + d

)
=

σ(a)
aX + b

cX + d
+ σ(b)

σ (c)
aX + b

cX + d
+ σ(d)

= (σ (a)a + σ(b)c)X + (σ (a)b + σ(b)d)

(σ (c)a + σ(d)c)X + (σ (c)b + σ(d)d)

and σ 2 = id, we have

σ(a)a + σ(b)c = σ(c)b + σ(d)d

and

σ(a)b + σ(b)d = σ(c)a + σ(d)c = 0 .
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The following lemma is tactically useful:

LEMMA 4. There exists Z ∈ K̃ such that K̃ = K(Z) with Zσ(Z) ∈ KS .

PROOF. Let us take Z := cX + d . Then we have K̃ = K(Z) and

Zσ(Z) = (cX + d)

(
σ(c)

aX + b

cX + d
+ σ(d)

)
= σ(c)(aX + b) + σ(d)(cX + d)

= (σ (c)a + σ(d)c)X + (σ (c)b + σ(d)d) = σ(c)b + σ(d)d ∈ K .

Since Zσ(Z) is σ -invariant, we have Zσ(Z) ∈ KS . �

REMARK 2. As another choice, we can take also X/(aX + b) as a suitable choice of
a generator of K̃ over K , which may be useful for some calculation in other cases.

We take an element Z ∈ K̃ as in the above lemma, and put s := Zσ(Z) ∈ KS and

U := Z + σ(Z) = Z + s/Z ∈ K̃S . We define τ ∈ Aut(K̃/K) by τ (Z) := σ(Z).

CLAIM 1. The group G := 〈σ, τ 〉 generated by σ and τ is isomorphic to the Klein’s

four group, that is, σ and τ satisfy the relations σ 2 = τ 2 = 1 and στ = τσ .

PROOF. We can see easily that τσ |K = στ |K = σ |K and that τ 2(Z) = τσ (Z) =
στ(Z) = Z. The assertion follows from this. �

We determine the fixed field K̃S as an intermediate field of K̃/K̃G, because the other
two intermediate fields K̃〈τ 〉 and K̃〈στ 〉 can be easily determined.

Since U is G-invariant and τ |K = id, we have K̃〈τ 〉 = K(Z)〈τ 〉 = K(U) and K̃G =
(K̃〈τ 〉)G = K(U)G = KG(U) = KS(U). On the other hand, since Z is στ -invariant, we
have K̃〈στ 〉 = KS(Z) = K̃G(Z).

Here we treat the case that the characteristic is other than 2. Since U = Z + s/Z ∈ K̃G,
we can take Z − s/Z as a generator of K̃〈στ 〉 over K̃G instead of Z. Choose an element

a ∈ K � KS such that σ(a) = −a and put c := a2. Then we have K = KS(a) and c ∈ KS .

Hence K̃〈τ 〉 = K(U) = K̃G(a). From these, we can take V := Z − s/Z

a
as a generator of

K̃S over K̃G; K̃S = K̃G(V ). Thus we have K̃S = K(U,V ) with one relation

U2 − cV 2 = 4s , (20)

since V 2 = (Z − s/Z)2

a2 = U2 − 4s

c
. Hence K̃S is rational over KS if and only if the conic

U2 − cV 2 = 4s over KS has a KS-rational point (U, V ).

REMARK 3. The case of characteristic 2 is similar except the use of Artin-Schreier
theory instead of Kummer theory.

Since the extension K/KS is of Artin-Schreier type, there exists an element a ∈ K�KS

such that σ(a) = a + 1. Put c := a(a + 1), then we have K = KS(a) and c ∈ KS . Hence
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K̃〈τ 〉 = K(U) = K̃G(a). Since Z − σ(Z) = Z + σ(Z) = U and σ(a) − a = 1, we can take
V := Z − aU as a generator of K̃S over K̃G; K̃S = K̃G(V ). Thus we have K̃S = K(U,V )

with one relation

V 2 − UV − cU2 = s , (21)

because

V 2 − UV = (Z2 + a2U2) − (UZ − aU2) = Z(U − Z) + a(a + 1)U2 = s + cU2 .

Hence K̃S is rational over KS if and only if the conic V 2 − UV − cU2 = s over KS has a
KS-rational point (U, V ).

4.4. A remark on an interpretation via Galois cohomology. One can find that in
the both cases above the left hand side of the conic (20), (21) we obtained is the norm form of
K/KS , that is, K̃S is rational over KS if and only if s ∈ NK/KSK×. We can interpret this via
Galois cohomology ([16, 17, 18]).

The extension K̃S/KS between the fixed fields can be parametrized by the Galois coho-
mology group H 1(S, PGL(2,K)). Denote the set of the KS-isomorphism classes of function

fields L/KS of one variable of genus 0 which split in K (that is, KL � K(X)) by E(S,K).
The bijection between E(S,K) and H 1(S, PGL(2,K)) is obtained as follows: the correspon-

dence σ 
→
(

a c

b d

)
, where σ(X) = aX + b

cX + d
, gives a 1-cocycle G → PGL(2,K), whose

cohomology class does not depend on the choice of a generator X. Taking the transposition
is to avoid to get an anti-cocycle.

Since H 1(S, GL(2,K)) = {1}, from the central exact sequence

1 → K× → GL(2,K) → PGL(2,K) → 1 ,

we obtain the injective connecting homomorphism H 1(S, PGL(2,K)) → H 2(S,K×).

Moreover H 2(S,K×) is isomorphic to (KS)×/NK/KSK×, where s ∈ (KS)× corresponds

to the class of a 2-cocycle determined by (σ, σ ) 
→ s.
The following proposition is essentially a version of [4]3 Theorem 2, and is simplified

without loss of generality by using Lemma 4.

PROPOSITION 4. Let K̃ = K(Z) be a rational function field over a field K . Assume
that S = 〈σ 〉 ⊂ Aut(K̃) satisfies the following conditions:

(i) #S = 2 (i.e. σ 2 = id),
(ii) S stabilizes K (i.e. σ(K) = K),

(iii) S acts on K faithfully (i.e. σ |K �= id), and
(iv) σ(Z) = s/Z with s ∈ KS .

3In the calculation in [4], there is a (non-serious) mistake. In p.46, α(U) = (W2 − Y 2)U − 4WY

WYU + (W2 − Y 2)
is correct.



SOME RATIONALITY PROBLEM 913

Then the image of the isomorphism class [K̃S/KS] under the composite

E(S,K) � H 1(S, PGL(2,K)) −→ H 2(S,K×) −→ (KS)×/NK/KSK× (22)

is given by s mod NK/KS K×. Hence K̃S is rational over KS if and only if s ∈ NK/KSK×.

PROOF. The 1-cocycle f ∈ Z1(S, PGL(2,K)) determined by the extension K̃S/KS

is given by f (σ) =
(

0 s

1 0

)
. Since f (σ)σ(f (σ ))f (σ 2)−1 = sI2, [f ] ∈ H 1(S, PGL(2,K))

is mapped to the 2-cocycle determined by (σ, σ ) 
→ s by the definition of the connecting
map. The isomorphism H 2(S,K×) −→ (KS)×/NK/KS K× maps this 2-cocycle to s mod

NK/KS K×. �

In actual examples which we want to investigate, to determine whether s is a norm or
not, we must know more precise information of K/KS (such as explicit generators of KS),
so we need concrete calculation as in the following sections.

5. Rationality for odd n’s

Now we return to our situation; Kn is the field of cross-ratios of n variables, K̃n is the
field of ratios of differences, and Sn acts on them by permutation of indices of variables.

In this section, we assume that n is an odd integer with n ≥ 5, and show Theorem 1 (i),

that is, K̃
Sn
n is rational over K

Sn
n . We need 2-Sylow descent to obtain an affirmative answer

for our main problem.
Let S be a 2-Sylow subgroup of Sn. First we consider the action of S on the set

{1, . . . , n}. Since n is odd, there exists an orbit consisting of a single element, say {n}, that is,
σ(n) = n for all σ ∈ S.

Owing to Proposition 3, to obtain Theorem 1 (i), it is enough to show the following:

LEMMA 5. There exists an element z ∈ K̃n such that K̃n = Kn(z) and that σ(z) =
cσ z + dσ (cσ , dσ ∈ Kn) for any σ ∈ S.

PROOF. We shall show that the choice z := xn−1 − xn

xn−1 − xn−2
∈ K̃n is suitable for this. Let

σ ∈ S. Since σ(n) = n,

σ(z) = xσ(n−1) − xn

xσ(n−1) − xσ(n−2)

= z − yσ(n−2)

yσ(n−1) − yσ(n−2)

, (23)

where we put yi = xi − xn−2

xi − xn

/
xn−1 − xn−2

xn−1 − xn

∈ Kn (i = 1, . . . , n − 3), yn−2 = 0 and

yn−1 = 1. �
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REMARK 4. We can find this choice of z by normalizing the n-th coordinate of points
of M0,n to ∞. Concretely, we can see this by considering

σ−1([y1, . . . , yn−3, 0, 1,∞; z]) = [∗, . . . , ∗, yσ(n−2), yσ(n−1),∞; z] (24)

=
[
∗, . . . , ∗, 0, 1,∞; z − yσ(n−2)

yσ(n−1) − yσ(n−2)

]
,

where we employ a renormalization ξ 
−→ ξ − yσ(n−2)

yσ(n−1) − yσ(n−2)

.

Thus, the assertion of Theorem 1 (i) follows from Proposition 3.

6. Non-rationality for even n’s

In this section, we assume that n is an even integer with n ≥ 6, and show Theorem 1

(ii), that is, K̃
Sn
n is not rational over K

Sn
n provided the characteristic of k is not two. To show

this, it suffices to find a (un)suitable subgroup H ⊂ Sn such that K̃H
n is not rational over

KH
n . This group H should be a 2-group. In this case, we can choose H as in the following

proposition. Although the results in this and the next sections are concrete examples of known
results (e.g. [6, 9]), we give a proof based on explicit computation since we need it finally for
actual determination of (non-)rationality.

PROPOSITION 5. Let n = 2m + 4 ≥ 6 (m ≥ 1) and put σ := (1 2) · · · (2m −
1 2m)(2m + 1 2m + 2)(2m + 3 2m + 4). Then K̃

〈σ 〉
n is not rational over K

〈σ 〉
n .

PROOF. Take a normalization for a point of M0,n as [y1, . . . , y2m, y0, 1, 0,∞; z].
Then we have

Kn = k(y0, y1, . . . , y2m) , K̃n = Kn(z) . (25)

The actions of σ on Kn and K̃n are calculated as in Section 3:

σ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 
−→ y0 ,

y2i−1 
−→ y0

y2i

(1 ≤ i ≤ m) ,

y2i 
−→ y0

y2i−1
(1 ≤ i ≤ m) ,

z 
−→ y0

z
.

(26)

Put ηi := y2i−1 +σ(y2i−1) = y2i−1 + y0

y2i

and η′
i := y2i−1 −σ(y2i−1) = y2i−1 − y0

y2i

for 1 ≤
i ≤ m. Then we have Kn = k(y0, η1, . . . , ηm, η′

1, . . . , η
′
m) and σ(ηi) = ηi, σ (η′

i ) = −η′
i .

Hence, putting ηm+i := η′
1η

′
i , we have K

〈σ 〉
n = k(y0, η1, . . . , ηm, ηm+1, . . . , η2m).
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Furthermore, if we put

U := z + σ(z) = z + y0

z
, V := z − σ(z)

η′
1

= z − y0
z

y1 − y0
y2

, (27)

then it holds that K̃
〈σ 〉
n = K

〈σ 〉
n (U, V ) with

U2 − ηm+1V
2 = 4y0 . (28)

This is a conic over K
〈σ 〉
n . Thus the non-rationality of K̃

〈σ 〉
n /K

〈σ 〉
n is reduced to the following

claim. �

CLAIM 2. The conic U2 − ηm+1V
2 = 4y0 over K

〈σ 〉
n has no K

〈σ 〉
n -rational points.

PROOF. Since K
〈σ 〉
n = k(η1, . . . , ηm, ηm+1, . . . , η2m)(y0), it suffices to show that the

equation

U2
0 − ηm+1V

2
0 = 4y0W

2
0

has no non-trivial solution (U0, V0,W0) in the polynomial ring

k(η1, . . . , ηm, ηm+1, . . . , η2m)[y0]. The both terms U2
0 , ηm+1V

2
0 in LHS are of even

degree in y0, while RHS is of odd degree in y0. Hence the leading terms of U2
0 , ηm+1V

2
0

must be equal and cancelled in LHS. But it is impossible because ηm+1 is not a square in
k(η1, . . . , ηm, ηm+1, . . . , η2m). �

From Proposition 5 together with Lemma 1 in the previous section, we obtain the asser-
tion of Theorem 1 (ii).

7. Non-rationality for transitive subgroups of even degree

We continue to keep the assumption on the base field k to be infinite and of characteristic
different from two. In this section we shall discuss, for an even n and for a transitive group
H in Sn whether K̃H

n is not rational over KH
n . By Proposition 5, if a permutation group H in

S2m+4 has an element of cycle type 2m+2 (that is, conjugate to (1 2) · · · (n − 1 n)), then K̃H
n

is not rational over KH
n .

7.1. The case n = 2e (e ≥ 3). When the degree n is a power of 2, we can give a
uniform answer for all transitive subgroups of Sn owing to the following group-theoretical
lemma:

LEMMA 6. Let n = pe be a prime power. Then any transitive subgroup H in Sn

contains an element of cycle type pn/p .

PROOF. First we shall show that a p-Sylow subgroup Sp of H is transitive. Let H1

(resp. S1) be the stabilizer of the symbol 1 under the standard permutation action of H (resp.
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Sp). Then (H : H1) = n = pe follows from the transitivity of H . Hence (H : S1) = (H :
H1)(H1 : S1) is a multiple of pe. On the other hand, we have (H : S1) = (H : Sp)(Sp : S1)

and (H : Sp) is prime to p because Sp is a p-Sylow subgroup of H . Hence (Sp : S1) is
divided by pe. This shows the transitivity of Sp.

Since the center Z = Z(Sp) is a non-trivial abelian p-group, Z contains an element σ of

order p. Then σ must be of cycle type pn/p . To show this, suppose that σ is of cycle type of pk

with k < e/p. Without loss of generality, we suppose σ = (1 · · · p) · · · ((k−1)p+1 · · · kp).
Since Sp is transitive, there exists an element ρ ∈ Sp such that ρ(1) = kp + 1. Then we have

ρ−1σρ(1) = 1 �= 2 = σ(1). This contradicts that σ is central in Sp . �

THEOREM 2. Assume that k is infinite and of characteristic different from two. For

any transitive subgroup H of degree n = 2e (e ≥ 3), K̃H
n is not rational over KH

n .

PROOF. By applying the lemma above for p = 2, we know that any transitive group

H of degree 2e contains an element of cycle type 2n/2. Then the assertion follows from
Proposition 5. �

When n is not a power of 2, there is a transitive subgroup H of Sn such that H has no

element of cycle type 2n/2. For such cases we need individual treatment.

7.2. The case n = 6. There are 16 conjugacy classes of transitive subgroups in S6,
listed in Butler-McKay [3] (see the table cited from Hashimoto-Tsunogai [8], where the left-
most column is the symbol numbered in [3]). In [8], Cross-Ratio Noether’s Problem for these
groups is settled affirmatively except for 6T12 and 6T15. For these groups we shall show the
following:

THEOREM 3. Assume that k is infinite and of characteristic different from two. For

any transitive subgroup T of S6, K̃T
6 is not rational over KT

6 .

We shall prove this theorem by showing that any transitive group T includes a 2-group H

such that K̃H
6 is not rational over KH

6 . Consulting the table of the transitive groups of degree
6 and checking with a computer algebra system GAP [5], we can see the following:

LEMMA 7. Any transitive group T of degree 6 includes a subgroup conjugate to one
of the following:

H1 = 〈(1 2)(3 4)(5 6)〉 ,

H2 = 〈(1 2)(3 4), (1 2)(5 6)〉 ,

or H3 = 〈(1 2 3 4)(5 6)〉 .

In particular, a transitive group T of degree 6 includes a conjugate of H1 if and only if T is
odd.
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TABLE 1. The transitive groups of degree 6 (cf. [3, 8])

order sign structure generators includes

6T1 6 C6 α H1

6T2 6 S3(6) α2, β H1

6T3 12 D6 α, β H1

6T4 12 + A4 α2, τ1, τ2 H2

6T5 18 S3×C3 6T2, γ1 H1

6T6 24 A4×C2 6T4, θ H1 H2

6T7 24 + S4
(+)

6T4, βθ H2 H3

6T8 24 S4
(−)

6T4, β H1 H2

6T9 36 V4 � (C3×C3) 6T3, γ1 H1

6T10 36 + C4 � (C3×C3) α2, αβ, γ1, δ H3

6T11 48 S4×C2 6T4, β, θ H1 H2 H3

6T12 60 + A5(6) 6T4, ϕ H2

6T13 72 D4 � (C3×C3) 6T9, δ H1 H3

6T14 120 S5(6) 6T8, ϕ H1 H2

6T15 360 + A6 6T7, ϕ H2 H3

6T16 720 S6 6T15, β H1 H2 H3

α = (123456), β = (14)(23)(56), θ = α3 = (14)(25)(36),

γ1 = (135), γ2 = (246), δ = (14)(2563),

τ1 = (14)(25), τ2 = (14)(36), ϕ = (15243).

REMARK 5. Since the permutation (1 2)(3 4)(5 6) is odd, the even transitive sub-
groups cannot include a conjugate of H1, from which the “only-if” part follows. Conversely,
to show “if” part, it seems to need to consult the table of the transitive subgroups of S6.

For the case of H1, in Proposition 5, we have already shown that K̃
H1
6 is not rational over

K
H1
6 . Hence for any odd transitive group T , K̃T

6 is not rational KT
6 .

In the following propositions, we shall treat the remaining two cases.

PROPOSITION 6. For the group H := H2 = 〈(1 2)(3 4), (1 2)(5 6)〉, K̃H
6 is not

rational over KH
6 .

PROOF. Put σ := (1 2)(3 4), τ := (1 2)(5 6) and H = 〈σ, τ 〉 ⊃ S := 〈σ 〉 ⊃ {1}.
Choose generators of K := K6 and K̃ := K̃6 according to a normalization [−1 − y1, 1 −
y1,∞, 0, y2, y3; z], that is, first we take as [−1, 1,∞, y1, ∗, ∗; ∗] then translate it by ξ 
→
ξ − y1, and put the fifth (resp. the sixth) coordinate to y2 (resp. y3). Then K = k(y1, y2, y3)

and K̃ = K(z).
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The action of H is given as follows:

σ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 
−→ y1

y2 
−→ Y

y2

y3 
−→ Y

y3

z 
−→ Y

z
,

τ :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y1 
−→ −y1

y2 
−→ −y3

y3 
−→ −y2

z 
−→ −z,

(29)

where we put Y := y2
1 − 1. To determine KS and K̃S , we observe the action of σ on some

typical elements in K and K̃:

y2 + y3 
−→ Y

y2y3
(y2 + y3) , y2 − y3 
−→ − Y

y2y3
(y2 − y3) ,

y2y3 + Y 
−→ Y

y2y3
(y2y3 + Y ) , y2y3 − Y 
−→ − Y

y2y3
(y2y3 − Y ) ,

z + y2 
−→ Y

y2z
(z + y2) , z − y2 
−→ − Y

y2z
(z − y2) .

(30)

From this, we obtain σ -invariant elements v1 := y2y3 + Y

y2 + y3
, v := y2y3 − Y

y2 − y3
∈ KS and

z1 := z + y2

z − y2

y2 − y3

y2 + y3
∈ K̃S . Since K = k(y1, y2, y3) = k(y1, v1, v)(y3) and y3 satisfies the

quadratic equation y2
3 −2

(v1v + Y )

(v1 + v)
y3+Y = 0 over k(y1, v1, v), we have [K : k(y1, v1, v)] ≤

2, which implies KS = k(y1, v1, v). It also holds that K̃S = KS(z1) since K̃ = K(z1). We

also notice that σ

(
y2 − y3

y2 + y3

)
= −y2 − y3

y2 + y3
and hence

(
y2 − y3

y2 + y3

)2

is σ -invariant. If fact, we

have

(
y2 − y3

y2 + y3

)2

= Y − v2
1

Y − v2
.

The action of τ on the generators of KS = k(y1, v1, v) and K̃S = KS(z1) is as follows:

τ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 
−→ −y1

v1 
−→ −v1

v 
−→ v

z1 
−→ −
z1 + Y−v2

1
Y−v2

z1 + 1
.

(31)

Hence KH = K(u, v,w), where we put u := y1v1, w := v2
1. Note that Y = y2

1 − 1 =
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u2

v2
1

− 1 = u2 − w

w
is also τ -invariant. To determine K̃H , we take Z := 1

z1 + 1
as a generator

of K̃S over KS to make the computation simpler, while Lemma 4 suggests us to consider

z1 + 1. Then Zτ(Z) = 1

1 − Y−w
Y−v2

= Y − v2

w − v2 ∈ KH . Put U := (w − v2)(Z + τ (Z)), V :=

w(w − v2)
Z − τ (Z)

v1
, then we obtain a conic

V 2 − wU2 = 4(w − v2)(w(v2 + 1) − u2) (32)

attaching to the extension K̃H/KH . Thus the non-rationality of K̃H/KH is reduced to the
following claim. �

CLAIM 3. The conic V 2 − wU2 = 4(w − v2)(w(v2 + 1) − u2) over KH has no
KH -rational points.

PROOF. Since KH = k(u, v)(w), it suffices to show that the equation

V 2
0 − wU2

0 = 4(w − v2)(w(v2 + 1) − u2)W 2
0

has no non-trivial solution (U0, V0,W0) in the polynomial ring k(u, v)[w]. Since RHS (resp.

V 2
0 , wU2

0 ) is of even (resp. even, odd) degree in w, the leading terms of V 2
0 and RHS must be

equal. But it is impossible because v2 + 1 is not a square in k(u, v). �

PROPOSITION 7. For the group H := H3 = 〈(1 2 3 4)(5 6)〉, K̃H
6 is not rational over

KH
6 .

PROOF. Put σ = (1 2 3 4)(5 6) and H = 〈σ 〉 ⊃ S := 〈σ 2〉 ⊃ {1}. Choose generators
of K := K6 and K̃ := K̃6 according to a normalization [a0a1a2, a1, a0a1, 1, 0,∞; b]. Then
K = k(a0a1a2, a1, a0a1) = k(a0, a1, a2) and K̃ = K(b).

The action of σ is as follows:

σ :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a1 
−→ a2 ,

a2 
−→ 1/a1 ,

a0 
−→ a0a1 ,

b 
−→ a0a1a2/b ,

σ 2 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a1 
−→ 1/a1 ,

a2 
−→ 1/a2 ,

a0 
−→ a0a1a2 ,

b 
−→ b/a1 .

(33)

Put K0 := k(a1, a2). Then K0 ⊂ K = K0(a0) ⊂ K̃ = K(b) is a σ -stable tower of
successively rational extensions. We can take another choice a := trH (a0) = (1 + a1)(1 +
a2)a0 of a generator of K/K0. Since a is σ -invariant, we have KH = K0(a)H = KH

0 (a).

Next put b′ := trS(b) =
(

1+ 1

a1

)
b, then K̃ = K(b′) and K̃S = K(b′)S = KS(b′). Hence K̃S
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is rational over KS . (Although we can see this from the discussion in Section 5 considering
that S has fixed points 5, 6 in the set {1, . . . , 6}, we need more concrete description to dig up
K̃H /KH .)

Since NH/S(b′) =
(

1 + 1

a1

)
b
(

1 + 1

a2

)a0a1a2

b
= a ∈ KH , b′ satisfies the condition of

Lemma 4. Take an element a− ∈ KS
0 � KH

0 satisfying σ(a−) = −a−, and put c := a2− ∈
KH

0 � (KH
0 )2. Then, by putting U := trH/S(b′) = b′ + a

b′ , V := b′ − σ(b′)
a−

, we obtain a

conic

U2 − cV 2 = 4a

attaching to the extension K̃H/KH . Thus the non-rationality of K̃H/KH is reduced to the
following claim. �

CLAIM 4. The conic U2 − cV 2 = 4a over KH has no KH -rational points.

PROOF. Since KH = KH
0 (a), it suffices to show that the equation

U2
0 − cV 2

0 = 4aW 2
0

has no non-trivial solution (U0, V0,W0) in the polynomial ring KH
0 [a]. Since RHS is of odd

degree in a, the degrees of U0 and V0 in a are equal and their leading terms must be cancelled

in LHS. But it is impossible because c is not a square in KH
0 . �

7.3. Some remarks for other n’s. For small individual n’s, we can say something by
consulting the table of transitive groups of Butler-McKay [3], Butler [2] and Royle [15], and
using GAP to check individual cases.

REMARK 6. When n = 4m + 2 ≡ 2 (mod 4), σ = (1 2) · · · (n − 1 n) of cycle type

22m+1 is an odd permutation, hence σ is not contained in any even subgroup. Moreover,
there are odd transitive subgroups which do not contain any conjugate of σ in general. When

n = 4m ≡ 0 (mod 4), σ = (1 2) · · · (n − 1 n) of cycle type 22m is an even permutation,
hence even subgroups may contain σ , but in fact there are some transitive subgroups which
do not contain any conjugate of σ .

EXAMPLE 3. In the case n = 10, according to the list of Butler-McKay [3], not as in
the case of n = 6, there are some odd transitive groups which do not contain any element of

cycle type 25.

EXAMPLE 4. In the case n = 12, there are 17 minimal transitive groups as listed in
Royle [15] Section 4.3. Among them, the groups numbered 9, 12, 13, 15 do not contain any
element of cycle type 26.
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EXAMPLE 5. In the case n = 14, By checking the list of Butler [2] using GAP, we
know that all odd transitive subgroups has an element of cycle type 27 as in the case of n = 6.
Hence we have the following result.

THEOREM 4. Assume that k is infinite and of characteristic different from two. Then,
for any odd transitive subgroup T of S14, K̃T

14 is not rational over KT
14.
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