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Abstract. In this paper, we give sufficient conditions for orbits of Hermann actions to be weakly reflective in
terms of symmetric triads, that is a generalization of irreducible root systems. Using these sufficient conditions, we
obtain new examples of weakly reflective submanifolds in compact symmetric spaces.

1. Introduction

Ikawa, Sakai, and Tasaki ([6]) proposed the notion of weakly reflective submanifold as
a generalization of the notion of reflective submanifold ([8]). In [6], they detected a certain
global symmetry of several austere submanifolds in a hypersphere, and classified austere or-
bits and weakly reflective orbits of the linear isotropy representation of irreducible symmetric
spaces. They gave a necessary and sufficient condition for orbits of the linear isotropy rep-
resentation of irreducible symmetric spaces to be an austere submanifold (further, weakly
reflective submanifold) in the hypersphere in terms of root systems. We would like to gener-
alize this fact to compact Riemannian symmetric spaces. However, it is known that austere
orbits of the isotropy action of compact symmetric spaces are reflective submanifolds. There-
fore, we consider Hermann actions which are a generalization of isotropy actions of compact
symmetric spaces. Ikawa ([4]) introduced the notion of symmetric triad as a generalization
of the notion of irreducible root system to study orbits of Hermann actions. Ikawa expressed
orbit spaces of Hermann actions by using symmetric triads, and gave a characterization of the
minimal, austere and totally geodesic orbits of Hermann actions in terms of symmetric triads.
However, weakly reflective orbits have not been classified yet. In this paper, we give sufficient
conditions for orbits of Hermann actions to be weakly reflective in terms of symmetric triads.

Let G be a compact, connected, semisimple Lie group, and K1,K2 be symmetric sub-
groups of G. We consider the following three Lie group actions:

1. (K2 × K1) � G : (k2, k1)g = k2gk−1
1 ((k2, k1) ∈ K2 × K1),

2. K2 � G/K1 : k2π1(g) = π1(k2g) (k2 ∈ K2),
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3. K1 � K2\G : k1π2(g) = π2(gk−1
1 ) (k1 ∈ K1).

The K2-action and the K1-action are called Hermann actions. Orbits of the (K2 × K1)-
action have properties which are similar to orbits of Hermann actions. In particular, by using
Ikawa’s method, we characterize a minimal orbit and an austere orbit of the (K2 ×K1)-action
in terms of the symmetric triad determined by (G,K1,K2). Since totally geodesic orbits of
Hermann actions are reflective submanifolds, we only consider austere orbits which are not
totally geodesic.

The organization of this paper is as follows. In Section 2, we prepare the foundation for
the following sections. In 2.1, we recall the definition of weakly reflective submanifolds, and
their main properties. In 2.2, we review the notion of root systems and symmetric triads. In
particular, a minimal point, an austere point and a totally geodesic point are discussed. In
Section 3, we express the second fundamental form of orbits of the (K2 × K1)-action on G

(Theorem 3), and characterize a minimal orbit and an austere orbit in terms of the symmetric
triad of (G,K1,K2) (Corollaries 2, 3). In Section 4, we give sufficient conditions for orbits
of the above three group actions to be weakly reflective (Theorems 4, 5). Moreover, applying
Theorem 5, we will construct new examples of weakly reflective submanifolds in compact
symmetric spaces.

The author would like to thank O. Ikawa, T.Okuda and H. Tamaru for their useful advices.

2. Preliminaries

2.1. Weakly reflective submanifolds. We recall the definitions of reflective subman-

ifold and weakly reflective submanifold. Let (M̃, 〈, 〉) be a complete Riemannian manifold.

DEFINITION 1. Let M be a submanifold of M̃. Then M is a reflective submanifold of

M̃ if there exists an involutive isometry σM of M̃ such that M is a connected component of
the fixed point set of σM . Then, we call σM the reflection of M .

DEFINITION 2. Let M be a submanifold of M̃. For each normal vector ξ ∈ T ⊥
x M at

each point x ∈ M , if there exists an isometry σξ on M̃ which satisfies σξ (x) = x, σξ (M) = M

and (dσξ )x(ξ) = −ξ , then we call M a weakly reflective submanifold and σξ a reflection of
M with respect to ξ .

If M is a reflective submanifold of M̃ , then σM is a reflection of M with respect to each

normal vector ξ ∈ T ⊥
x M at each point x ∈ M . Thus, a reflective submanifold of M̃ is a

weakly reflective submanifold of M̃ . Notice that a reflective submanifold is totally geodesic,
but a weakly reflective submanifold is not necessarily totally geodesic.

DEFINITION 3 ([3]). Let M be a submanifold of M̃. We denote the shape operator of
M by A. M is called an austere submanifold if for each normal vector ξ ∈ T ⊥

x M , the set of

eigenvalues with their multiplicities of Aξ is invariant under the multiplication by −1.



WEAKLY REFLECTIVE SUBMANIFOLDS 539

It is clear that an austere submanifold is a minimal submanifold. Ikawa, Sakai and Tasaki
proved that a weakly reflective submanifold is an austere submanifold.

LEMMA 1 ([6]). Let G be a Lie group acting isometrically on a Riemannian manifold

M̃ . For x ∈ M̃ , we consider the orbit Gx. If for each ξ ∈ T ⊥
x Gx, there exists a reflection of

Gx at x with respect to ξ , then Gx is a weakly reflective submanifold of M̃ .

PROPOSITION 1 ([6]). Any singular orbit of a cohomogeneity one action on a Rie-
mannian manifold is a weakly reflective submanifold.

2.2. Symmetric triads. We recall the notions of root system and symmetric triad.
See [4] for details.

Let (a, 〈·, ·〉) be a finite dimensional inner product space over R. For each α ∈ a, we
define an orthogonal transformation sα : a → a by

sα(H) = H − 2〈α,H 〉
〈α, α〉 α (H ∈ a) ,

namely sα is the reflection with respect to the hyperplane {H ∈ a | 〈α,H 〉 = 0}.
DEFINITION 4. A finite subset Σ of a \ {0} is a root system of a, if it satisfies the

following three conditions:

1. Span(Σ) = a.
2. If α, β ∈ Σ , then sα(β) ∈ Σ .
3. 2〈α, β〉/〈α, α〉 ∈ Z (α, β ∈ Σ).

A root system of a is said to be irreducible if it cannot be decomposed into two disjoint
nonempty orthogonal subsets.

Let Σ be a root system of a. The Weyl group W(Σ) of Σ is the finite subgroup of the
orthogonal group O(a) of a generated by {sα | α ∈ Σ}.

DEFINITION 5 ([4] Definition 2.2). A triple (Σ̃,Σ,W) of finite subsets of a \ {0} is
a symmetric triad of a, if it satisfies the following six conditions:

1. Σ̃ is an irreducible root system of a.
2. Σ is a root system of a.

3. (−1)W = W, Σ̃ = Σ ∪ W .
4. Σ ∩ W is a nonempty subset. If we put l := max{‖α‖ | α ∈ Σ ∩ W }, then Σ ∩ W =

{α ∈ Σ̃ | ‖α‖ ≤ l}.
5. For α ∈ W and λ ∈ Σ \ W ,

2
〈α, λ〉
〈α, α〉 is odd if and only if sα(λ) ∈ W \ Σ .
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6. For α ∈ W and λ ∈ W \ Σ ,

2
〈α, λ〉
〈α, α〉 is odd if and only if sα(λ) ∈ Σ \ W .

Let (Σ̃,Σ,W) be a symmetric triad of a. We set

Γ ={H ∈ a | 〈λ,H 〉 ∈ (π/2)Z (λ ∈ Σ̃)} ,

ΓΣ∩W ={H ∈ a | 〈λ,H 〉 ∈ (π/2)Z (λ ∈ Σ ∩ W)} .

A point in Γ is called a totally geodesic point. It is known that Γ = ΓΣ∩W . We define an
open subset ar of a by

ar =
⋂

λ∈Σ,α∈W

{
H ∈ a

∣∣∣ 〈λ,H 〉 �∈ πZ, 〈α,H 〉 �∈ π

2
+ πZ

}
.

A point in ar is called a regular point, and a point in the complement of ar in a is called a sin-

gular point. A connected component of ar is called a cell. The affine Weyl group W̃ (Σ̃,Σ,W)

of (Σ̃,Σ,W) is a subgroup of the affine group of a, which defined by the semidirect product
O(a) � a, generated by

{(
sλ,

2nπ

〈λ, λ〉λ

) ∣∣∣∣ λ ∈ Σ,n ∈ Z
}

∪
{(

sα,
(2n + 1)π

〈α, α〉 α

) ∣∣∣∣ α ∈ W,n ∈ Z
}

.

The action of (sλ, (2nπ/〈λ, λ〉)λ) on a is the reflection with respect to the hyperplane {H ∈ a |
〈λ,H 〉 = nπ}, and the action of (sα, ((2n + 1)π/〈α, α〉)α) on a is the reflection with respect

to the hyperplane {H ∈ a | 〈α,H 〉 = ((2n + 1)/2)π}. The affine Weyl group W̃ (Σ̃,Σ,W)

acts transitively on the set of all cells. More precisely, for each cell P , it holds that

a =
⋃

s∈W̃(Σ̃,Σ,W)

sP .

We take a fundamental system Π̃ of Σ̃ . We denote by Σ̃+ the set of positive roots in Σ̃ .

Set Σ+ = Σ̃+ ∩ Σ and W+ = Σ̃+ ∩ W . Denote by Π the set of simple roots of Σ . We set

W0 = {α ∈ W+ | α + λ �∈ W (λ ∈ Π)} .

From the classification of symmetric triads, we have that W0 consists of the only one element,
denoted by α̃. We define an open subset P0 of a by

P0 =
{
H ∈ a

∣∣∣∣ 〈α̃, H 〉 <
π

2
, 〈λ,H 〉 > 0 (λ ∈ Π)

}
. (1)
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Then P0 is a cell. For a nonempty subset Δ ⊂ Π ∪ {α̃}, set

PΔ
0 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

H ∈ P 0 〈λ,H 〉 > 0 (λ ∈ Δ ∩ Π)

〈μ,H 〉 = 0 (μ ∈ Π \ Δ)

〈α̃, H 〉
{

< (π/2) (if α̃ ∈ Δ)

= (π/2) (if α̃ �∈ Δ)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

,

then

P 0 =
⋃

Δ⊂Π∪{α̃}
PΔ

0 (disjoint union) .

DEFINITION 6 ([4] Definition 2.13). Let (Σ̃,Σ,W) be a symmetric triad of a. Con-

sider two mappings m and n from Σ̃ to R≥0 := {a ∈ R | a ≥ 0} which satisfy the following
four conditions:

1. For any λ ∈ Σ̃ ,

(1-1) m(λ) = m(−λ), n(λ) = n(−λ),

(1-2) m(λ) > 0 if and only if λ ∈ Σ ,

(1-3) n(λ) > 0 if and only if λ ∈ W .

2. When λ ∈ Σ, α ∈ W, s ∈ W(Σ), then m(λ) = m(s(λ)), n(α) = n(s(α)).

3. When λ ∈ Σ̃, σ ∈ W(Σ̃), then m(λ) + n(λ) = m(σ(λ)) + n(σ(λ)).
4. Let λ ∈ Σ ∩ W , α ∈ W . If 2〈α, λ〉/〈α, α〉 is even, then m(λ) = m(sα(λ)). If

2〈α, λ〉/〈α, α〉 is odd, then m(λ) = n(sα(λ)).

We call m(λ) and n(α) the multiplicities of λ and α, respectively.

Let (Σ̃,Σ,W) be a symmetric triad of a with multiplicities m and n. For H ∈ a, we set

mH = −
∑

λ∈Σ+
〈λ,H 〉�∈πZ

m(λ) cot〈λ,H 〉λ +
∑

α∈W+
〈α,H 〉�∈(π/2)+πZ

n(α) tan〈α,H 〉α .

The vector mH is called the mean curvature vector at H . A vector H ∈ a is a minimal point
if mH = 0.

PROPOSITION 2 (Theorem 2.14 in [4]). Let (Σ̃,Σ,W) be a symmetric triad of a with

multiplicities. For H ∈ a and σ = (s,X) ∈ W̃ (Σ̃,Σ,W), set H ′ = σH ∈ a, then

mH ′ = s(mH ) .

THEOREM 1 (Theorem 2.24 in [4]). For any nonempty subset Δ ⊂ Π ∪ {α̃}, there
exists a unique minimal point H ∈ PΔ

0 .

A vector H ∈ a is an austere point if the subset of a with multiplicities defined by

{− cot〈λ,H 〉λ (multiplicity= m(λ)) | λ ∈ Σ+, 〈λ,H 〉 �∈ πZ}
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∪ {tan〈α,H 〉α (multiplicity= n(α)) | α ∈ W+, 〈α,H 〉 �∈ (π/2) + πZ}
is invariant with multiplicities under the multiplication by −1. An austere point is a minimal
point.

PROPOSITION 3 ([4] Theorem 2.18). A point H ∈ a is austere if and only if the fol-
lowing three conditions holds:

1. 〈λ,H 〉 ∈ (π/2)Z for any λ ∈ (Σ \ W) ∪ (W \ Σ).
2. 2H ∈ ΓΣ∩W .
3. m(λ) = n(λ) for any λ ∈ Σ ∩ W with 〈λ,H 〉 ∈ (π/4) + (π/2)Z.

Ikawa gave the classification of symmetric triad and determined austere points for symmetric
triads with multiplicities.

3. Minimal orbits and austere orbits

In this section, we consider Hermann actions and associated actions on Lie groups which
are hyperpolar actions on compact symmetric spaces. An isometric action of a compact Lie
group on a Riemannian manifold M is called hyperpolar if there exists a closed, connected and
flat submanifold S of M that meets all orbits orthogonally. Then, the submanifold S is called a
section. A. Kollross ([7]) classified the hyperpolar actions on compact irreducible symmetric
spaces. By the classification, we can see that a hyperpolar action on a compact symmetric
space whose cohomogeneity is two or greater, is orbit-equivalent to some Hermann action.

Let G be a compact, connected, semisimple Lie group, and K1,K2 be closed subgroups
of G. For each i = 1, 2, assume that there exists an involutive automorphism θi of G which
satisfies (Gθi )0 ⊂ Ki ⊂ Gθi , where Gθi is the set of fixed points of θi and (Gi)0 is the identity
component of Gθi . Then the triple (G,K1,K2) is called a compact symmetric triad. The pair
(G,Ki) is a compact symmetric pair for i = 1, 2. We denote the Lie algebras of G,K1 and
K2 by g, k1 and k2, respectively. The involutive automorphism of g induced from θi will be
also denoted by θi . Take an Ad(G)-invariant inner product 〈·, ·〉 on g. Then the inner product
〈·, ·〉 induces a bi-invariant Riemannian metric on G and G-invariant Riemannian metrics on
the coset manifolds M1 := G/K1 and M2 := K2\G. We denote these Riemannian metrics
on G,M1 and M2 by the same symbol 〈·, ·〉. These Riemannian manifolds G,M1 and M2 are
Riemannian symmetric spaces with respect to 〈·, ·〉. We denote by πi the natural projection
from G to Mi (i = 1, 2), and consider the following three Lie group actions:

• (K2 × K1) � G : (k2, k1)g = k2gk−1
1 ((k2, k1) ∈ K2 × K1),

• K2 � M1 : k2π1(g) = π1(k2g) (k2 ∈ K2),

• K1 � M2 : k1π2(g) = π2(gk−1
1 ) (k1 ∈ K1),

for g ∈ G. The three actions have the same orbit space, and in fact, the following diagram is
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commutative:

G
π2−−−−→ M2

π1

⏐⏐�
⏐⏐�π̃1

M1 −−−−→
π̃2

K2\G/K1 ,

where π̃i is the natural projection from Mi to the orbit space K2\G/K1. Ikawa computed the
second fundamental form of orbits of Hermann actions in the case θ1θ2 = θ2θ1. We can apply
Ikawa’s method to the geometry of orbits of the (K2 × K1)-action. For g ∈ G, we denote
the left (resp. right) transformation of G by Lg (resp. Rg ). The isometry on M1 (resp. M2)
induced by Lg (resp. Rg ) will be also denoted by the same symbol Lg (resp. Rg ).

For i = 1, 2, we set

mi = {X ∈ g | θi(X) = −X} .

Then we have an orthogonal direct sum decomposition of g that is the canonical decom-
position:

g = ki ⊕ mi .

Let e denotes the identity element of G. The tangent space Tπi(e)Mi of Mi at the origin πi(e)

is identified with mi in a natural way. We define a closed subgroup G12 of G by

G12 = {g ∈ G | θ1(g) = θ2(g)} .

Hence ((G12)0,K12) is a compact symmetric pair, where K12 is a closed subgroup of (G12)0

defined by

K12 = {k ∈ (G12)0 | θ1(k) = k} .

The canonical decomposition of ((G12)0,K12) is given by

g12 = (k1 ∩ k2) ⊕ (m1 ∩ m2) .

Fix a maximal abelian subspace a in m1∩m2. Then exp(a) is a toral subgroup in (G12)0. Then
exp(a), π1(exp(a)) and π2(exp(a)) are sections of the (K2 × K1)-action, the K2-action and
the K1-action, respectively. To investigate the orbit spaces of the three actions, we consider an
equivalent relation ∼ on a defined as follows: For H1,H2 ∈ a, H1 ∼ H2 if K2 exp(H1)K1 =
K2 exp(H2)K1. Clearly, we have H1 ∼ H2 if and only if K2π1(exp(H1)) = K2π1(exp(H2)),
and similarly, H1 ∼ H2 if and only if K1π2(exp(H1)) = K1π2(exp(H2)). Then we have
a/∼= K2\G/K1. For each subgroup L of G, we define

NL(a) = {k ∈ L | Ad(k)a = a} ,

ZL(a) = {k ∈ L | Ad(k)H = H (H ∈ a)} .



544 SHINJI OHNO

Then ZL(a) is a normal subgroup of NL(a). We define a group J̃ by

J̃ = {([s], Y ) ∈ NK2(a)/ZK1∩K2(a) � a | exp(−Y )s ∈ K1} .

The group J̃ naturally acts on a by the following:

([s], Y )H = Ad(s)H + Y (([s], Y ) ∈ J̃ , H ∈ a) .

Matsuki ([9]) proved that

K2\G/K1 ∼= a/J̃ .

Hereafter, we suppose θ1θ2 = θ2θ1. Then we have an orthogonal direct sum decomposition
of g:

g = (k1 ∩ k2) ⊕ (m1 ∩ m2) ⊕ (k1 ∩ m2) ⊕ (m1 ∩ k2) .

We define subspaces of g as follows:

k0 = {X ∈ k1 ∩ k2 | [a,X] = {0}} ,

V (k1 ∩ m2) = {X ∈ k1 ∩ m2 | [a,X] = {0}} ,

V (m1 ∩ k2) = {X ∈ m1 ∩ k2 | [a,X] = {0}} .

For λ ∈ a,

kλ = {X ∈ k1 ∩ k2 | [H, [H,X]] = −〈λ,H 〉2X (H ∈ a)} ,

mλ = {X ∈ m1 ∩ m2 | [H, [H,X]] = −〈λ,H 〉2X (H ∈ a)} ,

V ⊥
λ (k1 ∩ m2) = {X ∈ k1 ∩ m2 | [H, [H,X]] = −〈λ,H 〉2X (H ∈ a)} ,

V ⊥
λ (m1 ∩ k2) = {X ∈ m1 ∩ k2 | [H, [H,X]] = −〈λ,H 〉2X (H ∈ a)} .

We set

Σ = {λ ∈ a \ {0} | kλ �= {0}} ,

W = {α ∈ a \ {0} | V ⊥
α (k1 ∩ m2) �= {0}} ,

Σ̃ = Σ ∪ W .

It is known that dim kλ = dimmλ and dim V ⊥
λ (k1 ∩ m2) = dim V ⊥

λ (m1 ∩ k2) for each

λ ∈ Σ̃ . Thus we set m(λ) := dim kλ, n(λ) := dim V ⊥
λ (k1 ∩ m2). Notice that Σ is the root

system of the pair ((G12)0,K12), and Σ̃ is a root system of a (see [4]). We take a basis of a
and the lexicographic ordering > on a with respect to the basis. We set

Σ̃+ = {λ ∈ Σ̃ | λ > 0} , Σ+ = Σ ∩ Σ̃+, W+ = W ∩ Σ̃+ .

Then we have an orthogonal direct sum decomposition of g:
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g = k0 ⊕
∑

λ∈Σ+
kλ ⊕ a ⊕

∑

λ∈Σ+
mλ ⊕ V (k1 ∩ m2) ⊕

∑

α∈W+
V ⊥

α (k1 ∩ m2)

⊕ V (m1 ∩ k2) ⊕
∑

α∈W+
V ⊥

α (m1 ∩ k2) .

Furthermore, we have the following lemma.

LEMMA 2 ([4] Lemmas 4.3 and 4.16). 1. For each λ ∈ Σ+, there exist orthonor-
mal bases {Sλ,i}1≤i≤m(λ) and {Tλ,i}1≤i≤m(λ) of kλ and mλ respectively such that for any
H ∈ a,

[H,Sλ,i] = 〈λ,H 〉Tλ,i , [H,Tλ,i] = −〈λ,H 〉Sλ,i , [Sλ,i, Tλ,i] = λ ,

Ad(exp H)Sλ,i = cos〈λ,H 〉Sλ,i + sin〈λ,H 〉Tλ,i ,

Ad(exp H)Tλ,i = − sin〈λ,H 〉Sλ,i + cos〈λ,H 〉Tλ,i .

2. For each α ∈ W+, there exist orthonormal bases {Xα,j }1≤j≤n(α) and {Yα,j }1≤j≤n(α) of

V ⊥
α (k1 ∩ m2) and V ⊥

α (m1 ∩ k2) respectively such that for any H ∈ a

[H,Xα,j ] = 〈α,H 〉Yα,j , [H,Yα,j ] = −〈α,H 〉Xα,j , [Xα,j , Yα,j ] = α ,

Ad(exp H)Xα,j = cos〈α,H 〉Xα,j + sin〈α,H 〉Yα,j ,

Ad(exp H)Yα,j = − sin〈α,H 〉Xα,j + cos〈α,H 〉Yα,j .

Using Lemma 2, Ikawa proved the following theorem.

THEOREM 2 ([4] Corollaries 4.23, 4.29, 4.24, and [2] Theorem 5.3). Let g= exp(H)

(H ∈ a). Denote the mean curvature vector of K2π1(g) ⊂ M1 at π1(g) by m1
H . Then we

have:

(1)

dL−1
g m1

H = −
∑

λ∈Σ+
〈λ,H 〉�∈πZ

m(λ) cot〈λ,H 〉λ +
∑

α∈W+
〈α,H 〉�∈(π/2)+πZ

n(α) tan〈α,H 〉α .

(2) The orbit K2π1(g) ⊂ M1 is austere if and only if the finite subset of a defined by

{−λ cot〈λ,H 〉 (multiplicity = m(λ)) | λ ∈ Σ+, 〈λ,H 〉 �∈ πZ}
∪{α tan〈α,H 〉 (multiplicity = n(α)) | α ∈ W+, 〈α,H 〉 �∈ (π/2) + πZ}

is invariant under the multiplication by −1 with multiplicities.
(3) The orbit K2π1(g) ⊂ M1 is totally geodesic if and only if 〈λ,H 〉 ∈ (π/2)Z for each

λ ∈ Σ̃+.
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We can apply Theorem 2 for orbits K1π2(g) ⊂ M2. Thus, we have the following corollary.

COROLLARY 1. The orbit K2π1(g) is minimal (resp. austere, totally geodesic) if and
only if K1π2(g) is minimal (resp. austere, totally geodesic).

Now we consider the second fundamental form of orbits of the (K2 × K1)-action on G.
For H ∈ a, we set

ΣH = {λ ∈ Σ | 〈λ,H 〉 ∈ πZ} , WH = {α ∈ W | 〈α,H 〉 ∈ (π/2) + πZ} ,

Σ̃H = ΣH ∪ WH , Σ+
H = Σ+ ∩ ΣH , W+

H = W+ ∩ WH , Σ̃+
H = Σ+

H ∪ W+
H .

Let g = exp(H) (H ∈ a). Then we have

Tg(K2gK1) =
{

d

dt
exp(tX2)g exp(−tX1)

∣∣∣∣
t=0

∣∣∣∣ X1 ∈ k1, X2 ∈ k2

}

=dLg ((Ad(g)−1k2) + k1) (2)

=dLg

(
k0 ⊕ V (m1 ∩ k2) ⊕

∑

λ∈Σ+\ΣH

mλ ⊕
∑

α∈W+\WH

V ⊥
α (m1 ∩ k2)

⊕ V (k1 ∩ m2) ⊕
∑

λ∈Σ+
kλ ⊕

∑

α∈W+
V ⊥

α (k1 ∩ m2)

)
, (3)

T ⊥
g (K2gK1) = dLg ((Ad(g)−1m2) ∩ m1) (4)

= dLg

(
a ⊕

∑

λ∈Σ+
H

mλ ⊕
∑

α∈W+
H

V ⊥
α (m1 ∩ k2)

)
. (5)

For X = (X2,X1) ∈ g × g, we define a Killing vector field X∗ on G by

(X∗)p = d

dt
exp(tX2)p exp(−tX1)

∣∣∣∣
t=0

(p ∈ G) .

Then

(X∗)p = (dLp)(Ad(p)−1X2 − X1)

holds. If X2 = 0, then X∗ is a left invariant vector field. Denote by ∇ the Levi-Civita
connection on G. By Koszul’s formula, we have the following.

LEMMA 3. Let g ∈ G, X = (X2,X1), Y = (Y2, Y1) ∈ g × g. Then we have

(∇X∗Y ∗)
g = −1

2
dLg [Ad(g)−1X2 − X1, Ad(g)−1Y2 + Y1] .

PROOF. By Koszul’s formula, we have

2〈∇X∗Y ∗, Z〉 =X∗〈Y ∗, Z〉 + Y ∗〈Z,X∗〉 − Z〈X∗, Y ∗〉
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+ 〈[X∗, Y ∗], Z〉 − 〈[Y ∗, Z], X∗〉 + 〈[Z,X∗], Y ∗〉
for any X = (X2,X1), Y = (Y2, Y1) ∈ g × g, Z ∈ g. Computing the right side of the above
equation at e, we have

2(〈∇X∗Y ∗, Z〉)e = 〈−ad(X2 − X1)(Y2 + Y1), Z〉
for all Z ∈ g. Hence we obtain

(∇X∗Y ∗)e = −1

2
[X2 − X1, Y2 + Y1] . (6)

Since dLg is an isometry, we have

(∇X∗Y ∗)g = dLg(∇dL−1
g X∗dL−1

g Y ∗)e .

Further, we have

(dL−1
g X∗)h = dL−1

g (X∗)gh = dL−1
g dLgh(Ad(gh)−1X2 − X1)

= dLh(Ad(h)−1Ad(g)−1X2 − X1)

= (Ad(g)−1X2,X1)
∗
h (h ∈ G) .

Thus,

dL−1
g X∗ = (Ad(g)−1X2,X1)

∗

holds. Summarizing the above, we obtain

(∇X∗Y ∗)
g = −1

2
dLg [Ad(g)−1X2 − X1, Ad(g)−1Y2 + Y1] .

�

For H ∈ a, we denote the second fundamental form of the orbit K2gK1 ⊂ G by BH . By
Lemma 3, we can express BH for H ∈ a.

THEOREM 3. For H ∈ a, we set g = exp(H) and

V1 =
∑

λ∈Σ+\ΣH

mλ ⊕
∑

α∈W+\WH

V ⊥
α (m1 ∩ k2) ,

V2 =
∑

λ∈Σ+
kλ ⊕

∑
α∈W+

V ⊥
α (k1 ∩ m2) .

Then we have the following:

1. For X ∈ k0, BH (dLg (X), Y ) = 0 where Y ∈ Tg (K2gK1).

2. For X ∈ V (k1 ∩ m2),

dL−1
g BH (dLg(X), dLg (Y )) =

⎧
⎨
⎩

0 (Y ∈ k1 ⊕ V (m1 ∩ k2))

−1

2
[X,Y ]⊥ (Y ∈ V1) .
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3. For X ∈ V (m1 ∩ k2),

dL−1
g BH (dLg (X), dLg (Y )) =

⎧⎨
⎩

0 (Y ∈ V (m1 ∩ k2) ⊕ V1)

1

2
[X,Y ]⊥ (Y ∈ V2) .

4. For Sλ,i (λ ∈ Σ+, 1 ≤ i ≤ m(λ)),

dL−1
g BH (dLg (Sλ,i), dLg (Y )) =

⎧⎨
⎩

0 (Y ∈ V2)

−1

2
[Sλ,i, Y ]⊥ (Y ∈ V1) .

5. For Xα,i (α ∈ W+, 1 ≤ i ≤ n(α)),

dL−1
g BH (dLg (Xα,i), dLg (Y )) =

⎧⎨
⎩

0 (Y ∈ V2)

−1

2
[Xα,i, Y ]⊥ (Y ∈ V1) .

6. For Tλ,i (λ ∈ Σ+ \ ΣH , 1 ≤ i ≤ m(λ)),

• dL−1
g BH(dLg (Tλ,i), dLg (Tμ,j )) = cot〈μ,H 〉[Tλ,i, Sμ,j ]⊥

where μ ∈ Σ+ \ ΣH, 1 ≤ j ≤ m(μ) .

• dL−1
g BH(dLg (Tλ,i), dLg (Yβ,j )) = − tan〈β,H 〉[Tλ,i, Xβ,j ]⊥

where β ∈ W+ \ WH, 1 ≤ j ≤ n(β) .

7. For Yα,i (α ∈ W+ \ WH , 1 ≤ i ≤ n(α)),

dL−1
g BH (dLg (Yα,i), dLg (Yβ,j )) = − tan〈β,H 〉[Yα,i, Xβ,j ]⊥

where β ∈ W+ \ WH , 1 ≤ j ≤ n(β)) .

Here, X⊥ is the normal component, i.e. the ((Ad(g)−1m2) ∩ m1)-component, of a tangent
vector X ∈ g.

PROOF. By a simple calculation, we have the following:

• For X ∈ k0, dLg (X) = (X, 0)∗g .

• For X ∈ V (k1 ∩ m2), dLg(X) = (0,−X)∗g .

• For X ∈ V (m1 ∩ k2), dLg(X) = (X, 0)∗g .

• For Sλ,i (λ ∈ Σ+, 1 ≤ i ≤ m(λ)), dLg (Sλ,i ) = (0,−Sλ,i)
∗
g .

• For Tλ,i (λ ∈ Σ+ \ ΣH , 1 ≤ i ≤ m(λ)),

dLg (Tλ,i) =
(

− Sλ,i

sin〈λ,H 〉 ,− cot〈λ,H 〉Sλ,i

)∗

g
.

• For Xα,i (α ∈ W+, 1 ≤ i ≤ n(α)), dLg (Xα,i ) = (0,−Xα,i)
∗
g .
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• For Yα,i (α ∈ W+ \ WH , 1 ≤ i ≤ n(α)),

dLg (Yα,i) =
(

Yα,i

cos〈α,H 〉 , tan〈α,H 〉Xα,i

)∗

g
.

Then, applying Lemma 3, we have the consequence. We show only 3, since other cases
showed by similar calculation. If Y ∈ V (m1 ∩ k2), then we have

dL−1
g BH (dLg (X), dLg (Y )) = −1

2
[X,Y ]⊥ = 0 ,

since [X,Y ] ∈ k1 ∩ k2. If Y = Tλ,i (λ ∈ Σ+ \ ΣH, 1 ≤ i ≤ m(λ)), then we have

dL−1
g BH (dLg (X), dLg (Tλ,i)) = − 1

2
[X,Tλ,i − 2 cot〈λ,H 〉Sλ,i ]⊥

=[X, cot〈λ,H 〉Sλ,i ]⊥ .

Since [X, Sλ,i] ∈ V ⊥
λ (m1∩k2), we consider the following three cases. When λ �∈ W , V ⊥

λ (m1∩
k2) = {0}. Thus [X, Sλ,i] = 0. When λ ∈ W \WH , then [X, cot〈λ,H 〉Sλ,i ] is a tangent vector.

Thus [X, cot〈λ,H 〉Sλ,i ]⊥ = 0. When λ ∈ WH , cot〈λ,H 〉 = 0, since 〈λ,H 〉 ∈ (π/2)+(πZ).

Thus [X, cot〈λ,H 〉Sλ,i ]⊥ = 0. If Y = Yα,j (α ∈ W+ \ WH , 1 ≤ j ≤ n(λ)), then we have

dL−1
g BH (dLg (X), dLg (Yα,j )) =[X, tan〈α,H 〉Xα,j ]⊥ .

Since [X,Xα,j ] ∈ mα, we consider the following three cases. When α �∈ Σ , mα = {0}.
Thus [X,Xα,j ] = 0. When α ∈ Σ \ ΣH , then [X, tan〈α,H 〉Xα,j ] is a tangent vector. Thus

[X, tan〈α,H 〉Xα,j ]⊥ = 0. When α ∈ ΣH , tan〈α,H 〉 = 0, since 〈α,H 〉 ∈ (πZ). Thus

[X, tan〈α,H 〉Xα,j ]⊥ = 0. If Y ∈ V2 ⊂ k1, then we have

dL−1
g BH(dLg (X), dLg (Y )) = −1

2
[X,−Y ]⊥ = 1

2
[X,Y ]⊥ .

By the above arguments, we have 3. �

We denote the mean curvature vector of the orbit K2gK1 at g by mH . By Theorem 3, we
can see that the following corollary.

COROLLARY 2. For H ∈ a,

dL−1
g mH = −

∑

λ∈Σ+\ΣH

m(λ) cot〈λ,H 〉λ +
∑

α∈W+\WH

n(α) tan〈α,H 〉α .

Moreover, dL−1
g mH = dL−1

g m1
H holds. Hence, an orbit K2gK1 ⊂ G is minimal if and only

if K2π1(g) ⊂ M1 is minimal.

Next, we consider austere orbits of the (K2 × K1)-action on G. By using (Σ̃,Σ,W),
Ikawa gave a necessary and sufficient condition for an orbit of the K2-action to be an austere
submanifold. Similarly, in the (K2 × K1)-action, we also have a necessary and sufficient
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condition for an orbit to be an austere submanifold. We investigate the set of eigenvalues
of the shape operator AdLgξ of K1gK2 ⊂ G for each normal vector dLgξ ∈ T ⊥

g K2gK1 ∼=
dLg ((Ad(g)−1m2)∩m1). For each g ∈ G, we denote the isotropy subgroup of the (K2×K1)-
action on G at g by (K2×K1)g . Notice that (K2×K1)g is isomorphic to the isotropy subgroup
(K1)π2(g) of the K1-action at π2(g). The isotropy subgroup (K2 × K1)g acts on the normal

space T ⊥
g (K2gK1) by the differential of the (K2 × K1)-action. Then we have

d(k2, k1)g (dLg (ξ)) = d

dt
k2g exp(tξ)k−1

1

∣∣∣∣
t=0

= dLg (Ad(k1)ξ) .

Therefore, the representation of (K2 × K1)g is equivalent to the adjoint representation of

(K1)π2(g) on (Ad(g)−1m2) ∩ m1. Since Lie((K1)π2(g)) = k1 ∩ (Ad(g)−1k2), the Lie algebra

Lie((K1)π2(g)) ⊕ ((Ad(g)−1m2) ∩ m1) is an orthogonal symmetric Lie algebra with respect

to θ1. Moreover, when g ∈ exp(a), a is a maximal abelian subspace of ((Ad(g)−1m2) ∩ m1).

Thus, a is a section of the representation of (K1)π2(g) on (Ad(g)−1m2) ∩ m1. Therefore, we
have ⋃

(k2,k1)∈(K2×K1)g

d(k2, k1)gdLga = T ⊥
g K2gK1 . (7)

Thus, without loss of generality we can assume ξ ∈ a. Hence, by Theorem 3 we have

AdLgξ (dLg (Sλ,i), dLg (Tλ,i)) (8)

= (dLg (Sλ,i), dLg (Tλ,i))

[
0 −(1/2)〈λ, ξ〉

−(1/2)〈λ, ξ〉 − cot〈λ,H 〉〈λ, ξ〉
]

(λ ∈ Σ+ \ ΣH , 1 ≤ i ≤ m(λ)) ,

AdLgξ (dLg (Xα,j ), dLg (Yα,j )) (9)

= (dLg (Xα,j ), dLg (Yα,j ))

[
0 −(1/2)〈α, ξ〉

−(1/2)〈α, ξ〉 tan〈α,H 〉〈α, ξ〉
]

(α ∈ W+ \ WH, 1 ≤ j ≤ n(α)) ,

and for X ∈ k0 ⊕ V (k1 ∩ m2) ⊕ V (m1 ∩ k2) ⊕∑
λ∈Σ+

H
kλ ⊕∑

α∈W+
H

V ⊥
α (k1 ∩ m2),

AdLgξ dLg (X) = 0 . (10)

Therefore, the set of eigenvalues of AdLgξ is given by{
−cos〈λ,H 〉 ± 1

2 sin〈λ,H 〉 〈λ, ξ〉 (multiplicity = m(λ))

∣∣∣∣ λ ∈ Σ+ \ ΣH

}
(11)

∪
{

sin〈α,H 〉 ± 1

2 cos〈α,H 〉 〈α, ξ〉 (multiplicity = n(α))

∣∣∣∣ α ∈ W+ \ WH

}

∪{0 (multiplicity = l)}
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where l = dim(k0 ⊕∑
λ∈ΣH

kλ ⊕ V (k1 ∩ m2) ⊕∑
α∈WH

V ⊥
α (k1 ∩ m2) ⊕ V (m1 ∩ k2)).

PROPOSITION 4 ([6] p.459). Let E be a finite subset of a finite dimensional vector
space a with an inner product 〈, 〉. Then, (i) and (ii) are equivalent.

(i) For any ξ ∈ a, the set {〈a, ξ〉 | a ∈ E} with multiplicity is invariant under the multipli-
cation by −1.

(ii) The set E is invariant under the multiplication by −1.

Thus, we have the following corollary.

COROLLARY 3. Let g = exp(H) (H ∈ a). Then the orbit K2gK1 ⊂ G is austere if
and only if the finite subset of a defined by

{
−cos〈λ,H 〉 ± 1

2 sin〈λ,H 〉 λ (multiplicity = m(λ))

∣∣∣∣ λ ∈ Σ+ \ ΣH

}

∪
{

sin〈α,H 〉 ± 1

2 cos〈α,H 〉 α (multiplicity = n(α))

∣∣∣∣ α ∈ W+ \ WH

}

is invariant under the multiplication by −1.

It is easy to prove that the following proposition.

PROPOSITION 5. For each H ∈ a,

E ={−λ cot〈λ,H 〉 (multiplicity = m(λ)) | λ ∈ Σ+ \ ΣH }
∪{α tan〈α,H 〉 (multiplicity = n(α)) | α ∈ W+ \ WH }

is invariant under the multiplication by −1 with multiplicities if and only if

E′ =
{

−cos〈λ,H 〉 ± 1

2 sin〈λ,H 〉 λ (multiplicity = m(λ))

∣∣∣∣ λ ∈ Σ+ \ ΣH

}

∪
{

sin〈α,H 〉 ± 1

2 cos〈α,H 〉 α (multiplicity = n(α))

∣∣∣∣ α ∈ W+ \ WH

}

is invariant under the multiplication by −1 with multiplicities.

PROOF. The equation E = −E holds if and only if (i) and (ii) hold, where

(i) 〈λ,H 〉 ∈ (π/4)Z (λ ∈ Σ̃+ \ Σ̃H ),
(ii) if 〈λ,H 〉 ∈ (π/4) + (π/2)Z, then m(λ) = n(λ).

When E = −E holds, for each λ ∈ Σ̃+ \ Σ̃H , if 〈λ,H 〉 ∈ (π/2)Z, then it holds either one of
the following:

• λ ∈ ΣH and

sin〈λ,H 〉 + 1

2 cos〈λ,H 〉 = − sin〈λ,H 〉 − 1

2 cos〈λ,H 〉 .
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• λ ∈ WH and

−cos〈λ,H 〉 + 1

2 sin〈λ,H 〉 = cos〈λ,H 〉 − 1

2 sin〈λ,H 〉 .

Further, if 〈λ,H 〉 ∈ (π/4) + (π/2)Z, then it holds either one of the following:

• m(λ) = n(λ) and

cos〈λ,H 〉 + 1

2 sin〈λ,H 〉 = sin〈λ,H 〉 + 1

2 cos〈λ,H 〉 , and
cos〈λ,H 〉 − 1

2 sin〈λ,H 〉 = sin〈λ,H 〉 − 1

2 cos〈λ,H 〉 .

• m(λ) = n(λ) and

cos〈λ,H 〉 + 1

2 sin〈λ,H 〉 = sin〈λ,H 〉 − 1

2 cos〈λ,H 〉 , and
cos〈λ,H 〉 − 1

2 sin〈λ,H 〉 = sin〈λ,H 〉 + 1

2 cos〈λ,H 〉 .

This implies that E′ = −E′. The converse is shown by the same way. �

COROLLARY 4. Let g = exp(H) (H ∈ a). The orbit K2gK1 ⊂ G is austere if and
only if K2π1(g) ⊂ M1 is austere.

REMARK 1. There is no correspondence in totally geodesic orbits. For example, when
θ1 and θ2 cannot be transformed each other by an inner automorphism of g, K2eK1 ⊂ G is
not totally geodesic, but K2π1(e) ⊂ M1 is totally geodesic (see (4) and (5) in Theorem 3).

4. Main Theorem

In the previous section, we saw a correspondence of austereness of orbits of the (K2 ×
K1)-action and the K2-action. In this section, we consider weakly reflective orbits of the
(K2 × K1)-action, the K2-action and the K1-action, and give two sufficient conditions for an
orbit to be weakly reflective. The first sufficient condition is the following:

THEOREM 4. Assume K1 and K2 are connected. Let g = exp(H) (H ∈ a). If

〈λ,H 〉 ∈ (π/2)Z for any λ ∈ Σ̃ , that is, H ∈ Γ , then the orbit K2gK1 ⊂ G is weakly
reflective.

PROOF. We set σ = Lgθ1L
−1
g . Then σ satisfies the following conditions:

1. σ(g) = g ,
2. σ(K2gK1) = K2gK1,
3. dσ(ξ) = −ξ (ξ ∈ T ⊥

g (K2gK1)).

Clearly, σ(g) = g holds. By Lemma 2, we have Ad(g2)k2 = k2. Since K2 is connected, we

have g2K2g
−2 = K2. In addition, since θ1θ2 = θ2θ1, we have θ1k2 = k2. Thus, we also have

θ1(K2) = K2. Therefore, for (k2, k1) ∈ K2 × K1,

σ(k2gk−1
1 ) = (g2θ1(k2)g

−2)gk−1
1 ∈ K2gK1 .
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Hence, σ(K2gK1) = K2gK1. Since T ⊥
g (K2gK1) = dLg (Ad(g)−1(m2) ∩ m1), we have

dσ(ξ) = dLgθ1(dL−1
g (ξ)) = −dLgdL−1

g (ξ) = −ξ

Therefore, σ is a reflection of K2gK1 at g with respect to each normal vector dLgξ ∈
T ⊥
g (K2gK1). �

COROLLARY 5. The orbit K2eK1 ⊂ G is weakly reflective.

REMARK 2. Under the same condition as Theorem 4, we can prove that K2π1(g) ⊂
M1 and K1π2(g) ⊂ M2 are weakly reflective. However, Ikawa proved K2π1(g) ⊂ M1

and K1π2(g) ⊂ M2 are reflective. Hence K2π1(g) ⊂ M1 and K1π2(g) ⊂ M2 are totally
geodesic, but K2gK1 is not necessarily totally geodesic. In fact, when θ1 and θ2 cannot be
transformed each other by inner automorphism of g, then there is no totally geodesic orbit of
the (K2 × K1)-action on G.

Let W̃ (Σ̃,Σ,W) be a subgroup of the affine group O(a) � a which is generated by{(
sλ,

2nπ

〈λ, λ〉λ

) ∣∣∣∣ λ ∈ Σ, n ∈ Z
}

∪
{(

sα,
(2n + 1)π

〈α, α〉 α

) ∣∣∣∣ α ∈ W, n ∈ Z
}

.

Then, we have the following lemma.

LEMMA 4 ([4] Lemmas 4.4 and 4.21).

W̃ (Σ̃,Σ,W) ⊂ J̃

Using the above lemma, we have the following lemma.

LEMMA 5. Let g = exp(H) (H ∈ a). Then, for each λ ∈ Σ̃H , there exists kλ ∈
NK2(a), such that

1.
(

kλ, exp

(
−2〈λ,H 〉

〈λ, λ〉 λ

)
kλ

)
∈ (K2 × K1)g ,

2.

d

(
kλ, exp

(
−2〈λ,H 〉

〈λ, λ〉 λ

)
kλ

)

g
(dLgξ) = dLg(sλξ) (ξ ∈ a) .

PROOF. By the definition of W̃ (Σ̃,Σ,W), for each λ ∈ Σ̃H ,
(

sλ, 2
〈λ,H 〉
〈λ, λ〉 λ

)
∈ W̃ (Σ̃,Σ,W) .

Since W̃(Σ̃,Σ,W) ⊂ J̃ , there exists kλ ∈ NK2(a), such that
(

[kλ], 2
〈λ,H 〉
〈λ, λ〉 λ

)
=
(

sλ, 2
〈λ,H 〉
〈λ, λ〉 λ

)
.
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By the definition of J̃ , we have

exp

(
−2

〈λ,H 〉
〈λ, λ〉 λ

)
kλ ∈ K1 .

For 1, (
kλ, exp

(
−2〈λ,H 〉

〈λ, λ〉 λ

)
kλ

)
g = kλ exp(H)k−1

λ exp

(
2〈λ,H 〉
〈λ, λ〉 λ

)

= exp(Ad(kλ)H) exp

(
2〈λ,H 〉
〈λ, λ〉 λ

)
= exp

(
sλH + 2〈λ,H 〉

〈λ, λ〉 λ

)
= exp(H) = g .

For 2,

d

(
kλ, exp

(
−2〈λ,H 〉

〈λ, λ〉 λ

)
kλ

)

g
(dLgξ) = d

dt
exp (H + tsλ(ξ))

∣∣∣∣
t=0

= dLg sλ(ξ) .

�

PROPOSITION 6. For any H ∈ a, if Σ̃H is nonempty, then Σ̃H is a root system of

Span(Σ̃H ).

PROOF. We set g = exp(H). We consider the orthogonal symmetric Lie algebra

((Ad(g)−1k2) ∩ k1) ⊕ ((Ad(g)−1m2) ∩ m1) .

By Lemma 2, we can decompose the Lie algebra as the following:
(
k0 ⊕

∑

λ∈Σ+
H

kλ ⊕
∑

α∈W+
H

V ⊥
α (k1 ∩ m2)

)
⊕
(
a ⊕

∑

λ∈Σ+
H

mλ ⊕
∑

α∈W+
H

V ⊥
α (m1 ∩ k2)

)
.

It is the root space decomposition of the orthogonal symmetric Lie algebra with respect to
a. �

REMARK 3. By Proposition 6 and Theorem 6, for any symmetric triad of a and H ∈ a,

if Σ̃H is nonempty, then Σ̃H is a root system of Span(Σ̃H ).

For each H ∈ a, denote by W(Σ̃H ) the Weyl group of Σ̃H . The second sufficient
condition is the following:

THEOREM 5. Let g = exp(H) (H ∈ a). If Span(Σ̃H ) = a and −ida ∈ W(Σ̃H ), then
K2gK1 ⊂ G, K2π1(g) ⊂ M1 and K1π2(g) ⊂ M2 are weakly reflective.

PROOF. By the equation (7), it is sufficient to prove the existence of a reflection with

respect to dLgξ for each ξ ∈ a. Since −ida ∈ W(Σ̃H ), there exist μ1, . . . , μl ∈ Σ̃H such
that sμ1 · · · sμl = −ida. By Lemma 5, there exists kμi ∈ NK2(a) for each μi (1 ≤ i ≤ l). We
set

k′
μi

= exp

(
−2

〈μi,H 〉
〈μi, μi〉μi

)
kμi ∈ K1 ,
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and

σ = (kμ1, k′
μ1

) · · · (kμl , k′
μl

) ∈ (K2 × K1)g .

Then, σ is a reflection of K2gK1 with respect to dLgξ for each ξ ∈ a. Indeed,

σ(g) = g , σ (K2gK1) = K2gK1 , dσ (dLg(ξ)) = dLgsμ1 · · · sμl (ξ) = −dLgξ

hold. Similarly, σ1 = kμ1 · · · kμl is a reflection of K2π1(g) at π1(g) with respect to dLgξ .
The isometry σ2 = k′

μ1
· · · k′

μl
is a reflection of K1π2(g) at π2(g) with respect to dRgξ . �

In [6], they mainly studied weakly reflective submanifolds in Sn and CPn. The cohomogene-
ity of Hermann actions on rank one symmetric spaces must be one. Therefore, by Proposition
1, singular orbits of Hermann actions on rank one symmetric spaces are weakly reflective.
However, when the cohomogeneity of Hermann action is two or greater, applying Theorems
5 and 4, we have new examples of weakly reflective submanifolds in compact symmetric
spaces. We assume that (G,K1,K2) satisfies one of the following conditions (A), (B) or (C).

(A) G is simple and θ1 and θ2 can not transform each other by an inner automorphism of g.

(B) There exist a compact connected simple Lie group U and a symmetric subgroup K of U

such that

G = U × U , K1 = ΔG = {(u, u) | u ∈ U} , K2 = K × K .

(C) There exist a compact connected simple Lie group U and an involutive outer automor-
phism σ such that

G = U × U , K1 = ΔG = {(u, u) | u ∈ U} ,

K2 = {(u1, u2) | (σ (u2) , σ (u1)) = (u1, u2)} .

Ikawa proved the following theorem.

THEOREM 6 ([5]). Let (G,K1,K2) be a compact symmetric triad which satisfies one

of the conditions (A), (B) or (C). Then the triple (Σ̃,Σ,W) defined as above is a symmetric
triad with multiplicities. Conversely every symmetric triad is obtained in this way.

It is known the following proposition.

PROPOSITION 7 ([10]). Let Σ be an irreducible root system of a. Then −ida �∈ W(Σ)

if and only if Σ ∼= Ar , D2r+1, E6 (r ≥ 2).

Let Π = {λ1, . . . , λr } be a fundamental system of Σ , and set W0 = {α̃}. We define Hi ∈ a

by the following equations:

〈Hi, λj 〉 = 0 (i �= j) , 〈Hi, α̃〉 = π/2 .

Then, {H1, . . . , Hr} is a basis of a. We have the following lemma.

LEMMA 6. Span(Σ̃H ) = a if and only if H = 0,H1, . . . , Hr for H ∈ P 0.
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PROOF. Let H ∈ a. By definition of Σ̃H , we have
(

sμi ,
2〈λ,H 〉
〈λ, λ〉 λ

)
∈ W̃ (Σ̃,Σ,W) ,

(
sμi ,

2〈λ,H 〉
〈λ, λ〉 λ

)
H = H

for each λ ∈ Σ̃H . By Proposition 2, we have sλmH = mH for λ ∈ Σ̃H . Thus, if Span(Σ̃H ) =
a, then mH = 0. On the other hand, for H ∈ P 0, there exists the nonempty subset Δ ⊂ Π ∪
{α̃} such that H ∈ PΔ

0 . By Lemma 2.25 in [4], ΣH and WH does not depend on H , but only

Δ. Thus, when Span(Σ̃H ) = a, each point in PΔ
0 is a minimal point. Therefore, by Theorem

1, if Span(Σ̃H ) = a, then PΔ
0 = {H }. This implies that H is a vertex of P 0. Therefore,

H = 0,H1, . . . , Hr . Conversely, when H = 0,H1, . . . , Hr , we have Span(Σ̃H ) = a. �

For each symmetric triad of a, austere points are classified in [4]. Using the classification, we

investigate Σ̃Hi (1 ≤ i ≤ r) for each type of symmetric triads.
In order to state our results below, we shall follow the notations of irreducible root sys-

tems and the set of positive roots in [1]. For instance,

B+
r = {ei ± ej | 1 ≤ i < j ≤ r} ∪ {ei | 1 ≤ i ≤ r} ,

C+
r = {ei ± ej | 1 ≤ i < j ≤ r} ∪ {2ei | 1 ≤ i ≤ r} ,

D+
r = {ei ± ej | 1 ≤ i < j ≤ r} ,

BC+
r = {ei ± ej | 1 ≤ i < j ≤ r} ∪ {ei | 1 ≤ i ≤ r} ∪ {2ei | 1 ≤ i ≤ r} .

For the set of positive roots above, the sets of simple roots are given as follows:

Π(B+
r ) = Π(BC+

r ) = {λ1 = e1 − e2, . . . , λr−1 = er−1 − er , λr = er } ,

Π(C+
r ) = {λ1 = e1 − e2, . . . , λr−1 = er−1 − er, λr = 2er} ,

Π(D+
r ) = {λ1 = e1 − e2, . . . , λr−1 = er−1 − er, λr = er−1 + er} .

4.1. Type I-Br . Σ+ = B+
r , W+ = {ei | 1 ≤ i ≤ r},
α̃ = e1 = λ1 + · · · + λr .

(1) When m(±ei) = n(±ei) A point H ∈ P0 is austere which is not totally geodesic if and

only if H = (1/2)Hr . Since Span(Σ̃H ) �= a, the point (1/2)Hr does not satisfy the sufficient
condition in Theorem 5.

(2) When m(±ei) �= n(±ei) If H ∈ P0 is austere then it is totally geodesic. In this case, Hi

is a totally geodesic point for each 1 ≤ i ≤ r .
A compact symmetric triad whose symmetric triad is type I-Br is one of the following:

1. (SO(r + s + t), SO(r + s) × SO(t), SO(r) × SO(s + t)) (r < t, 1 ≤ s),
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2. (G,K1,K2) which satisfies condition (C) where

(U, Fix(σ )) = (SO(2m + 2n + 2), SO(2m + 1) × SO(2n + 1))

for r = m + n, m ≥ 2.

4.2. Type I-Cr . Σ+ = C+
r , W+ = D+

r ,

α̃ = e1 + e2 = λ1 + 2λ2 + · · · 2λr−1 + λr .

Then a point H ∈ P0 is austere which is not totally geodesic if and only if H = Hi (2 ≤ i ≤
r − 1), (1/2)H1. For each Hi = (π/4)(e1 + · · · + ei) (2 ≤ i ≤ r − 1), we have

Σ+
Hi

={es − et | 1 ≤ s < t ≤ i} ∪ {es ± et | i + 1 ≤ s < t ≤ r}
∪ {2es | i + 1 ≤ s ≤ r} ,

W+
Hi

={es + et | 1 ≤ s < t ≤ i} .

Hence, Σ̃Hi
∼= Di ⊕ Cr−i . Therefore, by Proposition 7 and Theorem 5, if i is even, then

K2 exp(Hi)K1 ⊂ G, K2π1(exp(Hi)) ⊂ M1, K1π2(exp(Hi)) ⊂ M2 are weakly reflective.
When i is odd, since −ida �∈ W(Σ), Hi does not satisfy the sufficient condition in Theorem
5.

A compact symmetric triad whose symmetric triad is type I-Cr is one of the following:

1. (SO(4r), SO(2r) × SO(2r), U(2r)),

2. (SU(2r), SO(2r), S(U(r) × U(r))),

3. (E7, SU(8), E6 · U(1)) (r = 3),

4. (G,K1,K2) which satisfies condition (C) where

(U, Fix(σ )) = (SU(2r), SO(2r)) (r ≥ 2) or (SU(2r), Sp(r)) (r ≥ 2) .

4.3. Type I-BCr -Ar
1. Σ+ = BC+

r , W+ = {ei | 1 ≤ i ≤ r},
α̃ = e1 = λ1 + · · · + λr .

(1) When m(±ei) = n(±ei) A point H ∈ P0 is austere which is not totally geodesic if and

only if H = (1/2)Hr . Since Span(Σ̃H ) �= a, H does not satisfy the sufficient condition in
Theorem 5.

(2) When m(±ei) �= n(±ei) If H ∈ P0 is austere then it is totally geodesic. In this case, Hi

is a totally geodesic point for each 1 ≤ i ≤ r .
A compact symmetric triad whose symmetric triad is type I-BCr -Ar

1 is one of the fol-
lowing:

1. (SU(r + s + t), S(U(r + s) × U(t)), S(U(r) × U(s + t))) (r < t, 1 ≤ s),

2. (Sp(r + s + t), Sp(r + s) × Sp(t), Sp(r) × Sp(s + t)) (r < t, 1 ≤ s)),

3. (SO(4r + 4), U(2r + 2), U′(2r + 2)).
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Where, we set

J =

⎡
⎢⎢⎣

In−1

−1
−In−1

1

⎤
⎥⎥⎦ ,

and define U′(n) := {g ∈ SO(2n) | J gJ−1 = g}.
4.4. Type I-BCr -Br . Σ+ = BC+

r , W+ = B+
r ,

α̃ = e1 + e2 = λ1 + 2λ2 + · · · + 2λr .

When r = 2, if m(±e1 ± e2) = n(±e1 ± e2), then H ∈ P0 is austere which is not totally

geodesic if and only if H = (1/2)H1, H2. If m(±e1 ± e2) �= n(±e1 ± e2), then H ∈ P0 is
austere which is not totally geodesic if and only if H = H2. Since H2 = (π/4)(e1 + e2), we

have Σ+
H2

= {e1 − e2}, W+
H2

= {e1 + e2}. Thus Σ̃H2
∼= A2

1. By Proposition 7 and Theorem 5,

K2 exp(H2)K1 ⊂ G, K2π1(exp(H2)) ⊂ M1, K1π2(exp(H2)) ⊂ M2 are weakly reflective.

When r ≥ 3, H ∈ P0 is austere which is not totally geodesic if and only if H =
(1/2)H1, Hi (2 ≤ i ≤ r). For each Hi = (π/4)(e1 + · · · + ei) (2 ≤ i ≤ r), we

have Σ̃Hi
∼= Di ⊕ BCr−i

1 . Therefore, by Proposition 7 and Theorem 5, if i is even, then
K2 exp(Hi)K1 ⊂ G, K2π1(exp(Hi)) ⊂ M1, K1π2(exp(Hi)) ⊂ M2 are weakly reflective
for each 2 ≤ i ≤ r . When i is odd, since −ida �∈ W(Σ), Hi does not satisfy the sufficient

condition in Theorem 5 for 3 ≤ i ≤ r . Since Span(Σ̃(1/2)H1) �= a, the point (1/2)H1 does
not satisfy the sufficient condition in Theorem 5.

A compact symmetric triad whose symmetric triad is type I-BCr -Br is one of the follow-
ing:

1. (SO(2r + 2s), S(O(2r) × O(2s)), U(r + s)) (r < s),

2. (E6, SU(6) · SU(2), SO(10) · U(1)) (r = 2),

3. (E7, SO(12) · SU(2), E6 · U(1)) (r = 2).

4.5. Type I-F4. Σ+ = F+
4 , W+ = {short roots in F4} ∼= D4, Π = {λ1 = e2 −

e3, λ2 = e3 − e4, λ3 = e4, λ4 = (1/2)(e1 − e2 − e3 − e4)}, α̃ = e1 = λ1 + 2λ2 + 3λ3 + 2λ4.

A point H ∈ P0 is austere which is not totally geodesic if and only if H = H4 = (π/2)e1.
Then we have

ΣH4 = {±e2,±e3,±e4,±(e2 ± e3),±(e2 ± e4),±(e3 ± e4)} ,

WH4 = {±e1,±(e1 ± e2),±(e1 ± e3),±(e1 ± e4)} .

Hence

Σ̃+
H4

∼= B+
4 .

Therefore, by Proposition 7 and Theorem 5, the orbits K2 exp(H4)K1 ⊂ G,
K2π1(exp(H4)) ⊂ M1 and K1π2(exp(H4)) ⊂ M2 are weakly reflective.
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A compact symmetric triad whose symmetric triad is type I-F4 is one of the following:

1. (E6, Sp(4), SU(6) · SU(2)),

2. (E7, SU(8), SO(12) · SU(2)),

3. (E8, SO(16), E7 · SU(2)),

4. (G,K1,K2) which satisfies condition (C) where

(U, Fix(σ )) =(E6, Sp(4)) or(E6, F4) .

4.6. Type II-BCr . Σ+ = B+
r , W+ = BC+

r ,

α̃ = 2e1 = 2λ1 + · · · + 2λr .

A point H ∈ P0 is austere which is not totally geodesic if and only if H = Hi (1 ≤ i ≤ r).

For Hi = (π/4)(e1 + · · · + ei), we have Σ̃+
Hi

∼= Ci ⊕ Br−i . Therefore, by Proposition 7 and

Theorem 5, K2 exp(Hi)K1 ⊂ G, K2π1(exp(Hi)) ⊂ M1, K1π2(exp(Hi)) ⊂ M2 are weakly
reflective for each 1 ≤ i ≤ r .

A compact symmetric triad whose symmetric triad is type II-BCr is one of the following:

1. (SU(r + s), SO(r + s), S(U(r) × U(s))) (r < s),

2. (SO(4r + 2), SO(2r + 1) × SO(2r + 1), U(2r + 1)),

3. (E6, Sp(4), SO(10) · U(1)) (r = 2).

4.7. Type III-Ar . By Proposition 7, −ida �∈ W(Σ̃). Moreover, for each H ∈ a,

W(Σ̃H ) ⊂ W(Σ̃) since Σ̃H ⊂ Σ̃ . Hence −ida �∈ W(Σ̃H ). Thus, any austere point does not
satisfy the sufficient condition in Theorem 5.

A compact symmetric triad whose symmetric triad is type III-Ar is one of the following:

1. (SU(2r + 2), Sp(r + 1), SO(2r + 2)),

2. (E6, Sp(4), F4) (r = 2),

3. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type Ar (condition (B)).

4.8. Type III-Br . Σ+ = W+ = B+
r ,

α̃ = e1 + e2 = λ1 + 2λ2 + · · · + 2λr .

A point H ∈ P0 is austere which is not totally geodesic if and only if H = (1/2)H1, Hi (2 ≤
i ≤ r).

For each Hi = (π/4)(e1 + · · · + ei), we have Σ̃Hi
∼= Di ⊕ Br−i . Therefore, by

Proposition 7 and Theorem 5, if i is even, then K2 exp(Hi)K1 ⊂ G, K2π1(exp(Hi)) ⊂
M1, K1π2(exp(Hi)) ⊂ M2 are weakly reflective for each 2 ≤ i ≤ r . When i is odd,
since −ida �∈ W(Σ), Hi does not satisfy the sufficient condition in Theorem 5. Since

Span(Σ̃H1) �= a, the point (1/2)H1 does not satisfy the sufficient condition in Theorem 5.
A compact symmetric triad whose symmetric triad is type III-Br is one of the following:
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1. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type Br (condition (B)).

4.9. Type III-Cr . Σ+ = W+ = C+
r ,

α̃ = 2e1 = 2λ1 + · · · + 2λr−1 + λr .

If m(±2ei) �= n(±2ei), then a point H ∈ P0 is austere which is not totally geodesic if

and only if H = Hi (1 ≤ i ≤ r − 1). If m(±2ei) = n(±2ei), then H ∈ P0 is austere which
is not totally geodesic if and only if H = (1/2)Hr,Hi (1 ≤ i ≤ r − 1). For each Hi =
(π/4)(e1 + · · · + ei) (1 ≤ i ≤ r − 1), we have Σ̃Hi

∼= Ci ⊕ Cr−i . Therefore, by Proposition
7 and Theorem 5, K2 exp(Hi)K1 ⊂ G, K2π1(exp(Hi)) ⊂ M1, K1π2(exp(Hi)) ⊂ M2 are

weakly reflective for each 1 ≤ i ≤ r − 1. Since Span(Σ̃(1/2)Hr ) �= a, the point (1/2)Hr

does not satisfy the sufficient condition in Theorem 5. A compact symmetric triad whose
symmetric triad is type III-Cr is one of the following:

1. (SU(4r), S(U(2r) × U(2r)), Sp(2r)),

2. (Sp(2r), U(2r), Sp(r) × Sp(r)),

3. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type Cr (condition (B)).

4.10. Type III-BCr . Σ+ = W+ = BC+
r ,

α̃ = 2e1 = 2λ1 + · · · + 2λr .

A point H ∈ P0 is austere which is not totally geodesic if and only if H = Hi (1 ≤ i ≤ r). For

each Hi = (π/4)(e1+· · ·+ei) (1 ≤ i ≤ r), we have Σ̃Hi
∼= Ci⊕BCr−i . Therefore, by Propo-

sition 7 and Theorem 5, K2 exp(Hi)K1 ⊂ G, K2π1(exp(Hi)) ⊂ M1, K1π2(exp(Hi)) ⊂ M2

are weakly reflective for each 1 ≤ i ≤ r .
A compact symmetric triad whose symmetric triad is type III-BCr is one of the follow-

ing:

1. (SU(2r + 2s), S(U(2r) × U(2s)), Sp(r + s)) (r < s),

2. (SU(2(2r + 1)), S(U(2r + 1) × U(2r + 1)), Sp(2r + 1)) (1 ≤ r),

3. (Sp(r + s), U(r + s), Sp(r) × Sp(s)) (r < s),

4. (E6, SU(6) · SU(2), F4) (r = 1),

5. (E6, SO(10) · U(1), F4) (r = 1),

6. (F4, Sp(3) · Sp(1), SO(9)) (r = 1),

7. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type BCr (condition (B)).

4.11. Type III-Dr . Σ+ = W+ = D+
r ,

α̃ = e1 + e2 = λ1 + 2λ2 + · · · + 2λr−2 + λr−1 + λr .

A point H ∈ P0 is austere which is not totally geodesic if and only if Hi (2 ≤ i ≤ r −
1), (1/2)H1, (1/2)Hr−1, (1/2)Hr, (1/2)(H1+Hr−1), (1/2)(H1+Hr), (1/2)(Hr−1+Hr).
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For each Hi = (π/4)(e1 + · · · + ei) (2 ≤ i ≤ r − 2), we have Σ̃Hi
∼= Di ⊕ Dr−i .

Therefore, by Proposition 7 and Theorem 5, if r and i are even, then K2 exp(Hi)K1 ⊂
G, K2π1(exp(Hi)) ⊂ M1, K1π2(exp(Hi)) ⊂ M2 are weakly reflective for each 1 ≤
i ≤ r . When H = Hi (i or r is odd), (1/2)H1, (1/2)Hr−1, (1/2)Hr, (1/2)(H1 +
Hr−1), (1/2)(H1 + Hr), (1/2)(Hr−1 + Hr), H does not satisfy the sufficient condition
in Theorem 5.

A compact symmetric triad whose symmetric triad is type III-Dr is one of the following:

1. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type Dr (condition (B)).

4.12. Type III-E6. By Proposition 7, −ida �∈ W(Σ̃). Moreover, for each H ∈ a,

W(Σ̃H ) ⊂ W(Σ̃) since Σ̃H ⊂ Σ̃ . Hence −ida �∈ W(Σ̃H ). Thus, each austere point does not
satisfy the sufficient condition in Theorem 5.

A compact symmetric triad whose symmetric triad is type III-E6 is one of the following:

1. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type E6 (condition (B)).

4.13. Type III-E7. Σ+ = W+ = E+
7 , Π = {λ1, λ2, λ3, λ4, λ5, λ6, λ7},

α̃ = 2λ1 + 2λ2 + 4λ3 + 4λ4 + 3λ5 + 2λ6 + λ7 .

A point H ∈ P0 is austere which is not totally geodesic if and only if H =
H1,H2,H6, (1/2)H7. Since Span(Σ̃(1/2)H7) �= a, the point (1/2)H7 does not satisfy the
sufficient condition in Theorem 5.

(1) When H = H1 We have Σ+
H1

= Σ+ ∩ SpanZ{λ2, λ3, λ4, λ5, λ6, λ7}, W+
H1

= {α̃}.
Since 〈α̃, λi〉 = 0 (2 ≤ i ≤ 7), ΣH1 ⊥ WH1 . Hence, Σ̃H1 is isomorphic to ΣH1 ⊕ WH1

as a root system. Since {λ2, λ3, λ4, λ5, λ6, λ7} is a fundamental system of ΣH1 , we can see

ΣH1
∼= D6. Hence, we have Σ̃H1

∼= D6 ⊕ A1. Therefore, by Proposition 7 and Theorem 5,
K2 exp(H1)K1 ⊂ G, K2π1(exp(H1)) ⊂ M1, K1π2(exp(H1)) ⊂ M2 are weakly reflective.

(2) When H = H2 We have

Σ+
H2

= Σ+ ∩ SpanZ{λ1, λ3, λ4, λ5, λ6, λ7} ,

WH2 = {λ0, λ0 + λ7, λ0 + λ6 + λ7, λ0 + λ5 + λ6 + λ7, λ0 + λ4 + λ5 + λ6 + λ7 ,

λ0 + λ3 + λ4 + λ5 + λ6 + λ7, λ0 + λ1 + λ3 + λ4 + λ5 + λ6 + λ7},
where λ0 = λ1 + 2λ2 + 2λ3 + 3λ4 + 2λ5 + λ6. Hence,

ΠH2 := {λ0, λ1, λ3, λ4, λ5, λ6, λ7}
is a fundamental system of Σ̃H2 . For i = 1, 3 ≤ i ≤ 6, we have 〈λ0, λi〉 = 0, 〈λ0, λ7〉 =
〈λ6, λ7〉. Thus, ΠH2 corresponds to the Dynkin diagram of type A7. Therefore, we obtain
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Σ̃H2
∼= A7. By Proposition 7, we have −ida �∈ W(Σ̃H2). Thus, H2 does not satisfy the

sufficient condition in Theorem 5.

(3) When H = H6 Similarly, we set λ0 = λ2 + λ3 + 2λ4 + 2λ5 + 2λ6 + λ7. Then, the set

ΠH6 = {λ0, λ1, λ2, λ3, λ4, λ5, λ7}
is a fundamental system of Σ̃H6 . For 2 ≤ i ≤ 5, i = 7, we have 〈λ0, λi〉 = 0, 〈λ0, λ1〉 =
〈λ1, λ3〉. The set ΠH6 corresponds to the Dynkin diagram of type D6 ⊕ A1. Thus, we

have Σ̃H6
∼= D6 ⊕ A1. Therefore, by Proposition 7 and Theorem 5, K2 exp(H6)K1 ⊂

G, K2π1(exp(H6)) ⊂ M1 and K1π2(exp(H6)) ⊂ M2 are weakly reflective.
A compact symmetric triad whose symmetric triad is type III-E7 is one of the following:

1. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type E7 (condition (B)).

4.14. Type III-E8. Σ+ = W+ = E+
8 , Π = {λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8}, α̃ =

2λ1 + 3λ2 + 4λ3 + 6λ4 + 5λ5 + 4λ6 + 3λ7 + 2λ8. A point H ∈ P0 is austere which is not
totally geodesic if and only if H = H1,H8.

(1) When H = H1 We set λ0 = 2λ1 + 2λ2 + 3λ3 + 4λ4 + 3λ5 + 2λ6 + λ7. Then,

the set ΠH1 = {λ0, λ2, λ3, λ4, λ5, λ6, λ7, λ8} is a fundamental system of Σ̃H1 . For each
2 ≤ i ≤ 7, we have 〈λ0, λi〉 = 0, 〈λ0, λ8〉 = 〈λ7, λ8〉. Thus ΠH1 corresponds to the Dynkin

diagram of type D8. Hence, Σ̃H1
∼= D8. Therefore, by Proposition 7 and Theorem 5, we have

K2 exp(H1)K1 ⊂ G, K2π1(exp(H1)) ⊂ M1, K1π2(exp(H1)) ⊂ M2 are weakly reflective.

(2) When H = H8 We have Σ+
H8

= Σ+ ∩ SpanZ{λ1, λ2, λ3, λ4, λ5, λ6, λ7}, WH8 = {α̃}.
For each 1 ≤ i ≤ 7, we have 〈α̃, λi〉 = 0. Thus, ΣH8 ⊥ WH8 . Hence Σ̃H8 is isomorphic to

Σ̃H8
∼= ΣH8 ⊕WH8 as a root system. Since the set {λ1, λ2, λ3, λ4, λ5, λ6, λ7} is a fundamental

system of ΣH8 , we can see that ΣH8
∼= E7. Thus, Σ̃H8

∼= E7 ⊕ A1. Therefore, by Proposition
7 and Theorem 5, K2 exp(H8)K1 ⊂ G, K2π1(exp(H8)) ⊂ M1, K1π2(exp(H8)) ⊂ M2 are
weakly reflective.

A compact symmetric triad whose symmetric triad is type III-E8 is one of the following:

1. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type E8 (condition (B)).

4.15. Type III-F4. Σ+ = W+ = F+
4 , Π = {λ1 = e2 − e3, λ2 = e3 − e4, λ3 =

e4, λ4 = (1/2)(e1 − e2 − e3 − e4)}, α̃ = e1 + e2 = 2λ1 + 3λ2 + 4λ3 + 2λ4. A point H ∈ P0 is
austere which is not totally geodesic if and only if H = H1 = (π/4)(e1 + e2),H4 = (π/2)e1.
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(1) When H = H1 We have Σ̃H1
∼= C4. Therefore, by Proposition 7 and Theorem 5,

K2 exp(H1)K1 ⊂ G, K2π1(exp(H1)) ⊂ M1, K1π2(exp(H1)) ⊂ M2 are weakly reflective.

(2) When H = H4 We have Σ̃H4
∼= B4. Therefore, by Proposition 7 and Theorem 5,

K2 exp(H4)K1 ⊂ G, K2π1(exp(H4)) ⊂ M1, K1π2(exp(H4)) ⊂ M2 are weakly reflective.
A compact symmetric triad whose symmetric triad is type III-F4 is one of the following:

1. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type F4 (condition (B)).

4.16. Type III-G2. Σ+ = W+ = G+
2 , Π = {λ1 = e1 − e2, λ2 = −2e1 − e2 + e3},

α̃ = −e1 − e2 + 2e3 = 3λ1 + 2λ2.
A point H ∈ P0 is austere which is not totally geodesic if and only if H = H2 =

(π/12)(−e1 − e2 + 2e3) = (π/12)(3λ1 + 2λ2). We have Σ+
H2

= {λ1}, W+
H2

= {3λ1 + 2λ2}.
Thus, Σ̃+

H2
= {λ1, 3λ1 + 2λ2} Therefore, by Proposition 7 and Theorem 5, K2 exp(H2)K1 ⊂

G, K2π1(exp(H2)) ⊂ M1, K1π2(exp(H2)) ⊂ M2 are weakly reflective.
A compact symmetric triad whose symmetric triad is type III-G2 is one of the following:

1. (U × U,Δ(U × U),K × K) where (U,K) is a compact symmetric pair whose root
system is type G2 (condition (B)).
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