Токуо J. Матн. Vol. 39, No. 2, 2016

Reidemeister Torsion and Dehn Surgery on Twist Knots

Anh T. TRAN

University of Texas at Dallas

(Communicated by Y. Yokota)

Abstract. We compute the Reidemeister torsion of the complement of a twist knot in S^3 and that of the 3-manifold obtained by a $\frac{1}{a}$ -Dehn surgery on a twist knot.

1. Main results

In a recent paper Kitano [Ki1] gives a formula for the Reidemeister torsion of the 3manifold obtained by a $\frac{1}{q}$ -Dehn surgery on the figure eight knot. In this paper we generalize his result to all twist knots. Specifically, we will compute the Reidemeister torsion of the complement of a twist knot in S^3 and that of the 3-manifold obtained by a $\frac{1}{q}$ -Dehn surgery on a twist knot.

Let J(k, l) be the knot/link in Figure 1, where k, l denote the numbers of half twists in the boxes. Positive (resp. negative) numbers correspond to right-handed (resp. left-handed) twists. Note that J(k, l) is a knot if and only if kl is even. If kl is odd, then J(k, l) is a two-component link. The knot J(2, 2n), where $n \neq 0$, is known as a twist knot. For more information on J(k, l), see [HS].

FIGURE 1. The knot/link J(k, l)

Received June 16, 2015; revised September 17, 2015

²⁰¹⁰ Mathematics Subject Classification: 57N10 (Primary), 57M25 (Secondary)

Key words and phrases: Dehn surgery, nonabelian representation, Reidemeister torsion, twist knot

ANH T. TRAN

In this paper we fix K = J(2, 2n). Let E_K be the complement of K in S^3 . The fundamental group of E_K has a presentation $\pi_1(E_K) = \langle a, b | w^n a = bw^n \rangle$ where a, b are meridians and $w = ba^{-1}b^{-1}a$. A representation $\rho : \pi_1(E_K) \to SL_2(\mathbb{C})$ is called nonabelian if the image of ρ is a nonabelian subgroup of $SL_2(\mathbb{C})$. Suppose $\rho : \pi_1(E_K) \to SL_2(\mathbb{C})$ is a nonabelian representation. Up to conjugation, we may assume that

$$\rho(a) = \begin{bmatrix} s & 1\\ 0 & s^{-1} \end{bmatrix} \text{ and } \rho(b) = \begin{bmatrix} s & 0\\ -u & s^{-1} \end{bmatrix},$$

where $(s, u) \in (\mathbb{C}^*)^2$ is a root of the Riley polynomial $\phi_K(s, u)$, see [Ri].

Let $x := \operatorname{tr} \rho(a) = s + s^{-1}$ and $z := \operatorname{tr} \rho(w) = u^2 - (x^2 - 4)u + 2$. Let $S_k(z)$ be the Chebyshev polynomials of the second kind defined by $S_0(z) = 1$, $S_1(z) = z$ and $S_k(z) = zS_{k-1}(z) - S_{k-2}(z)$ for all integers k.

THEOREM 1. Suppose $\rho : \pi_1(E_K) \to SL_2(\mathbb{C})$ is a nonabelian representation. If $x \neq 2$ then the Reidemeister torsion of E_K is given by

$$\tau_{\rho}(E_K) = (2-x)\frac{S_n(z) - S_{n-2}(z) - 2}{z-2} + xS_{n-1}(z)$$

Now let *M* be the 3-manifold obtained by a $\frac{1}{q}$ -surgery on the twist knot *K*. The fundamental group $\pi_1(M)$ has a presentation

$$\pi_1(M) = \langle a, b \mid w^n a = b w^n, a \lambda^q = 1 \rangle,$$

where λ is the canonical longitude corresponding to the meridian $\mu = a$.

THEOREM 2. Suppose $\rho : \pi_1(E_K) \to SL_2(\mathbb{C})$ is a nonabelian representation which extends to a representation $\rho : \pi_1(M) \to SL_2(\mathbb{C})$. If $x \notin \{0, 2\}$ then the Reidemeister torsion of M is given by

$$\tau_{\rho}(M) = \left((x-2) \frac{S_n(z) - S_{n-2}(z) - 2}{z-2} - x S_{n-1}(z) \right) \left(u^{-2}(u+1)(x^2-4) - 1 \right) x^{-2}.$$

REMARK 1.1. (1) One can see that the expression $(S_n(z) - S_{n-2}(z) - 2)/(z-2)$ is actually a polynomial in z.

(2) Theorem 2 generalizes the formula for the Reidemeister torsion of the 3-manifold obtained by a $\frac{1}{a}$ -surgery on the figure eight knot by Kitano [Ki1].

EXAMPLE 1.2. (1) If n = 1, then K = J(2, 2) is the trefoil knot. In this case the Riley polynomial is $\phi_K(s, u) = u - (x^2 - 3)$, and hence

$$\tau_{\rho}(M) = -2\left(u^{-2}(u+1)(x^2-4)-1\right)x^{-2} = \frac{2}{x^2(x^2-3)^2}.$$

(2) If n = -1, then K = J(2, -2) is the figure eight knot. In this case the Riley polynomial is $\phi_K(s, u) = u^2 - (u + 1)(x^2 - 5)$, and hence

$$\tau_{\rho}(M) = (2x-2)\left(u^{-2}(u+1)(x^2-4) - 1\right)x^{-2} = \frac{2x-2}{x^2(x^2-5)}$$

The paper is organized as follows. In Section 2 we review the Chebyshev polynomials of the second kind and their properties. In Section 3 we give a formula for the Riley polynomial of a twist knot, and compute the trace of a canonical longitude. In Section 4 we review the Reidemeister torsion of a knot complement and its computation using Fox's free calculus. We prove Theorems 1 and 2 in Section 5.

The author would like to thank the referee for helpful comments and suggestions.

2. Chebyshev polynomials

Recall that $S_k(z)$ are the Chebyshev polynomials defined by $S_0(z) = 1$, $S_1(z) = z$ and $S_k(z) = zS_{k-1}(z) - S_{k-2}(z)$ for all integers k. The following lemma is elementary.

LEMMA 2.1. One has $S_k^2(z) - zS_k(z)S_{k-1}(z) + S_{k-1}^2(z) = 1$.

Let
$$P_k(z) := \sum_{i=0}^k S_i(z)$$
.

LEMMA 2.2. One has
$$P_k(z) = \frac{S_{k+1}(z) - S_k(z) - 1}{z - 2}$$
.

PROOF. We have

$$zP_k(z) = z\sum_{i=0}^k S_i(z) = \sum_{i=0}^k \left(S_{i+1}(z) + S_{i-1}(z)\right)$$

= $\left(P_k(z) + S_{k+1}(z) - S_0(z)\right) + \left(P_k(z) - S_k(z) + S_{-1}(z)\right)$
= $2P_k(z) + S_{k+1}(z) - S_k(z) - 1$.

The lemma follows.

LEMMA 2.3. One has $P_k^2(z) + P_{k-1}^2(z) - zP_k(z)P_{k-1}(z) = P_k(z) + P_{k-1}(z)$.

PROOF. Let $Q_k(z) = (P_k^2(z) + P_{k-1}^2(z) - zP_k(z)P_{k-1}(z)) - (P_k(z) + P_{k-1}(z))$. We have

$$Q_{k+1}(z) - Q_k(z) = (P_{k+1}(z) - P_{k-1}(z))(P_{k+1}(z) + P_{k-1}(z) - zP_k(z) - 1).$$

Since $zP_k(z) = \sum_{i=0}^k (S_{i+1}(z) + S_{i-1}(z)) = P_{k+1}(z) - 1 + P_{k-1}(z)$, we obtain $Q_{k+1}(z) = Q_k(z)$ for all integers k. Hence $Q_k(z) = Q_1(z) = 0$.

ANH T. TRAN

PROPOSITION 2.4. Suppose $V = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{C})$. Then

(2.1)
$$V^{k} = \begin{bmatrix} S_{k}(t) - dS_{k-1}(t) & bS_{k-1}(t) \\ cS_{k-1}(t) & S_{k}(t) - aS_{k-1}(t) \end{bmatrix}$$

(2.2)
$$\sum_{i=0}^{k} V^{i} = \begin{bmatrix} P_{k}(t) - dP_{k-1}(t) & bP_{k-1}(t) \\ cP_{k-1}(t) & P_{k}(t) - aP_{k-1}(t) \end{bmatrix},$$

where t := tr V = a + d. Moreover, one has

(2.3)
$$\det\left(\sum_{i=0}^{k} V^{i}\right) = \frac{S_{k+1}(t) - S_{k-1}(t) - 2}{t - 2}.$$

PROOF. Since det V = 1, by the Cayley-Hamilton theorem we have $V^2 - tV + I = 0$. This implies that $V^k - tV^{k-1} + V^{k-2} = 0$ for all integers k. Hence, by induction on k, one can show that $V^k = S_k(t)I - S_{k-1}(t)V^{-1}$. Since $V^{-1} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, (2.1) follows.

Since $P_k(t) = \sum_{i=0}^k S_i(t)$, (2.2) follows directly from (2.1). By Lemma 2.3 we have

$$\det\left(\sum_{i=0}^{k} V^{i}\right) = P_{k}^{2}(t) + (ad - bc)P_{k-1}^{2}(t) - (a + d)P_{k}(t)P_{k-1}(t)$$
$$= P_{k}^{2}(t) + P_{k-1}^{2}(t) - tP_{k}(t)P_{k-1}(t)$$
$$= P_{k}(t) + P_{k-1}(t).$$

Then (2.3) follows from Lemma 2.2.

3. Nonabelian representations

In this section we give a formula for the Riley polynomial of a twist knot. This formula was already obtained in [DHY, Mo]. We also compute the trace of a canonical longitude.

3.1. Riley polynomial. Recall that K = J(2, 2n) and $E_K = S^3 \setminus K$. The fundamental group of E_K has a presentation $\pi_1(E_K) = \langle a, b | w^n a = bw^n \rangle$ where a, b are meridians and $w = ba^{-1}b^{-1}a$. Suppose $\rho : \pi_1(E_K) \to SL_2(\mathbb{C})$ is a nonabelian representation. Up to conjugation, we may assume that

$$\rho(a) = \begin{bmatrix} s & 1 \\ 0 & s^{-1} \end{bmatrix} \text{ and } \rho(b) = \begin{bmatrix} s & 0 \\ -u & s^{-1} \end{bmatrix},$$

where $(s, u) \in (\mathbb{C}^*)^2$ is a root of the Riley polynomial $\phi_K(s, u)$.

520

We now compute $\phi_K(s, u)$. Since

$$\rho(w) = \begin{bmatrix} 1 - s^2 u & s^{-1} - s - s u \\ (s - s^{-1})u + su^2 & 1 + (2 - s^{-2})u + u^2 \end{bmatrix},$$

by Proposition 2.4 we have

$$\rho(w^n) = \begin{bmatrix} S_n(z) - (1 + (2 - s^{-2})u + u^2)S_{n-1}(z) & (s^{-1} - s - su)S_{n-1}(z) \\ ((s - s^{-1})u + su^2)S_{n-1}(z) & S_n(z) - (1 - s^2u)S_{n-1}(z) \end{bmatrix},$$

where $z = \operatorname{tr} \rho(w) = 2 + (2 - s^2 - s^{-2})u + u^2$. Hence, by a direct computation we have

$$\rho(w^n a - bw^n) = \begin{bmatrix} 0 & \phi_K(s, u) \\ u\phi_K(s, u) & 0 \end{bmatrix}$$

where

$$\phi_K(s, u) = S_n(z) - \left(u^2 - (u+1)(s^2 + s^{-2} - 3)\right)S_{n-1}(z) + \frac{1}{2}S_{n-1}(z) + \frac{1}{2}S_{n-1}(z)$$

3.2. Trace of the longitude. It is known that the canonical longitude corresponding to the meridian $\mu = a$ is $\lambda = \overleftarrow{w}^n w^n$, where \overleftarrow{w} is the word in the letters a, b obtained by writing w in the reversed order. We now compute its trace. This computation will be used in the proof of Theorem 2.

LEMMA 3.1. One has
$$S_{n-1}^2(z) = \frac{1}{(u+2-s^2-s^{-2})(u^2-(s^2+s^{-2}-2)(u+1))}$$
.

PROOF. Since $(s, u) \in (\mathbb{C}^*)^2$ is a root of the Riley polynomial $\phi_K(s, u)$, we have $S_n(z) = (u^2 - (u+1)(s^2 + s^{-2} - 3)) S_{n-1}(z)$. Lemma 2.1 then implies that

$$\begin{split} &1 = S_n^2(z) - zS_n(z)S_{n-1}(z) + S_{n-1}^2(z) \\ &= \left(\left(u^2 - (u+1)(s^2 + s^{-2} - 3) \right)^2 - z \left(u^2 - (u+1)(s^2 + s^{-2} - 3) \right) + 1 \right) S_{n-1}^2(z) \,. \end{split}$$

By replacing $z = 2 + (2 - s^2 - s^{-2})u + u^2$ into the first factor of the above expression, we obtain the desired equality.

PROPOSITION 3.2. One has tr
$$\rho(\lambda) - 2 = \frac{u^2(s^2+s^{-2}+2)}{(u+1)(s^2+s^{-2}-2)-u^2}$$

PROOF. Since

$$\rho(\overleftarrow{w}) = \begin{bmatrix} 1 + (2 - s^2)u + u^2 & s - s^{-1} - s^{-1}u \\ (s^{-1} - s)u + s^{-1}u^2 & 1 - s^{-2}u \end{bmatrix},$$

by Proposition 2.4 we have

$$\rho(\overleftarrow{w}^n) = \begin{bmatrix} S_n(z) - (1 - s^{-2}u)S_{n-1}(z) & (s - s^{-1} - s^{-1}u)S_{n-1}(z) \\ ((s^{-1} - s)u + s^{-1}u^2)S_{n-1}(z) & S_n(z) - (1 + (2 - s^2)u + u^2)S_{n-1}(z) \end{bmatrix}$$

Hence, by a direct calculation we have

$$\operatorname{tr} \rho(\lambda) = \operatorname{tr}(\rho(\overline{w}^{n})\rho(w))$$

= $2S_{n}^{2}(z) - 2zS_{n}(z)S_{n-1}(z) + (2 + (s^{4} + s^{-4} - 2)u^{2} - (s^{2} + s^{-2} + 2)u^{3})S_{n-1}^{2}(z)$
= $2 + u^{2}(s^{2} + s^{-2} + 2)(s^{2} + s^{-2} - 2 - u)S_{n-1}^{2}(z)$.

The proposition then follows from Lemma 3.1.

4. Reidemeister torsion

In this section we briefly review the Reidemeister torsion of a knot complement and its computation using Fox's free calculus. For more details on the Reidemeister torsion, see [Jo, Mi1, Mi2, Mi3, Tu].

4.1. Torsion of a chain complex. Let C be a chain complex of finite dimensional vector spaces over C:

$$C = \left(0 \to C_m \xrightarrow{\partial_m} C_{m-1} \xrightarrow{\partial_{m-1}} \cdots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \to 0 \right)$$

such that for each i = 0, 1, ..., m the followings hold

- the homology group $H_i(C)$ is trivial, and
- a preferred basis c_i of C_i is given.

Let $B_i \subset C_i$ be the image of ∂_{i+1} . For each *i* choose a basis b_i of B_i . The short exact sequence of **C**-vector spaces

$$0 \to B_i \longrightarrow C_i \xrightarrow{\partial_i} B_{i-1} \to 0$$

implies that a new basis of C_i can be obtained by taking the union of the vectors of b_i and some lifts \tilde{b}_{i-1} of the vectors b_{i-1} . Define $[(b_i \cup \tilde{b}_{i-1})/c_i]$ to be the determinant of the matrix expressing $(b_i \cup \tilde{b}_{i-1})$ in the basis c_i . Note that this scalar does not depend on the choice of the lift \tilde{b}_{i-1} of b_{i-1} .

DEFINITION 4.1. The *torsion* of C is defined to be

$$\tau(C) := \prod_{i=0}^{m} \left[(b_i \cup \tilde{b}_{i-1}) / c_i \right]^{(-1)^{i+1}} \in \mathbf{C} \setminus \{0\}.$$

REMARK 4.2. Once a preferred basis of C is given, $\tau(C)$ is independent of the choice of b_0, \ldots, b_m .

4.2. Reidemeister torsion of a CW-complex. Let M be a finite CW-complex and $\rho : \pi_1(M) \to SL_2(\mathbb{C})$ a representation. Denote by \tilde{M} the universal covering of M. The fundamental group $\pi_1(M)$ acts on \tilde{M} as deck transformations. Then the chain complex $C(\tilde{M}; \mathbb{Z})$ has the structure of a chain complex of left $\mathbb{Z}[\pi_1(M)]$ -modules.

Let *V* be the 2-dimensional vector space \mathbb{C}^2 with the canonical basis $\{e_1, e_2\}$. Using the representation ρ , *V* has the structure of a right $\mathbb{Z}[\pi_1(M)]$ -module which we denote by V_{ρ} . Define the chain complex $C(M; V_{\rho})$ to be $C(\tilde{M}; \mathbb{Z}) \otimes_{\mathbb{Z}[\pi_1(M)]} V_{\rho}$, and choose a preferred basis of $C(M; V_{\rho})$ as follows. Let $\{u_1^i, \ldots, u_{m_i}^i\}$ be the set of *i*-cells of *M*, and choose a lift \tilde{u}_j^i of each cell. Then $\{\tilde{u}_1^i \otimes e_1, \tilde{u}_1^i \otimes e_2, \ldots, \tilde{u}_{m_i}^i \otimes e_1, \tilde{u}_{m_i}^i \otimes e_2\}$ is chosen to be the preferred basis of $C_i(M; V_{\rho})$.

A representation ρ is called *acyclic* if all the homology groups $H_i(M; V_{\rho})$ are trivial.

DEFINITION 4.3. The Reidemeister torsion $\tau_{\rho}(M)$ is defined as follows:

$$\tau_{\rho}(M) = \begin{cases} \tau(C(M; V_{\rho})) & \text{if } \rho \text{ is acyclic }, \\ 0 & \text{otherwise }. \end{cases}$$

4.3. Reidemeister torsion of a knot complement and Fox's free calculus. Let *L* be a knot in S^3 and E_L its complement. We choose a Wirtinger presentation for the fundamental group of E_L :

$$\pi_1(E_L) = \langle a_1, \ldots, a_l \mid r_1, \ldots, r_{l-1} \rangle.$$

Let $\rho : \pi_1(E_L) \to SL_2(\mathbb{C})$ be a representation. This map induces a ring homomorphism $\tilde{\rho} : \mathbb{Z}[\pi_1(E_L)] \to M_2(\mathbb{C})$, where $\mathbb{Z}[\pi_1(E_L)]$ is the group ring of $\pi_1(E_L)$ and $M_2(\mathbb{C})$ is the matrix algebra of degree 2 over \mathbb{C} . Consider the $(l-1) \times l$ matrix A whose (i, j)-component is the 2 × 2 matrix

$$\tilde{\rho}\left(\frac{\partial r_i}{\partial a_j}\right) \in M_2(\mathbf{C})\,,$$

where $\partial/\partial a$ denotes the Fox calculus. For $1 \le j \le l$, denote by A_j the $(l-1) \times (l-1)$ matrix obtained from A by removing the *j*th column. We regard A_j as a $2(l-1) \times 2(l-1)$ matrix with coefficients in **C**. Then Johnson showed the following.

THEOREM 4.4 ([Jo]). Let $\rho : \pi_1(E_L) \to SL_2(\mathbb{C})$ be a representation such that $\det(\tilde{\rho}(a_1) - I) \neq 0$. Then the Reidemeister torsion of E_L is given by

$$\tau_{\rho}(E_L) = \frac{\det A_1}{\det(\tilde{\rho}(a_1) - I)} \,.$$

5. Proof of main results

5.1. Proof of Theorem 1. We will apply Theorem 4.4 to calculate the Reidemeister torsion of the complement E_K of the twist knot K = J(2, 2n).

Recall that $\pi_1(E_K) = \langle a, b | w^n a = bw^n \rangle$. We have $\det(\tilde{\rho}(b) - I) = 2 - (s + s^{-1}) = 2 - x$. Let $r = w^n a w^{-n} b^{-1}$. By a direct computation we have

$$\frac{\partial r}{\partial a} = w^n \left(1 + (1-a)(w^{-1} + \dots + w^{-n})\frac{\partial w}{\partial a} \right)$$
$$= w^n \left(1 + (1-a)(1+w^{-1} + \dots + w^{-(n-1)})a^{-1}(1-b) \right)$$

Suppose $x \neq 2$. Then $\det(\tilde{\rho}(b) - I) \neq 0$ and hence

$$\tau_{\rho}(E_K) = \det \tilde{\rho}\left(\frac{\partial r}{\partial a}\right) / \det(\tilde{\rho}(b) - I) = \det \tilde{\rho}\left(\frac{\partial r}{\partial a}\right) / (2 - x).$$

Let $\Delta = \tilde{\rho}(1 + w^{-1} + \dots + w^{-(n-1)})$ and $\Omega = \tilde{\rho}(a^{-1}(1-b)(1-a))\Delta$. Then $\det \tilde{\rho}\left(\frac{\partial r}{\partial a}\right) = \det(I + \Omega) = 1 + \det \Omega + \operatorname{tr} \Omega$.

LEMMA 5.1. One has det $\Omega = (2-x)^2 \left(\frac{S_n(z) - S_{n-2}(z) - 2}{z-2} \right).$

PROOF. Since tr $\tilde{\rho}(w^{-1}) = \text{tr } \tilde{\rho}(w) = z$, by Proposition 2.4 we have det $\Delta = \frac{S_n(z) - S_{n-2}(z) - 2}{z-2}$. The lemma follows, since det $\Omega = \det \tilde{\rho}(a^{-1}(1-a)(1-b)) \det \Delta = (2-x)^2 \det \Delta$.

LEMMA 5.2. One has tr $\Omega = x(2-x)S_{n-1}(z) - 1$.

PROOF. Since $\tilde{\rho}(w^{-1}) = \begin{bmatrix} 1 + (2 - s^{-2})u + u^2 & s - s^{-1} + su \\ (s^{-1} - s)u - su^2 & 1 - s^2u \end{bmatrix}$, by Proposition 2.4

we have

$$\Delta = \begin{bmatrix} P_{n-1}(z) - (1 - s^2 u) P_{n-2}(z) & (s - s^{-1} + su) P_{n-2}(z) \\ ((s^{-1} - s)u - su^2) P_{n-2}(z) & P_{n-1}(z) - (1 + (2 - s^{-2})u + u^2) P_{n-2}(z) \end{bmatrix}.$$

By a direct computation we have

$$\tilde{\rho}(a^{-1}(1-b)(1-a)) = \begin{bmatrix} s+s^{-1}-2+(s-1)u & s^{-1}-s^{-2}+u\\ su-s^2u & s+s^{-1}-2-su \end{bmatrix}.$$

Hence

$$\operatorname{tr} \Omega = \operatorname{tr} \left(\tilde{\rho} \left(a^{-1} (1-b)(1-a) \right) \Delta \right)$$

= $(2s + 2s^{-1} - 4 - u) P_{n-1}(z) + (4 - 2s - 2s^{-1} + (3 - s^2 - s^{-2})u + u^2) P_{n-2}(z)$
= $(2s + 2s^{-1} - 4 - u) (P_{n-1}(z) - P_{n-2}(z)) + ((2 - s^2 - s^{-2})u + u^2) P_{n-2}(z)$
= $(2s + 2s^{-1} - 4 - u) S_{n-1}(z) + (z - 2) P_{n-2}(z)$
= $(2s + 2s^{-1} - 4 - u) S_{n-1}(z) + S_{n-1}(z) - S_{n-2}(z) - 1$.

Since (s, u) satisfies $\phi_K(s, u) = 0$, we have $S_n(z) = (u^2 - (u + 1)(s^2 + s^{-2} - 3))S_{n-1}(z)$. This implies that $S_{n-2}(z) = zS_{n-1}(z) - S_n(z) = (s^2 + s^{-2} - 1 - u)S_{n-1}(z)$. Hence

tr
$$\Omega = (2s + 2s^{-1} - s^2 - s^{-2} - 2)S_{n-1}(z) - 1$$
.

The lemma follows since $2s + 2s^{-1} - s^2 - s^{-2} - 2 = x(2 - x)$.

We now complete the proof of Theorem 1. Lemmas 5.1 and 5.2 imply that

$$\det \tilde{\rho}\left(\frac{\partial r}{\partial a}\right) = 1 + \det \Omega + \operatorname{tr} \Omega = (2-x)^2 \left(\frac{S_n(z) - S_{n-2}(z) - 2}{z-2}\right) + x(2-x)S_{n-1}(z).$$

Since $\tau_{\rho}(E_K) = \det \tilde{\rho}\left(\frac{\partial r}{\partial a}\right) / (2 - x)$, we obtain the desired formula for $\tau_{\rho}(E_K)$.

REMARK 5.3. In [Mo], Morifuji proved a similar formula for the twisted Alexander polynomial of twist knots for nonabelian representations.

5.2. Proof of Theorem 2. Suppose $\rho : \pi_1(E_K) \to SL_2(\mathbb{C})$ is a nonabelian representation which extends to a representation $\rho : \pi_1(M) \to SL_2(\mathbb{C})$. Recall that λ is the canonical longitude corresponding to the meridian $\mu = a$. If tr $\rho(\lambda) \neq 2$, then by [Ki1] (see also [Ki2, Ki3]) the Reidemeister torsion of M is given by

(5.1)
$$\tau_{\rho}(M) = \frac{\tau_{\rho}(E_K)}{2 - \operatorname{tr} \rho(\lambda)}.$$

By Theorem 1 we have $\tau_{\rho}(E_K) = (2-x)\frac{S_n(z)-S_{n-2}(z)-2}{z-2} + xS_{n-1}(z)$ if $x \neq 2$. By Proposition 3.2 we have tr $\rho(\lambda) - 2 = \frac{x^2}{u^{-2}(u+1)(x^2-4)-1}$. Theorem 2 then follows from (5.1).

References

- [DHY] J. DUBOIS, V. HUYNH and Y. YAMAGUCHI, Non-abelian Reidemeister torsion for twist knots, J. Knot Theory Ramifications 18, no. 3 (2009), 303–341.
- [HS] J. HOSTE and P. SHANAHAN, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications 13, no. 2 (2004), 193–209.
- [Jo] D. JOHNSON, A geometric form of Casson invariant and its connection to Reidemeister torsion, unpublished lecture notes.
- [Ki1] T. KITANO, Reidemeister torsion of a 3-manifold obtained by a Dehn-surgery along the figure-eight knot, arXiv:1506.00712.
- [Ki2] T. KITANO, Reidemeister torsion of Seifert fibered spaces for SL₂(C)-representations, Tokyo J. Math. 17, no. 1 (1994), 59–75.
- [Ki3] T. KITANO, Reidemeister torsion of the figure-eight knot exterior for SL₂(C)-representations, Osaka J. Math. 31, no. 3 (1994), 523–532.
- [Mi1] J. MILNOR, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. 74 (1961), 575–590.
- [Mi2] J. MILNOR, A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), 137–147.
- [Mi3] J. MILNOR, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 348-426.

 \square

ANH T. TRAN

- [Mo] T. MORIFUJI, Twisted Alexander polynomials of twist knots for nonabelian representations, Bull. Sci. Math. 132, no. 5 (2008), 439–453.
- [Ri] R. RILEY, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford Ser. (2) 35 (1984), 191–208.
- [Tu] V. TURAEV, Introduction to Combinatorial Torsions, Lectures in Mathematics, Birkhauser, 2001.

Present Address: DEPARTMENT OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TEXAS AT DALLAS, RICHARDSON, TX 75080, USA. *e-mail*: att140830@utdallas.edu