Reidemeister Torsion and Dehn Surgery on Twist Knots

Anh T. TRAN
University of Texas at Dallas
(Communicated by Y. Yokota)

Abstract

We compute the Reidemeister torsion of the complement of a twist knot in S^{3} and that of the 3manifold obtained by a $\frac{1}{q}$-Dehn surgery on a twist knot.

1. Main results

In a recent paper Kitano [Ki1] gives a formula for the Reidemeister torsion of the 3manifold obtained by a $\frac{1}{q}$-Dehn surgery on the figure eight knot. In this paper we generalize his result to all twist knots. Specifically, we will compute the Reidemeister torsion of the complement of a twist knot in S^{3} and that of the 3-manifold obtained by a $\frac{1}{q}$-Dehn surgery on a twist knot.

Let $J(k, l)$ be the knot/link in Figure 1, where k, l denote the numbers of half twists in the boxes. Positive (resp. negative) numbers correspond to right-handed (resp. left-handed) twists. Note that $J(k, l)$ is a knot if and only if $k l$ is even. If $k l$ is odd, then $J(k, l)$ is a two-component link. The knot $J(2,2 n)$, where $n \neq 0$, is known as a twist knot. For more information on $J(k, l)$, see [HS].

Figure 1. The knot/link $J(k, l)$

Received June 16, 2015; revised September 17, 2015
2010 Mathematics Subject Classification: 57N10 (Primary), 57M25 (Secondary)
Key words and phrases: Dehn surgery, nonabelian representation, Reidemeister torsion, twist knot

In this paper we fix $K=J(2,2 n)$. Let E_{K} be the complement of K in S^{3}. The fundamental group of E_{K} has a presentation $\pi_{1}\left(E_{K}\right)=\left\langle a, b \mid w^{n} a=b w^{n}\right\rangle$ where a, b are meridians and $w=b a^{-1} b^{-1} a$. A representation $\rho: \pi_{1}\left(E_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is called nonabelian if the image of ρ is a nonabelian subgroup of $S L_{2}(\mathbf{C})$. Suppose $\rho: \pi_{1}\left(E_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation. Up to conjugation, we may assume that

$$
\rho(a)=\left[\begin{array}{cc}
s & 1 \\
0 & s^{-1}
\end{array}\right] \quad \text { and } \quad \rho(b)=\left[\begin{array}{cc}
s & 0 \\
-u & s^{-1}
\end{array}\right],
$$

where $(s, u) \in\left(\mathbf{C}^{*}\right)^{2}$ is a root of the Riley polynomial $\phi_{K}(s, u)$, see [Ri].
Let $x:=\operatorname{tr} \rho(a)=s+s^{-1}$ and $z:=\operatorname{tr} \rho(w)=u^{2}-\left(x^{2}-4\right) u+2$. Let $S_{k}(z)$ be the Chebyshev polynomials of the second kind defined by $S_{0}(z)=1, S_{1}(z)=z$ and $S_{k}(z)=z S_{k-1}(z)-S_{k-2}(z)$ for all integers k.

THEOREM 1. Suppose $\rho: \pi_{1}\left(E_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation. If $x \neq 2$ then the Reidemeister torsion of E_{K} is given by

$$
\tau_{\rho}\left(E_{K}\right)=(2-x) \frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}+x S_{n-1}(z)
$$

Now let M be the 3 -manifold obtained by a $\frac{1}{q}$-surgery on the twist knot K. The fundamental group $\pi_{1}(M)$ has a presentation

$$
\pi_{1}(M)=\left\langle a, b \mid w^{n} a=b w^{n}, a \lambda^{q}=1\right\rangle,
$$

where λ is the canonical longitude corresponding to the meridian $\mu=a$.
Theorem 2. Suppose $\rho: \pi_{1}\left(E_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation which extends to a representation $\rho: \pi_{1}(M) \rightarrow S L_{2}(\mathbf{C})$. If $x \notin\{0,2\}$ then the Reidemeister torsion of M is given by

$$
\tau_{\rho}(M)=\left((x-2) \frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}-x S_{n-1}(z)\right)\left(u^{-2}(u+1)\left(x^{2}-4\right)-1\right) x^{-2} .
$$

REMARK 1.1. (1) One can see that the expression $\left(S_{n}(z)-S_{n-2}(z)-2\right) /(z-2)$ is actually a polynomial in z.
(2) Theorem 2 generalizes the formula for the Reidemeister torsion of the 3-manifold obtained by a $\frac{1}{q}$-surgery on the figure eight knot by Kitano [Ki1].

Example 1.2. (1) If $n=1$, then $K=J(2,2)$ is the trefoil knot. In this case the Riley polynomial is $\phi_{K}(s, u)=u-\left(x^{2}-3\right)$, and hence

$$
\tau_{\rho}(M)=-2\left(u^{-2}(u+1)\left(x^{2}-4\right)-1\right) x^{-2}=\frac{2}{x^{2}\left(x^{2}-3\right)^{2}} .
$$

(2) If $n=-1$, then $K=J(2,-2)$ is the figure eight knot. In this case the Riley polynomial is $\phi_{K}(s, u)=u^{2}-(u+1)\left(x^{2}-5\right)$, and hence

$$
\tau_{\rho}(M)=(2 x-2)\left(u^{-2}(u+1)\left(x^{2}-4\right)-1\right) x^{-2}=\frac{2 x-2}{x^{2}\left(x^{2}-5\right)} .
$$

The paper is organized as follows. In Section 2 we review the Chebyshev polynomials of the second kind and their properties. In Section 3 we give a formula for the Riley polynomial of a twist knot, and compute the trace of a canonical longitude. In Section 4 we review the Reidemeister torsion of a knot complement and its computation using Fox's free calculus. We prove Theorems 1 and 2 in Section 5.

The author would like to thank the referee for helpful comments and suggestions.

2. Chebyshev polynomials

Recall that $S_{k}(z)$ are the Chebyshev polynomials defined by $S_{0}(z)=1, S_{1}(z)=z$ and $S_{k}(z)=z S_{k-1}(z)-S_{k-2}(z)$ for all integers k. The following lemma is elementary.

Lemma 2.1. One has $S_{k}^{2}(z)-z S_{k}(z) S_{k-1}(z)+S_{k-1}^{2}(z)=1$.
Let $P_{k}(z):=\sum_{i=0}^{k} S_{i}(z)$.
Lemma 2.2. One has $P_{k}(z)=\frac{S_{k+1}(z)-S_{k}(z)-1}{z-2}$.
Proof. We have

$$
\begin{aligned}
z P_{k}(z) & =z \sum_{i=0}^{k} S_{i}(z)=\sum_{i=0}^{k}\left(S_{i+1}(z)+S_{i-1}(z)\right) \\
& =\left(P_{k}(z)+S_{k+1}(z)-S_{0}(z)\right)+\left(P_{k}(z)-S_{k}(z)+S_{-1}(z)\right) \\
& =2 P_{k}(z)+S_{k+1}(z)-S_{k}(z)-1
\end{aligned}
$$

The lemma follows.
LEMMA 2.3. One has $P_{k}^{2}(z)+P_{k-1}^{2}(z)-z P_{k}(z) P_{k-1}(z)=P_{k}(z)+P_{k-1}(z)$.
PROOF. Let $Q_{k}(z)=\left(P_{k}^{2}(z)+P_{k-1}^{2}(z)-z P_{k}(z) P_{k-1}(z)\right)-\left(P_{k}(z)+P_{k-1}(z)\right)$. We have

$$
Q_{k+1}(z)-Q_{k}(z)=\left(P_{k+1}(z)-P_{k-1}(z)\right)\left(P_{k+1}(z)+P_{k-1}(z)-z P_{k}(z)-1\right)
$$

Since $z P_{k}(z)=\sum_{i=0}^{k}\left(S_{i+1}(z)+S_{i-1}(z)\right)=P_{k+1}(z)-1+P_{k-1}(z)$, we obtain $Q_{k+1}(z)=$ $Q_{k}(z)$ for all integers k. Hence $Q_{k}(z)=Q_{1}(z)=0$.

Proposition 2.4. Suppose $V=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbf{C})$. Then

$$
\begin{align*}
V^{k} & =\left[\begin{array}{cc}
S_{k}(t)-d S_{k-1}(t) & b S_{k-1}(t) \\
c S_{k-1}(t) & S_{k}(t)-a S_{k-1}(t)
\end{array}\right], \tag{2.1}\\
\sum_{i=0}^{k} V^{i} & =\left[\begin{array}{cc}
P_{k}(t)-d P_{k-1}(t) & b P_{k-1}(t) \\
c P_{k-1}(t) & P_{k}(t)-a P_{k-1}(t)
\end{array}\right], \tag{2.2}
\end{align*}
$$

where $t:=\operatorname{tr} V=a+d$. Moreover, one has

$$
\begin{equation*}
\operatorname{det}\left(\sum_{i=0}^{k} V^{i}\right)=\frac{S_{k+1}(t)-S_{k-1}(t)-2}{t-2} . \tag{2.3}
\end{equation*}
$$

Proof. Since det $V=1$, by the Cayley-Hamilton theorem we have $V^{2}-t V+I=0$. This implies that $V^{k}-t V^{k-1}+V^{k-2}=0$ for all integers k. Hence, by induction on k, one can show that $V^{k}=S_{k}(t) I-S_{k-1}(t) V^{-1}$. Since $V^{-1}=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$, (2.1) follows.

Since $P_{k}(t)=\sum_{i=0}^{k} S_{i}(t)$, (2.2) follows directly from (2.1). By Lemma 2.3 we have

$$
\begin{aligned}
\operatorname{det}\left(\sum_{i=0}^{k} V^{i}\right) & =P_{k}^{2}(t)+(a d-b c) P_{k-1}^{2}(t)-(a+d) P_{k}(t) P_{k-1}(t) \\
& =P_{k}^{2}(t)+P_{k-1}^{2}(t)-t P_{k}(t) P_{k-1}(t) \\
& =P_{k}(t)+P_{k-1}(t) .
\end{aligned}
$$

Then (2.3) follows from Lemma 2.2.

3. Nonabelian representations

In this section we give a formula for the Riley polynomial of a twist knot. This formula was already obtained in [DHY, Mo]. We also compute the trace of a canonical longitude.
3.1. Riley polynomial. Recall that $K=J(2,2 n)$ and $E_{K}=S^{3} \backslash K$. The fundamental group of E_{K} has a presentation $\pi_{1}\left(E_{K}\right)=\left\langle a, b \mid w^{n} a=b w^{n}\right\rangle$ where a, b are meridians and $w=b a^{-1} b^{-1} a$. Suppose $\rho: \pi_{1}\left(E_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation. Up to conjugation, we may assume that

$$
\rho(a)=\left[\begin{array}{cc}
s & 1 \\
0 & s^{-1}
\end{array}\right] \quad \text { and } \quad \rho(b)=\left[\begin{array}{cc}
s & 0 \\
-u & s^{-1}
\end{array}\right],
$$

where $(s, u) \in\left(\mathbf{C}^{*}\right)^{2}$ is a root of the Riley polynomial $\phi_{K}(s, u)$.

We now compute $\phi_{K}(s, u)$. Since

$$
\rho(w)=\left[\begin{array}{cc}
1-s^{2} u & s^{-1}-s-s u \\
\left(s-s^{-1}\right) u+s u^{2} & 1+\left(2-s^{-2}\right) u+u^{2}
\end{array}\right],
$$

by Proposition 2.4 we have

$$
\rho\left(w^{n}\right)=\left[\begin{array}{cc}
S_{n}(z)-\left(1+\left(2-s^{-2}\right) u+u^{2}\right) S_{n-1}(z) & \left(s^{-1}-s-s u\right) S_{n-1}(z) \\
\left(\left(s-s^{-1}\right) u+s u^{2}\right) S_{n-1}(z) & S_{n}(z)-\left(1-s^{2} u\right) S_{n-1}(z)
\end{array}\right],
$$

where $z=\operatorname{tr} \rho(w)=2+\left(2-s^{2}-s^{-2}\right) u+u^{2}$. Hence, by a direct computation we have

$$
\rho\left(w^{n} a-b w^{n}\right)=\left[\begin{array}{cc}
0 & \phi_{K}(s, u) \\
u \phi_{K}(s, u) & 0
\end{array}\right]
$$

where

$$
\phi_{K}(s, u)=S_{n}(z)-\left(u^{2}-(u+1)\left(s^{2}+s^{-2}-3\right)\right) S_{n-1}(z) .
$$

3.2. Trace of the longitude. It is known that the canonical longitude corresponding to the meridian $\mu=a$ is $\lambda=\overleftarrow{w}^{n} w^{n}$, where \overleftarrow{w} is the word in the letters a, b obtained by writing w in the reversed order. We now compute its trace. This computation will be used in the proof of Theorem 2.

LEMMA 3.1. One has $S_{n-1}^{2}(z)=\frac{1}{\left(u+2-s^{2}-s^{-2}\right)\left(u^{2}-\left(s^{2}+s^{-2}-2\right)(u+1)\right)}$.
Proof. Since $(s, u) \in\left(\mathbf{C}^{*}\right)^{2}$ is a root of the Riley polynomial $\phi_{K}(s, u)$, we have $S_{n}(z)=\left(u^{2}-(u+1)\left(s^{2}+s^{-2}-3\right)\right) S_{n-1}(z)$. Lemma 2.1 then implies that

$$
\begin{aligned}
1 & =S_{n}^{2}(z)-z S_{n}(z) S_{n-1}(z)+S_{n-1}^{2}(z) \\
& =\left(\left(u^{2}-(u+1)\left(s^{2}+s^{-2}-3\right)\right)^{2}-z\left(u^{2}-(u+1)\left(s^{2}+s^{-2}-3\right)\right)+1\right) S_{n-1}^{2}(z) .
\end{aligned}
$$

By replacing $z=2+\left(2-s^{2}-s^{-2}\right) u+u^{2}$ into the first factor of the above expression, we obtain the desired equality.

Proposition 3.2. One has $\operatorname{tr} \rho(\lambda)-2=\frac{u^{2}\left(s^{2}+s^{-2}+2\right)}{(u+1)\left(s^{2}+s^{-2}-2\right)-u^{2}}$.
Proof. Since

$$
\rho(\overleftarrow{w})=\left[\begin{array}{cc}
1+\left(2-s^{2}\right) u+u^{2} & s-s^{-1}-s^{-1} u \\
\left(s^{-1}-s\right) u+s^{-1} u^{2} & 1-s^{-2} u
\end{array}\right],
$$

by Proposition 2.4 we have

$$
\rho\left(\overleftarrow{w}^{n}\right)=\left[\begin{array}{cc}
S_{n}(z)-\left(1-s^{-2} u\right) S_{n-1}(z) & \left(s-s^{-1}-s^{-1} u\right) S_{n-1}(z) \\
\left(\left(s^{-1}-s\right) u+s^{-1} u^{2}\right) S_{n-1}(z) & S_{n}(z)-\left(1+\left(2-s^{2}\right) u+u^{2}\right) S_{n-1}(z)
\end{array}\right]
$$

Hence, by a direct calculation we have

$$
\begin{aligned}
\operatorname{tr} \rho(\lambda) & =\operatorname{tr}\left(\rho\left(\overleftarrow{w}^{n}\right) \rho(w)\right) \\
& =2 S_{n}^{2}(z)-2 z S_{n}(z) S_{n-1}(z)+\left(2+\left(s^{4}+s^{-4}-2\right) u^{2}-\left(s^{2}+s^{-2}+2\right) u^{3}\right) S_{n-1}^{2}(z) \\
& =2+u^{2}\left(s^{2}+s^{-2}+2\right)\left(s^{2}+s^{-2}-2-u\right) S_{n-1}^{2}(z)
\end{aligned}
$$

The proposition then follows from Lemma 3.1.

4. Reidemeister torsion

In this section we briefly review the Reidemeister torsion of a knot complement and its computation using Fox's free calculus. For more details on the Reidemeister torsion, see [Jo, Mi1, Mi2, Mi3, Tu].
4.1. Torsion of a chain complex. Let C be a chain complex of finite dimensional vector spaces over \mathbf{C} :

$$
C=\left(0 \rightarrow C_{m} \xrightarrow{\partial_{m}} C_{m-1} \xrightarrow{\partial_{m-1}} \cdots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0\right)
$$

such that for each $i=0,1, \ldots, m$ the followings hold

- the homology group $H_{i}(C)$ is trivial, and
- a preferred basis c_{i} of C_{i} is given.

Let $B_{i} \subset C_{i}$ be the image of ∂_{i+1}. For each i choose a basis b_{i} of B_{i}. The short exact sequence of \mathbf{C}-vector spaces

$$
0 \rightarrow B_{i} \longrightarrow C_{i} \xrightarrow{\partial_{i}} B_{i-1} \rightarrow 0
$$

implies that a new basis of C_{i} can be obtained by taking the union of the vectors of b_{i} and some lifts \tilde{b}_{i-1} of the vectors b_{i-1}. Define $\left[\left(b_{i} \cup \tilde{b}_{i-1}\right) / c_{i}\right]$ to be the determinant of the matrix expressing $\left(b_{i} \cup \tilde{b}_{i-1}\right)$ in the basis c_{i}. Note that this scalar does not depend on the choice of the lift \tilde{b}_{i-1} of b_{i-1}.

Definition 4.1. The torsion of C is defined to be

$$
\tau(C):=\prod_{i=0}^{m}\left[\left(b_{i} \cup \tilde{b}_{i-1}\right) / c_{i}\right]^{(-1)^{i+1}} \in \mathbf{C} \backslash\{0\}
$$

REmARK 4.2. Once a preferred basis of C is given, $\tau(C)$ is independent of the choice of b_{0}, \ldots, b_{m}.
4.2. Reidemeister torsion of a CW-complex. Let M be a finite CW-complex and $\rho: \pi_{1}(M) \rightarrow S L_{2}(\mathbf{C})$ a representation. Denote by \tilde{M} the universal covering of M. The fundamental group $\pi_{1}(M)$ acts on \tilde{M} as deck transformations. Then the chain complex $C(\tilde{M} ; \mathbf{Z})$ has the structure of a chain complex of left $\mathbf{Z}\left[\pi_{1}(M)\right]$-modules.

Let V be the 2-dimensional vector space \mathbf{C}^{2} with the canonical basis $\left\{e_{1}, e_{2}\right\}$. Using the representation ρ, V has the structure of a right $\mathbf{Z}\left[\pi_{1}(M)\right]$-module which we denote by V_{ρ}. Define the chain complex $C\left(M ; V_{\rho}\right)$ to be $C(\tilde{M} ; \mathbf{Z}) \otimes_{\mathbf{Z}\left[\pi_{1}(M)\right]} V_{\rho}$, and choose a preferred basis of $C\left(M ; V_{\rho}\right)$ as follows. Let $\left\{u_{1}^{i}, \ldots, u_{m_{i}}^{i}\right\}$ be the set of i-cells of M, and choose a lift \tilde{u}_{j}^{i} of each cell. Then $\left\{\tilde{u}_{1}^{i} \otimes e_{1}, \tilde{u}_{1}^{i} \otimes e_{2}, \ldots, \tilde{u}_{m_{i}}^{i} \otimes e_{1}, \tilde{u}_{m_{i}}^{i} \otimes e_{2}\right\}$ is chosen to be the preferred basis of $C_{i}\left(M ; V_{\rho}\right)$.

A representation ρ is called acyclic if all the homology groups $H_{i}\left(M ; V_{\rho}\right)$ are trivial.
Definition 4.3. The Reidemeister torsion $\tau_{\rho}(M)$ is defined as follows:

$$
\tau_{\rho}(M)= \begin{cases}\tau\left(C\left(M ; V_{\rho}\right)\right) & \text { if } \rho \text { is acyclic } \\ 0 & \text { otherwise }\end{cases}
$$

4.3. Reidemeister torsion of a knot complement and Fox's free calculus. Let L be a knot in S^{3} and E_{L} its complement. We choose a Wirtinger presentation for the fundamental group of E_{L} :

$$
\pi_{1}\left(E_{L}\right)=\left\langle a_{1}, \ldots, a_{l} \mid r_{1}, \ldots, r_{l-1}\right\rangle
$$

Let $\rho: \pi_{1}\left(E_{L}\right) \rightarrow S L_{2}(\mathbf{C})$ be a representation. This map induces a ring homomorphism $\tilde{\rho}: \mathbf{Z}\left[\pi_{1}\left(E_{L}\right)\right] \rightarrow M_{2}(\mathbf{C})$, where $\mathbf{Z}\left[\pi_{1}\left(E_{L}\right)\right]$ is the group ring of $\pi_{1}\left(E_{L}\right)$ and $M_{2}(\mathbf{C})$ is the matrix algebra of degree 2 over \mathbf{C}. Consider the $(l-1) \times l$ matrix A whose (i, j)-component is the 2×2 matrix

$$
\tilde{\rho}\left(\frac{\partial r_{i}}{\partial a_{j}}\right) \in M_{2}(\mathbf{C})
$$

where $\partial / \partial a$ denotes the Fox calculus. For $1 \leq j \leq l$, denote by A_{j} the $(l-1) \times(l-1)$ matrix obtained from A by removing the j th column. We regard A_{j} as a $2(l-1) \times 2(l-1)$ matrix with coefficients in \mathbf{C}. Then Johnson showed the following.

THEOREM 4.4 ([Jo]). Let $\rho: \pi_{1}\left(E_{L}\right) \rightarrow S L_{2}(\mathbf{C})$ be a representation such that $\operatorname{det}\left(\tilde{\rho}\left(a_{1}\right)-I\right) \neq 0$. Then the Reidemeister torsion of E_{L} is given by

$$
\tau_{\rho}\left(E_{L}\right)=\frac{\operatorname{det} A_{1}}{\operatorname{det}\left(\tilde{\rho}\left(a_{1}\right)-I\right)}
$$

5. Proof of main results

5.1. Proof of Theorem 1. We will apply Theorem 4.4 to calculate the Reidemeister torsion of the complement E_{K} of the twist knot $K=J(2,2 n)$.

Recall that $\pi_{1}\left(E_{K}\right)=\left\langle a, b \mid w^{n} a=b w^{n}\right\rangle$. We have $\operatorname{det}(\tilde{\rho}(b)-I)=2-\left(s+s^{-1}\right)=$ $2-x$. Let $r=w^{n} a w^{-n} b^{-1}$. By a direct computation we have

$$
\begin{aligned}
\frac{\partial r}{\partial a} & =w^{n}\left(1+(1-a)\left(w^{-1}+\cdots+w^{-n}\right) \frac{\partial w}{\partial a}\right) \\
& =w^{n}\left(1+(1-a)\left(1+w^{-1}+\cdots+w^{-(n-1)}\right) a^{-1}(1-b)\right)
\end{aligned}
$$

Suppose $x \neq 2$. Then $\operatorname{det}(\tilde{\rho}(b)-I) \neq 0$ and hence

$$
\tau_{\rho}\left(E_{K}\right)=\operatorname{det} \tilde{\rho}\left(\frac{\partial r}{\partial a}\right) / \operatorname{det}(\tilde{\rho}(b)-I)=\operatorname{det} \tilde{\rho}\left(\frac{\partial r}{\partial a}\right) /(2-x) .
$$

Let $\Delta=\tilde{\rho}\left(1+w^{-1}+\cdots+w^{-(n-1)}\right)$ and $\Omega=\tilde{\rho}\left(a^{-1}(1-b)(1-a)\right) \Delta$. Then

$$
\operatorname{det} \tilde{\rho}\left(\frac{\partial r}{\partial a}\right)=\operatorname{det}(I+\Omega)=1+\operatorname{det} \Omega+\operatorname{tr} \Omega
$$

LEMMA 5.1. One has $\operatorname{det} \Omega=(2-x)^{2}\left(\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}\right)$.
Proof. Since $\operatorname{tr} \tilde{\rho}\left(w^{-1}\right)=\operatorname{tr} \tilde{\rho}(w)=z$, by Proposition 2.4 we have $\operatorname{det} \Delta=$ $\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}$. The lemma follows, since $\operatorname{det} \Omega=\operatorname{det} \tilde{\rho}\left(a^{-1}(1-a)(1-b)\right) \operatorname{det} \Delta=$ $(2-x)^{2} \operatorname{det} \Delta$.

Lemma 5.2. One has $\operatorname{tr} \Omega=x(2-x) S_{n-1}(z)-1$.
Proof. Since $\tilde{\rho}\left(w^{-1}\right)=\left[\begin{array}{cc}1+\left(2-s^{-2}\right) u+u^{2} & s-s^{-1}+s u \\ \left(s^{-1}-s\right) u-s u^{2} & 1-s^{2} u\end{array}\right]$, by Proposition 2.4 we have

$$
\Delta=\left[\begin{array}{cc}
P_{n-1}(z)-\left(1-s^{2} u\right) P_{n-2}(z) & \left(s-s^{-1}+s u\right) P_{n-2}(z) \\
\left(\left(s^{-1}-s\right) u-s u^{2}\right) P_{n-2}(z) & P_{n-1}(z)-\left(1+\left(2-s^{-2}\right) u+u^{2}\right) P_{n-2}(z)
\end{array}\right]
$$

By a direct computation we have

$$
\tilde{\rho}\left(a^{-1}(1-b)(1-a)\right)=\left[\begin{array}{cc}
s+s^{-1}-2+(s-1) u & s^{-1}-s^{-2}+u \\
s u-s^{2} u & s+s^{-1}-2-s u
\end{array}\right] .
$$

Hence

$$
\begin{aligned}
\operatorname{tr} \Omega & =\operatorname{tr}\left(\tilde{\rho}\left(a^{-1}(1-b)(1-a)\right) \Delta\right) \\
& =\left(2 s+2 s^{-1}-4-u\right) P_{n-1}(z)+\left(4-2 s-2 s^{-1}+\left(3-s^{2}-s^{-2}\right) u+u^{2}\right) P_{n-2}(z) \\
& =\left(2 s+2 s^{-1}-4-u\right)\left(P_{n-1}(z)-P_{n-2}(z)\right)+\left(\left(2-s^{2}-s^{-2}\right) u+u^{2}\right) P_{n-2}(z) \\
& =\left(2 s+2 s^{-1}-4-u\right) S_{n-1}(z)+(z-2) P_{n-2}(z) \\
& =\left(2 s+2 s^{-1}-4-u\right) S_{n-1}(z)+S_{n-1}(z)-S_{n-2}(z)-1 .
\end{aligned}
$$

Since (s, u) satisfies $\phi_{K}(s, u)=0$, we have $S_{n}(z)=\left(u^{2}-(u+1)\left(s^{2}+\right.\right.$ $\left.\left.s^{-2}-3\right)\right) S_{n-1}(z)$. This implies that $S_{n-2}(z)=z S_{n-1}(z)-S_{n}(z)=\left(s^{2}+s^{-2}-1-u\right) S_{n-1}(z)$. Hence

$$
\operatorname{tr} \Omega=\left(2 s+2 s^{-1}-s^{2}-s^{-2}-2\right) S_{n-1}(z)-1
$$

The lemma follows since $2 s+2 s^{-1}-s^{2}-s^{-2}-2=x(2-x)$.
We now complete the proof of Theorem 1. Lemmas 5.1 and 5.2 imply that

$$
\operatorname{det} \tilde{\rho}\left(\frac{\partial r}{\partial a}\right)=1+\operatorname{det} \Omega+\operatorname{tr} \Omega=(2-x)^{2}\left(\frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}\right)+x(2-x) S_{n-1}(z)
$$

Since $\tau_{\rho}\left(E_{K}\right)=\operatorname{det} \tilde{\rho}\left(\frac{\partial r}{\partial a}\right) /(2-x)$, we obtain the desired formula for $\tau_{\rho}\left(E_{K}\right)$.
REmARK 5.3. In [Mo], Morifuji proved a similar formula for the twisted Alexander polynomial of twist knots for nonabelian representations.
5.2. Proof of Theorem 2. Suppose $\rho: \pi_{1}\left(E_{K}\right) \rightarrow S L_{2}(\mathbf{C})$ is a nonabelian representation which extends to a representation $\rho: \pi_{1}(M) \rightarrow S L_{2}(\mathbf{C})$. Recall that λ is the canonical longitude corresponding to the meridian $\mu=a$. If $\operatorname{tr} \rho(\lambda) \neq 2$, then by [Kil] (see also [Ki2, Ki3]) the Reidemeister torsion of M is given by

$$
\begin{equation*}
\tau_{\rho}(M)=\frac{\tau_{\rho}\left(E_{K}\right)}{2-\operatorname{tr} \rho(\lambda)} \tag{5.1}
\end{equation*}
$$

By Theorem 1 we have $\tau_{\rho}\left(E_{K}\right)=(2-x) \frac{S_{n}(z)-S_{n-2}(z)-2}{z-2}+x S_{n-1}(z)$ if $x \neq 2$. By Proposition 3.2 we have $\operatorname{tr} \rho(\lambda)-2=\frac{x^{2}}{u^{-2}(u+1)\left(x^{2}-4\right)-1}$. Theorem 2 then follows from (5.1).

References

[DHY] J. Dubois, V. Huynh and Y. Yamaguchi, Non-abelian Reidemeister torsion for twist knots, J. Knot Theory Ramifications 18, no. 3 (2009), 303-341.
[HS] J. Hoste and P. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications 13, no. 2 (2004), 193-209.
[Jo] D. JOHNSON, A geometric form of Casson invariant and its connection to Reidemeister torsion, unpublished lecture notes.
[Ki1] T. KITANO, Reidemeister torsion of a 3-manifold obtained by a Dehn-surgery along the figure-eight knot, arXiv:1506.00712.
[Ki2] T. Kitano, Reidemeister torsion of Seifert fibered spaces for $S L_{2}(\mathbf{C})$-representations, Tokyo J. Math. 17, no. 1 (1994), 59-75.
[Ki3] T. Kitano, Reidemeister torsion of the figure-eight knot exterior for $S L_{2}(\mathbf{C})$-representations, Osaka J. Math. 31, no. 3 (1994), 523-532.
[Mi1] J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. 74 (1961), 575-590.
[Mi2] J. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), 137-147.
[Mi3] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 348-426.
[Mo] T. Morifusi, Twisted Alexander polynomials of twist knots for nonabelian representations, Bull. Sci. Math. 132, no. 5 (2008), 439-453.
[Ri] R. Riley, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford Ser. (2) 35 (1984), 191-208.
[Tu] V. TuraEv, Introduction to Combinatorial Torsions, Lectures in Mathematics, Birkhauser, 2001.

Present Address:

Department of Mathematical Sciences, The University of Texas at Dallas, RIChardson, TX 75080, USA.
e-mail: att140830@utdallas.edu

