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Abstract. We discuss the Hausdorff dimension of certain sets related to Diophantine approximations over

an imaginary quadratic field Q(
√

d). We show that, for an infinite subset A of Z[ω]\{0}, the set of z ∈ C with

|z − a/r| < 1/|r|1+ρ having infinitely many solutions of a ∈ Z[ω] and r ∈ A with some ρ > 0 has Hausdorff

dimension 2(1 + γ )/(1 +ρ), where γ is the sup of h such that
∑

r∈A 1/(|r|2)h diverges. This result is a version of a
result by G. Harman for complex numbers without the coprime condition. In particular, this result implies a version
of the classical Jarnik-Besicovitch result when we take A = Z[ω]\{0}. We also discuss the Hausdorff dimension
of the set of complex numbers which have infinitely many solutions to the Diophantine inequality concerning the

Duffin-Schaeffer conjecture over Q(
√

d).

1. Introduction

In the theory of Diophantine approximations, we usually use the Hausdorff dimension
to measure the size of the exceptional sets. In 1929, V. Jarnik [5] proved that the Hausdorff
dimension of the set of r ∈ R such that the inequality∣∣∣r − m

n

∣∣∣ <
1

nq

has infinitely many solutions of rational numbers m/n is 2/q for q > 2, and also in 1934 A.
S. Besicovitch [1] proved the same result. G. Harman [4] then showed a more general result
that the Hausdorff dimension of the set of α ∈ R such that the inequality |qα − p| < q−ρ

with (p, q) = 1 and γ = sup{0 � h : ∑n∈A n−h diverges} for some infinite set A of positive
integers has infinitely many solutions of rational numbers p/q , equals to (1+γ )/(1+ρ). We
note that V. Jarnik and A. S. Besicovitch’s results can be followed as its corollary. G. Harman
also proved that the Hausdorff dimension of the set of real numbers those have infinitely many
solutions to the Diophantine inequality concerning the Duffin-Schaeffer conjecture [3] is 1 by
using this result.
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In this paper, we show a similar result for the imaginary quadratic fields. For a given
square-free negative integer d , we define

ω =
{

(1 + √
d)/2, if d ≡ 1 (mod 4) ,√

d, if d ≡ 2, 3 (mod 4) ,

and denote by Z[ω] the ring of integers of Q(
√

d). In order to avoid the problem of different
prime factor decompositions of an integer in Z[ω], we consider ideals for the uniqueness of
the prime factor decomposition.

We define the set

� =
{
(a, r) : a, r ∈ Z[ω], r �= 0,

a

r
∈ F

}
and

F = {x + yω : x, y ∈ R, 0 � x, y < 1}.
Our main result is the following, which is a complex number version of Theorem 10.6 in [4].

THEOREM 1. For an infinite subset A of Z[ω]\{0}, let

ν = sup

{
h � 0 :

∑
r∈A

(
1

|r|2
)h

= ∞
}

.

For a real number ρ with ρ > ν, define the set

D =
{
z ∈ F :

∣∣∣z − a

r

∣∣∣ < |r|−(1+ρ) has inf initely many (a, r) ∈ � with r ∈ A
}

.

Then we have dimHD = 2(1+ν)
1+ρ

.

If the class number of Q(
√

d) is 1 and A = Z[ω]\{0}, then we have ν = 1 and we see
that for any z ∈ D there exist infinitely many pairs of a and r in Z[ω] with r �= 0 such that

|z−a/r| < |r|−(1+ρ) holds and (a, r) = (1), where (a, r) = (1) means that the ideals (a) and

(r) are coprime. This is because of the following: (i) if a′/r ′ = a/r , |z − a′/r ′| < |r ′|−(1+ρ)

and |r ′| > |r| hold, then |z − a/r| < |r|−(1+ρ) also holds; (ii) there are at most finitely many

pairs of a′ and r ′ with a′/r ′ = a/r such that |z − a′/r ′| < |r ′|−(1+ρ) holds. Thus, in this
case, there is no difference between the inequality with and without the coprime condition on
a and r . This situation is the same as V. Jarnik and A. S. Besicovitch’s result for real numbers.
However, it seems to be not obvious if the class number is not 1.

COROLLARY 1. Suppose that the class number of Q(
√

d) is 1 and put

D0 =
{
z ∈ F :

∣∣∣z − a

r

∣∣∣ < |r|−(1+ρ) has inf initely many (a, r) ∈ � with (a, r) = (1)
}

.

then dimH D0 = 4
1+ρ

for ρ > 1.
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We also consider the set of solutions related to the Duffin-Schaeffer conjecture for complex
numbers from Theorem 1. Following the Duffin-Schaeffer conjecture for real numbers in [3],
we can state it as follows in the case of complex numbers (see [2]).

CONJECTURE 1 (a complex version of the Duffin-Schaeffer conjecture). Suppose
that �((r)) is a non-negative function with

∑
r∈Z[ω]\{0}

	((r))
�2((r))

|r|2

diverges. Define the set

D1 =
{
z ∈ F :

∣∣∣z − a

r

∣∣∣ <
�((r))

|r| has inf initely many (a, r) ∈ � with (a, r) = (1)

}
.

Then D1 has full Lebesgue measure in F.

Here 	((r)) is the Euler function for ideals, that is, it denotes the number of reduced residue
classes modulo (r). Toward this conjecture, we show the following theorem without assuming
(a, r) = (1).

THEOREM 2. Suppose that �((r)) is a non-negative function such that

∑
r∈Z[ω]\{0}

	((r))
�2((r))

|r|2

diverges. Define the set

D2 =
{
z ∈ F :

∣∣∣z − a

r

∣∣∣ <
�((r))

|r| has inf initely many (a, r) ∈ �

}
.

Then we have dimHD2 = 2.

REMARK 1. Recently, the author proved that if �((r)) = O(|r|−1) then D1 has full
Lebesgue measure (see [2]). The author believes that Theorems 1 and 2 hold with the coprime
condition (a, r) = (1). However, the distribution of a

r
with (a, r) = (1) in the fundamental

region F is not uniform for some r ∈ Z[ω]\{0} and this fact makes difficulty to prove them.

REMARK 2. In 1991, H. Nakada and G. Wagner [7] showed Gallagher’s 0-1 laws over
the complex numbers, that is, either D1 or its complement is a set of Lebesgue measure 0
even if ∑

r∈Z[ω]\{0}
�2((r)) = ∞ . (1)

If
∑

r∈Z[ω]\{0} 	((r))�2((r))|r|−2 < ∞, then the normalized Lebesgue measure of D1 is 0

due to the Borel-Cantelli lemma. We can not ignore the possibility that the measure of the set
D2 equals to 0 under the condition (1). In the last section of this paper, by following an idea
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of Duffin and Schaeffer [3], we construct a counter example by giving a sequence of �((r))

which satisfies (1) but the measure of D2 under our choice of {�((r))} is not 1.

2. Proof of the results

First, we define closed disc I in the complex plane with

I =
{
z ∈ C :

∣∣∣z − a

r

∣∣∣ � δ
}

,

where δ is a positive real number and a, r ∈ Z[ω] with r �= 0. We adopt the following as the
definition of the Hausdorff dimension of a subset of complex numbers (see [1] and G. Harman
[4] chapter 10).

DEFINITION 1. Suppose that D is a set of complex numbers. The Hausdorff dimen-
sion of D is equal to d (dimH D = d) if it satisfies the next two conditions:
(1) For any β > d and any ε > 0, there exist a sequence of closed discs in the complex plane
of {Ij }∞j=1, such that

(a) D ⊂ ∪∞
j=1Ij ,

(b)
∞∑

j=1

(diam(Ij ))
β < 1, where diam(·) denotes the diameter of the closed disc,

(c) diam(Ij ) < ε, for any j ∈ N.
(2) For any β < d , there exists ε > 0, such that there is no sequence of closed discs in the
complex plane satisfies all of the above (a), (b) and (c).

Before we prove Theorem 1, we first give two lemmas which will be used later.
Let δ be a positive real number. For any a, r ∈ Z[ω] with r �= 0, put

I0(a, r, δ) :=
{
z ∈ C :

∣∣∣z − a

r

∣∣∣ � δ
}

.

Moreover, for any r ∈ Z[ω] with r �= 0 and any closed disc I in C, we denote by N(r,I)

(resp. N ′(r,I)) the number of a ∈ Z[ω] satisfying I0 ∩ I �= φ (resp. I0(a, r, δ) ⊂ I).

LEMMA 1. Let I be a closed disc with diameter ζ and δ, η real numbers with 0 <

δ < 1
4ζ and 0 < η < 1. Then there exist positive constants c1(d, η), c2(d, η) and R0(d, η),

depending only on d and η, satisfying the following: for any r ∈ Z[ω]\{0} with ζ > |r|η−1

and |r| > R0(d, η), we have

N(r,I) � c1(d, η)ζ 2|r|2 ,

N ′(r,I) � c2(d, η)ζ 2|r|2 .

PROOF. We only consider the case of d ≡ 1 (mod 4). In fact, we can prove the case
of d ≡ 2, 3 (mod 4) in the same way. Suppose z0 ∈ C is the center of I i.e. I = {z ∈ C :
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|z − z0| � ζ
2 }. If I0(a, r, δ) intersects I, then we consider the bigger disc I ′ = {z ∈ C :

|z − z0| � ζ
2 + δ} and count the number of lattice points of a ∈ Z[ω] with a/r ∈ I ′ for a

fixed r ∈ Z[ω]\{0} to estimate N(r,I). Let c1(d) =
√

9−d
2 be the diameter and c2(d) =

√−d
2

be the area of the parallelgram F. Then we have

N(r,I)�
π
((

ζ
2 + δ

) + c1(d)
|r |

)2

c2(d)

|r |2

� π

c2(d)
(ζ |r| + c1(d))2

= π

c2(d)
(ζ 2|r|2 + 2c1(d)ζ |r| + c2

1(d)) .

Since ζ > |r|η−1, ζ−1|r|−1 → 0 as |r| tends to ∞. So we have that for |r| > R0(d, η) with
some large R0(d, η), there is some c1(d, η) > 0 such that

N(r,I) � c1(d, η)ζ 2|r|2 .

Similarly we count the number of lattice points in a smaller disc to estimate N ′(r,I) as fol-
lows:

N ′(r,I)�
π
((

ζ
2 − δ

) − c1(d)
|r |

)2

c2(d)

|r |2

� π

c2(d)

(ζ

4
|r| − c1(d)

)2

= π

c2(d)

(ζ 2

16
|r|2 − c1(d)

2
ζ |r| + c2

1(d)
)

.

So for |r| > R0(d, η), there is some c2(d, η) > 0 such that

N ′(r,I) � c2(d, η)ζ 2|r|2 .

�

The next lemma gives the estimate of the number of two different closed discs which intersect
each other described in Lemma 1.

LEMMA 2. Given a positive integer Q. For δ > 0 and a, r ∈ Z[ω] which r �= 0 and
a/r ∈ F, put

I(a, r, δ) =
{
z ∈ F :

∣∣∣z − a

r

∣∣∣ � δ
}

.

Consider

G = {I(a, r, δ) : (a, r) ∈ �, r ∈ C}
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for any subset C of
{
r ∈ A : |r|2 ∈ (0,Q]}, where A is any infinite subset of Z[ω]\{0}. Then

there is some constant k′(d) > 0 depending on d such that⎛
⎜⎜⎝ ∑

I,J ∈G
I �=J ,I∩J �=φ

1

⎞
⎟⎟⎠ � 4Ndk′(d)δ2Q2|C|2 (2)

where Nd is the number of units of Q(
√

d).

PROOF. We have⎛
⎜⎜⎝ ∑

I,J∈G
I �=J ,I∩J �=φ

1

⎞
⎟⎟⎠�

∑
r,s∈C

∑
a,b∈Z[ω]

a
r , b

s ∈F
0<

∣∣∣ a
r
− b

s

∣∣∣�2δ

1 =
∑
r,s∈C

∑
a,b∈Z[ω]

a
r , b

s ∈F
0<|as−br |�δ|rs|

1

�
∑
r,s∈C

∑
a,k∈Z[ω]

a
r , b

s ∈F
0<|k|�2δQ

as≡k (mod (r))

1 , (3)

for k = as − br . Let U = (r, s) and then there are ideals R′ and S′ such that (r) = UR′ and
(s) = US′. First, we consider the number of k with

U | (k) and 1 � |k|2 � 4δ2Q2 . (4)

Let us denote by T (t) the number of ideals whose norms are smaller than or equal to t > 0
and by N(·) the norm of ideal. Put (k) = UU ′ with an ideal U ′, then the number of (k) which

satisfies (4) equals to the number of U ′ with N(U ′) � 4δ2Q2/N(U) which is smaller than

T (4δ2Q2/N(U)). Fix one k ∈ Z[ω] which satisfies (4) and suppose that a0, b0 ∈ Z[ω] and
a1, b1 ∈ Z[ω] are two different pairs of integers with k = a0s − b0r = a1s − b1r . Then
we have (a0 − a1)S

′ = (b0 − b1)R
′ which shows that a0 and a1 are in the same residue

class modulo the ideal R′. Since the number of residue class modulo the ideal R′ is N(R′)
and the number of a ∈ Z[ω] with a/r ∈ F is |r|2 and these integers a are all in different
residue classes modulo the ideal (r), the number of pairs of a, b ∈ Z[ω] with k = as − br is

|r|2N−1(R′) = N(U) for fixed k ∈ Z[ω]. Thus we have

∑
a,k∈Z[ω]

a
r , b

s ∈F
0<|k|�2δQ

as≡k (mod (r))

1 � Nd · T
(

4δ2Q2

N(U)

)
· N(U) � 4Ndk′(d)

δ2Q2

N(U)
· N(U)

= 4Ndk′(d)δ2Q2 ,
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with some k′(d) > 0. Note that Nd is always a constant. The constant k′(d), depending on
d , exists since the number of units in an imaginary quadratic field is finite and the sequence
{T (n)/n} converges to some constant depending on d by Theorem 1.114 in [6]. By the above
result and inequality (3) we have⎛

⎜⎜⎝ ∑
I,J∈G

I �=J ,I∩J �=φ

1

⎞
⎟⎟⎠ �

∑
r,s∈C

4Ndk′(d)δ2Q2 = 4Ndk′(d)δ2Q2|C|2 .

�

Now we will give the proof of Theorem 1.

PROOF OF THEOREM 1. First, we show (1) of Definition 1 holds for the set D. For
any β > 2(1 + ν)/(1 + ρ) and any ε > 0, we can choose a sufficiently large X > 0 with

2

(X)
1+ρ

2

< ε and
∑
r∈A

|r |2>X

2β

(|r|2)( ρβ+β
2 −1)

< 1 .

This is possible since (ρβ + β)/2 − 1 > ν, which means

∑
r∈A

(
1

|r|2
) ρβ+β

2 −1

< ∞ .

We denote by {I1,I2, . . .} the collection of the discs of the form I0(a, r, |r|−1−ρ), where

a ∈ Z[ω], r ∈ A, |r|2 > X, and a/r ∈ F. Then the set D can be covered by the union of
{Ij }∞j=1 and this satisfies condition (a) in Definition 1. Next, we have

∞∑
j=1

(
diam(Ij )

)β =
∑

(a,r)∈�
r∈A

|r |2>X

(
2

|r|1+ρ

)β

=
∑
r∈A

|r |2>X

2β

(|r|2) ρβ+β
2 −1

< 1 ,

which satisfies condition (b) in Definition 1. Condition (c) holds for our choice of the closed
discs with |r|2 > X, which satisfies

diam(Ij ) = 2

|r|1+ρ
<

2

X
1+ρ

2

< ε

for all j ∈ N. Thus we see that the set D satisfies (1) of Definition 1, i.e., dimHD �
2(1 + ν)/(1 + ρ) holds.

Next, we show that the set D satisfies (2) of Definition 1, i.e., dimHD � 2(1+ν)/(1+ρ).
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Pick some g with 0 � g � ν such that∑
r∈A

(|r|2)−g = ∞ .

Then there are infinitely many integers of K satisfying

∑
r∈A

1
2 K�|r |2<K

1 >
Kg

log2 K
. (5)

We show this by a contradiction. Suppose there are only finitely many rational integers of

{K1,K2, . . . ,KN } which satisfies (5) with some N ∈ N. Let 1
2K0 = max(K1,K2, . . . ,KN),

then we have

∑
r∈A

|r |2< 1
2 K0

(
1

|r|2
)g

< ∞ .

For any K � K0 we have

∑
r∈A

1
2 K�|r |2<K

1 � Kg

log2 K
.

This shows

∑
r∈A

|r |2� 1
2 K0

(
1

|r|2
)g

=
∑
r∈A

1
2 K0�|r |2<K0

1

|r|2g +
∑
r∈A

K0�|r |2<2K0

1

|r|2g + · · ·

�
(

2

K0

)g
(K0)

g

log2(K0)
+

(
1

K0

)g
(2K0)

g

log2(2K0)
+ · · ·

= 2g
(

1

log2(K0)
+ 1

log2(2K0)
+ 1

log2(22K0)
+ · · ·

)

= 2g
∞∑

m=0

1

(k0 + mk′)2 < ∞ (6)

with k0 = log(K0) and k′ = log 2. Hence we have∑
r∈A

(|r|2)−g < ∞ ,

which gives the contradiction.
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Next, let β < 2(1 + g)/(1 + ρ) and choose η > 0 for Lemma 1 with

η � min

(
1

4
(ρ − g) ,

1

4

(
1 + g

1 + ρ
− β

2

))
.

Choose a sequence of integers of {Kj }∞j=0 satisfying the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) K0 = 1,

(ii) K1 > max{2R2
0(d, η), (4Ndk′(d))

1
2η , 2 · 4

1
1−η , ( 8

2ηc2(d,η)
)

1
η , 64

1
1+ρ },

(iii) 2 log2(2|r|2) < |r|2η for all r ∈ Z[ω]\{0} with |r|2 � K1,

(iv) K
1−η
j > K

1+ρ
j−1 and Kj > 4Kj−1 for all j � 1,

(v)
∑
r∈A

1
2 Kj�|r |2<Kj

1 >
(Kj )

g

log2(Kj )
and (Kj )

g

(
1 − 1

log2 Kj

)
� 2 for all j � 1,

(7)

where c2(d, η) and R0(d, η) are from Lemma 1 and k′(d) is the constant from Lemma 2. Let
D′ = D ∩ F′, where F′ is a subset of F defined by

F′ =
{
z ∈ C :

∣∣∣∣z − 1 + ω

2

∣∣∣∣ � 1

4

}
.

Since dimHD′ � dimHD, it is enough to show that dimH D′ � 2(1+ν)
1+ρ

by checking (2) of

Definition 1. Put ε = 2K
−1/2
2 and we will show that for any sequence of closed discs of

{Ij }∞j=1 which satisfies conditions (b) and (c) in Definition 1 does not satisfy (a), that is, if

∞∑
j=1

(diam(Ij ))
β < 1 (8)

and

diam(Ij ) < ε = 2

(
1

K2

) 1
2

for all j ∈ N

hold, then D′ �⊂ ∪∞
j=1Ij . We construct a collection of nested sets {Jj }∞j=1 with J1 ⊃ J2 ⊃

J3 ⊃ · · · so that J = ∩∞
j=1Jj ⊂ D′ and J �⊂ ∪∞

j=1Ij . Then we have D′ �⊂ ∪∞
j=1Ij which

completes our proof.

To do this, we define a sequence of positive real numbers {εj }∞j=0 with εj = 2(Kj )
− 1+ρ

2

for any j � 0. We construct the nested sets {Jj }∞j=1 by induction such that it satisfies the

following four properties:

(P1) Jj is a union of Mj disjoint closed discs with diameters εj = 2(Kj )
− 1+ρ

2 .
(P2) For any Im with diameter between εj and εj−1, we have Im ∩ Jj = φ.

(P3) For any z ∈ Jj , there exist a ∈ Z[ω] and r ∈ A with (1/2)Kj � |r|2 < Kj such that
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|z − a/r| � (Kj )
− 1+ρ

2 with a
r

∈ F′;
(P4) Mj � (Kj )

1+g−2η.
By (P3), we have J ⊂ D′. Since Jj is compact for all j ∈ N, J = ∩∞

j=1Jj �= φ. By (P2),

for any a ∈ J we have a /∈ Ij for all j ∈ N, so a /∈ ∪∞
j=1Ij which shows J �⊂ ∪∞

j=1Ij .

Thus it is enough to construct {Jj }∞j=1 with the above four properties to show D′ �⊂ ∪∞
j=1Ij .

By (7), we can choose a set C1 ⊂ {r ∈ A : K1/2 � |r|2 < K1} such that

(K1)
g

log2 K1
� |C1| � (K1)

g (9)

where |C1| denotes the cardinal of the set C1. Then we construct J1 by using the closed discs
centered at a/r ∈ F′ with r ∈ C1 and their radius are ε1/2 which are wholly within F′.
By Lemma 1, the number of closed discs we could choose is more than c2(d,η)

4

∑
r∈C1

|r|2.
It’s obvious that these closed discs all satisfy the property (P3). By the choice of ε we have
chosen, they also satisfy the property (P2). By Lemma 2 for δ = ε1/2, the number of pairs

of discs intersect to each other is at most 4Ndk′(d)(K1)
1−ρ |C1|2. Remove one disc from each

pairs of discs intersect to each other and denote by M1 the number of the left closed discs such
that property (P1) holds. Now we confirm that M1 satisfies the property (P4). Indeed we have

M1 �
c2(d, η)

4

∑
r∈C1

|r|2 − 4Ndk′(d)(K1)
1−ρ |C1|2

>
c2(d, η)

4

∑
r∈C1

2(|r|2)1−η log2(2|r|2) − 4Ndk′(d)(K1)
−2η(K1)

1+g−2η

>
2ηc2(d, η)

4
(K1)

1−η log2(K1)|C1| − (K1)
1+g−2η

>

(
2ηc2(d, η)K

η
1

4
− 1

)
(K1)

1+g−2η

> (K1)
1+g−2η .

The above discussion implies that J1 can actually be constructed. Suppose Jj has already
been constructed and now we will construct Jj+1. Similarly to the choice of C1, we can find

Cj+1 ⊂ {r ∈ A : Kj+1/2 � |r|2 < Kj+1} which satisfies

(Kj+1)
g

log2 Kj+1
� |Cj+1| � (Kj+1)

g . (10)

We only use the closed discs of {z ∈ C : |z − a/r| � εj+1/2} with a/r ∈ F′ and r ∈ Cj+1

which are wholly within Jj ⊂ J1 ⊂ F′ to construct Jj+1 so that Jj+1 satisfies (P3). The
steps of our construction of Jj+1 are as follows:
(step 1) Choose all the closed discs {z ∈ F′ : |z − a/r| � εj+1/2} which are wholly within
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Jj .
(step 2) Remove the closed discs which intersect to each other such that all the left closed
discs are all disjoint.
(step 3) Remove all the closed discs which intersect some closed discs in {Ij }∞j=1 whose

diameter is between εj+1 and εj .

(step 4) Confirm the number of closed discs, that is, whether Mj+1 � (Kj+1)
1+g−2η or not.

(step 5) If (step 4) satisfies property (P4), then define Jj+1 as the union of the left closed
discs.

Let ζ = εj and δ = εj+1/2 = (Kj+1)
− 1+ρ

2 . By our choice of {Kj } in (7) we have δ <

(4Kj)
− 1+ρ

2 < (1/4)εj = (1/4)ζ . From our choice of Kj in (7) with (Kj+1)
1−η > (Kj )

1+ρ ,
the number of closed discs which are wholly within Jj is more than

c2(d, η)Mjε
2
j

∑
r∈Cj+1

|r|2 (11)

by using Lemma 1. By Lemma 2 for δ = εj+1/2, we have that the number of pairs of closed
discs which intersect to each other is less than

4Ndk′(d)
(εj+1

2

)2
(Kj+1)

2|Cj+1|2 = 4Ndk′(d)(Kj+1)
1−ρ |Cj+1|2 . (12)

Define

Fj = {I ∈ {Ij }∞j=1 : εj+1 � diam(I) < εj } ,

and put

F (1)
j =

{
I ∈ Fj : 2

(
1

Kj+1

) 1−η
2

� diam(I) < εj

}
,

F (2)
j =

{
I ∈ Fj : εj+1 � diam(I) < 2

(
1

Kj+1

) 1−η
2
}

.

By Lemma 1, we have that the number of closed discs in Jj+1 which intersect some closed
discs in Fj is less than

∑
I∈F (1)

j

∑
r∈Cj+1

c1(d, η)(diam(I))2|r|2 +
∑

I∈F (2)
j

∑
r∈Cj+1

(
5

2
(diam(I) + εj+1)|r|

)2

(13)

for some c1(d, η) > 0. From (8) we see∑
I∈F (1)

j

c1(d, η)(diam(I))2
∑

r∈Cj+1

|r|2 =
∑

I∈F (1)
j

c1(d, η)(diam(I))2−β(diam(I))β
∑

r∈Cj+1

|r|2
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� c1(d, η)(εj )
2−β

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ .

Since

(εj )
2−β = 22−β

(
1

Kj

) (1+ρ)
2 (2−β)

< 4

(
1

Kj

) (1+ρ)
2 (2−β)−4ηρ

� 4

(
1

Kj

)ρ−g+4η

,

we have

∑
I∈F (1)

j

c1(d, η)(diam(I))2
∑

r∈Cj+1

|r|2 < 4c1(d, η)(Kj )
g−ρ−4η

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ . (14)

The estimate of the second sum in (13) is

∑
I∈F (2)

j

∑
r∈Cj+1

(
5

2
(diam(I) + εj+1)|r|

)2

< 100

(
1

Kj+1

) (1−η)
2 (2−β) ∑

r∈Cj+1

|r|2

< 100

(
1

Kj+1

)3η
⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ , (15)

since

(1 − η)

2
(2 − β) − 3η = 1 − 4η − β

2
+ βη

2
� ρ − g

1 + ρ
+ βη

2
> 0 .

Finally, we estimate Mj+1 in (step 4). From (11), (12), (14), and (15) we have

Mj+1 � c2(d, η)Mjε
2
j

∑
r∈Cj+1

|r|2 − 4Ndk′(d)(Kj+1)
1−ρ |Cj+1|2

− 4c1(d, η)(Kj )
g−ρ−4η

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ − 100(Kj+1)

−3η

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ . (16)

By (7) and 4η � ρ − g , we have

4Ndk′(d)(Kj+1)
1−ρ |Cj+1|2

� 4Ndk′(d)(Kj+1)
1−ρ(Kj+1)

2g

� 4Ndk′(d)(Kj+1)
1+g−4η

= 4Ndk′(d)(Kj+1)
g (Kj+1)

1−η(Kj+1)
−3η

= 4Ndk′(d)
1

2
· 21−η · (Kj+1)

−3η (Kj+1)
g

log2(Kj+1)
· 2

(
1

2
Kj+1

)1−η

log2(Kj+1)



HAUSDORFF DIMENSION 453

< 4Ndk′(d)(Kj+1)
−3η

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ . (17)

From (16) and (17), we get

Mj+1

>

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠(

c2(d, η)Mjε
2
j − 4c1(d, η)(Kj )

g−ρ−4η − (4Ndk′(d) + 100)(Kj+1)
−3η

)

�

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠(

4c2(d,η)(Kj )
g−ρ−2η−4c1(d,η)(Kj )

g−ρ−4η−(4Ndk
′(d)+100)(Kj+1)

−3η
)

Here, we can add some more conditions to our choice of {Kj } for all j � 1:

K1 >

(
2c1(d, η)

c2(d, η)
+ (2Ndk′(d) + 50)

) 1
η

, (18)

Kj >

(
(Kj−1)

ρ+2η−g

2c2(d, η)

) 1
η

. (19)

By (19), we have

(Kj+1)
−3η < (Kj )

−2η · (Kj+1)
−η < (Kj )

−2η · 2c2(d, η)(Kj )
g−ρ−2η

and then we see

Mj+1 >

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ 2c2(d, η)(Kj )

g−ρ−2η

(
2 −

(
2c1(d, η)

c2(d, η)
+ (2Ndk′(d) + 50)

)
(Kj )

−2η

)

>

⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ 2c2(d, η)(Kj )

g−ρ−2η .

Since ⎛
⎝ ∑

r∈Cj+1

|r|2
⎞
⎠ >

∑
r∈Cj+1

2 · (|r|2)1−η log2(2|r|2)

� (Kj+1)
g

log2(Kj+1)
· 2

(
1

2
Kj+1

)1−η

log2(Kj+1)

= 2η(Kj+1)
1−η+g
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and by (19), we have

(Kj )
g−ρ−2η >

(Kj+1)
−η

2c2(d, η)
.

This gives

Mj+1 > 2η(Kj+1)
1−η+g · 2c2(d, η) · (Kj+1)

−η

2c2(d, η)

= 2η(Kj+1)
1+g−2η > (Kj+1)

1+g−2η

which satisfies the property (P4). So we can actually construct Jj+1 from Jj . By this con-

struction, we have D′ �⊂ ∪∞
j=1Ij . Thus we see that dimH D′ � 2(1+ν)

1+ρ
, which completes the

proof of Theorem 1. �

Next, we give the proof of Theorem 2 by using Theorem 1.

PROOF OF THEOREM 2. From Theorem 1.1 in [2] we see if �((r)) = O(|r|−1) then
D2 has the full Lebesgue measure which also means dimH D2 = 2. Thus it is enough to

only consider the case of �((r)) = O(|r|−1) doesn’t hold, i.e., there are infinitely many

r ∈ Z[ω]\{0} such that �((r)) > |r|−1. Let’s define

�̂((r)) =
{

�((r)), if �((r)) > |r|−1,

0, otherwise,

and put A′ = {r ∈ Z[ω]\{0} : �̂((r)) �= 0}. If
∑

r∈A′ 	((r))�̂2((r))|r|−2 converges,

then
∑

r /∈A′ 	((r))�2((r))|r|−2 diverges. By Theorem 1.1 in [2] again, the Hausdorff di-
mension of the set D2 is 2 for the sequence {�((r))}. Now let’s consider the case of∑

r∈A′ 	((r))�̂2((r))|r|−2 diverges. In this case, it is enough to prove it with {�̂((r))} in-
stead of {�((r))}.

We restrict �̂((r)) � 1 for all r ∈ Z[ω]\{0} without loss of generality. For any given
ε > 0, let

A(m) = {r ∈ A′ : |r|−(m+1)ε < �̂((r)) � |r|−mε}
for 0 � m < [ε−1] and put

A([ε−1]) = {r ∈ A′ : |r|−1 < �̂((r)) � |r|−[ε−1]ε} .

Since

∑
r∈A′

�̂2((r)) =

[
1
ε

]
∑
m=0

∑
r∈A(m)

�̂2((r)) = ∞ ,
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there is at least one m with 0 � m � [ε−1] such that∑
r∈A(m)

�̂2((r)) = ∞ (20)

with |A(m)| = ∞. By (20) and (|r|2)−mε � 1, there exists a sequence of {Bn} of pairwise
disjoint nonempty subsets of A(m) satisfying the following conditions:
(1) A = ∪∞

n=1Bn.

(2) Let n � n′ be any positive integers. Then, for any r ∈ Bn and r ′ ∈ Bn′ , we have |r| � |r ′|.
(3) For any positive integer n, we have

1 �
∑
r∈Bn

(
1

|r|2
)mε

� 2 .

For any n ∈ N, put ηn = 2−n. Then there exists kn ∈ N such that

∑
r∈Bk

(
1

|r|2
)mε+ηn

<
1

2n−1
(21)

holds for any k � kn. So we have a sequence {kn} with k1 < k2 < k3 < · · · which satisfies
(21). Put B = ∪∞

j=1Bkj , then B is an infinite subset of A(m) and obviously satisfies

∑
r∈B

(
1

|r|2
)mε

= ∞ .

For any h > mε, there exists some n0 ∈ N with h > mε + ηn for all n � n0, which shows

∑
r∈B

(
1

|r|2
)h

<
∑

r∈∪n0−1
j=1 Bkj

(
1

|r|2
)h

+
∞∑

j=n0

∑
r∈Bkj

(
1

|r|2
)mε+ηj

<
∑

r∈∪n0−1
j=1 Bkj

(
1

|r|2
)h

+
∞∑

j=n0

1

2j−1 < ∞ .

Thus B is an infinite subset of A(m) satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
r∈B

(
1

|r|2
)h

= ∞, if h � mε,

∑
r∈B

(
1

|r|2
)h

< ∞, if h > mε.

Let

D′
2 =

{
z ∈ F :

∣∣∣z − a

r

∣∣∣ <
1

|r|1+(m+1)ε
has inf initely many (a, r) ∈ � with r ∈ B

}
.
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Then we have dimHD2 � dimHD′
2 since D′

2 ⊂ D2. Let ν = mε and ρ = (m + 1)ε. By
Theorem 1 we see

2 � dimHD2 � dimHD′
2 = 2(1 + ν)

1 + ρ
= 2(1 + mε)

1 + mε + ε
> 2 − 2ε .

Since ε > 0 is arbitrary, we have dimH D2 = 2. �

3. An example

In this section, we show a counter example stated in Remark 2 following the example
of [3]. We denote by λ the normalized Lebesgue measure of F, i.e., λ(F) = 1, and give a

sequence {�((r))} with
∑

r∈Z[ω]\{0} �2((r)) = ∞ such that λ(D2) < 1. First, we give the

complex version of Lemma V in [3] as follows:

LEMMA 3. Let R and ε be given positive numbers. There is an infinite sequence
{�((r))} of non-negative numbers with �((r)) = 0 for all but finitely many r such that

∑
�2((r)) > 1,

∑
	((r))

�2((r))

|r|2 < cdε, �((r)) = 0 whenever |r| � R ,

where cd is some constant depending on d , but for z ∈ F the inequality∣∣∣z − a

r

∣∣∣ <
�((r))

|r|
for some a, r ∈ Z[ω] can be satisfied only in a set of λ-measure smaller than ε.

PROOF. Let Nd be the number of units of the imaginary quadratic field Q(
√

d). Fix

some α > 0 with α <
√−d

2Ndk′(d)π
ε and we can choose prime numbers p1, p2, . . . , pk such that

k∏
i=1

(
1 + 1

pi

)
> 1 + 1

Ndα

where pi > R for 1 � i � k, since
∑

p:prime

1

p
diverges. Denote by (u) a principal ideal as

(u) = (p1)(p2) · · · (pk) =
∏

P |(u)

P c where P denotes the prime ideal and c � 0. Note that

here we do not need (pi) are all prime ideals, and for any ideal U with U | (u) it can be

denoted by U =
∏
P |U

P c′
with 0 � c′ � c. We define �((r)) as follows:

�((r)) =
{

α1/2|r |1/2

|u|1/2 , if |r| > 1 and (r) | (u)

0, otherwise.
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Define the set

E(r) =
⋃

|a|2�|r |2
a∈Z[ω]

{
z ∈ F :

∣∣∣z − a

r

∣∣∣ <
�((r))

|r|
}

and put

E =
⋃

(r)|(u)
(r) �=(1)

E(r) .

Since E(r) ⊂ E(u) for all (r) with (r)|(u), we have

λ(E) = λ(E(u)) � π
Ndα

|u|2 · 2√−d
· k′(d)|u|2 = 2Ndk′(d)π√−d

α < ε .

Also we have

∑
r∈Z[ω]\{0}

(r)|(u)
(r) �=(1)

�2((r)) = α

|u|
∑

r∈Z[ω]\{0}
(r)|(u)
(r) �=(1)

|r|�Nd
α

|u|

(
k∏

i=1

(1 + pi) − 1

)

�Ndα

(
k∏

i=1

(
1 + 1

pi

)
− 1

)
> 1

and

∑
r∈Z[ω]\{0}

(r)|(u)
(r) �=(1)

	((r))
�2((r))

|r|2 = Ndα

|u|
∑

(r)|(u)
(r) �=(1)

	((r))

|r| � Ndα

|u|
∑

U :ideals
U |(u)

	(U)

(N(U))1/2

= Ndα

|u|
∑

U :ideals
U |(u)

1

(N(U))1/2

∏
P |U

	(P c′
)

= Ndα

|u|
∏

P |(u)

(
1 + 	(P)

(N(P ))1/2
+ 	(P 2)

(N(P 2))1/2
+ · · · + 	(Pc)

(N(P c))1/2

)

<
2Ndα

|u|
∏

P |(u)

(N(P ))c/2 = 2Ndα <

√−d

k′(d)π
ε .

Thus, we see that the sequence {�((r))} with �((r)) defined above is the required finite
sequence. �

Now let R1 = 1 and we have a sequence {�(1)((r))} which satisfies Lemma 3 with

R = R1 and ε = 2−1. Then for some R2 with �(1)((r)) = 0 for all |r| � R2,
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let R = R2 and ε = 2−2 and we have another sequence {�(2)((r))} which satisfies
Lemma 3. We do this process infinitely many times and obtain infinitely many sequences

of {�(1)((r))}, {�(2)((r))}, . . . , {�(n)((r))}, . . .. Let �((r)) = ∑∞
k=1 �(k)((r)) for all

r ∈ Z[ω]\{0}, then we see ∑
r∈Z[ω]\{0}

�2((r)) = ∞ ,

whereas

∑
r∈Z[ω]\{0}

	((r))
�2((r))

|r|2 < ∞ .

However, λ-measure of the set of z ∈ F satisfies inequality |z − a/r| < �((r))/|r| is smaller

than 1 by our choice of {�((r))}, which means λ(D2) < 1. Thus even
∑

r∈Z[ω]\{0} �2((r)) =
∞, we cannot ignore the possibility of the case λ(D2) = 0, and from our choice of {�((r))}
we see

∑
	((r))�2((r))|r|−2 < ∞ in this case.
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