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Abstract. Let M be a non-compact complete Riemannian manifold of dimension two and N a circle in M.
We assume that M is partitioned by N . We define a unital C∗-algebra C∗

b (M), which is slightly larger than the Roe

algebra of M. We also construct [uφ] in K1(C
∗
b
(M)), which is a counter part of Roe’s odd index class. We prove

that Connes’ pairing of Roe’s cyclic one-cocycle with [uφ] is equal to the Fredholm index of a Toeplitz operator on

N . It is a part of an extension of the Roe-Higson index theorem to even-dimensional partitioned manifolds.

1. Introduction

LetM be a complete Riemannian manifold. We assume thatM is a partitioned manifold,
that is, there exists a closed hypersurface N in M such that M is decomposed by N into two
submanifolds M+ and M− and we have N = M+ ∩ M− = ∂M+ = ∂M−; see Definition
2.1. Let S → M be a Clifford bundle in the sense of [10, Definition 3.4] and D the Dirac
operator on S defined by its Clifford structure. Denote by SN the restriction of S to N and by
ν the unit normal vector field on N pointing from M− into M+. Then SN can be equipped
with a Z2(= Z/2Z)-graded Clifford bundle structure, where a Z2-graded structure of SN is
induced by the Clifford action of ν. Denote by DN the graded Dirac operator on SN .

Let C∗(M) be the Roe algebra of M . C∗(M) is a non-unital C∗-algebra, which is intro-
duced by Roe [9]. In [9], He also defined the odd index class odd-ind(D) ∈ K1(C

∗(M))
out of D. It is given by [uD] − [1] in K1(C

∗(M)), where uD is the Cayley transform of
D. Note that odd-ind(D) vanishes for a closed manifold M since we obtain K1(C

∗(M)) =
K1(K(L2(S))) = 0. He also defined the cyclic one-cocycle ζ on a dense subalgebra of
C∗(M), which is called the Roe cocycle. Recall that there is a pairing of cyclic cohomology
with K-theory due to Connes [3]. In [9], Roe proved that Connes’ pairing 〈odd-ind(D), ζ 〉
is equal to the Fredholm index of D+

N up to a certain constant multiple. In [6], Higson gave
an alternative proof of Roe’s theorem, thus we call it the Roe-Higson index theorem in this
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paper. Higson calculated index(1 − ϕ+ ϕuD) as follows, where ϕ is a smooth function onM
which is equal to the characteristic function ofM+ outside of the compact set. First, he proved
index(1−ϕ+ϕuD) = index(D+

N) the case whenM = R×N by proving the dimension of the

kernel ofD± i(2ϕ− 1), a Callias-type operator, is equal to that ofD±
N , respectively. Second,

he reduce the proof for a general partitioned manifoldM to the case when M = R ×N .
On the other hand, index(D+

N) is equal to zero when N is odd-dimensional (see, for in-
stance, [10, Proposition 11.14]). This implies that the Roe-Higson index 〈odd-ind(D), ζ 〉 is
trivial whenM is of even dimension. However, Connes’ pairing of the Roe cocycle ζ with an
element in K1(C

∗(M)) is non trivial in general. In this paper, we shall develop an index the-
orem on even-dimensional partitioned manifold analogous to the Roe-Higson index theorem.
For this purpose, we replace two parts, Roe’s odd index class odd-ind(D) ∈ K1(C

∗(M)) and
the Dirac operator D+

N by an index class [uφ] ∈ K1(C
∗
b (M)) and a Toeplitz operator on N ,

respectively. Here, C∗
b (M) is a C∗-algebra which is slightly larger than C∗(M); see Defini-

tion 2.5. Then it turns out that Connes’ pairing 〈[uφ], ζ 〉 is equal to the Fredholm index of a
Toeplitz operator on N up to a certain constant multiple. The precise statement is as follows.

THEOREM 1.1 (see Theorem 2.13). LetM be an oriented complete Riemannian man-
ifold. We assume that M is of dimension two and is partitioned manifold as previously. Let
S be a Z2-graded spin bundle over M with the grading ε and denote by D the graded Dirac

operator on S. Denote by φ ∈ C1(M ; GLl(C)) a GLl(C)-valued map of C1-class defined

on M . Suppose that φ is bounded with bounded gradient and φ−1 is also bounded. Set

uφ := (D + ε)−1
[
φ 0
0 1

]
(D + ε) .

Then the following formula holds:

〈[uφ], ζ 〉 = − 1

8πi
index(Tφ|N ) .

The outline of the proof is as follows. First, when M is a cylinder R × S1, we carry
out an explicit computation on index(Tφ) by using the Hilbert transformation and a standard

basis {eikx}k of L2(S1) in order to prove the equality. Then the proof for a general case can

be reduced to that of a cylinder R × S1 by applying a similar argument in Higson [6].
Certainly, it is interesting to extend our theorem to higher dimensional cases. In order to

do this, we need a more general method. It is discussed in a forthcoming paper [11], where
we also discuss a KK-theoretic construction of our index class [uφ] ∈ K1(C

∗
b (M)).

2. Main Theorem

In this section, we state our main theorem.

DEFINITION 2.1. Let M be an oriented complete Riemannian manifold. We assume
that the triple (M+,M−, N) satisfies the following conditions:
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FIGURE 1. Partitioned manifold

• M+ and M− are submanifolds of M of the same dimension as M , ∂M+ �= ∅ and
∂M− �= ∅,

• M = M+ ∪M−,
• N is a closed submanifold of M of codimension one,
• N = M+ ∩M− = −∂M+ = ∂M−.

Then we call (M+,M−, N) a partition of M . M is also called a partitioned manifold.

In this paper, we assume that (M, g) is an oriented two-dimensional complete Riemann-
ian manifold (i.e. a complete Riemannian surface) that admits a partition (M+,M−, N).
Let S be a spin bundle of M 1 with the Z2-grading ε. Denote by c the Clifford action on
S and denote by D the graded Dirac operator on S. For the simplicity, we assume that M

is connected and that N is isometric to the unit circle S1. Then we also assume S|N , that
is a vector bundle on N of rank two, is isomorphic to a product bundle. Denote by ν the
unit normal vector field on N pointing from M− to M+. We introduce coordinate x ∈ N

with {ν, ∂/∂x} is an orthonormal vector field on N ⊂ M . In these notation, we also assume

c(ν)c(d/dx) =
[
i 0
0 −i

]
on S|N .

REMARK 2.2. We are interested in the case that M is non compact, then S is isomor-

phic to a product bundle: S ∼= M × C2. Especially, if M = R2 ∼= C with standard metric,
then one has

D = 2

[
0 −∂/∂z̄

∂/∂z 0

]
.

DEFINITION 2.3 [9, p.191]. Let L(L2(S)) be the set of all bounded operators on the

L2-sections of S. We denote by X the ∗-subalgebra of L(L2(S)) with the element has a
smooth integral-kernel and finite propagation. We denote by C∗(M) the completion of X .
We call C∗(M) the Roe algebra.

The definition of C∗(M) in Definition 2.3 is Roe’s first definition. In fact, we get same
algebra of the definition in [7, Definition 6.3.8]. In the following, we collect some properties
of the Roe algebra which we shall need.

1Every orientable surface admits a spin structure [8, p.88]. We fix one.
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PROPOSITION 2.4 [7, 9]. We assume that M , S and D are as above. The followings
hold.

(i) Let f ∈ C0(R) be a continuous function on R vanishing at infinity and λ ∈ R. Set

D′ := D +
[

0 λ

λ 0

]
. Then one has f (D′) ∈ C∗(M).

(ii) Let D∗(M) be the unital C∗-algebra generated by all pseudolocal operators on

L2(S)2with finite propagation. Then C∗(M) is a closed bisided ∗-ideal of D∗(M).
(iii) For all u ∈ C∗(M) and f ∈ C0(M), one has f u ∼ 0 and uf ∼ 0. Here, define T ∼ S

for T , S ∈ L(L2(S)) if T − S is a compact operator.
(iv) Let 
 be the characteristic function of M+. Then one has [
,u] ∼ 0 for all u ∈

C∗(M). Here we consider
 as a multiplication operator.

By using Proposition 2.4, we define elements in a K1 group. First, we define the unital
C∗-algebra C∗

b (M). C
∗
b (M) contains C∗(M) as a closed bisided ∗-ideal and our elements are

in K1(C
∗
b (M)).

DEFINITION 2.5. Let Cb(M) be the set of all bounded continuous functions on M .
We consider any bounded functions onM as a multiplication operator on L2(S). Set

C∗
b (M) :=

{
u+

[
f 0
0 g

]
; u ∈ C∗(M), f, g ∈ Cb(M)

}
.

Set ‖f ‖ := supx∈M |f (x)| for f ∈ C(M) and ‖X‖ := supx∈M
√
gx(X,X) for X ∈

X (M).

PROPOSITION 2.6. Let φ ∈ C1(M;GLl(C)) be a continuously differentiable map
from M to the general linear group GLl(C). We assume that ‖φ‖ < ∞, ‖grad(φ)‖ < ∞
and ‖φ−1‖ < ∞. Set

uφ := (D + ε)−1
[
φ 0
0 1

]
(D + ε) . (1)

One has uφ ∈ GLl(C∗
b (M)). Thus one has [uφ] ∈ K1(C

∗
b (M)).

PROOF. It suffices to show the case when l = 1. First, we obtain (D + ε)−1 ∈ C∗(M)
and ‖(D + ε)−1‖ ≤ 2 since (D + ε)−1 = (D2 + 1)−1(D + ε) ∈ C∗(M). On the other hand,
it follows

uφσ = (D + ε)−1
[
φ 0
0 1

] [
1 D−
D+ −1

]
σ

= (D + ε)−1
[
φ D−φ −D−φ + φD−
D+ −1

]
σ

2T ∈ L(L2(S)) is pseudolocal if [f, T ] ∼ 0 for all f ∈ C0(M), that is, [f, T ] is compact.
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= (D + ε)−1
(
(D + ε)

[
1 0
0 φ

]
+

[
φ − 1 [φ,D−]

0 φ − 1

])
σ

=
[

1 0
0 φ

]
σ + (D + ε)−1

[
φ − 1 −c(grad(φ))−

0 φ − 1

]
σ

for any σ ∈ C∞
c (S), where c(grad(φ))− is the restriction of c(grad(φ)) to S−. This implies

‖uφσ‖L2 ≤ 3(‖φ‖ + ‖grad(φ)‖ + 1)‖σ‖L2 .

Thus uφ is uniquely extended to a bounded operator on L2(S) since C∞
c (S) is dense in L2(S).

This proves uφ ∈ C∗
b (M).

Second, since grad(φ−1) = −φ−2grad(φ), so we obtain ‖grad(φ−1)‖ < ∞. This
implies uφ−1 ∈ C∗

b (M) and uφ−1 = (uφ)
−1. So we get uφ ∈ GL1(C

∗
b (M)) and [uφ] ∈

K1(C
∗
b (M)). �

REMARK 2.7. Due to Proposition 2.6, one has

[uφ] −
[

1 0
0 φ

]
∈ K1(C

∗(M)) .

But we do not use this point of view for the simplicity of Connes’ pairing.

Next, we see Connes’ pairing of the Roe’s cyclic one-cocycle with [uφ] ∈ K1(C
∗
b (M)).

Let 
 be the characteristic function of M+, and set χ := 2
 − 1. We note that [χ, u] is
a compact operator for all u ∈ C∗

b (M) since [χ, f ] = 0 for all f ∈ Cb(M). We define a
Banach algebra such as

Ab := {A ∈ C∗
b (M) ; [χ,A] is of trace class}

with norm ‖A‖Ab
:= ‖A‖+‖[χ,A]‖1, where ‖ · ‖ is the operator norm on L2(S) and ‖ · ‖1 is

the trace norm. We define a cyclic one-cocycle on Ab and take the pairing of it with a element
in K1(C

∗
b (M)).

DEFINITION 2.8. For any A,B ∈ Ab, set

ζ(A,B) := 1

4
Tr(χ[χ,A][χ,B]) . (2)

We call ζ the Roe cocycle.

PROPOSITION 2.9 [9, Proposition 1.6]. ζ is a cyclic one-cocycle on Ab.

In order to take Connes’ pairing of the Roe cocycle ζ with a element in K1(C
∗
b (M)), we

need the following:

PROPOSITION 2.10. Ab is dense and closed under holomorphic functional calculus
in C∗

b (M). So the inclusion i : Ab → C∗
b (M) induces the isomorphism i∗ : K1(Ab) ∼=

K1(C
∗
b (M)).
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PROOF. Set

Xb :=
{
u+

[
f 0
0 g

]
; u ∈ X , f, g ∈ Cb(M)

}
.

Xb is a dense subalgebra in C∗
b (M) and we have Xb ⊂ Ab [9, Proposition 1.6]. So Ab is

dense in C∗
b (M).

The rest of proof is in [3, p.92]. �

Using Proposition 2.10, we can take the pairing of the Roe cocycle with an element in
K1(C

∗
b (M)) through the isomorphism i∗ : K1(Ab) ∼= K1(C

∗
b (M)) as follows:

DEFINITION 2.11 [3, p.109]. Define the map

〈·, ζ 〉 : K1(C
∗
b (M)) → C

by 〈[u], ζ 〉 := 1
8πi

∑
i,j ζ((u

−1)ji , uij ), where we assume [u] is represented by an element of

GLl(Ab) and uij is the (i, j)-component of u. We note that this is Connes’ pairing of cyclic

cohomology with K-theory, and 1
8πi is a constant multiple appears in Connes’ pairing.

The goal of this paper is to prove that the result of this pairing with [uφ] is the Fredholm

index of a Toeplitz operator. We review Toeplitz operators on S1 to fix notations.

PROPOSITION 2.12 [4]. Let φ ∈ C(S1 ; GLl(C)) be a continuous map from S1 to

GLl(C). Set H := SpanC{eikx ; k = 0, 1, 2, . . . } ⊂ L2(S1) 3 and let P : L2(S1)l → Hl

be the projection. Then for any f ∈ Hl , we define Toeplitz operator Tφ : Hl → Hl

by Tφf := P(φf ). Then Tφ is a Fredholm operator and the Fredholm index satisfies

index(Tφ) = −deg(det(φ)). Here deg(det(φ)) is the degree of the map det(φ) : S1 → C×.

We note that the Hardy space H is generated by non-negative eigenfunctions of −i∂/∂x,

which is a Dirac operator on S1. See also [1, p.160].
Using the above notation, we state our main theorem as follows. For the definition of uφ ,

see (1) in Proposition 2.6 and for the definition of ζ , see (2) in Definition 2.8.

THEOREM 2.13. We denote the restriction of φ ∈ C1(M;GLl(C)) to N by the same
letter φ. Then the following formula holds:

〈[uφ], ζ 〉 = − 1

8πi
index(Tφ) .

Here index(Tφ) of the right hand side is the Fredholm index of the Toeplitz operator of φ.

By the index theorem of Toeplitz operators (Proposition 2.12), the right hand side of this
theorem is calculated by the mapping degree. Thus the above theorem can be considered as an
index theorem for the pairing 〈[uφ], ζ 〉. Moreover, due to Section 3, we obtain the following:

3H is called the Hardy space.
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COROLLARY 2.14. Using the above notation, one has

index(
uφ
 : 
(L2(S))l → 
(L2(S))l) = −deg(det(φ)) .

The proof for Theorem 2.13 will be provided in Sections 3, 4 and 5.

3. The pairing and the Fredholm index

In order to prove Theorem 2.13, we firstly describe ζ(u−1, u) = ∑
i,j ζ((u

−1)ji , uij ) in

terms of the Fredholm index of a certain operator.

PROPOSITION 3.1. For any u ∈ GLl(Ab), one has

ζ(u−1, u) = −index(
u
 : 
(L2(S))l → 
(L2(S))l) .

PROOF. Since u ∈ GLl(Ab) and


 −
u−1
u
 = −
 [
,u−1][
,u]
 ,

so 
 − 
u−1
u
 and 
 − 
u
u−1
 are of trace class on 
(L2(S))l . Therefore we
obtain

index(
u
 : 
(L2(S))l → 
(L2(S))l) = Tr(
 −
u−1
u
)− Tr(
 −
u
u−1
)

by [3, p.88]. So we get

index(
u
 : 
(L2(S))l → 
(L2(S))l) = 1

4
Tr(χ[χ, u][χ, u−1])

=1

4

∑
i,j

Tr(χ[χ, uij ][χ, (u−1)ji ]) = −ζ(u−1, u) .

�

Due to Proposition 3.1 and homotopy invariance of the Fredholm index, we obtain the
following:

〈[uφ], ζ 〉 = − 1

8πi
index(
uφ
 : 
(L2(S))l → 
(L2(S))l) . (3)

So we shall calculate this Fredholm index.

4. The R × S1 case

We firstly prove Theorem 2.13 in the case for M = R × S1. In this section, we assume
that the productM = R × S1 is partitioned by (R+ × S1,R− × S1, {0} × S1), where R+ :=
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{t ∈ R ; t ≥ 0} and R− := {t ∈ R ; t ≤ 0} are half lines. Then the Dirac operator D on

S = R × S1 × C2 is given by the following formula:

D =
[

0 −∂/∂t − i∂/∂x

∂/∂t − i∂/∂x 0

]
,

where we use the coordinate (t, x) ∈ R × S1. Given a continuously differentiable map

φ ∈ C1(S1;GLl(C)), we define the map φ̃ : R × S1 → GLl(C) by φ̃(t, x) := φ(x).

We often denote φ̃ by φ in the sequel.

In order to calculate index(
uφ
 : 
(L2(S))l → 
(L2(S))l ), we firstly perturb this
operator by a homotopy.

PROPOSITION 4.1. For any s ∈ [0, 1], set

Ds :=
[

0 −∂/∂t + s/2 − i∂/∂x

∂/∂t + s/2 − i∂/∂x 0

]
= D +

[
0 s/2
s/2 0

]

and uφ,s := (Ds + (1 − s)ε)−1
[
φ 0
0 1

]
(Ds + (1 − s)ε) .

Then [0, 1] � s �→ uφ,s ∈ GLl(C∗
b (M)) is continuous.

PROOF. It suffices to show the case when l = 1. We note that ‖Dsf ‖L2 ≥ s‖f ‖L2/2
for any f ∈ domain(Ds) = domain(D) and s ∈ (0, 1]. Moreover Ds is self-adjoint.

Therefore the spectrum of Ds and (−s/2, s/2) are disjoint, especially D−1
1 ∈ L(L2(S)).

Since (Ds + (1 − s)ε)2 = D2
s + (1 − s)2, so we obtain (Ds + (1 − s)ε)−1 ∈ C∗(M).

Therefore uφ,s is well defined as a closed operator densely defined on domain(uφ,s) =
domain(D). By a similar proof of Proposition 2.6, we obtain

uφ,s =
[

1 0
0 φ

]
+ (Ds + (1 − s)ε)−1

[
(1 − s)(φ − 1) i∂φ/∂x

0 (1 − s)(φ − 1)

]

and uφ,s ∈ GL1(C
∗
b (M)).

Next we show ‖uφ,s − uφ,s ′‖ → 0 as s → s′ for all s′ ∈ [0, 1]. First, we show

{‖(Ds + (1 − s)ε)−1‖}s∈[0,1] is a bounded set. Set fs(x) := x
x2+(1−s)2 and gs (x) := 1

x2+(1−s)2
for x ∈ R \ (−s/2, s/2). By simple computation, we can show

sup
|x|≥s/2

|fs(x)| ≤ 5

2
and sup

|x|≥s/2
|gs(x)| ≤ 5

4
.

Therefore we obtain

‖(Ds + (1 − s)ε)−1‖ ≤ ‖(D2
s + (1 − s)2)−1Ds‖ + ‖(1 − s)(D2

s + (1 − s)2)−1‖
≤ sup

|x|≥s/2
|fs(x)| + sup

|x|≥s/2
|gs (x)| ≤ 15/4 (∗)



ROE-HIGSON INDEX THEOREM IN RIEMANNIAN SURFACES 431

for all s ∈ [0, 1]. On the other hand, we have

uφ,s − uφ,s ′

={(Ds + (1 − s)ε)−1 − (Ds ′ + (1 − s′)ε)−1}
[
(1 − s)(φ − 1) iφ′

0 (1 − s)(φ − 1)

]

+ (Ds ′ + (1 − s′)ε)−1
[
(s′ − s)(φ − 1) 0

0 (s′ − s)(φ − 1)

]

and the second term converges to 0 with the operator norm as s → s′, thus it suffices to show

‖(Ds + (1 − s)ε)−1 − (Ds ′ + (1 − s′)ε)−1‖ → 0 as s → s′. But this is proved by (∗) as
follows:

‖(Ds + (1 − s)ε)−1 − (Ds ′ + (1 − s′)ε)−1‖
=‖(Ds + (1 − s)ε)−1((s − s′)ε +Ds ′ −Ds)(Ds ′ + (1 − s′)ε)−1‖

≤3

2
|s − s′|‖(Ds ′ + (1 − s′)ε)−1‖‖(Ds + (1 − s)ε)−1‖

≤32|s − s′| → 0 .

�

Due to Proposition 4.1, we obtain

index(
uφ
) = index(
uφ,0
) = index(
uφ,1
) .

Set

Tφ := 
(−∂/∂t + 1/2 − i∂/∂x)−1φ(−∂/∂t + 1/2 − i∂/∂x)
 .

Since we have 
uφ,1
 =
[

 0
0 Tφ

]
, so index(
uφ
) equals to

index
(
Tφ : 
(L2(R))⊗ L2(S1)l → 
(L2(R))⊗ L2(S1)l

)
.

Next, we treat the Fredholm index of Tφ . Let F : L2(R) → L2(R) be the Fourier
transformation:

F [f ](ξ) :=
∫

R
e−ixξf (x)dx .

Let H : L2(R) → L2(R) be the Hilbert transformation 4:

Hf (t) := i

π
p.v.

∫
R

f (y)

t − y
dy ,

4In literature, the coefficient of the Hilbert transformation in the right hand side is usually 1/π . We need a
coefficient i/π in order to get H 2 = id.
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where p.v. is Cauchy’s principal value. H can be verified H 2 = id. Then we denote by

P̂ : L2(R) → H− the projection to the (−1)-eigenspace H− of H , that is, P̂ := 1
2 (id −H).

Since F induces a invertible operator from
(L2(R)) to H−, so we obtain

index
(
Tφ : 
(L2(R))⊗ L2(S1) → 
(L2(R))⊗ L2(S1)

)
=index

(
FTφF

−1 : H− ⊗ L2(S1) → H− ⊗ L2(S1)
)
.

Set

T̂φ := FTφF
−1 = P̂ (−it + 1/2 − i∂/∂x)−1φ(−it + 1/2 − i∂/∂x)P̂ ∗ .

In order to calculate the Fredholm index of T̂φ , we use a basis of L2(R) consisting of eigen-
vectors of the Hilbert transformation.

PROPOSITION 4.2 [12, Theorem 1]. Define ρn ∈ L2(R) by

ρn(t) := (t − i)n

(t + i)n+1 .

Then {ρn/√π} is an orthonormal basis of L2(R) and one has

Hρn =
{
ρn if n < 0

−ρn if n ≥ 0
.

Due to Proposition 4.2, we obtain H− = SpanC{ρn ; n ≥ 0} and we can calculate
following Fredholm indices.

LEMMA 4.3. For any α, β �= 0, P̂
t + iβ

t + iα
P̂ ∗ ∈ L(H−) is a Fredholm operator and

one has

index

(
P̂
t + iβ

t + iα
P̂ ∗

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 if αβ > 0

−1 if α > 0, β < 0

1 if α < 0, β > 0

.

PROOF. Basically, our proof is adopted from [2, p.99]. Let c : R → S1(⊂ C) be

the Cayley transformation: c(t) := (t − i)(t + i)−1. Set Φ(g)(t) := (t + i)−1g(c(t)) for

any g ∈ L2(S1). Then Φ : L2(S1) → L2(R) is an invertible bounded linear operator with

‖Φ‖ = 1/
√

2 and Φ−1(f )(z) = (c−1(z)+ i)f (c−1(z)) for all f ∈ L2(R) and z ∈ S1 \ {1}.
Since Φ(einx) = ρn, so P̂ ϕP̂ ∗ is a Fredholm operator on H− for any ϕ ∈ C∞(R; C×) with
limt→∞ ϕ(t) = limt→−∞ ϕ(t) ∈ C×. Now, we can calculate∣∣∣∣ t + iβ

t + iα

∣∣∣∣
2

= t2 + β2

t2 + α2
> 0
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and limt→±∞ t+iβ
t+iα = 1. Therefore P̂ t+iβ

t+iα P̂
∗ is a Fredholm operator.

We calculate index(P̂ t+iβ
t+iα P̂

∗). Set sgn(α) :=
{

1 if α ≥ 0

−1 if α < 0
. Then we define a

homotopy of Fredholm operators from P̂
t+iβ
t+iα P̂

∗ to P̂ t+isgn(β)
t+isgn(α) P̂

∗ by

P̂
t + i(sβ + (1 − s)sgn(β))

t + i(sα + (1 − s)sgn(α))
P̂ ∗

for s ∈ [0, 1]. Therefore we obtain

index

(
P̂
t + iβ

t + iα
P̂ ∗

)
= index

(
P̂
t + isgn(β)

t + isgn(α)
P̂ ∗

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 if αβ > 0

−1 if α > 0, β < 0

1 if α < 0, β > 0

by H− = SpanC{ρn ; n ≥ 0}. �

Set φk(x) = eikx on S1 for k ∈ Z. By using Lemma 4.3, we calculate

index(T̂φk : H− ⊗ L2(S1) → H− ⊗ L2(S1)) ,

which turns out to be index(Tφk ) for the classical Toeplitz operator.

PROPOSITION 4.4. One has index(
uφk
) = index(T̂φk ) = −k = index(Tφk ).

PROOF. The first equality is proved above in this section and the last equality is well
known. So it suffices to show the second equality. Let Eλ := C{eiλx} be the λ-eigenspace of

−i∂/∂x. On H− ⊗ Eλ, T̂φk acts as

P̂ (−it + 1/2 + λ+ k)−1(−it + 1/2 + λ)P̂ ∗ ⊗ φk

and T̂φk (H− ⊗ Eλ) is contained in H− ⊗ Eλ+k . Therefore we obtain

index(T̂φk )

=
∞∑

λ=−∞
index

(
P̂

t + i(λ+ 1/2)

t + i(λ+ k + 1/2)
P̂ ∗ ⊗ φk : H− ⊗ Eλ → H− ⊗Eλ+k

)

= − k

by Lemma 4.3. �

Next, let φ ∈ C1(S1;GLl(C)) be any mapping of C1-class. We prove index(T̂φ) =
index(Tφ). For this purpose, we reduce to Proposition 4.4.

As well known (see, for instance, [5, Example 4.55]), the inclusion i : C(S1; S1) →
C(S1;GLl(C)) defined by i(f ) :=

[
f 0
0 1l−1

]
induces the isomorphism on fundamental
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groups i∗ : π1(S
1) → π1(GLl(C)). In fact, the homotopy class of φk is correspond-

ing to k ∈ Z ∼= π1(S
1). Therefore φ is homotopic to

[
φk 0
0 1l−1

]
in C(S1 ; GLl(C))

for some k ∈ Z. We denote this homotopy by ψs . Moreover, since C1(S1) is dense and

closed under holomorphic functional calculus in C(S1), so we can take this homotopy ψs in
C1(S1;GLl(C)).

PROPOSITION 4.5. uψs is a continuous path in L(L2(S)l).

PROOF. By the proof of Proposition 2.6, we obtain

uψs =
[

1 0
0 ψs

]
+ (D + ε)−1

[
ψs − 1 iψ ′

s

0 ψs − 1

]
.

This implies

‖uψs − uψs′ ‖ ≤ 3‖ψs − ψs ′ ‖C1 → 0

as s → s′ since ψs is a continuous path in C1(S1;GLl(C)). �

PROOF OF THEOREM 2.13 FOR M = R × S1. Due to Proposition 4.5, we have

index(
uφ
) = index

(



[
uφk 0
0 1l−1

]



)
= index(
uφk
)

for some k ∈ Z. On the other hand, since φ is homotopic to

[
φk 0
0 1l−1

]
, so we obtain

index(Tφk ) = index(Tφ). Due to Proposition 4.4, we obtain index(
uφ
) = index(Tφ),
which completes the proof with (3) in Section 3. �

5. The general two-manifold case

In this section we reduce the proof for the general two-dimensional manifold to the proof

for R × S1. Our argument is similar to Higson’s in [6]. Firstly, we shall show cobordism
invariance of the pairing. See also [6, Lemma 1.4].

LEMMA 5.1. Let (M+,M−, N) and (M+′,M−′, N ′) be two partitions of M . We as-
sume these two partitions are cobordant, that is, symmetric differences M±�M∓′ are com-
pact. Let 
 and 
 ′ be the characteristic function of M+ and M+′, respectively. We assume

φ ∈ C1(M ; GLl(C)) satisfies ‖φ‖ < ∞, ‖grad(φ)‖ < ∞ and ‖φ−1‖ < ∞. Then one has
index(
uφ
) = index(
 ′uφ
 ′).

PROOF. It suffices to show the case when l = 1. Because of [φ,
 ] = 0 and [uφ,
 ] ∼
0, we obtain

index(
uφ
 : 
(L2(S)) → 
(L2(S)))
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=index

(
(1 −
)

[
1 0
0 φ

]
+
uφ
 : L2(S) → L2(S)

)

=index

(
(1 −
)

[
1 0
0 φ

]
+
uφ : L2(S) → L2(S)

)

=index

([
1 0
0 φ

]
+
vφ : L2(S) → L2(S)

)
,

where set vφ := uφ −
[

1 0
0 φ

]
∈ C∗(M). Therefore it suffices to show 
vφ ∼ 
 ′vφ . Now,

since M±�M∓′ are compact, there exists f ∈ C0(M) such that 
 −
 ′ = (
 −
 ′)f . So
we obtain
vφ −
 ′vφ = (
 −
 ′)f vφ ∼ 0. �

Secondly, we shall prove an analogue of Higson’s lemma [6, Lemma 3.1].

LEMMA 5.2. Let M1 and M2 be two oriented complete Riemannian manifolds with a
partition (M+

1 ,M
−
1 , N1) and (M+

2 ,M
−
2 , N2), respectively, and Sj a Hermitian vector bundle

over Mj . Let 
j be the characteristic function of M+
j . We assume that there exists an

isometry γ : M+
2 → M+

1 which lifts an isomorphism γ ∗ : S1|M+
1

→ S2|M+
2

. We denote the

Hilbert space isometry defined by γ ∗ by the same letter γ ∗ : 
1(L
2(S1)) → 
2(L

2(S2)). We
assume uj ∈ GLl(C

∗
b (Mj )) satisfies γ ∗u1
1 ∼ 
2u2γ

∗. Then one has index(
1u1
1) =
index(
2u2
2).

Similarly, if there exists an isometry γ : M−
2 → M−

1 which lifts an isomorphism γ ∗ :
S1|M−

1
→ S2|M−

2
and γ ∗u1
1 ∼ 
2u2γ

∗, then one has index(
1u1
1) = index(
2u2
2).

PROOF. It suffices to show the case when l = 1. Let v : (1 − 
1)(L
2(S1)) → (1 −


2)(L
2(S2)) be any invertible operator. Then V := γ ∗
1 + v(1 −
1) : L2(S1) → L2(S2)

is also invertible. Hence we obtain

V ((1 −
1)+
1u1
1)− ((1 −
2)+
2u2
2)V

= − γ ∗
1 +
2γ
∗ + γ ∗
1u1
1 −
2u2
2γ

∗

∼ γ ∗u1
1 −
2u2γ
∗ ∼ 0 .

Therefore we obtain index(
1u1
1) = index(
2u2
2) since V is an invertible operator and
we have index(
juj
j ) = index((1 −
j)+
juj
j ) for j = 1, 2. �

Applying Lemma 5.2, we prove the following:

COROLLARY 5.3. Let Mj be an oriented complete Riemannian surface with a par-

tition (M+
j ,M

−
j , Nj ) and Sj a graded spin bundle over Mj with the grading εj . We as-

sume that there exists an isometry γ : M+
2 → M+

1 which defines the Hilbert space isom-

etry γ ∗ : 
1(L
2(S1)) → 
2(L

2(S2)) as in Lemma 5.2 and γ ∗ satisfies D2γ
∗ ∼ γ ∗D1
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and ε2γ
∗ ∼ γ ∗ε1 on 
1(L

2(S1)). Let φj ∈ C1(Mj ; GLl(C)) satisfies ‖φj‖ < ∞,

‖grad(φj )‖ < ∞ and ‖φ−1
j ‖ < ∞ as in Proposition 2.6. Assume that φ1 and φ2 satisfy

φ1(γ (x)) = φ2(x) for all x ∈ M+
2 . Then we obtain index(
1uφ1
1) = index(
2uφ2
2).

PROOF. It suffices to show γ ∗uφ1
1 ∼ 
2uφ2γ
∗. Let ϕ1 be a smooth function on M1

such that Supp(ϕ1) ⊂ M+
1 and there exists a compact set K1 ⊂ M1 such that ϕ1 = 
1 on

M1 \ K1. Set ϕ2(x) := ϕ1(γ (x)) for all x ∈ M+
2 and ϕ2 = 0 on M−

2 . Then ϕ2 is a smooth

function on M2 such that Supp(ϕ2) ⊂ M+
2 and there exists a compact set K2 ⊂ M2 such that

ϕ2 = 
2 on M2 \K2. Set vφj := uφj −
[

1 0
0 φj

]
. Then we obtain γ ∗vφ1
1 ∼ γ ∗vφ1ϕ1 and


2vφ2γ
∗ ∼ ϕ2vφ2γ

∗. So if γ ∗vφ1ϕ1 ∼ ϕ2vφ2γ
∗, then we obtain

γ ∗uφ1
1 ∼ γ ∗vφ1ϕ1 + γ ∗
[

1 0
0 φ1

]

1 ∼ ϕ2vφ2γ

∗ +
2

[
1 0
0 φ2

]
γ ∗ ∼ 
2uφ2γ

∗.

So it suffices to show γ ∗vφ1ϕ1 ∼ ϕ2vφ2γ
∗. In fact, we obtain

γ ∗vφ1ϕ1 − ϕ2vφ2γ
∗

= γ ∗(D1 + ε1)
−1

[
φ1 − 1 −c(grad(φ1))

−
0 φ1 − 1

]
ϕ1

− ϕ2(D2 + ε2)
−1

[
φ2 − 1 −c(grad(φ2))

−
0 φ2 − 1

]
γ ∗

= {γ ∗(D1 + ε1)
−1ϕ1 − ϕ2(D2 + ε2)

−1γ ∗}
[
φ1 − 1 −c(grad(φ1))

−
0 φ1 − 1

]

∼ {γ ∗ϕ1(D1 + ε1)
−1 − (D2 + ε2)

−1γ ∗ϕ1}
[
φ1 − 1 −c(grad(φ1))

−
0 φ1 − 1

]

= (D2 + ε2)
−1{(D2 + ε2)γ

∗ϕ1 − γ ∗ϕ1(D1 + ε1)}(D1 + ε1)
−1

[
φ1 − 1 −c(grad(φ1))

−
0 φ1 − 1

]

∼ (D2 + ε2)
−1γ ∗[D1, ϕ1](D1 + ε1)

−1
[
φ1 − 1 −c(grad(φ1))

−
0 φ1 − 1

]

∼ 0

since grad(ϕ1) has a compact support and we have [D1, ϕ1] = c(grad(ϕ1)). Thus we obtain
γ ∗uφ1
1 ∼ 
2uφ2γ

∗. Therefore we get index(
1uφ1
1) = index(
2uφ2
2) by Lemma
5.2. �

PROOF OF THEOREM 2.13, THE GENERAL CASE. Firstly, let a∈C∞([−1,1];[−1,1])
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satisfies

a(t) =

⎧⎪⎪⎨
⎪⎪⎩

−1 if − 1 ≤ t ≤ −3/4

0 if − 2/4 ≤ t ≤ 2/4

1 if 3/4 ≤ t ≤ 1

.

Let (−4δ, 4δ)× N be diffeomorphic to a tubular neighborhood of N in M satisfies

sup
(t,x),(s,y)∈[−3δ,3δ]×N

|φ(t, x)− φ(s, y)| < ‖φ−1‖−1 .

Set ψ(t, x) := φ(4δa(t), x) on (−4δ, 4δ) × N and ψ = φ on M \ (−4δ, 4δ) × N . Then
we obtain ψ ∈ C1(M ; GLl(C)) and ‖ψ − φ‖ < ‖φ−1‖−1. Thus a map [0, 1] � t �→
ψt := tψ + (1 − t)φ satisfies ψt ∈ C1(M ; GLl(C)), ‖ψt‖ < ∞, ‖grad(ψt)‖ < ∞,

‖ψ−1
t ‖ < ∞, ‖ψt − ψt ′ ‖ → 0 as t → t ′ ∈ [0, 1] and ‖grad(ψt) − grad(ψt ′)‖ → 0 as

t → t ′ ∈ [0, 1]. Therefore it suffices to show the case of which φ satisfies φ(t, x) = φ(0, x)
on (−2δ, 2δ)×N . Due to Lemma 5.1, we may change a partition ofM to (M+ ∪ ([−δ, 0] ×
N),M− \ ((−δ, 0]×N), {−δ}×N) without changing index(
uφ
). Then due to Corollary

5.3, we may changeM+ ∪ ([−δ, 0] ×N) to [−δ,∞)×N without changing index(
uφ
).
Here φ is equals to φ(0, x) on [−δ,∞) × N and the metric on [δ,∞) × N is product. We
denote this manifold by M ′ := ([−δ,∞) × N) ∪ (M− \ ((−δ, 0] × N)). M ′ is partitioned
by ([−δ,∞)× N,M− \ ((−δ, 0] ×N), {−δ} ×N). We apply a similar argument to M ′, we
may changeM ′ to a product manifold R×N without changing index(
uφ
). Now we have

changedM to R × N = R × S1. �

6. Example

In this section, we exhibit an example of a partitioned manifold that is not diffeomorphic

to R × S1 with non-trivial pairing 〈[uφ], ζ 〉.
Let Σ2 be a closed Riemannian surface of genus two and C and C′ two disjoint subman-

ifolds of Σ2, respectively, whose homology class give generators of H1(Σ2; Z) (see Figure

2). Then we cut Σ2 along C and C′ and embed it to R3 as in Figure 3.

We assume this embedded surface S is an oriented Riemannian submanifold in R3. Then
we paste many copies of S like the Cayley graph of F2, where we denote by F2 a free group
with two generators. Denote this surface by M . Then M is a covering space on Σ2 and F2

acts freely onM as a deck transformation. Denote by π : M → Σ2 this covering map.

Let N ⊂ π−1(C) be a connected component of π−1(C). Then M is decomposed by N
into two components. So we can define M+ and M− which satisfy N = ∂M−. ThereforeM
is a partitioned manifold.

On the other hand, there exists aC1-map ϕ : Σ2 → GLl(C) such that deg(det(ϕ|C)) �= 0

since [C] �= 0. For example, we choose ψ : S1 → GLl(C) such that deg(det(ψ)) �= 0, and



438 TATSUKI SETO

FIGURE 2
FIGURE 3

we extend on T 2 = S1 ×S1 trivially. Then we can define such ϕ onΣ2 throughΣ2 = T 2#T 2.
Set φ := ϕ ◦ π , then φ satisfies assumptions in Theorem 2.13.

In above setting, we obtain deg(det(φ|N)) = deg(det(ϕ|C)). Therefore we get
〈[uφ], ζ 〉 �= 0.
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