Non-Hopf Hypersurfaces in 2-dimensional Complex Space Forms

Mayuko KON

Shinshu University

(Communicated by K. Ahara)

Abstract. In this paper we give a geometric characterization of non-Hopf hypersurfaces in the complex space form $M^2(c)$ under a condition on the shape operator. We also classify pseudo-parallel real hypersurfaces of $M^2(c)$.

1. Introduction

It is an interesting problem to study real hypersurfaces immersed in the complex space form $M^n(c)$ under a condition on curvature tensor, or the Ricci tensor, or sectional curvature. In this paper we consider the case of the 2-dimensional complex space form $M^2(c)$. In [3], Ivey and Ryan constructed some examples of non-Hopf real hypersurfaces in the non-flat complex space form $M^2(c)$. Let M be a real hypersurface in the complex hyperbolic space CH^2 or the complex projective space CP^2 . We denote by (ϕ, ξ, η, g) an almost contact metric structure. At each $p \in M$, we define a subspace $\mathcal{H}_p \subset T_pM$ as the smallest subspace that contains the structure vector field ξ and that is invariant under the shape operator A. We assume that $\mathcal{H} = \bigsqcup_p \mathcal{H}_p$ is a smooth two-dimensional distribution on M. Then we obtain an adapted orthonormal frame $\{\xi, X, \phi X\}$ with respect to which the shape operator has the form

$$A = \begin{pmatrix} \alpha & h & 0 \\ h & \lambda & 0 \\ 0 & 0 & \nu \end{pmatrix}, \tag{1}$$

where \mathcal{H} is spanned by ξ and X at each point.

THEOREM A ([3]). Let $\alpha(t)$, h(t), $\lambda(t)$, $\nu(t)$ be analytic functions on an open interval

Mathematics Subject Classification: 53C40, 53C55, 53C25

Key words and phrases: non-Hopf hypersurface, shape operator, Ricci tensor, complex space form

Received March 26, 2015; revised May 24, 2016

 $I \subset \mathbf{R}$ satisfying the underdetermined ODE system

$$\alpha' = h(\alpha + \lambda - 3\nu),$$

$$h' = h^2 + \lambda^2 - 2\lambda\nu + \alpha\nu + c,$$

$$\lambda' = \frac{(2\lambda + \nu)h^2 + (\nu - \lambda)(\alpha\lambda - \lambda^2 + c)}{h},$$
(2)

with h(t) nowhere zero. Let $\gamma(t)$ be a unit-speed analytic framed curve in $M^2(c)$, defined for $t \in I$, with transverse curvature v(t), zero holomorphic curvature and zero torsion. Then there exists a non-Hopf hypersurface M^3 such that

- (i) the distribution \mathcal{H} is rank 2 and integrable;
- (ii) *M* has a globally defined frame $\{\xi, X, \phi X\}$ with respect to which the shape operator has the form (1), such that α , *h*, λ and *v* are constant along the leaves of *H*, and
- (iii) *M* contains γ as a principal curve to which the vector field $Y = \phi X$ is tangent, and along which the restricted components of *A* coincide with the given solution of the ODE system.

In section 3, we consider a condition on the shape operator that contains the totally η umbilical condition. We show that some non-Hopf hypersurfaces related to Theorem A also satisfy this condition. We shall prove

THEOREM 1. Let M be a real hypersurface in $M^2(c)$, $c \neq 0$. Suppose there exists a smooth function $a : M \to \mathbf{R}$ such that g(AX, Y) = ag(X, Y) for any vector fields X and Y orthogonal to the structure vector field ξ . Then M is locally congruent to one of the following;

- (a) a totally η -umbilical real hypersurface,
- (b) a ruled real hypersurface,
- (c) a real hypersurface with the shape operator

$$A = \begin{pmatrix} \alpha & h & 0 \\ h & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

with respect to an orthonormal frame $\{\xi, e_1, \phi e_1\}$, and for a principal curve $\gamma(t)$ $(t \in I, \gamma' = \phi e_1)$, satisfying

$$\alpha' = h\alpha - 2ha,$$

$$h' = c - a^2 + a\alpha + h^2,$$

$$a' = 3ha.$$
(3)

The corresponding result for a real hypersurface of $M^n(c)$, $n \ge 3$, $c \ne 0$, is given by Ortega [11].

THEOREM B ([11]). Let M be a real hypersurface of $M^n(c)$, $n \ge 3$, $c \ne 0$. Suppose there exists a smooth function $a : M \rightarrow \mathbf{R}$ such that g(AX, Y) = ag(X, Y) for any vector fields X and Y orthogonal to ξ . Then M is locally congruent to one of the following:

- (a) a totally η -umbilical real hypersurface,
- (b) a ruled real hypersurface.

If the curvature tensor R and the Ricci operator S satisfy $R(X, Y) \cdot S = 0$ for any vector fields X and Y, then M is called a *pseudo-Ryan* hypersurface. In [3], as a result of Theorem A, Ivey and Ryan gave an example of a pseudo-Ryan hypersurface in $M^2(c)$.

THEOREM C ([3]). Let $\alpha(t)$, h(t), $\lambda(t)$, $\nu(t)$ be analytic solutions defined on I of the system (2), such that h is nowhere zero and the equation

$$h^2 \nu^2 + (4c + \lambda \nu)(\alpha(\lambda - \nu) - h^2) = 0$$

holds. Then the hypersurface M constructed by Theorem A is a non-Hopf pseudo-Ryan hypersurface.

In Section 4, we consider a condition that the Ricci operator S is *pseudo-parallel*, that is,

$$R(X, Y) \cdot S = F(X \wedge Y) \cdot S,$$

where F is a function, which contains the pseudo-Ryan condition. We define the wedge product $X \wedge Y$ by

$$(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y$$

for vectors X and Y. It is shown that a ruled real hypersurface in non-flat complex space form $M^2(c)$, $c \neq 0$ cannot have a pseudo-parallel Ricci operator ([2], [6]). In [6], Inoguchi gave a conjecture that real hypersurfaces in a non-flat complex space form $M^2(c)$ with pseudo-parallel Ricci operator are Hopf. We prove the following theorem which gives the negative result.

THEOREM 2. Let M be a real hypersurface in $M^2(c)$, $c \neq 0$. If the Ricci operator S is pseudo-parallel, then M is a Hopf hypersurface or a non-Hopf hypersurface such that the shape operator has the form

$$A = \begin{pmatrix} \alpha & h & 0 \\ h & a_1 & 0 \\ 0 & 0 & a_2 \end{pmatrix}$$

with respect to an orthonormal frame $\{\xi, e_1, e_2\}$, and

$$0 = (a_2\alpha - a_1\alpha + h^2)(3c + a_1a_2 - a_1\alpha + h^2) - a_2^2h^2,$$

 $F = c + a_1 \alpha - h^2 \,.$

If there exists a function F such that

 $g((R(X, Y)S)Z, W) = Fg(((X \land Y)S)Z, W),$

for all X, Y, Z and W orthogonal to ξ , then the real hypersurface is said to be pseudo η parallel, which is a weaker condition than pseudo-parallel. When M is a real hypersurface of $M^n(c), n \ge 3, c \ne 0$, the author showed the following.

THEOREM D ([7]). Let M be a real hypersurface in a complex space form $M^n(c)$, $c \neq 0$, $n \geq 3$. Then the Ricci operator S is pseudo η -parallel if and only if M is pseudo-Einstein.

We remark that a pseudo-Einstein real hypersurface is a Hopf hypersurface.

2. Preliminaries

Let $M^n(c)$ denote the complex space form of complex dimension n (real dimension 2n) with constant holomorphic sectional curvature 4c. We denote by J the almost complex structure of $M^n(c)$. The Hermitian metric of $M^n(c)$ will be denoted by G.

Let *M* be a real (2n - 1)-dimensional hypersurface immersed in $M^n(c)$. We denote by *g* the Riemannian metric induced on *M* from *G*. We take the unit normal vector field *N* of *M* in $M^n(c)$. For any vector field *X* tangent to *M*, we define ϕ , η and ξ by

$$JX = \phi X + \eta(X)N, \quad JN = -\xi,$$

where ϕX is the tangential part of JX, ϕ is a tensor field of type (1,1), η is a 1-form, and ξ is the unit vector field on M. Then they satisfy

$$\phi^2 X = -X + \eta(X)\xi$$
, $\phi\xi = 0$, $\eta(\phi X) = 0$

for any vector field X tangent to M. Moreover, we have

$$g(\phi X, Y) + g(X, \phi Y) = 0, \quad \eta(X) = g(X, \xi),$$
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).$$

Thus (ϕ, ξ, η, g) defines an almost contact metric structure on *M*.

We denote by $\tilde{\nabla}$ the operator of covariant differentiation in $M^n(c)$, and by ∇ the one in *M* determined by the induced metric. Then the *Gauss and Weingarten formulas* are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \quad \tilde{\nabla}_X N = -AX$$

for any vector fields X and Y tangent to M. We call A the shape operator of M. If the shape operator A of M satisfies $A\xi = \alpha\xi$ for some functions α , then M is called a Hopf hypersurface.

For the almost contact metric structure on *M*, we have

$$\nabla_X \xi = \phi A X$$
, $(\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi$.

If the shape operator A of a real hypersurface M is of the form A = aI, where I is the identity, then M is said to be totally umbilical. In Tashiro-Tachibana [13], it was proved that any real hypersurface of $M^n(c)$, $c \neq 0$, is not totally umbilical. So we need the notion of totally η umbilical real hypersurfaces, that is, the shape operator A is of the form $A = aI + b\eta \otimes \xi$.

PROPOSITION E ([12]). The only totally η -umbilical real hypersurfaces in $\mathbb{C}P^n$, $n \ge 2$, are geodesic hyperspheres.

PROPOSITION F ([9], [10]). The only totally η -umbilical real hypersurfaces in $\mathbb{C}H^n$, $n \geq 2$, are horospheres, geodesic hyperspheres and tubes over complex hyperbolic hyperplane.

We denote by R the Riemannian curvature tensor field of M. Then the *equation of Gauss* is given by

$$R(X, Y)Z = c\{g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X$$
$$- g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z\}$$
$$+ g(AY, Z)AX - g(AX, Z)AY,$$

and the equation of Codazzi by

$$(\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\}.$$

From the equation of Gauss, the Ricci operator S of M satisfies

$$g(SX, Y) = (2n+1)cg(X, Y) - 3c\eta(X)\eta(Y)$$

+ TrAg(AX, Y) - g(AX, AY), (4)

where TrA is the trace of A. The scalar curvature r is defined by

$$r = \text{Tr}S$$

EXAMPLE ([5], [8]). Let M be a real hypersurface of a complex space form $M^n(c)$, $c \neq 0$, and let T_0 be the distribution defined by $T_0(x) = \{X \in T_x(M) | X \perp \xi\}$ for $x \in M$. If T_0 is integrable and its integral manifold is a totally geodesic submanifold $M^{n-1}(c)$, then M is called a *ruled real hypersurface*. Let $\gamma(t)$ $(t \in I)$ be an arbitrary (regular) curve in $M^n(c)$. Then for every $t \in I$ there exists a totally geodesic submanifold $M^{n-1}(c)$ in $M^n(c)$ which is orthogonal to the plane τ_t spanned by $\{\gamma'(t), J\gamma'(t)\}$. Here we denote by $M_t^{n-1}(c)$ such a totally geodesic submanifold. Let $M = \{x \in M_t^{n-1}(c) | t \in I\}$. Then the construction of M asserts that M is a ruled real hypersurface in $M^n(c)$.

that there are many ruled real hypersurfaces. The *holomorphic sectional curvature* H of a ruled real hypersurface M is 4c (see [4]).

3. A condition of shape operator

In this section, we prove Theorem 1. As a consequence of this theorem, we have the following.

COROLLARY 1. Let M be a real hypersurface in $M^2(c)$, $c \neq 0$. Suppose there exists a constant $a : M \to \mathbf{R}$ such that g(AX, Y) = ag(X, Y) for any vector fields X and Y orthogonal to ξ . Then M is locally congruent to one of the following:

- (a) a totally η -umbilical real hypersurface,
- (b) a ruled real hypersurface.

First we prove the following

LEMMA 1. Let *M* be a real hypersurface in $M^2(c)$. Suppose that there exists a smooth function $a : M \to \mathbf{R}$ such that g(AX, Y) = ag(X, Y) for any vector fields X and Y orthogonal to ξ , then *M* is a Hopf hypersurface or the shape operator A is represented by a matrix

$$A = \begin{pmatrix} \alpha & h & 0 \\ h & a & 0 \\ 0 & 0 & a \end{pmatrix}$$
(5)

with respect to a suitable orthonormal frame $\{\xi, u, \phi u\}$, locally.

PROOF. By the assumption, we can take an orthonormal frame $\{\xi, e_1, e_2 = \phi e_1\}$, such that A is represented by a matrix

$$A = \begin{pmatrix} \alpha & k_1 & k_2 \\ k_1 & a & 0 \\ k_2 & 0 & a \end{pmatrix},$$

locally, for suitable functions k_1 , k_2 and α . We take a unit vector u that satisfies

$$A\xi = \alpha\xi + hu, \quad g(\xi, u) = 0$$

where *h* is a function. Then $\{\xi, u, \phi u\}$ is another orthonormal frame of $T_x(M)$. We can represent *u* as

$$u=u_1e_1+u_2e_2.$$

Using this, we have

$$g(Au, u) = g(A(u_1e_1 + u_2e_2), u_1e_1 + u_2e_2)$$

= $u_1^2g(Ae_1, e_1) + 2u_1u_2g(Ae_1, e_2) + u_2^2g(Ae_2, e_2)$

$$= a(u_1^2 + u_2^2) = a \, .$$

Similarly, we also have $g(A\phi u, \phi u) = a$. Moreover, we obtain

$$g(Au, \phi u) = g(A(u_1e_1 + u_2e_2), u_1\phi e_1 + u_2\phi e_2)$$

= $g(A(u_1e_1 + u_2e_2), u_1e_2 - u_2e_1)$
= $-u_1u_2a + u_2u_1a = 0.$

From these equations, there exists an orthonormal frame $\{\xi, u, \phi u\}$ of $T_x(M)$ such that the shape operator A is of the form (5).

Using the equation of Codazzi, we obtain

LEMMA 2. Let M be a real hypersurface in $M^2(c)$, $c \neq 0$. If there exists an orthonormal frame $\{\xi, e_1, e_2\}$ on a sufficiently small neighborhood \mathcal{N} of $x \in M$ such that the shape operator A can be represented as

$$A = \begin{pmatrix} \alpha & h & 0 \\ h & a & 0 \\ 0 & 0 & a \end{pmatrix},$$

then we have

$$(e_1a) = 0, (6)$$

$$(-2c + 2a^2 - 2a\alpha) + hg(\nabla_{e_1}e_2, e_1) + (e_2h) = 0,$$
(7)

$$(e_2a) = 3ha \,, \tag{8}$$

$$(\xi a) = hg(\nabla_{e_2} e_1, e_2),$$
(9)

$$(e_2h) = c + a\alpha - a^2 + h^2, (10)$$

$$-h(\alpha - 3a) + hg(\nabla_{\xi} e_2, e_1) + (e_2\alpha) = 0, \qquad (11)$$

$$(e_1h) - (\xi a) = 0,$$
(11)
(12)

$$(e_1\alpha) - (\xi h) = 0.$$
 (13)

PROOF. By the equation of Codazzi, we have

$$g((\nabla_{e_2}A)e_1 - (\nabla_{e_1}A)e_2, e_2) = 0.$$

On the other hand, we have

$$g((\nabla_{e_2} A)e_1 - (\nabla_{e_1} A)e_2, e_2)$$

= $g(\nabla_{e_2} (Ae_1) - A\nabla_{e_2} e_1 - \nabla_{e_1} (Ae_2) + A\nabla_{e_1} e_2, e_2)$
= $-(e_1 a)$.

Thus we obtain (6). By the similar computation, we have our equations.

When *M* is not a Hopf hypersurface, then we can take $x \in M$ and a sufficiently small neighborhood of *x*, on which $h \neq 0$. In the following, we consider the case that $a \neq 0$ on the neighborhood.

LEMMA 3. If $h \neq 0$ and $a \neq 0$, then,

$$\begin{aligned} \nabla_{e_1} e_1 &= \frac{-c + a^2 - a\alpha + h^2}{h} e_2 ,\\ \nabla_{e_1} e_2 &= \frac{c - a^2 + a\alpha - h^2}{h} e_1 - a\xi ,\\ \nabla_{e_2} e_1 &= a\xi , \quad \nabla_{e_2} e_2 &= 0 ,\\ \nabla_{\xi} e_1 &= ae_2 , \quad \nabla_{\xi} e_2 &= -ae_1 - h\xi . \end{aligned}$$

Moreover, we have

$$e_1 a = 0$$
, $e_1 h = 0$, $e_1 \alpha = 0$,
 $e_2 a = 3ha$, $e_2 h = c - a^2 + a\alpha + h^2$, $e_2 \alpha = h\alpha - 2ha$,
 $\xi a = 0$, $\xi h = 0$, $\xi \alpha = 0$.

PROOF. First we compute $\nabla_{e_1}e_2$. Using (7) and (10), we have

$$g(\nabla_{e_1}e_2, e_1) = -g(\nabla_{e_1}e_1, e_2) = \frac{c - a^2 + a\alpha - h^2}{h}.$$

Moreover, we obtain $g(\nabla_{e_1}e_2, e_2) = 0$ and

$$g(\nabla_{e_1}e_2,\xi) = -g(e_2,\phi Ae_1) = -a$$
.

So we have

$$\nabla_{e_1}e_2 = \frac{c-a^2+a\alpha-h^2}{h}e_1 - a\xi \,.$$

By the similar computation using Lemma 2, we obtain

$$\begin{aligned} \nabla_{e_2} e_1 &= \frac{(\xi a)}{h} e_2 + a\xi ,\\ \nabla_{e_1} e_1 &= \frac{-c + a^2 - a\alpha + h^2}{h} e_2 ,\\ \nabla_{e_2} e_2 &= -\frac{(\xi a)}{h} e_1 . \end{aligned}$$

We put $g(\nabla_{\xi} e_1, e_2) = P$. Then we have

$$\nabla_{\xi} e_1 = P e_2 ,$$

$$\nabla_{\xi} e_2 = -P e_1 - h\xi .$$

Since $[X, Y] = \nabla_X Y - \nabla_Y X$ for any X and Y tangent to M, we have

$$[e_1, e_2]a = (\nabla_{e_1}e_2 - \nabla_{e_2}e_1)a$$

= $\frac{c - a^2 + a\alpha - h^2}{h}(e_1a) - a(\xi a) - \frac{(\xi a)}{h}(e_2a) - a(\xi a)$
= $-5a(\xi a)$.

For the last equality, we use (6) and (8). On the other hand, by (6) and (12), we obtain

$$[e_1, e_2]a = e_1(e_2a) - e_2(e_1a) = e_1(3ha)$$

= 3(e_1h)a + 3h(e_1a) = 3(\xi a)a.

These equations imply $a(\xi a) = 0$, and hence

$$(\xi a) = (e_1 h) = 0. \tag{14}$$

Similarly, we have

$$[e_1, \xi]a = (\nabla_{e_1}\xi - \nabla_{\xi}e_1)a$$
$$= 3ha(a - P).$$

Using (6) and (14), we obtain

$$[e_1,\xi]a = e_1(\xi a) - \xi(e_1 a) = 0.$$

Since $ha \neq 0$, we have a = P. Thus, by (11),

$$(e_2\alpha) = h\alpha - 2ha$$
.

By the similar computation for $[e_2, \xi]a$ and $[e_2, \xi]h$, we also have

$$(\xi h) = 0$$
, $(e_1 \alpha) = 0$, $(\xi \alpha) = 0$.

Combining these results, we have our assertion.

(Proof of Theorem 1)

When *M* is a Hopf hypersurface, then we have $AX = aX + b\eta(X)\xi$ for some function *b*. This means that *M* is totally η -umbilical.

Next we consider the case that M is not Hopf. Then we can take a point x and a sufficiently small neighborhood of x, on which $h \neq 0$. If a = 0 on the neighborhood, we see that the real hypersurface is locally congruent to a ruled real hypersurface.

Finally, we suppose $ha \neq 0$. We can take a unit-speed analytic framed curve $\gamma(t)$ which satisfy $\gamma' = e_2$. Then Lemma 3 shows that *a*, *h* and α satisfy (3). We note that the existence of this non-Hopf hypersurface is induced by Theorem A.

Conversely, such hypersurfaces satisfy the condition g(AX, Y) = ag(X, Y) for any vector fields *X* and *Y* orthogonal to ξ .

4. 3-dimensional real hypersurfaces with pseudo-parallel Ricci operator

If the Ricci operator S of a real hypersurface M satisfies

$$R(X, Y) \cdot S = F(X \wedge Y) \cdot S$$

where F is a function, then the Ricci operator S is said to be *pseudo-parallel*.

To prove Theorem 2, first we show the following.

LEMMA 4. Let M be a real hypersurface in $M^2(c)$, $c \neq 0$. If the Ricci operator S is pseudo-parallel, then M is a Hopf hypersurface or the shape operator A is represented by the matrix

$$A = \begin{pmatrix} \alpha & h & 0 \\ h & a_1 & 0 \\ 0 & 0 & a_2 \end{pmatrix}$$

with respect to an orthonormal frame $\{\xi, e_1, e_2\}$, locally.

PROOF. Suppose that *M* is not a Hopf hypersurface. We take an orthonormal frame $\{\xi, e_1, e_2\}$, where we have put $e_2 = \phi e_1$. Then there are smooth functions a_1, a_2, h_1 and h_2 such that *A* is represented by a matrix

$$A = \begin{pmatrix} \alpha & h_1 & h_2 \\ h_1 & a_1 & 0 \\ h_2 & 0 & a_2 \end{pmatrix}$$

with respect to $\{\xi, e_1, e_2\}$, locally. We remark that $h_1 \neq 0$ or $h_2 \neq 0$. From (4), we have

$$Se_{1} = (5c + a_{1}a_{2} + a_{1}\alpha - h_{1}^{2})e_{1} - h_{1}h_{2}e_{2} + a_{2}h_{1}\xi ,$$

$$Se_{2} = (5c + a_{1}a_{2} + a_{2}\alpha - h_{2}^{2})e_{2} - h_{1}h_{2}e_{1} + a_{1}h_{2}\xi ,$$

$$S\xi = a_{2}h_{1}e_{1} + a_{1}h_{2}e_{2} + (2c + a_{1}\alpha + a_{2}\alpha - h_{1}^{2} - h_{2}^{2})\xi .$$

(15)

Since S is symmetric, there exists an another orthonormal frame $\{v_1, v_2, v_3\}$ that satisfies $Sv_1 = av_1, Sv_2 = bv_2, Sv_3 = dv_3$ for some functions a, b and d. Since S is pseudo-parallel, we have

$$g(R(X, Y)SZ, W) - g(SR(X, Y)Z, W)$$

= $F\{g(Y, SZ)(X, W) - g(X, SZ)g(Y, W) - g(Y, Z)g(SX, W)$ (16)
+ $g(X, Z)g(SY, W)\}.$

Putting $X = W = v_1$ and $Y = Z = v_2$, we obtain

$$(b-a)(K(v_1, v_2) - F) = 0,$$

where the sectional curvature K for the plane spanned by v_1 and v_2 is denoted by

$$K(v_1, v_2) = g(R(v_1, v_2)v_2, v_1).$$

By the similar computation, we have

$$(d-a)(K(v_1, v_3) - F) = 0, (d-b)(K(v_2, v_3) - F) = 0.$$

If $a \neq b$, $b \neq c$ and $c \neq a$, then we see that

$$F = K(v_1, v_2) = K(v_1, v_3) = K(v_2, v_3).$$

Thus we obtain

$$a = g(Se_1, e_1) = K(v_1, v_2) + K(v_1, v_3)$$

= $K(v_1, v_2) + K(v_2, v_3)$
= $g(Se_2, e_2) = b$.

This is a contradiction. From the fact that no real hypersurfaces of $M^2(c)$ are Einstein, it is sufficient to consider the case that $a = b \neq d$. Then we have

$$F = K(v_1, v_3) = K(v_2, v_3),$$

from which

$$g(Sv_3, v_3) = K(v_1, v_3) + K(v_2, v_3) = d = 2F$$

So the Ricci operator *S* is represented by a matrix

$$S = \begin{pmatrix} a & 0 & 0\\ 0 & a & 0\\ 0 & 0 & 2F \end{pmatrix}$$
(17)

with respect to $\{v_1, v_2, v_3\}$.

On the other hand, from the assumption, we have

$$g((R(e_1, e_2)S)e_1, e_1) = Fg(((e_1 \land e_2) \cdot S)e_1, e_1).$$

By the equation of Gauss and (15), we obtain

$$g((R(e_1, e_2)S)e_1, e_1) = g(R(e_1, e_2)Se_1, e_1) - g(R(e_1, e_2)e_1, Se_1)$$

= 2c(g(e_2, Se_1)g(e_1, e_1) - g(\phi e_1, Se_1)(\phi e_2, e_1)
-2g(\phi e_1, e_2)g(\phi Se_1, e_1))
+2g(Ae_2, Se_1)g(Ae_1, e_1)
= -8ch_1h_2.

By (15), we have

$$Fg(((e_1 \land e_2) \cdot S)e_1, e_1) = F(g(e_2, Se_1)(e_1, e_1) - g(Se_1, e_1)g(e_2, e_1) - g(e_2, e_1)g(Se_1, e_1) + g(e_1, e_1)g(Se_2, e_1))$$

$$= 2F(Se_1, e_2) = -2Fh_1h_2.$$

From these equations, we see that

$$(4c - F)h_1h_2 = 0. (18)$$

Similarly, substituting $X = Z = e_1$, $Y = \xi$, $W = e_2$ and $X = Z = e_2$, $Y = \xi$, $W = e_1$, we obtain

$$0 = h_2\{(c - F)a_1 - a_2h_1^2 + a_1a_2\alpha - a_1h_2^2\},\$$

$$0 = h_1\{(c - F)a_2 - a_1h_2^2 + a_1a_2\alpha - a_2h_1^2\},$$
(19)

respectively.

To prove the lemma, it is sufficient to consider the case that $h_1h_2 \neq 0$. From (18) and (19), we have 4c = F and

$$(c - F)(a_1 - a_2) = 0$$
.

Since $c - F = -3c \neq 0$, we obtain $a_1 = a_2$. By Lemma 1, the shape operator A is represented as

$$A = \begin{pmatrix} \alpha & h & 0\\ h & k & 0\\ 0 & 0 & k \end{pmatrix}$$
(20)

with respect to an orthonormal frame $\{\xi, u, \phi u\}$. Thus we have our assertion.

(Proof of Theorem 2)

Suppose that *M* is not a Hopf hypersurface. We put $h_1 = h \neq 0$, locally. Then the Ricci operator *S* is represented by a matrix

$$S = \begin{pmatrix} 2c + a_1\alpha + a_2\alpha - h^2 & a_2h & 0\\ a_2h & 5c + a_1a_2 + a_1\alpha - h^2 & 0\\ 0 & 0 & 5c + a_1a_2 + a_2\alpha \end{pmatrix}$$
(21)

with respect to $\{\xi, e_1, e_2\}$. By (17), we see that $5c + a_1a_2 + a_2\alpha = 2F$ or $5c + a_1a_2 + a_2\alpha = a$.

First we suppose $5c + a_1a_2 + a_2\alpha = 2F$. From (17) and (21), taking a trace of S, the scalar curvature r satisfies

$$r = 2(a + F) = 12c + 2a_1a_2 + 2a_1\alpha + 2a_2\alpha - 2h^2$$
.

So we have

$$a = F + c + a_1 \alpha - h^2 \,. \tag{22}$$

We put

$$S' = \begin{pmatrix} 2c + a_1 \alpha + a_2 \alpha - h^2 & a_2 h \\ a_2 h & 5c + a_1 a_2 + a_1 \alpha - h^2 \end{pmatrix}.$$

Then the eigenvalues of S' are solutions of the equation

$$0 = \det(xI - S')$$

= $(x - 5c - a_1a_2 - a_1\alpha + h^2)(x - 2c - a_1\alpha - a_2\alpha + h^2)$ (23)
 $- a_2^2h^2$.

Since a is an eigenvalue of S', using (22), we have

$$0 = (F - 4c - a_1a_2)(F - c - a_2\alpha) - a_2^2h^2.$$

By $a_1a_2 = 2F - 5c - a_2\alpha$, we obtain

$$0 = -(F - c - a_2\alpha)^2 - a_2^2h^2,$$

which induces $F - c - a_2 \alpha = 0$ and $a_2^2 h^2 = 0$. Since $h \neq 0$, we have $a_2 = 0$ and F = c. By $5c + a_1a_2 + a_2\alpha = 2F$, we have

$$0=2F-5c=-3c.$$

This is a contradiction.

Next, we suppose $5c + a_1a_2 + a_2\alpha = a$. Then we have

$$r = 2(a + F) = 2(6c + a_1a_2 + a_1\alpha + a_2\alpha - h^2).$$

From these equations, we have

$$F = c + a_1 \alpha - h^2 \,. \tag{24}$$

Since a and 2F are the solutions of (23), we obtain

$$0 = (a_2\alpha - a_1\alpha + h^2)(3c + a_1a_2 - a_1\alpha + h^2) - a_2^2h^2.$$
 (25)

So we see that if S is pseudo-parallel, then M is a Hopf hypersurface or the shape operator A is represented by

$$A = \begin{pmatrix} \alpha & h & 0 \\ h & a_1 & 0 \\ 0 & 0 & a_2 \end{pmatrix}$$
(26)

with respect to an orthonormal frame $\{\xi, e_1, e_2\}$ and satisfies (24), (25). So we have our theorem.

In [2], Cho, Hamada and Inoguchi gave a classification of pseudo-parallel Hopf hypersurfaces.

THEOREM G ([2]). The Hopf hypersurfaces in $\mathbb{C}P^2(c)$ or $\mathbb{C}H^2(c)$ with pseudoparallel Ricci operator are locally holomorphically congruent to a horosphere in $\mathbb{C}H^2(c)$, a geodesic hypersphere in $\mathbb{C}P^2(c)$ or $\mathbb{C}H^2(c)$, a homogeneous tube over $\mathbb{C}H^1(c)$ in $\mathbb{C}H^2$, a

non-homogeneous real hypersurface which is realized as a tube over a certain holomorphic curve in $\mathbb{C}P^2(c)$ with radius $\pi/\sqrt{4c}$, or a Hopf hypersurface in $\mathbb{C}H^2(c)$ with $A\xi = 0$.

Using Theorem A, we see the following result (see Corollary 3 in [3]).

COROLLARY 2. Let $\alpha(t)$, h(t), $\lambda(t)$, v(t) be analytic solutions defined for $t \in I$ of the system (2), such that h is nowhere zero and

$$0 = (\nu\alpha - \lambda\alpha + h^2)(3c + \lambda\nu - \lambda\alpha + h^2) - \nu^2 h^2.$$

Then the hypersurface M constructed by Theorem A is a non-Hopf pseudo-parallel hypersurface with $F = c + \lambda \alpha - h^2$.

PROOF. We suppose that A satisfies (24)–(26) and $a_1 = \lambda$, $a_2 = \nu$. It is sufficient to show that

$$q((R(X, Y)S)Z, W) - Fq(((X \land Y)S)Z, W) = 0$$

for all $X = e_i$, $Y = e_j$, $Z = e_k$ and $W = e_l$, $1 \le i, j, k, l \le 3$, where $e_3 = \xi$. Using (15), (24)–(26) and the equation of Gauss, we have

$$\begin{split} g((R(e_1, e_2)S)e_1, e_2) &- Fg(((e_1 \wedge e_2)S)e_1, e_2) \\ &= g(R(e_1, e_2)Se_1, e_2) - g(R(e_1, e_2)e_1, Se_2) \\ &- F(-g(Se_1, e_1) + g(Se_2, e_2)) \\ &= -4cg(Se_1, e_1) + g(Ae_2, Se_1)g(Ae_1, e_2) - g(Ae_1, Se_1)g(Ae_2, e_2) \\ &+ 4cg(Se_2, e_2) - g(Ae_1, Se_2)g(Ae_2, e_1) + g(Ae_1, e_1)g(Ae_2, Se_2) \\ &- F(-g(Se_1, e_1) + g(Se_2, e_2)) \\ &= (a_2\alpha - a_1\alpha + h^2)(4c - F + a_1a_2) - a_2^2h^2 \\ &= (a_2\alpha - a_1\alpha + h^2)(3c + a_1a_2 - a_1\alpha + h^2) - a_2^2h^2 \\ &= 0 \,. \end{split}$$

Similarly, for all $X = e_i$, $Y = e_j$, $Z = e_k$ and $W = e_l$, we can show that

$$g((R(X, Y)S)Z, W) - Fg(((X \land Y)S)Z, W) = 0$$

by the straightforward computation.

REMARK. If the shape operator A satisfies (25), (26) and $a_1 = a_2 = 0$, then we have c = h = 0 by (10). Thus a ruled real hypersurface is not pseudo-parallel (see [2] and [6]).

References

- J. BERNDT, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132–141.
- [2] J. T. CHO, T. HAMADA and J. INOGUCHI, On three dimensional real hypersurfaces in complex space forms, Tokyo J. Math. 33 (2010), 31–47.

NON-HOPF HYPERSURFACE

- [3] T. A. IVEY and P. J. RYAN, The *-Ricci tensor for hypersurfaces in \mathbb{CP}^n and \mathbb{CH}^n , Tokyo J. Math. **34** (2011), 445–471.
- [4] M. KIMURA, Sectional curvatures of holomorphic planes on a real hypersurface in Pⁿ(C), Math. Ann. 276 (1987), 487–497.
- [5] M. KIMURA and S. MAEDA, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299–311.
- [6] J. INOGUCHI, Real hypersurfaces in complex space forms with pseudo-parallel Ricci operator, Differ. Geom. Dyn. Syst. 14 (2012), 69–89.
- [7] M. KON, Ricci Pseudo η-parallel real hypersurfaces of a complex space form, Nihonkai Math. J. 24 (2013), 45–55.
- [8] M. LOHNHERR and H. RECKZIEGEL, On ruled real hypersurfaces in complex space forms, Geom. Dedicata 74 (1999), 267–286.
- [9] S. MONTIEL and A. ROMERO, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), 245–261.
- [10] R. NIEBERGALL and P. J. RYAN, Real hypersurfaces in complex space forms, *Tight and Taut Submanifolds*, (Eds: T. E. Cecil and S. S. Chern), Math. Sci. Res. Inst. Publ. 32, Cambridge Univ. Press, Cambridge, 1997, 233–305.
- M. ORTEGA, Classifications of real hypersurfaces in complex space forms by means of curvature conditions, Bull. Belg. Math. Soc. 9 (2002), 351–360.
- [12] R. TAKAGI, Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43–53.
- [13] Y. TASHIRO and S. TACHIBANA, On Fubinian and C-Fubinian manifolds, Kōdai Math. Sem. Rep. 15 (1963), 176–183.

Present Address: FACULTY OF EDUCATION, SHINSHU UNIVERSITY, 6-RO, NISHINAGANO, NAGANO CITY 380–8544, JAPAN. *e-mail*: mayuko_k@shinshu-u.ac.jp