Non-Hopf Hypersurfaces in 2-dimensional Complex Space Forms

Mayuko KON

Shinshu University
(Communicated by K. Ahara)

Abstract. In this paper we give a geometric characterization of non-Hopf hypersurfaces in the complex space form $M^{2}(c)$ under a condition on the shape operator. We also classify pseudo-parallel real hypersurfaces of $M^{2}(c)$.

1. Introduction

It is an interesting problem to study real hypersurfaces immersed in the complex space form $M^{n}(c)$ under a condition on curvature tensor, or the Ricci tensor, or sectional curvature. In this paper we consider the case of the 2-dimensional complex space form $M^{2}(c)$. In [3], Ivey and Ryan constructed some examples of non-Hopf real hypersurfaces in the non-flat complex space form $M^{2}(c)$. Let M be a real hypersurface in the complex hyperbolic space $\mathbf{C} H^{2}$ or the complex projective space $\mathbf{C} P^{2}$. We denote by (ϕ, ξ, η, g) an almost contact metric structure. At each $p \in M$, we define a subspace $\mathcal{H}_{p} \subset T_{p} M$ as the smallest subspace that contains the structure vector field ξ and that is invariant under the shape operator A. We assume that $\mathcal{H}=\sqcup_{p} \mathcal{H}_{p}$ is a smooth two-dimensional distribution on M. Then we obtain an adapted orthonormal frame $\{\xi, X, \phi X\}$ with respect to which the shape operator has the form

$$
A=\left(\begin{array}{lll}
\alpha & h & 0 \tag{1}\\
h & \lambda & 0 \\
0 & 0 & \nu
\end{array}\right)
$$

where \mathcal{H} is spanned by ξ and X at each point.
THEOREM A ([3]). Let $\alpha(t), h(t), \lambda(t), \nu(t)$ be analytic functions on an open interval

[^0]$I \subset \mathbf{R}$ satisfying the underdetermined ODE system
\[

$$
\begin{align*}
& \alpha^{\prime}=h(\alpha+\lambda-3 \nu), \\
& h^{\prime}=h^{2}+\lambda^{2}-2 \lambda \nu+\alpha \nu+c, \tag{2}\\
& \lambda^{\prime}=\frac{(2 \lambda+v) h^{2}+(v-\lambda)\left(\alpha \lambda-\lambda^{2}+c\right)}{h},
\end{align*}
$$
\]

with $h(t)$ nowhere zero. Let $\gamma(t)$ be a unit-speed analytic framed curve in $M^{2}(c)$, defined for $t \in I$, with transverse curvature $v(t)$, zero holomorphic curvature and zero torsion. Then there exists a non-Hopf hypersurface M^{3} such that
(i) the distribution \mathcal{H} is rank 2 and integrable;
(ii) M has a globally defined frame $\{\xi, X, \phi X\}$ with respect to which the shape operator has the form (1), such that α, h, λ and v are constant along the leaves of \mathcal{H}, and
(iii) M contains γ as a principal curve to which the vector field $Y=\phi X$ is tangent, and along which the restricted components of A coincide with the given solution of the ODE system.

In section 3, we consider a condition on the shape operator that contains the totally η umbilical condition. We show that some non-Hopf hypersurfaces related to Theorem A also satisfy this condition. We shall prove

Theorem 1. Let M be a real hypersurface in $M^{2}(c), c \neq 0$. Suppose there exists a smooth function $a: M \rightarrow \mathbf{R}$ such that $g(A X, Y)=a g(X, Y)$ for any vector fields X and Y orthogonal to the structure vector field ξ. Then M is locally congruent to one of the following;
(a) a totally η-umbilical real hypersurface,
(b) a ruled real hypersurface,
(c) a real hypersurface with the shape operator

$$
A=\left(\begin{array}{lll}
\alpha & h & 0 \\
h & a & 0 \\
0 & 0 & a
\end{array}\right)
$$

with respect to an orthonormal frame $\left\{\xi, e_{1}, \phi e_{1}\right\}$, and for a principal curve $\gamma(t)$ $\left(t \in I, \gamma^{\prime}=\phi e_{1}\right)$, satisfying

$$
\begin{align*}
& \alpha^{\prime}=h \alpha-2 h a, \\
& h^{\prime}=c-a^{2}+a \alpha+h^{2}, \tag{3}\\
& a^{\prime}=3 h a .
\end{align*}
$$

The corresponding result for a real hypersurface of $M^{n}(c), n \geq 3, c \neq 0$, is given by Ortega [11].

Theorem B ([11]). Let M be a real hypersurface of $M^{n}(c), n \geq 3, c \neq 0$. Suppose there exists a smooth function $a: M \rightarrow \mathbf{R}$ such that $g(A X, Y)=a g(X, Y)$ for any vector fields X and Y orthogonal to ξ. Then M is locally congruent to one of the following:
(a) a totally η-umbilical real hypersurface,
(b) a ruled real hypersurface.

If the curvature tensor R and the Ricci operator S satisfy $R(X, Y) \cdot S=0$ for any vector fields X and Y, then M is called a pseudo-Ryan hypersurface. In [3], as a result of Theorem A, Ivey and Ryan gave an example of a pseudo-Ryan hypersurface in $M^{2}(c)$.

Theorem C ([3]). Let $\alpha(t), h(t), \lambda(t), \nu(t)$ be analytic solutions defined on I of the system (2), such that h is nowhere zero and the equation

$$
h^{2} v^{2}+(4 c+\lambda v)\left(\alpha(\lambda-v)-h^{2}\right)=0
$$

holds. Then the hypersurface M constructed by Theorem A is a non-Hopf pseudo-Ryan hypersurface.

In Section 4, we consider a condition that the Ricci operator S is pseudo-parallel, that is,

$$
R(X, Y) \cdot S=F(X \wedge Y) \cdot S
$$

where F is a function, which contains the pseudo-Ryan condition. We define the wedge product $X \wedge Y$ by

$$
(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y
$$

for vectors X and Y. It is shown that a ruled real hypersurface in non-flat complex space form $M^{2}(c), c \neq 0$ cannot have a pseudo-parallel Ricci operator ([2], [6]). In [6], Inoguchi gave a conjecture that real hypersurfaces in a non-flat complex space form $M^{2}(c)$ with pseudoparallel Ricci operator are Hopf. We prove the following theorem which gives the negative result.

THEOREM 2. Let M be a real hypersurface in $M^{2}(c), c \neq 0$. If the Ricci operator S is pseudo-parallel, then M is a Hopf hypersurface or a non-Hopf hypersurface such that the shape operator has the form

$$
A=\left(\begin{array}{ccc}
\alpha & h & 0 \\
h & a_{1} & 0 \\
0 & 0 & a_{2}
\end{array}\right)
$$

with respect to an orthonormal frame $\left\{\xi, e_{1}, e_{2}\right\}$, and

$$
0=\left(a_{2} \alpha-a_{1} \alpha+h^{2}\right)\left(3 c+a_{1} a_{2}-a_{1} \alpha+h^{2}\right)-a_{2}^{2} h^{2},
$$

$$
F=c+a_{1} \alpha-h^{2} .
$$

If there exists a function F such that

$$
g((R(X, Y) S) Z, W)=F g(((X \wedge Y) S) Z, W),
$$

for all X, Y, Z and W orthogonal to ξ, then the real hypersurface is said to be pseudo η parallel, which is a weaker condition than pseudo-parallel. When M is a real hypersurface of $M^{n}(c), n \geq 3, c \neq 0$, the author showed the following.

Theorem D ([7]). Let M be a real hypersurface in a complex space form $M^{n}(c)$, $c \neq 0, n \geq 3$. Then the Ricci operator S is pseudo η-parallel if and only if M is pseudoEinstein.

We remark that a pseudo-Einstein real hypersurface is a Hopf hypersurface.

2. Preliminaries

Let $M^{n}(c)$ denote the complex space form of complex dimension n (real dimension $2 n$) with constant holomorphic sectional curvature $4 c$. We denote by J the almost complex structure of $M^{n}(c)$. The Hermitian metric of $M^{n}(c)$ will be denoted by G.

Let M be a real $(2 n-1)$-dimensional hypersurface immersed in $M^{n}(c)$. We denote by g the Riemannian metric induced on M from G. We take the unit normal vector field N of M in $M^{n}(c)$. For any vector field X tangent to M, we define ϕ, η and ξ by

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi,
$$

where ϕX is the tangential part of $J X, \phi$ is a tensor field of type (1,1) η is a 1 -form, and ξ is the unit vector field on M. Then they satisfy

$$
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0
$$

for any vector field X tangent to M. Moreover, we have

$$
\begin{aligned}
& g(\phi X, Y)+g(X, \phi Y)=0, \quad \eta(X)=g(X, \xi), \\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{aligned}
$$

Thus (ϕ, ξ, η, g) defines an almost contact metric structure on M.
We denote by $\tilde{\nabla}$ the operator of covariant differentiation in $M^{n}(c)$, and by ∇ the one in M determined by the induced metric. Then the Gauss and Weingarten formulas are given respectively by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N, \quad \tilde{\nabla}_{X} N=-A X
$$

for any vector fields X and Y tangent to M. We call A the shape operator of M. If the shape operator A of M satisfies $A \xi=\alpha \xi$ for some functions α, then M is called a Hopf hypersurface.

For the almost contact metric structure on M, we have

$$
\nabla_{X} \xi=\phi A X, \quad\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi .
$$

If the shape operator A of a real hypersurface M is of the form $A=a I$, where I is the identity, then M is said to be totally umbilical. In Tashiro-Tachibana [13], it was proved that any real hypersurface of $M^{n}(c), c \neq 0$, is not totally umbilical. So we need the notion of totally η umbilical real hypersurfaces, that is, the shape operator A is of the form $A=a I+b \eta \otimes \xi$.

Proposition E ([12]). The only totally η-umbilical real hypersurfaces in $\mathbf{C} P^{n}, n \geq$ 2 , are geodesic hyperspheres.

Proposition F ([9], [10]). The only totally η-umbilical real hypersurfaces in $\mathbf{C H} H^{n}$, $n \geq 2$, are horospheres, geodesic hyperspheres and tubes over complex hyperbolic hyperplane.

We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is given by

$$
\begin{aligned}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X \\
& -g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\} \\
& +g(A Y, Z) A X-g(A X, Z) A Y,
\end{aligned}
$$

and the equation of Codazzi by

$$
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} .
$$

From the equation of Gauss, the Ricci operator S of M satisfies

$$
\begin{align*}
g(S X, Y)= & (2 n+1) c g(X, Y)-3 c \eta(X) \eta(Y) \tag{4}\\
& +\operatorname{Tr} A g(A X, Y)-g(A X, A Y),
\end{align*}
$$

where $\operatorname{Tr} A$ is the trace of A. The scalar curvature r is defined by

$$
r=\operatorname{Tr} S .
$$

Example ([5], [8]). Let M be a real hypersurface of a complex space form $M^{n}(c)$, $c \neq 0$, and let T_{0} be the distribution defined by $T_{0}(x)=\left\{X \in T_{x}(M) \mid X \perp \xi\right\}$ for $x \in M$. If T_{0} is integrable and its integral manifold is a totally geodesic submanifold $M^{n-1}(c)$, then M is called a ruled real hypersurface. Let $\gamma(t)(t \in I)$ be an arbitrary (regular) curve in $M^{n}(c)$. Then for every $t \in I$ there exists a totally geodesic submanifold $M^{n-1}(c)$ in $M^{n}(c)$ which is orthogonal to the plane τ_{t} spanned by $\left\{\gamma^{\prime}(t), J \gamma^{\prime}(t)\right\}$. Here we denote by $M_{t}^{n-1}(c)$ such a totally geodesic submanifold. Let $M=\left\{x \in M_{t}^{n-1}(c) \mid t \in I\right\}$. Then the construction of M asserts that M is a ruled real hypersurface in $M^{n}(c)$. Moreover, the construction of M tells
that there are many ruled real hypersurfaces. The holomorphic sectional curvature H of a ruled real hypersurface M is $4 c$ (see [4]).

3. A condition of shape operator

In this section, we prove Theorem 1. As a consequence of this theorem, we have the following.

Corollary 1. Let M be a real hypersurface in $M^{2}(c), c \neq 0$. Suppose there exists a constant $a: M \rightarrow \mathbf{R}$ such that $g(A X, Y)=a g(X, Y)$ for any vector fields X and Y orthogonal to ξ. Then M is locally congruent to one of the following:
(a) a totally η-umbilical real hypersurface,
(b) a ruled real hypersurface.

First we prove the following
LEMMA 1. Let M be a real hypersurface in $M^{2}(c)$. Suppose that there exists a smooth function $a: M \rightarrow \mathbf{R}$ such that $g(A X, Y)=a g(X, Y)$ for any vector fields X and Y orthogonal to ξ, then M is a Hopf hypersurface or the shape operator A is represented by a matrix

$$
A=\left(\begin{array}{lll}
\alpha & h & 0 \tag{5}\\
h & a & 0 \\
0 & 0 & a
\end{array}\right)
$$

with respect to a suitable orthonormal frame $\{\xi, u, \phi u\}$, locally.
Proof. By the assumption, we can take an orthonormal frame $\left\{\xi, e_{1}, e_{2}=\phi e_{1}\right\}$, such that A is represented by a matrix

$$
A=\left(\begin{array}{ccc}
\alpha & k_{1} & k_{2} \\
k_{1} & a & 0 \\
k_{2} & 0 & a
\end{array}\right)
$$

locally, for suitable functions k_{1}, k_{2} and α. We take a unit vector u that satisfies

$$
A \xi=\alpha \xi+h u, \quad g(\xi, u)=0
$$

where h is a function. Then $\{\xi, u, \phi u\}$ is another orthonormal frame of $T_{x}(M)$. We can represent u as

$$
u=u_{1} e_{1}+u_{2} e_{2}
$$

Using this, we have

$$
\begin{aligned}
g(A u, u) & =g\left(A\left(u_{1} e_{1}+u_{2} e_{2}\right), u_{1} e_{1}+u_{2} e_{2}\right) \\
& =u_{1}^{2} g\left(A e_{1}, e_{1}\right)+2 u_{1} u_{2} g\left(A e_{1}, e_{2}\right)+u_{2}^{2} g\left(A e_{2}, e_{2}\right)
\end{aligned}
$$

$$
=a\left(u_{1}^{2}+u_{2}^{2}\right)=a
$$

Similarly, we also have $g(A \phi u, \phi u)=a$. Moreover, we obtain

$$
\begin{aligned}
g(A u, \phi u) & =g\left(A\left(u_{1} e_{1}+u_{2} e_{2}\right), u_{1} \phi e_{1}+u_{2} \phi e_{2}\right) \\
& =g\left(A\left(u_{1} e_{1}+u_{2} e_{2}\right), u_{1} e_{2}-u_{2} e_{1}\right) \\
& =-u_{1} u_{2} a+u_{2} u_{1} a=0
\end{aligned}
$$

From these equations, there exists an orthonormal frame $\{\xi, u, \phi u\}$ of $T_{x}(M)$ such that the shape operator A is of the form (5).

Using the equation of Codazzi, we obtain
LEMMA 2. Let M be a real hypersurface in $M^{2}(c), c \neq 0$. If there exists an orthonormal frame $\left\{\xi, e_{1}, e_{2}\right\}$ on a sufficiently small neighborhood \mathcal{N} of $x \in M$ such that the shape operator A can be represented as

$$
A=\left(\begin{array}{lll}
\alpha & h & 0 \\
h & a & 0 \\
0 & 0 & a
\end{array}\right)
$$

then we have

$$
\begin{align*}
& \left(e_{1} a\right)=0 \tag{6}\\
& \left(-2 c+2 a^{2}-2 a \alpha\right)+h g\left(\nabla_{e_{1}} e_{2}, e_{1}\right)+\left(e_{2} h\right)=0 \tag{7}\\
& \left(e_{2} a\right)=3 h a \tag{8}\\
& (\xi a)=h g\left(\nabla_{e_{2}} e_{1}, e_{2}\right) \tag{9}\\
& \left(e_{2} h\right)=c+a \alpha-a^{2}+h^{2} \tag{10}\\
& -h(\alpha-3 a)+h g\left(\nabla_{\xi} e_{2}, e_{1}\right)+\left(e_{2} \alpha\right)=0 \tag{11}\\
& \left(e_{1} h\right)-(\xi a)=0 \tag{12}\\
& \left(e_{1} \alpha\right)-(\xi h)=0 \tag{13}
\end{align*}
$$

Proof. By the equation of Codazzi, we have

$$
g\left(\left(\nabla_{e_{2}} A\right) e_{1}-\left(\nabla_{e_{1}} A\right) e_{2}, e_{2}\right)=0
$$

On the other hand, we have

$$
\begin{aligned}
& g\left(\left(\nabla_{e_{2}} A\right) e_{1}-\left(\nabla_{e_{1}} A\right) e_{2}, e_{2}\right) \\
& \quad=g\left(\nabla_{e_{2}}\left(A e_{1}\right)-A \nabla_{e_{2}} e_{1}-\nabla_{e_{1}}\left(A e_{2}\right)+A \nabla_{e_{1}} e_{2}, e_{2}\right) \\
& \quad=-\left(e_{1} a\right)
\end{aligned}
$$

Thus we obtain (6). By the similar computation, we have our equations.

When M is not a Hopf hypersurface, then we can take $x \in M$ and a sufficiently small neighborhood of x, on which $h \neq 0$. In the following, we consider the case that $a \neq 0$ on the neighborhood.

Lemma 3. If $h \neq 0$ and $a \neq 0$, then,

$$
\begin{aligned}
& \nabla_{e_{1}} e_{1}=\frac{-c+a^{2}-a \alpha+h^{2}}{h} e_{2}, \\
& \nabla_{e_{1}} e_{2}=\frac{c-a^{2}+a \alpha-h^{2}}{h} e_{1}-a \xi, \\
& \nabla_{e_{2}} e_{1}=a \xi, \quad \nabla_{e_{2}} e_{2}=0, \\
& \nabla_{\xi} e_{1}=a e_{2}, \quad \nabla_{\xi} e_{2}=-a e_{1}-h \xi
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
& e_{1} a=0, \quad e_{1} h=0, \quad e_{1} \alpha=0 \\
& e_{2} a=3 h a, \quad e_{2} h=c-a^{2}+a \alpha+h^{2}, \quad e_{2} \alpha=h \alpha-2 h a, \\
& \xi a=0, \quad \xi h=0, \quad \xi \alpha=0 .
\end{aligned}
$$

Proof. First we compute $\nabla_{e_{1}} e_{2}$. Using (7) and (10), we have

$$
g\left(\nabla_{e_{1}} e_{2}, e_{1}\right)=-g\left(\nabla_{e_{1}} e_{1}, e_{2}\right)=\frac{c-a^{2}+a \alpha-h^{2}}{h} .
$$

Moreover, we obtain $g\left(\nabla_{e_{1}} e_{2}, e_{2}\right)=0$ and

$$
g\left(\nabla_{e_{1}} e_{2}, \xi\right)=-g\left(e_{2}, \phi A e_{1}\right)=-a .
$$

So we have

$$
\nabla_{e_{1}} e_{2}=\frac{c-a^{2}+a \alpha-h^{2}}{h} e_{1}-a \xi
$$

By the similar computation using Lemma 2, we obtain

$$
\begin{aligned}
& \nabla_{e_{2}} e_{1}=\frac{(\xi a)}{h} e_{2}+a \xi \\
& \nabla_{e_{1}} e_{1}=\frac{-c+a^{2}-a \alpha+h^{2}}{h} e_{2}, \\
& \nabla_{e_{2}} e_{2}=-\frac{(\xi a)}{h} e_{1} .
\end{aligned}
$$

We put $g\left(\nabla_{\xi} e_{1}, e_{2}\right)=P$. Then we have

$$
\begin{aligned}
& \nabla_{\xi} e_{1}=P e_{2}, \\
& \nabla_{\xi} e_{2}=-P e_{1}-h \xi
\end{aligned}
$$

Since $[X, Y]=\nabla_{X} Y-\nabla_{Y} X$ for any X and Y tangent to M, we have

$$
\begin{aligned}
{\left[e_{1}, e_{2}\right] a } & =\left(\nabla_{e_{1}} e_{2}-\nabla_{e_{2}} e_{1}\right) a \\
& =\frac{c-a^{2}+a \alpha-h^{2}}{h}\left(e_{1} a\right)-a(\xi a)-\frac{(\xi a)}{h}\left(e_{2} a\right)-a(\xi a) \\
& =-5 a(\xi a)
\end{aligned}
$$

For the last equality, we use (6) and (8). On the other hand, by (6) and (12), we obtain

$$
\begin{aligned}
{\left[e_{1}, e_{2}\right] a } & =e_{1}\left(e_{2} a\right)-e_{2}\left(e_{1} a\right)=e_{1}(3 h a) \\
& =3\left(e_{1} h\right) a+3 h\left(e_{1} a\right)=3(\xi a) a
\end{aligned}
$$

These equations imply $a(\xi a)=0$, and hence

$$
\begin{equation*}
(\xi a)=\left(e_{1} h\right)=0 . \tag{14}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
{\left[e_{1}, \xi\right] a } & =\left(\nabla_{e_{1} \xi}-\nabla_{\xi} e_{1}\right) a \\
& =3 h a(a-P) .
\end{aligned}
$$

Using (6) and (14), we obtain

$$
\left[e_{1}, \xi\right] a=e_{1}(\xi a)-\xi\left(e_{1} a\right)=0
$$

Since $h a \neq 0$, we have $a=P$. Thus, by (11),

$$
\left(e_{2} \alpha\right)=h \alpha-2 h a
$$

By the similar computation for $\left[e_{2}, \xi\right] a$ and $\left[e_{2}, \xi\right] h$, we also have

$$
(\xi h)=0, \quad\left(e_{1} \alpha\right)=0, \quad(\xi \alpha)=0
$$

Combining these results, we have our assertion.

(Proof of Theorem 1)

When M is a Hopf hypersurface, then we have $A X=a X+b \eta(X) \xi$ for some function b. This means that M is totally η-umbilical.

Next we consider the case that M is not Hopf. Then we can take a point x and a sufficiently small neighborhood of x, on which $h \neq 0$. If $a=0$ on the neighborhood, we see that the real hypersurface is locally congruent to a ruled real hypersurface.

Finally, we suppose $h a \neq 0$. We can take a unit-speed analytic framed curve $\gamma(t)$ which satisfy $\gamma^{\prime}=e_{2}$. Then Lemma 3 shows that a, h and α satisfy (3). We note that the existence of this non-Hopf hypersurface is induced by Theorem A.

Conversely, such hypersurfaces satisfy the condition $g(A X, Y)=a g(X, Y)$ for any vector fields X and Y orthogonal to ξ.

4. 3-dimensional real hypersurfaces with pseudo-parallel Ricci operator

If the Ricci operator S of a real hypersurface M satisfies

$$
R(X, Y) \cdot S=F(X \wedge Y) \cdot S
$$

where F is a function, then the Ricci operator S is said to be pseudo-parallel.
To prove Theorem 2, first we show the following.
Lemma 4. Let M be a real hypersurface in $M^{2}(c), c \neq 0$. If the Ricci operator S is pseudo-parallel, then M is a Hopf hypersurface or the shape operator A is represented by the matrix

$$
A=\left(\begin{array}{ccc}
\alpha & h & 0 \\
h & a_{1} & 0 \\
0 & 0 & a_{2}
\end{array}\right)
$$

with respect to an orthonormal frame $\left\{\xi, e_{1}, e_{2}\right\}$, locally.
Proof. Suppose that M is not a Hopf hypersurface. We take an orthonormal frame $\left\{\xi, e_{1}, e_{2}\right\}$, where we have put $e_{2}=\phi e_{1}$. Then there are smooth functions a_{1}, a_{2}, h_{1} and h_{2} such that A is represented by a matrix

$$
A=\left(\begin{array}{ccc}
\alpha & h_{1} & h_{2} \\
h_{1} & a_{1} & 0 \\
h_{2} & 0 & a_{2}
\end{array}\right)
$$

with respect to $\left\{\xi, e_{1}, e_{2}\right\}$, locally. We remark that $h_{1} \neq 0$ or $h_{2} \neq 0$. From (4), we have

$$
\begin{align*}
& S e_{1}=\left(5 c+a_{1} a_{2}+a_{1} \alpha-h_{1}^{2}\right) e_{1}-h_{1} h_{2} e_{2}+a_{2} h_{1} \xi \\
& S e_{2}=\left(5 c+a_{1} a_{2}+a_{2} \alpha-h_{2}^{2}\right) e_{2}-h_{1} h_{2} e_{1}+a_{1} h_{2} \xi \tag{15}\\
& S \xi=a_{2} h_{1} e_{1}+a_{1} h_{2} e_{2}+\left(2 c+a_{1} \alpha+a_{2} \alpha-h_{1}^{2}-h_{2}^{2}\right) \xi
\end{align*}
$$

Since S is symmetric, there exists an another orthonormal frame $\left\{v_{1}, v_{2}, v_{3}\right\}$ that satisfies $S v_{1}=a v_{1}, S v_{2}=b v_{2}, S v_{3}=d v_{3}$ for some functions a, b and d. Since S is pseudo-parallel, we have

$$
\begin{align*}
& g(R(X, Y) S Z, W)-g(S R(X, Y) Z, W) \\
& \quad=\quad F\{g(Y, S Z)(X, W)-g(X, S Z) g(Y, W)-g(Y, Z) g(S X, W) \tag{16}\\
& \quad+g(X, Z) g(S Y, W)\}
\end{align*}
$$

Putting $X=W=v_{1}$ and $Y=Z=v_{2}$, we obtain

$$
(b-a)\left(K\left(v_{1}, v_{2}\right)-F\right)=0,
$$

where the sectional curvature K for the plane spanned by v_{1} and v_{2} is denoted by

$$
K\left(v_{1}, v_{2}\right)=g\left(R\left(v_{1}, v_{2}\right) v_{2}, v_{1}\right) .
$$

By the similar computation, we have

$$
\begin{aligned}
& (d-a)\left(K\left(v_{1}, v_{3}\right)-F\right)=0, \\
& (d-b)\left(K\left(v_{2}, v_{3}\right)-F\right)=0 .
\end{aligned}
$$

If $a \neq b, b \neq c$ and $c \neq a$, then we see that

$$
F=K\left(v_{1}, v_{2}\right)=K\left(v_{1}, v_{3}\right)=K\left(v_{2}, v_{3}\right) .
$$

Thus we obtain

$$
\begin{aligned}
a & =g\left(S e_{1}, e_{1}\right)=K\left(v_{1}, v_{2}\right)+K\left(v_{1}, v_{3}\right) \\
& =K\left(v_{1}, v_{2}\right)+K\left(v_{2}, v_{3}\right) \\
& =g\left(S e_{2}, e_{2}\right)=b
\end{aligned}
$$

This is a contradiction. From the fact that no real hypersurfaces of $M^{2}(c)$ are Einstein, it is sufficient to consider the case that $a=b \neq d$. Then we have

$$
F=K\left(v_{1}, v_{3}\right)=K\left(v_{2}, v_{3}\right)
$$

from which

$$
g\left(S v_{3}, v_{3}\right)=K\left(v_{1}, v_{3}\right)+K\left(v_{2}, v_{3}\right)=d=2 F .
$$

So the Ricci operator S is represented by a matrix

$$
S=\left(\begin{array}{ccc}
a & 0 & 0 \tag{17}\\
0 & a & 0 \\
0 & 0 & 2 F
\end{array}\right)
$$

with respect to $\left\{v_{1}, v_{2}, v_{3}\right\}$.
On the other hand, from the assumption, we have

$$
g\left(\left(R\left(e_{1}, e_{2}\right) S\right) e_{1}, e_{1}\right)=F g\left(\left(\left(e_{1} \wedge e_{2}\right) \cdot S\right) e_{1}, e_{1}\right) .
$$

By the equation of Gauss and (15), we obtain

$$
\begin{aligned}
g\left(\left(R\left(e_{1}, e_{2}\right) S\right) e_{1}, e_{1}\right)= & g\left(R\left(e_{1}, e_{2}\right) S e_{1}, e_{1}\right)-g\left(R\left(e_{1}, e_{2}\right) e_{1}, S e_{1}\right) \\
= & 2 c\left(g\left(e_{2}, S e_{1}\right) g\left(e_{1}, e_{1}\right)-g\left(\phi e_{1}, S e_{1}\right)\left(\phi e_{2}, e_{1}\right)\right. \\
& \left.-2 g\left(\phi e_{1}, e_{2}\right) g\left(\phi S e_{1}, e_{1}\right)\right) \\
& +2 g\left(A e_{2}, S e_{1}\right) g\left(A e_{1}, e_{1}\right) \\
= & -8 c h_{1} h_{2} .
\end{aligned}
$$

By (15), we have

$$
\begin{aligned}
F g\left(\left(\left(e_{1} \wedge e_{2}\right) \cdot S\right) e_{1}, e_{1}\right)= & F\left(g\left(e_{2}, S e_{1}\right)\left(e_{1}, e_{1}\right)-g\left(S e_{1}, e_{1}\right) g\left(e_{2}, e_{1}\right)-g\left(e_{2}, e_{1}\right) g\left(S e_{1}, e_{1}\right)\right. \\
& \left.+g\left(e_{1}, e_{1}\right) g\left(S e_{2}, e_{1}\right)\right)
\end{aligned}
$$

$$
=2 F\left(S e_{1}, e_{2}\right)=-2 F h_{1} h_{2} .
$$

From these equations, we see that

$$
\begin{equation*}
(4 c-F) h_{1} h_{2}=0 . \tag{18}
\end{equation*}
$$

Similarly, substituting $X=Z=e_{1}, Y=\xi, W=e_{2}$ and $X=Z=e_{2}, Y=\xi, W=e_{1}$, we obtain

$$
\begin{align*}
& 0=h_{2}\left\{(c-F) a_{1}-a_{2} h_{1}^{2}+a_{1} a_{2} \alpha-a_{1} h_{2}^{2}\right\}, \\
& 0=h_{1}\left\{(c-F) a_{2}-a_{1} h_{2}^{2}+a_{1} a_{2} \alpha-a_{2} h_{1}^{2}\right\}, \tag{18}
\end{align*}
$$

respectively.
To prove the lemma, it is sufficient to consider the case that $h_{1} h_{2} \neq 0$. From (18) and (19), we have $4 c=F$ and

$$
(c-F)\left(a_{1}-a_{2}\right)=0 .
$$

Since $c-F=-3 c \neq 0$, we obtain $a_{1}=a_{2}$. By Lemma 1, the shape operator A is represented as

$$
A=\left(\begin{array}{lll}
\alpha & h & 0 \tag{20}\\
h & k & 0 \\
0 & 0 & k
\end{array}\right)
$$

with respect to an orthonormal frame $\{\xi, u, \phi u\}$. Thus we have our assertion.
(Proof of Theorem 2)
Suppose that M is not a Hopf hypersurface. We put $h_{1}=h \neq 0$, locally. Then the Ricci operator S is represented by a matrix

$$
S=\left(\begin{array}{ccc}
2 c+a_{1} \alpha+a_{2} \alpha-h^{2} & a_{2} h & 0 \tag{21}\\
a_{2} h & 5 c+a_{1} a_{2}+a_{1} \alpha-h^{2} & 0 \\
0 & 0 & 5 c+a_{1} a_{2}+a_{2} \alpha
\end{array}\right)
$$

with respect to $\left\{\xi, e_{1}, e_{2}\right\}$. By (17), we see that $5 c+a_{1} a_{2}+a_{2} \alpha=2 F$ or $5 c+a_{1} a_{2}+a_{2} \alpha=a$.
First we suppose $5 c+a_{1} a_{2}+a_{2} \alpha=2 F$. From (17) and (21), taking a trace of S, the scalar curvature r satisfies

$$
r=2(a+F)=12 c+2 a_{1} a_{2}+2 a_{1} \alpha+2 a_{2} \alpha-2 h^{2}
$$

So we have

$$
\begin{equation*}
a=F+c+a_{1} \alpha-h^{2} . \tag{22}
\end{equation*}
$$

We put

$$
S^{\prime}=\left(\begin{array}{cc}
2 c+a_{1} \alpha+a_{2} \alpha-h^{2} & a_{2} h \\
a_{2} h & 5 c+a_{1} a_{2}+a_{1} \alpha-h^{2}
\end{array}\right) .
$$

Then the eigenvalues of S^{\prime} are solutions of the equation

$$
\begin{align*}
0= & \operatorname{det}\left(x I-S^{\prime}\right) \\
= & \left(x-5 c-a_{1} a_{2}-a_{1} \alpha+h^{2}\right)\left(x-2 c-a_{1} \alpha-a_{2} \alpha+h^{2}\right) \tag{23}\\
& -a_{2}^{2} h^{2} .
\end{align*}
$$

Since a is an eigenvalue of S^{\prime}, using (22), we have

$$
0=\left(F-4 c-a_{1} a_{2}\right)\left(F-c-a_{2} \alpha\right)-a_{2}^{2} h^{2} .
$$

By $a_{1} a_{2}=2 F-5 c-a_{2} \alpha$, we obtain

$$
0=-\left(F-c-a_{2} \alpha\right)^{2}-a_{2}^{2} h^{2}
$$

which induces $F-c-a_{2} \alpha=0$ and $a_{2}^{2} h^{2}=0$. Since $h \neq 0$, we have $a_{2}=0$ and $F=c$. By $5 c+a_{1} a_{2}+a_{2} \alpha=2 F$, we have

$$
0=2 F-5 c=-3 c .
$$

This is a contradiction.
Next, we suppose $5 c+a_{1} a_{2}+a_{2} \alpha=a$. Then we have

$$
r=2(a+F)=2\left(6 c+a_{1} a_{2}+a_{1} \alpha+a_{2} \alpha-h^{2}\right) .
$$

From these equations, we have

$$
\begin{equation*}
F=c+a_{1} \alpha-h^{2} . \tag{24}
\end{equation*}
$$

Since a and $2 F$ are the solutions of (23), we obtain

$$
\begin{equation*}
0=\left(a_{2} \alpha-a_{1} \alpha+h^{2}\right)\left(3 c+a_{1} a_{2}-a_{1} \alpha+h^{2}\right)-a_{2}^{2} h^{2} . \tag{25}
\end{equation*}
$$

So we see that if S is pseudo-parallel, then M is a Hopf hypersurface or the shape operator A is represented by

$$
A=\left(\begin{array}{ccc}
\alpha & h & 0 \tag{26}\\
h & a_{1} & 0 \\
0 & 0 & a_{2}
\end{array}\right)
$$

with respect to an orthonormal frame $\left\{\xi, e_{1}, e_{2}\right\}$ and satisfies (24), (25). So we have our theorem.

In [2], Cho, Hamada and Inoguchi gave a classification of pseudo-parallel Hopf hypersurfaces.

Theorem G ([2]). The Hopf hypersurfaces in $\mathbf{C} P^{2}(c)$ or $\mathbf{C} H^{2}(c)$ with pseudoparallel Ricci operator are locally holomorphically congruent to a horosphere in $\mathbf{C} H^{2}(c)$, a geodesic hypersphere in $\mathbf{C} P^{2}(c)$ or $\mathbf{C} H^{2}(c)$, a homogeneous tube over $\mathbf{C} H^{1}(c)$ in $\mathbf{C} H^{2}$, a
non-homogeneous real hypersurface which is realized as a tube over a certain holomorphic curve in $\mathbf{C} P^{2}(c)$ with radius $\pi / \sqrt{4 c}$, or a Hopf hypersurface in $\mathbf{C} H^{2}(c)$ with $A \xi=0$.

Using Theorem A, we see the following result (see Corollary 3 in [3]).
Corollary 2. Let $\alpha(t), h(t), \lambda(t), \nu(t)$ be analytic solutions defined for $t \in I$ of the system (2), such that h is nowhere zero and

$$
0=\left(v \alpha-\lambda \alpha+h^{2}\right)\left(3 c+\lambda v-\lambda \alpha+h^{2}\right)-v^{2} h^{2} .
$$

Then the hypersurface M constructed by Theorem A is a non-Hopf pseudo-parallel hypersurface with $F=c+\lambda \alpha-h^{2}$.

Proof. We suppose that A satisfies (24)-(26) and $a_{1}=\lambda, a_{2}=v$. It is sufficient to show that

$$
g((R(X, Y) S) Z, W)-F g(((X \wedge Y) S) Z, W)=0
$$

for all $X=e_{i}, Y=e_{j}, Z=e_{k}$ and $W=e_{l}, 1 \leq i, j, k, l \leq 3$, where $e_{3}=\xi$. Using (15), (24)-(26) and the equation of Gauss, we have

$$
\begin{aligned}
& g\left(\left(R\left(e_{1}, e_{2}\right) S\right) e_{1}, e_{2}\right)-F g\left(\left(\left(e_{1} \wedge e_{2}\right) S\right) e_{1}, e_{2}\right) \\
&= g\left(R\left(e_{1}, e_{2}\right) S e_{1}, e_{2}\right)-g\left(R\left(e_{1}, e_{2}\right) e_{1}, S e_{2}\right) \\
&-F\left(-g\left(S e_{1}, e_{1}\right)+g\left(S e_{2}, e_{2}\right)\right) \\
&=-4 c g\left(S e_{1}, e_{1}\right)+g\left(A e_{2}, S e_{1}\right) g\left(A e_{1}, e_{2}\right)-g\left(A e_{1}, S e_{1}\right) g\left(A e_{2}, e_{2}\right) \\
&+4 c g\left(S e_{2}, e_{2}\right)-g\left(A e_{1}, S e_{2}\right) g\left(A e_{2}, e_{1}\right)+g\left(A e_{1}, e_{1}\right) g\left(A e_{2}, S e_{2}\right) \\
&-F\left(-g\left(S e_{1}, e_{1}\right)+g\left(S e_{2}, e_{2}\right)\right) \\
&=\left(a_{2} \alpha-a_{1} \alpha+h^{2}\right)\left(4 c-F+a_{1} a_{2}\right)-a_{2}^{2} h^{2} \\
&=\left(a_{2} \alpha-a_{1} \alpha+h^{2}\right)\left(3 c+a_{1} a_{2}-a_{1} \alpha+h^{2}\right)-a_{2}^{2} h^{2} \\
&= 0
\end{aligned}
$$

Similarly, for all $X=e_{i}, Y=e_{j}, Z=e_{k}$ and $W=e_{l}$, we can show that

$$
g((R(X, Y) S) Z, W)-F g(((X \wedge Y) S) Z, W)=0
$$

by the straightforward computation.
REMARK. If the shape operator A satisfies (25), (26) and $a_{1}=a_{2}=0$, then we have $c=h=0$ by (10). Thus a ruled real hypersurface is not pseudo-parallel (see [2] and [6]).

References

[1] J. BERNDT, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
[2] J. T. Cho, T. Hamada and J. InOgUCHi, On three dimensional real hypersurfaces in complex space forms, Tokyo J. Math. 33 (2010), 31-47.
[3] T. A. IVEY and P. J. Ryan, The *-Ricci tensor for hypersurfaces in $\mathbf{C P}^{n}$ and $\mathbf{C} H^{n}$, Tokyo J. Math. 34 (2011), 445-471.
[4] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in $P^{n}(\mathbf{C})$, Math. Ann. 276 (1987), 487-497.
[5] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
[6] J. InOGUCHI, Real hypersurfaces in complex space forms with pseudo-parallel Ricci operator, Differ. Geom. Dyn. Syst. 14 (2012), 69-89.
[7] M. Kon, Ricci Pseudo η-parallel real hypersurfaces of a complex space form, Nihonkai Math. J. 24 (2013), 45-55.
[8] M. LohnHERr and H. RECKZIEGEL, On ruled real hypersurfaces in complex space forms, Geom. Dedicata 74 (1999), 267-286.
[9] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), 245-261.
[10] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut Submanifolds, (Eds: T. E. Cecil and S. S. Chern), Math. Sci. Res. Inst. Publ. 32, Cambridge Univ. Press, Cambridge, 1997, 233-305.
[11] M. Ortega, Classifications of real hypersurfaces in complex space forms by means of curvature conditions, Bull. Belg. Math. Soc. 9 (2002), 351-360.
[12] R. TAKAGI, Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43-53.
[13] Y. TAShiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math. Sem. Rep. 15 (1963), 176-183.

Present Address:

FacUlty of Education, Shinshu University, 6-Ro, Nishinagano, NAGANO City 380-8544, Japan.
e-mail: mayuko_k@shinshu-u.ac.jp

[^0]: Received March 26, 2015; revised May 24, 2016
 Mathematics Subject Classification: 53C40, 53C55, 53C25
 Key words and phrases: non-Hopf hypersurface, shape operator, Ricci tensor, complex space form

