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Abstract. We are concerned with finitely nested square roots which are roots of iterations of a real quadratic

polynomial x2 − c with c ≥ 2, and the limits of such nested square roots. We investigate how they are related to a

Poincaré function f (x) satisfying the functional equation f (sx) = f (x)2 − c, where s = 1 + √
1 + 4c. Our main

theorems can be viewed as a natural generalization of the work of Wiernsberger and Lebesgue for the case c = 2.
The key ingredients of the proof are some analytic properties of F(x), which have been intensively studied by the
second author using infinite compositions.

1. Introduction

Let c be a real number with c ≥ 2 and ε1, ε2, . . . an infinite sequence consisting of ±1.
In this paper we are concerned with nested square roots of the form

Rc(ε1, ε2, ε3, . . . , εm) = ε1

√
c + ε2

√
c + ε3

√
c + · · · + εm

√
c (1)

and infinite nested square roots

Rc(ε1, ε2, ε3, . . .) := lim
m→∞ Rc(ε1, ε2, ε3, . . . , εm) . (2)

The existence of the limit (2) is proved in §7. In the case of c = 2, it is known that the nested
root (1) can be expressed by the sine function:

R2(ε1, ε2, ε3, . . . , εm) = 2 sin
π

2

(
ε1

2
+ ε1ε2

22 + · · · + ε1ε2 · · · εm

2m

)
. (3)

This formula may be rewritten as

R2(ε1, ε2, ε3, . . . , εm) = 2 cos π

(
a1

2
+ a2

22 + · · · + am

2m
+ 1

2m+1

)
, (4)
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where

ai = 1 − ε1 · · · εi

2
=

{
0 (if ε1 · · · εi = 1) ,

1 (if ε1 · · · εi = −1) .

Taking limm→∞ of (4), we obtain a simple formula for the infinite nested square root:

R2(ε1, ε2, ε3, . . .) = 2 cos απ , (5)

where α is a real number defined by the 2-adic expansion

α = a1

2
+ a2

22 + a3

23 + · · · .

These formulas were proved by Wiernsberger [10] in 1905, and about thirty years later
Lebesgue [7] (see also [8]) independently found the same formulas.

The purpose of this paper is to give a generalization of the formulas (4) and (5) to the
case c ≥ 2. To accomplish the task, we need a suitable function which will take the place of
cos x. In the proof of the formulas (4) and (5), the duplication formula

2 cos 2x = (2 cos x)2 − 2

was crucial. It is therefore natural to seek for a function f (x) satisfying the functional equa-
tion

f (sx) = f (x)2 − c , (6)

where s is a constant depending only on c. Such functional equations were studied by
Poincaré, who showed that there exists an entire function f (x) satisfying (6). In [4], [5]
and [6] the second author of the present paper studied intensively analytic properties of such
functions using a technique of infinite compositions.

In §2 and §3 we define an infinite composition F(x) of a family of certain quadratic
functions and study its analytic properties. We refer the reader to [1], [4], [5] and [6] for more
details. In §4 we study the function f (x) := s(F (x) + 1/2), which is the main object of the
present paper. In particular, the zero sets of f (x) and f ′(x) are crucial in studying nested
square roots of the form (1) and its limit (2). In §5 we study the zero set of F(x). Most results
in §4 and §5 were proved by the second author in his master thesis [4]. Our main results
(Theorem 6.7 and Theorem 7.3) give explicit descriptions of finite or infinite nested square
roots in terms of special values of f (x). As an application of Theorem 6.7, we compute the
zeros of f (x) and F(x) (Theorem 6.10).

Another aspect of nested square roots in the case of c = 2 is a famous formula due to
Viéta:

2

π
=

√
2

2

√
2 + √

2

2

√
2 +

√
2 + √

2

2
· · · . (7)
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In the final section we prove a formula on an infinite product involving nested square roots
(Theorem 8.2), which may be regarded as a generalization of (7).

2. Infinite compositions of quadratic functions

For any two C-valued functions u(x), v(x) on C, we write

u(x) ◦ v(x) = u(v(x)) .

In this notation, for any complex number α, we can write u(α) = u(x) ◦ α. More generally,
if {un(x)}∞n=1 is a sequence of C-valued functions on C, we write

u1(x) ◦ u2(x) ◦ · · · ◦ uN(x) = u1(u2(· · · uN(x) · · · )) .

We also adopt the following notation used in [4], [5] and [6]:

N

R
n=1

un(x) = u1(x) ◦ u2(x) ◦ · · · ◦ uN(x) ,

∞
R

n=1
un(x) = lim

N→∞
N

R
n=1

un(x) .

In the following we will study the infinite composition of quadratic functions

F(x, s) := ∞
R

n=1

(
x + x2

sn

)
, (8)

where s ∈ C is a constant such that |s| > 1. By the definition, the function F(x, s) is the limit
of

FN(x, s) := N

R
n=1

(
x + x2

sn

)
.

If no confusion arises, we simply write F(x) = F(x, s) and FN(x) = FN(x, s). The ex-
istence of the limit is proved in [6, Proposition 1.2] (see also [4] and [5]). It is clear from
the definition that F(0) = 0 and F ′(0) = 1. When s = 2, 4,−2, the function F(x, s) is an
elementary function (see [1] and [6]). More precisely we have

F(x, 2) = 1

2

(
e2x − 1

)
,

F (x, 4) = 1

2

(
cos

√−4x − 1
)
,

F (x,−2) = sin

(
2x√

3
+ π

6

)
− 1

2

for any x ∈ C. These are shown by the following:
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PROPOSITION 2.1. If |s| > 1, then the function F(x) defined by (8) satisfies the func-
tional equation

F(sx) = s(F (x)2 + F(x)) . (9)

Conversely, if a complex valued function H(x) differentiable at x = 0 satisfies the functional
equation (9) together with H(0) = 0,H ′(0) = 1, then H(x) = F(x).

PROOF. Let N > 1 be an integer. Note that FN(sx)/s and x+x2/sn−1 are “conjugate”

to FN(x) and x + x2/sn respectively in the following sense:

FN(sx)

s
= x

s
◦ FN(x) ◦ (sx) ,

x + x2

sn−1 = x

s
◦

(
x + x2

sn

)
◦ (sx) .

Therefore
FN(sx)

s
= x

s
◦ FN(x) ◦ (sx)

= x

s
◦

(
N

R
n=1

(
x + x2

sn

))
◦ (sx)

= N

R
n=1

(
x

s
◦

(
x + x2

sn

)
◦ (sx)

)

= N

R
n=1

(
x + x2

sn−1

)

= (x + x2) ◦ FN−1(x)

= FN−1(x) + FN−1(x)2 .

Taking the limit N → ∞, we obtain the functional equation

F(sx)

s
= F(x) + F(x)2 .

This proves the first part of the proposition.
In order to prove the second part of the proposition, let H(x) be a complex valued func-

tion defined on C that is differentiable at x = 0 and satisfies the functional equation

H(sx) = s(x + x2) ◦ H(x) (x ∈ C)

with the initial condition H(0) = 0,H ′(0) = 1. Then we have

H(x) =
(

x + x2

s

)
◦ sH

(
x

s

)

=
(

x + x2

s

)
◦ s2(x + x2) ◦ x

s2
◦ s2x ◦ H

(
x

s2

)
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=
(

x + x2

s

)
◦

(
x + x2

s2

)
◦ s2H

(
x

s2

)

= · · ·

=
(

n

R
k=1

(
x + x2

sk

))
◦ snH

(
x

sn

)
.

Since H(0) = 0,H ′(0) = 1 and |s| > 1,

lim
n→∞ snH

(
x

sn

)
= x lim

n→∞
H (x/sn)

x/sn
= xH ′(0) = x (if x 	= 0) .

If x = 0, then the equality is trivial. Therefore

lim
n→∞ snH

(
x

sn

)
= x

for any x. Moreover the sequence
{
Rn

k=1

(
x + x2

sk

)}
is equicontinuous on every compact

subset of C. (For a proof of the equicontinuity of the sequence, see [6].) Hence

H(x) = lim
n→∞

((
n

R
k=1

(
x + x2

sk

))
◦ snH

(
x

sn

))

= ∞
R
k=1

(
x + x2

sk

)
◦ lim

n→∞ snH

(
x

sn

)

= ∞
R
k=1

(
x + x2

sk

)
◦ x = ∞

R
k=1

(
x + x2

sk

)
= F(x) .

Therefore

H(x) = F(x)

for any x ∈ C.
�

REMARK 2.2. For a given function h(x), the functional equation of the form

P(sx) = h(P (x)) (10)

has been studied by several mathematicians. Suppose that |s| 	= 0, 1. Koenigs [3] proved that
if h(x) is analytic at the origin and h(0) = 0, h′(0) = s, then the functional equation (10) has
a unique solution P(x) which is analytic at x = 0 and P(0) = 0, P ′(0) = 1. This kind of
function is called a Poincaré function. For example, F(x) defined by (8) is a Poincaré function

since it satisfies the functional equation (10) with h(x) = s(x + x2). For more details, see [2]
or [9].
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3. F(x) as a real-valued function

From now on, s stands for a real number such that s > 2. Thus the function F(x) defined
in the previous section is a real valued function on R.

THEOREM 3.1. If s > 2, then the following statements hold.

(i) F(R) = [− s
4 ,∞) .

(ii) Let ω ∈ R be the maximal value such that F(ω) = −s/4. Then F ′(x) > 0 for any
x > ω and F ′(ω) = 0 .

Before giving the proof of Theorem 3.1, we prove two lemmas.

LEMMA 3.2. F ′(x) ≥ 1 for any x ∈ [0,∞).

PROOF. It is easy to see that the Taylor expansion of Fn(x) at x = 0 is of the form

Fn(x) = x +
∞∑

r=2

cn,rx
r ,

where the coefficients cn,r are non-negative real numbers. Therefore F ′
n(x) ≥ 1 for any

x ≥ 0. �

In order to state the next lemma, we need some notation. For each positive integer n,
consider a real valued function

ϕn(x) = −1 + √
1 + 4s−nx

2s−n

defined on the interval [−sn/4,∞). Note that

ϕn

([
− sn

4
,∞

))
=

[
− sn

2
,∞

)
⊂

[
− sn+1

4
,∞

)

for any n ≥ 1. Thus we can define composite functions

Gn(x) := ϕn(x) ◦ ϕn−1(x) ◦ · · · ◦ ϕ1(x)

on the interval [−s/4,∞). For convenience, we put

G0(x) = x .

Note that ϕn(x) > 0 for any x > 0, ϕn(0) = 0, and ϕn(x) < 0 for any x < 0, hence
Gn(x) > 0 for any x > 0, Gn(0) = 0, and Gn(x) < 0 for any x ∈ [−s/4, 0). Moreover,
since (

x + x2

sn

)
◦ ϕn(x) = x ,
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we have

Fn(x) ◦ Gn(x) = x (11)

for any x ∈ [−s/4,∞).

LEMMA 3.3. Let the notation be as above and suppose s > 2. Then:

(i) The sequence Gn(x) converges uniformly on every compact subset of [−s/4,∞),
and define a function

G(x) = lim
n→∞ Gn(x)

on [−s/4,∞) which is real analytic on (−s/4,∞).
(ii) For any x ∈ [−s/4,∞), it holds that F(x) ◦ G(x) = x.

(iii) The function G(x) is strictly increasing on [−s/4,∞).
(iv) If we set ω0 = G(−s/4), then the function F(x) is strictly increasing on [ω0,∞).

PROOF. (i) It follows from the definition of Gn(x) that(
x + x2

sn

)
◦ Gn(x) = Gn−1(x) (n ≥ 1) ,

that is,

Gn(x)

(
1 + Gn(x)

sn

)
= Gn−1(x) (n ≥ 1) .

Therefore

Gn(x) = x∏n
r=1

(
1 + s−rGr(x)

) (12)

for any n ≥ 1. Here note that from the definition of Gr(x) we have Gr(x) ≥ − sr

2 , so

1 + s−rGr(x) ≥ 1
2 . Hence the denominators of the right hand side of (12) never vanish for

any r ∈ N.
Now, by the definition of Gr(x), we have

Gr(x) = −1 + √
1 + 4s−rx

2s−r
◦ Gr−1(x)

= 2x

1 + √
1 + 4s−rx

◦ Gr−1(x)

= 2Gr−1(x)

1 + √
1 + 4s−rGr−1(x)

.
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Since G0(x) = x, it follows that

Gn(x) ≤ |x|
n∏

r=1

2

1 + √
1 + 4s−rGr−1(x)

≤ 2n|x| .

Therefore

s−n|Gn(x)| ≤
(

2

s

)n

|x| .

This implies that if s > 2, then the infinite series

∞∑
n=1

s−n|Gn(x)|

is convergent, hence the infinite product

∞∏
n=1

(1 + s−nGn(x))

is also convergent. Therefore, the limit limn→∞ Gn(x) exists by (12), which proves (i).
(ii) The second assertion follows from the relation (11) and the equicontinuity of the

sequence {Fn(x)} on every compact subset of [−s/4,∞).
(iii) First we prove that the inequality

Gn(x) − Gn(y) ≥ x − y (13)

holds for any x, y ∈ [−s/4, 0] with x > y by induction on n.
In the case of n = 0, (13) is trivial. Suppose n > 0 and the inequality

Gn−1(x) − Gn−1(y) ≥ x − y (14)

holds for any x, y ∈ [−s/4, 0] with x > y. Since Gn−1(x) ≤ 0 for any x ∈ [−s/4, 0], we
have √

1 + 4s−nGn−1(x) ≤ 1 .

Therefore

Gn(x) − Gn(y)= 2 (Gn−1(x) − Gn−1(y))√
1 + 4s−nGn−1(x) + √

1 + 4s−nGn−1(y)
≥ x − y .

Thus (13) holds for any n ≥ 0.
Now, taking the limit n → ∞ of (13) yields the inequality

G(x) − G(y) ≥ x − y .

In particular, G(x) is strictly increasing on [−s/4, 0].
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It remains to show that G(x) is strictly increasing on (0,∞). Since F(G(x)) = x and
F ′(x) 	= 0 on (0,∞) by Lemma 3.2, it follows from the implicit function theorem that G(x)

is differentiable and the formula

F ′(G(x))G′(x) = 1 (15)

holds on (0,∞). Since F ′(x) > 0 for any x > 0 by Lemma 3.2 again and G(x) > 0 for any
x > 0, the formula (15) shows that G′(x) > 0, hence G(x) is strictly increasing on (0,∞).

(iv) This is an immediate consequence of (ii) and (iii). �

We can now prove Theorem 3.1.

PROOF OF THEOREM 3.1. (i) Since y2 + y ≥ −1/4 for any y ∈ R, the functional

equation (9) shows that F(x) ≥ −s/4 for any x ∈ R. If x ≥ 0, then x + x2/sn ≥ 0 for any
n ≥ 1, hence F(x) ≥ 0 for any x ≥ 0. Moreover, if we set ω0 = G(−s/4) < 0, then

F(ω0) = F

(
G

(
− s

4

))
= − s

4

by Lemma 3.3 (ii). Hence F(x) actually attains the minimal value −s/4 at x = ω0. Therefore
F(R) = [−s/4,∞).

(ii) Let ω0 be as in (i) and ω ∈ R the maximal value such that F(ω) = −s/4. As we
have seen in (i), F(x) ≥ 0 if x ≥ 0, so ω is negative. Since F(ω0) = −s/4, this shows that
ω0 is the maximal real number attaining the minimal value of F(x), hence ω = ω0. It follows
that F ′(ω) = 0 since F(x) attains the minimal value.

It remains to show that F ′(x) > 0 for any x > ω. To see this, let ω1 be the maximal real
zero of F ′(x). If ω1 > ω, then ω1/s > ω/s, so F(ω1/s) + 1/2 > 0 since F(x) is strictly
increasing on [ω,∞). But

F ′
(

ω1

s

)(
1 + 2F

(
ω1

s

))
= F ′(ω1) = 0 ,

hence F ′(ω1/s) = 0, which contradicts the maximality of ω1. Therefore ω must be the
maximal real zero of F ′(x). In other words, F ′(x) > 0 for any x > ω. This completes the
proof.

4. The zeros of f (x) and f ′(x)

Throughout this section we assume that s ≥ 4. Let

c = s2

4
− s

2
.
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Obviously, we have c ≥ 2, and c = 2 if and only if s = 4. Let F(x, s) be the function defined
by (8) and put

f (x, s) = s

(
F(x, s) + 1

2

)
. (16)

Then the following proposition shows that f (x) := f (x, s) is the desired function mentioned
in the introduction.

PROPOSITION 4.1. The function f (x) and its derivative f ′(x) satisfy the following
functional equations:

f (sx) = f (x)2 − c , (17)

sf ′(sx) = 2f (x)f ′(x) . (18)

PROOF. It follows from (9) that

f (sx) = s

(
F(sx) + 1

2

)

= s2(F (x)2 + F(x)) + s

2

=
{
s

(
(F (x) + 1

2

)}2

− s2

4
+ s

2

= f (x)2 − c .

Thus (17) holds. Differentiating the functional equation (17) yields (18). �

PROPOSITION 4.2. Let ω be as in Theorem 3.1. Then f (x) ≥ −c for any x ∈ R and
f (ω) = −c. Moreover, f ′(x) > 0 for any x > ω.

PROOF. Since F(x) ≥ −s/4 for any x ∈ R, we have f (x) ≥ −c. Moreover, since
F(x) attains the minimal value −s/4 at x = ω, f (x) also attains the minimal value at x = ω

and

f (ω) = s

(
F(ω) + 1

2

)
= s

(
− s

4
+ 1

2

)
= − s2

4
+ s

2
= −c .

The last statement follows from Theorem 3.1 (ii). �

As we will see later, the zeros of f (x) and f ′(x) will play an important role in this paper.
First note that f (x) has at least one negative real zero. Indeed, since f (0) = s(F (0)+1/2) =
s/2 > 0 and f (ω) = −c < 0, it follows that f (x) has a real zero in the interval (ω, 0).

PROPOSITION 4.3. If ρ is a zero of f (x), then the following statements hold.

(i) f (sρ) = −c. In particular, f (sρ) < 0.
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(ii) f (siρ) ≥ c for any i ≥ 2, and the equality f (siρ) = c holds if and only if c = 2.
In particular, f (siρ) > 0 for any i ≥ 2.

(iii) f ′(siρ) = 0 for any i ≥ 1.

PROOF. (i) The functional equation (17) shows that

f (sρ) = f (ρ)2 − c = −c ,

which proves (i).
(ii) Suppose |f (siρ)| ≥ c for some i ≥ 1. Then

f (si+1ρ) = f (siρ)2 − c ≥ c2 − c = c(c − 1) .

Since c ≥ 2, we have c(c − 1) ≥ c, hence f (si+1ρ) ≥ c. Clearly the equality holds if and
only if c = 2. Since |f (sρ)| = c, this implies that f (siρ) ≥ c for any i ≥ 2.

(iii) From the functional equation (18), we have

sif ′(six) = 2if (si−1x) · · ·f (sx)f (x)f ′(x)

for any i ≥ 1. Therefore, f ′(siρ) = 0, which proves (iii). �

COROLLARY 4.4. The function f (x) has infinitely many negative real zeros, and the
same holds for f ′(x).

PROOF. If ρ is a negative real zero of f (x), then f (sρ) < 0 and f (s2ρ) > 0 by

Proposition 4.3. Hence there exists at least one zero ρ′ of f (x) such that s2ρ < ρ′ < sρ.
In particular, ρ′ < ρ. Therefore f (x) has infinitely many real negative zeros. The second
statement of the corollary is then clear from this, or directly follows from Proposition 4.3
(iii). �

PROPOSITION 4.5. Suppose s ≥ 4. Then:

(i) Every zero of f (x) is a negative real number.
(ii) Every zero of f ′(x) is of the form siρ, where ρ is a zero of f (x) and i is a positive

integer.
(iii) f (x) and f ′(x) have no common zero.
(iv) Every zero of f (x)f ′(x) is simple.

PROOF. (i) It is proved in [1, Theorem 1.1, (ii)] that if s ≥ 4 then F−1([−s/4, 0]) ⊂
(−∞, 0]. Since s ≥ 4, we have −1/2 ∈ [−s/4, 0], and so F−1(−1/2) ⊂ (−∞, 0]. Since
f −1(0) = F−1(−1/2) and f (0) = s/2 	= 0, it follows that f −1(0) ⊂ (−∞, 0), which
proves (i).

(ii) Let X denote the set of zeros of f (x) and Y the set of zeros of f ′(x). Then (18)
shows that Y = sX ∪ sY . Since 0 	∈ Y and Y has no accumulation points, this implies that

Y =
∞⋃
i=1

siX ,
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which proves (ii).
(iii) Proposition 4.3 shows that X ∩ siX = ∅ for any i ≥ 1, hence X ∩ Y = ∅ by (ii).

This proves (iii).
(iv) It follows from (iii) that every zero of f (x) is simple. Since f (x) and f ′(x) have

no common zeros, we have only to show that f ′(x) has no zero of order ≥ 2.
Suppose f ′(x) and f ′′(x) have a common zero, and let α be the maximum of such zeros.

By (18), we have

0 = sf ′(α) = 2f

(
α

s

)
f ′

(
α

s

)
,

and exactly one of f (α/s) and f ′(α/s) is zero by (iii). Differentiating (18), we get

s2f ′′(sx) = 2{f ′(x)2 + f (x)f ′′(x)} .

It follows that

0 = s2f ′′(α) = 2

{
f ′

(
α

s

)2

+ f

(
α

s

)
f ′′

(
α

s

)}
. (19)

If f (α/s) = 0, then (19) implies that f ′(α/s) = 0, which is impossible since f (x) and f ′(x)

have no common zero. Hence f (α/s) 	= 0 and f ′(α/s) = 0. It then follows from (19) again
that f ′′(α/s) = 0, which contradicts the choice of α since α < α/s. Therefore f ′(x) and
f ′′(x) have no common zero, and so f ′(x) has only simple zeros. This proves (iv). �

Recall that both f (x) and f ′(x) have infinitely many zeros by Corollary 4.4, all of which
are negative real numbers by Proposition 4.5. Numbering the zeros of f (x) and f (x)f ′(x) in
descending order, respectively, we write

(0 >) ρ(1) > ρ(2) > ρ(3) > · · · ,

and

(0 >) τ(1) > τ(2) > τ(3) > · · · .

For convenience, we set τ (0) = τ (−1) = ∞.
Recall that we have defined ω to be the maximal zero of F ′(x). Then ω is also the

maximal zero of f ′(x).

PROPOSITION 4.6. Notation being as above, we have τ (1) = ρ(1) and τ (2) = ω =
sρ(1).

PROOF. Note that f ′(x) > 0 for any x > ω and f (ω) = −c < 0 by Proposition
4.2. This implies that τ (1) = ρ(1) and ρ(1) is the unique zero of f (x) in the interval (ω, 0).
Moreover, since f ′(ω) = 0, it follows that τ (2) = ω.



NESTED SQUARE ROOTS AND POINCARÉ FUNCTIONS 253

To see that ω = sρ(1), note that ω < ω/s < 0, hence f ′ (ω
s

) 	= 0. But

2f

(
ω

s

)
f ′

(
ω

s

)
= sf ′(ω) = 0 ,

hence f (ω/s) = 0. This implies that ω/s = ρ(1), so ω = sρ(1). �

Proposition 4.6 can be generalized as follows.

THEOREM 4.7. Let n be a positive integer. Then

τ (2n − 1) = ρ(n) , τ (2n) = sτ (n) . (20)

In particular, f (τ(n)) = 0 if n is odd and f ′(τ (n)) = 0 if n is even.

Although this theorem is proved in [4], we give a slightly simplified proof here for the
sake of the reader. In the proof of the theorem we need the following notation: For a real
number x, define

sgn(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 (if x > 0) ,

0 (if x = 0) ,

−1 (if x < 0) .

PROOF OF THEOREM 4.7. First, note that the statement for n = 1 is nothing but
Proposition 4.6. For each n ≥ 1, consider the open interval In = (sτ (n), sτ (n − 1)). In
particular, ρ(1) ∈ I1 = (sτ (1),∞).

Let k ≥ 1 be an integer and assume that (20) holds for any n with 1 ≤ n ≤ k. In order
to show that the assertion of the theorem for n = k + 1 is true, we first prove that f (x) has
a unique zero in In for any integer n with 1 ≤ n ≤ 2k. For such an integer n, take arbitrary
x ∈ In. Then τ (n) < x/s < τ(n − 1), hence neither f (x/s) nor f ′(x/s) vanishes. Since

sgn(f ′(x)) = sgn

(
f

(
x

s

)
f ′

(
x

s

))

by (18), sgn(f ′(x)) is constant on In. Hence f (x) is either monotonously increasing or
monotonously decreasing on the interval In. Moreover, if n is even, say n = 2l with 1 ≤ l ≤
k, then

sτ (n) = sτ (2l) = s2τ (l)

by the inductive hypothesis. Hence f (sτ (n)) > 0 by Proposition 4.3 (ii). If n is odd, say
n = 2l − 1 with 1 ≤ l ≤ k, then

sτ (n) = sτ (2l − 1) = sρ(l)

by the inductive hypothesis. Then f (sτ (n)) < 0 by Proposition 4.3 (i). Therefore, f (x) has
a unique zero in In for any integer n with 1 ≤ n ≤ 2k. In particular, there exists a unique zero
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in Ik+1 = (sτ (k + 1), sτ (k)) = (sτ (k + 1), τ (2k)), namely, there exists a unique positive
integer u such that

sτ (k + 1) < ρ(u) < τ(2k) (< τ(2k − 1) = ρ(k)) . (21)

On the other hand, in the notation of the proof of Proposition 4.5 (ii), we have

Y = s(X ∪ Y ) = {sτ (n) | n = 1, 2, 3, . . .} . (22)

From (21), (22), we find that ρ(u) = τ (2k+1) and sτ (k+1) = τ (2k+2). In particular, ρ(u)

is the maximal zero of f (x) less than ρ(k), so u = k+1. Therefore τ (2k+1) = ρ(k+1) and
τ (2k + 2) = sτ (k + 1). This proves that the theorem holds for n = k + 1. Thus the theorem
holds for any positive integer n. �

For each positive integer n, define a nonnegative integer v(n) and a positive integer n#

by the rule

n = 2v(n)(2n# − 1) . (23)

Obviously, both v(n) and n# are uniquely determined by n. The following corollary is an
immediate consequence of Theorem 4.7.

COROLLARY 4.8. Notation being as above, we have

τ (n) = sv(n)ρ(n#) .

THEOREM 4.9. Let n be a non-negative integer. Then

f (x) > 0 if τ (4n + 1) < x < τ(4n − 1) ,

f (x) < 0 if τ (4n + 3) < x < τ(4n + 1) ,

and

f ′(x) > 0 if τ (4n + 2) < x < τ(4n) ,

f ′(x) < 0 if τ (4n + 4) < x < τ(4n + 2) .

PROOF. Theorem 4.7 shows that the set of zeros of f (x) is {τ (2m − 1) | m ∈ N},
and so sgn(f (x)) is constant on the open interval (τ (2m + 1), τ (2m − 1)) for any m ∈ N.
Therefore sgn(f (x)) = sgn(f (τ (2m))) for any x ∈ (τ (2m + 1), τ (2m − 1)). Moreover,
combining Theorem 4.7 with Proposition 4.3, we see that

sgn(f (τ (2m))) = (−1)m .

This proves the first statement of the theorem.
For the second statement, recall that we have seen in the proof of Theorem 4.7 that

sgn(f ′(x)) is constant on the interval (τ (2m + 2), τ (2m)) for any m ∈ N. Since

sgn(f ′(τ (2m + 1))) = sgn(f ′(ρ(m + 1))) = (−1)m
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for any m ≥ 0, we have sgn(f ′(x)) > 0 if and only if x ∈ (τ (4n+2), τ (4n)) for some n ≥ 0.
This completes the proof. �

Now, for an integer n, define a0(n), a1(n) ∈ {0, 1} by the rule

n ≡ a0(n) + 2a1(n) (mod 4) .

COROLLARY 4.10. If x ∈ (τ (n + 1), τ (n)), then

sgn(f ′(x)) = (−1)a1(n) , (24)

sgn(f (x)) = (−1)a0(n)+a1(n) . (25)

PROOF. Note that the following equivalence holds:

a1(n) ≡ 0 (mod 2) ⇐⇒ n ≡ 0, 1 (mod 4) ,

a0(n) + a1(n) ≡ 0 (mod 2) ⇐⇒ n ≡ 0, 3 (mod 4) .

Therefore, the corollary immediately follows from Theorem 4.9. �

COROLLARY 4.11. The function f (x) takes extreme values at x = τ (2n) for any
n ∈ N. If n is odd, then

f (τ(2n)) = −c ,

which is independent of n. On the other hand, if n is even, then

f (τ(2n)) =
(

v(2n)

R
j=1

(
x2 − c

)) ◦ 0 ,

all of which are positive.

REMARK 4.12. Corollary 4.11 shows that f (x) takes local maximums at x = τ (2n)

for even integers n > 0 and they depend only on v(2n). For positive integers ν, let Mν =
f (τ(2ν+1)). If s = 4, then Mν = 2 for any ν ≥ 1. On the contrary, if s > 4, then Mν

becomes arbitrarily large as ν → ∞ (see Figure 1.). For example, one can easily see that

Mν ≥ c(c − 1)2ν−1 . (26)

Indeed, this holds for ν = 1 since M1 = c(c − 1). If Mν ≥ c(c − 1)2ν−1, then

Mν+1 = (x2 − c) ◦ Mν

= M2
ν − c

≥ c2(c − 1)2(2ν−1) − c

= c{c(c − 1)2ν+1−2 − 1}
= c{(c − 1)(c − 1)2ν+1−2 + (c − 1)2ν+1−2 − 1}



256 NOBORU AOKI AND SHOTA KOJIMA

FIGURE 1. The graph of f (x) for s = 4.05

> c(c − 1)2ν+1−1 .

The last inequality holds since c − 1 > 1. This proves that the inequality (26) holds for any
ν ≥ 1.

5. The zeros of F(x)

In this section we assume that s > 4. From the definition of f (x) we deduce that

F(x) = f (x)

s
− 1

2
.

Since f ′(τ (2n)) = 0 for any integer n > 0 by Theorem 4.7, we have

F ′(τ (2n)) = 0 .

To study the distribution of the zeros of F(x) we start with the following lemma.

LEMMA 5.1. For any integer n ≥ 0, there exists a unique zero of F(x) in every open
interval (τ (2n + 2), τ (2n)). Here, we set τ (0) = ∞ for convenience.

PROOF. First suppose n is odd, say n = 2k − 1. Then Proposition 4.3 shows that

F(τ(2n)) = f (τ(2n))

s
− 1

2
= −c

s
− 1

2
= − s

4
< 0 .
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On the other hand, we have 2n+2 = 4k, so τ (2n+2) = s2τ (k). Hence Proposition 4.3 again
shows that

F(τ(2n + 2)) = f (τ(2n + 2))

s
− 1

2
>

c

s
− 1

2
= s

4
− 1 > 0 .

Moreover, since F ′(x) < 0 for any x ∈ (τ (2n + 2), τ (2n)) by Theorem 4.9, this shows that
there is a unique zero of F(x) in the interval (τ (2n+ 2), τ (2n)). The proof of the case n even
is quite similar. �

For each n ≥ 0, we denote by μ(n) the unique zero of F(x) in the interval (τ (2n +
2), τ (2n)). Thus,

0 = μ(0) > μ(1) > μ(2) > · · · .

PROPOSITION 5.2. For any n ∈ N, we have

τ (4n + 1) < μ(2n) < τ(4n) < μ(2n − 1) < τ(4n − 1) .

PROOF. Theorem 4.9 shows that F ′(x) < 0 for any
x ∈ (τ (4n), τ (4n − 1)). Since

F(τ(4n − 1)) = F(ρ(2n)) = −1

2
< 0 , F (τ (4n)) > 0

we find that

τ (4n) < μ(2n − 1) < τ(4n − 1) ,

which proves the half of the proposition. The proof of the remaining part of the proposition is
quite similar. �

REMARK 5.3. If s = 4, then c = 2 and

f (x) = f (x, 4) = 2 cos
√−4x =

{
2 cos(2

√−x) (x ≤ 0) ,

2 cosh(2
√

x) (x > 0) ,

F (x) = F(x, 4) = cos
√−4x

2
− 1

2
=

{− sin2(
√−x) (x ≤ 0) ,

sinh2(
√

x) (x > 0) .

It follows that τ (n) = −π2n2/42 for any positive integer n, so F(τ(4n)) = F ′(τ (4n)) = 0.
Therefore, the case s = 4 can be regarded as a degenerate case where “μ(2n) = μ(2n − 1)”.
This is the reason why we have excluded the case s = 4.

Now, the functional equation of F(x) shows that sμ(n) is a zero of F(x) for any n ≥ 0.
Thus, given n ≥ 0, we have sμ(n) = μ(n′) for some n′ ≥ 0. The following theorem gives
an explicit relationship between n and n′. To state it, for any integer n > 0, we define an odd
integer n∗ by

n = 2v(n)n∗ , (27)
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where v(n) ≥ 0 is the integer defined in (23). Thus, n∗ = 2n# − 1 in the notation of (23).

THEOREM 5.4. Let s > 4. Then the following hold for any n ≥ 1.

μ(2n) = sv(n)μ(2n∗) (28)

μ(2n − 1) = sv(n)μ(2n∗ − 1) (29)

PROOF. It suffices to prove that

sμ(2n) = μ(4n) , sμ(2n − 1) = μ(4n − 1) (30)

for any n ≥ 1. To prove the first equation of (30), note that the inequalities

τ (4n + 1) < μ(2n) < τ(4n)

hold by Proposition 5.2. Hence

sτ (4n + 1) < sμ(2n) < sτ(4n) .

Since sτ (4n + 1) = τ (8n + 2) and sτ (4n) = τ (8n), it follows that

τ (8n + 2) < sμ(2n) < sτ(8n) . (31)

Since μ(4n) is the unique zero of F(x) in the interval (τ (8n+2), τ (8n)), it follows from (31)
that sμ(2n) = μ(4n).

On the other hand Proposition 5.2 shows that

τ (4n) < μ(2n − 1) < τ(4n − 1) ,

ands so

sτ (4n) < sμ(2n − 1) < sτ(4n − 1) .

Since sτ (4n) = τ (8n) and sτ (4n − 1) = τ (8n − 2), it follows that

τ (8n) < sμ(2n − 1) < sτ(8n − 2) . (32)

Note that μ(4n−1) is the unique zero of F(x) in the interval (τ (8n), τ (8n−2)) by Proposition
5.2. Therefore we see that sμ(2n − 1) = μ(4n − 1) by (32). �

6. Finite nested square roots

From now on, we assume that s ≥ 4. Let m be a positive integer. Given a finite sequence
(ε1, ε2, . . . , εm) ∈ {±1}m, consider a real valued function

Rc(ε1, . . . , εm; x) = ε1

√
c + ε2

√
c + ε3

√
c + · · · + εm

√
c + x

defined for x ≥ −c. This can be written as

Rc(ε1, . . . , εm; x) = m

R
k=1

εk

√
c + x .



NESTED SQUARE ROOTS AND POINCARÉ FUNCTIONS 259

PROPOSITION 6.1. Let α ∈ R. If we set εk = sgn(f (α/sk)) for k = 1, 2, . . . ,m, then

f

(
α

sm

)
= Rc(εm, εm−1, . . . , ε1; f (α)) .

PROOF. The functional equation f (sx) = f (x)2 − c shows that

f (x) = sgn(f (x))
√

c + f (sx) .

Hence

f

(
α

sm

)
= εm

√
c + f

(
α

sm−1

)
.

Repeating this process yields the proposition. �

For any integer m ≥ 0, define ak(m) ∈ {0, 1} (k = 0, 1, . . .) by the 2-adic expansion of
m:

m = a0(m) + 2a1(m) + 22a2(m) + · · · .

If τ (m+1) < x < τ(m), then sgn(f (x)) = (−1)a0(m)+a1(m) by Corollary 4.10. The following
theorem determines sgn(f (x/sk)) for k ≥ 1.

THEOREM 6.2. If τ (2m + 2) < x < τ(2m), then

sgn

(
f

(
x

sk

))
= (−1)ak−1(m)+ak(m)

for any integer k ≥ 1.

PROOF. Put Bk(m) = 2kak(m) + 2k+1ak+1(m) + · · · . Then

2k−1ak−1(m) + Bk(m) ≤ m < m + 1 ≤ 2k−1(1 + ak−1(m)) + Bk(m) ,

hence

2kak−1(m) + 2Bk(m) ≤ 2m < 2m + 2 ≤ 2k(1 + ak−1(m)) + 2Bk(m) .

Therefore

τ (2k(1 + ak−1(m)) + 2Bk(m)) ≤ τ (2m + 2)

< τ(2m) ≤ τ (2kak−1(m) + 2Bk(m)) ,

which implies that

τ (1 + ak−1(m) + 2Bk(m)/2k) <
x

sk
< τ(ak−1(m) + 2Bk(m)/2k) .
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Thus, if we put n = ak−1(m) + 2ak(m) + · · · , then τ (1 + n) < x/sk < τ(n). Hence

sgn

(
f

(
x

sk

))
= (−1)a0(n)+a1(n)

by Corollary 4.10. But a0(n) + a1(n) = ak−1(m) + ak(m), and so the theorem holds. �

REMARK 6.3. For any real number x, let [x] denote the largest integer not greater than
x. Then

ak−1(m) + ak(m) ≡
[

m

2k
+ 1

2

]
(mod 2) .

COROLLARY 6.4. Let k be an integer with k ≥ 1. Then

sgn

(
f

(
ρ(m + 1)

sk

))
= (−1)ak(m)+ak−1(m) .

PROOF. Since ρ(m + 1) = τ (2m + 1), it follows that

τ (2m + 2) < ρ(m + 1) < τ(2m) .

Hence, applying Theorem 6.2 with x = ρ(m + 1), we obtain the corollary. �

THEOREM 6.5. If τ (2m + 2) < α < τ(2m), then

f

(
α

sN

)
=

(
N

R
n=1

(−1)aN+1−n(m)+aN−n(m)
√

c + x

)
◦ f (α)

for any N ≥ 1.

PROOF. For simplicity we put ak = ak(m). Then Proposition 6.1 gives

f

(
α

sN

)
=

(
N

R
n=1

sgn

(
f

(
α

sN+1−n

))√
c + x

)
◦ f (α) . (33)

From Theorem 6.2, we deduce that

sgn

(
f

(
α

sN+1−n

))
= (−1)aN+1−n+aN−n . (34)

Then the theorem follows from (33) and (34). �

Taking α = ρ(m + 1), α = μ(m) in Theorem 6.5, we obtain the following corollary.

COROLLARY 6.6. For any integer N ≥ 1, we have

f

(
ρ(m + 1)

sN

)
=

(
N

R
n=1

(−1)aN+1−n(m)+aN−n(m)
√

c + x

)
◦ 0 (s ≥ 4) .

f

(
μ(m)

sN

)
=

(
N

R
n=1

(−1)aN+1−n(m)+aN−n(m)
√

c + x

)
◦ s

2
(s > 4) .
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Now we can state one of our main theorems.

THEOREM 6.7. Given ε1, . . . , εk ∈ {±1}, let

ai = 1 − ε1 · · · εi

2
∈ {0, 1} ,

for i = 1, . . . , k and put Ak = 2k−1a1 + 2k−2a2 + · · · + 2ak−1 + ak. Then

Rc(ε1, . . . , εk) = f

(
ρ(Ak + 1)

sk

)
(s ≥ 4) . (35)

Rc

(
ε1, . . . , εk; s

2

)
= f

(
μ(Ak)

sk

)
(s > 4) . (36)

PROOF. Applying Corollary 6.6 with m = Ak and N = k, we get

f

(
ρ(Ak + 1)

sk

)
=

(
k

R
n=1

(−1)an+an−1
√

c + x

)
◦ 0 , (37)

where we put a0 = 0 for convenience. From the definition of an, we have

ε1ε2 · · · εn = 1 − 2an = (−1)an

for any n ≥ 1, which implies that

εn = (−1)an+an−1 . (38)

Therefore, from (37) and (38), we conclude that

f

(
ρ(Ak + 1)

sk

)
=

(
k

R
n=1

εn

√
c + x

)
◦ 0 = Rc(ε1, . . . , εk) ,

which proves (35). The same argument gives (36). �

REMARK 6.8. As we have seen in Remark 5.3, if s = 4, then f (x) = 2 cos
√−4x

and ρ(n) = −π2(2n − 1)2/42 for any positive integer n, hence

ρ(Ak + 1)

sk
= −π2(2Ak + 1)2

4k+2
.

Therefore

f

(
ρ(Ak + 1)

sk

)
= 2 cos

π(2Ak + 1)

2k+1

= 2 cosπ

(
a1

2
+ · · · + ak

2k
+ 1

2k+1

)
.

From this and Theorem 6.7 we obtain

2 cos π

(
a1

2
+ · · · + ak

2k
+ 1

2k+1

)
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= (−1)a1

√
2 + (−1)a1+a2

√
2 + (−1)a2+a3

√
2 + · · · + (−1)ak−1+ak

√
2 ,

which is the formula (4) in the introduction.

COROLLARY 6.9. Let a, a′ be positive integers such that a + a′ = 2m + 1. Then

f

(
ρ(a)

sm

)
= −f

(
ρ(a′)
sm

)
.

PROOF. Let ai, a
′
i (i = 1, . . . ,m) be the coefficients of the 2-adic expansion of a −

1, a′ − 1 respectively, that is,

a − 1 = 2m−1a1 + 2m−2a2 + · · · + 2am−1 + am ,

a′ − 1 = 2m−1a′
1 + 2m−2a′

2 + · · · + 2a′
m−1 + a′

m .

Since (a−1)+(a′−1) = 2m−1, we have ai +a′
i = 1 for any i = 1, . . . ,m. Let a0 = a′

0 = 0

and εi = (−1)ai+ai−1, ε′
i = (−1)a

′
i+a′

i−1 . Then

εi · ε′
i = (−1)(ai+a′

i )+(ai−1+a′
i−1) =

{
1 (i = 2, . . . ,m) ,

−1 (i = 1) .

Hence Rc(ε1, . . . , εm) = −Rc(ε
′
1, . . . .ε

′
m). The corollary is then an immediate consequence

of Theorem 6.7. �

Solving (35) and (36) for ρ(Ak + 1) and μ(Ak) respectively, we obtain the following
theorem.

THEOREM 6.10. Given a positive integer m, let

m = 2k−1a1 + 2k−2a2 + · · · + 2ak−1 + ak (k ≥ 1, ai ∈ {0, 1})
be the 2-adic expansion of m and define ε1, . . . , εk ∈ {±1} by

εi = (−1)ai+ai−1 (i = 1, . . . , k)

with a0 = 0. Then

ρ(m + 1) = skG

(
x

s
− 1

2

)
◦ Rc(ε1, ε2, . . . , εk) . (39)

Moreover, if s > 4, then

μ(m) = skG

(
x

s
− 1

2

)
◦ Rc

(
ε1, ε2, . . . , εk; s

2

)
. (40)
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PROOF. Observe that (
x

s
− 1

2

)
◦ sx ◦

(
x + 1

2

)
= x

and

sx ◦
(

x + 1

2

)
◦ F(x) = f (x) .

Since G(x) ◦ F(x) = x for any x ≥ sρ(1), combining these formulas, we conclude that

G

(
x

s
− 1

2

)
◦ f (x) = x

for any x ≥ sρ(1). Then (39) follows from (35) if we prove that

sρ(1) ≤ ρ(Ak + 1)

sk
. (41)

The inequality (41) can be proved as follows:

sk+1ρ(1) = τ (2k+1) < τ(2k+1 − 1) = ρ(2k) ≤ ρ(Ak + 1) .

Consequently we get (41). This proves (39). The proof of (40) is quite similar. �

Using formulas (39) and (40), we can compute ρ(m + 1) and μ(m) for any m ∈ N if we
know the value of G(t) for −1 ≤ t ≤ 0:

EXAMPLE 6.11. The 20-th zero ρ(20) can be computed using the formula (39) as

follows. Since 20 − 1 = 19 = 24 + 2 + 1, we take a1 = 1, a2 = 0, a3 = 0, a4 = 1, a5 = 1
and (ε1, ε2, ε3, ε4, ε5) = (−1,−1, 1,−1, 1). Thus

Rc(−1,−1, 1,−1, 1) = −

√√√√
c −

√
c +

√
c −

√
c + √

c ,

and if we set t = Rc(−1,−1, 1,−1, 1)/s − 1/2, then we get ρ(20) = s5G(t) from (39).

Now, let us study the behavior of the root ρ(2m) as m → ∞. As for the roots of F(x), we
have μ(2m) = μ(2)sm−1 for any positive integer m by (28). Although ρ(2m) does not have
such a simple formula, we can prove the following estimate of ρ(2m) when m is sufficiently
large.

THEOREM 6.12. Suppose s > 4. Then

ρ(2m) = μ(1)sm−1 + ρ(1)

F ′(μ(1))
+ O(s−m)

as m → ∞
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PROOF. Applying Corollary 6.9 with a = 2m and a′ = 1, we have

f

(
ρ(2m)

sm

)
= −f

(
ρ(1)

sm

)
.

Since F(x) = f (x)/s − 1/2, it follows that

F

(
ρ(2m)

sm

)
= −1 − F

(
ρ(1)

sm

)
,

and so

ρ(2m)

sm
= G

(
F

(
ρ(2m)

sm

))
= G

(
−1 − F

(
ρ(1)

sm

))
. (42)

The function G(x) is infinitely many times differentiable at any x ∈ (−s/4,∞) since
F(G(x)) = x and F ′(G(x)) > 0 holds for −s/4 < x. Hence

G(−1 − x) = G(−1) − G′(−1)x + O(x2)

as x → 0. From F ′(0) = 1, we find that F(x) = x + O(x2), so from (42) we obtain an
estimate

ρ(2m)

sm
= G(−1) − G′(−1)

ρ(1)

sm
+ O(s−2m)

as m → ∞. Since

sF

(
μ(1)

s

){
F

(
μ(1)

s

)
+ 1

}
= F(μ(1)) = 0 ,

we have F(μ(1)/s) = −1, and so G(−1) = μ(1)/s. Moreover, using the formula F ′(sx) =
(1 + 2F(x))F ′(x), we see that

G′(−1) = 1

F ′(G(−1))
= 1

F ′(μ(1)/s)
= − 1

F ′(μ(1))
.

Therefore

ρ(2m)

sm
= μ(1)

s
+ ρ(1)

F ′(μ(1))
s−m + O(s−2m) ,

which completes the proof. �

7. Infinite nested square roots

In this section, we prove that if c ≥ 2 then the infinite nested square roots

R(ε1, ε2, . . .) := Rc(ε1, ε2, . . .)

have a definite value for any (ε1, ε2, . . .) ∈ {±1}N and express it as special values of the
function f (x).
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We begin with a lemma.

LEMMA 7.1. For any integers m > 1, we have

m∏
k=1

|R(εk, . . . , εm)| ≥ 2c

s
.

PROOF. Since c2 − c ≥ c, we have

|R(ε1,−ε2, ε3, . . . , εm)R(ε1, ε2, ε3 . . . , εm)|
=

√
c2 − R(ε2, . . . , εm)2

=
√

c2 − c − R(ε3, . . . , εm)

≥ √
c − R(ε3, . . . , εm)

= |R(ε2,−ε3, ε4, . . . , εm)| .
Repeating this argument, we obtain

|R(ε1,−ε2, . . . , εm)|
m−1∏
k=1

|R(εk, . . . , εm)| ≥ |R(εm)| = √
c .

Since |R(ε1,−ε2, . . . , εm)| ≤ s
2 , the lemma holds. �

PROPOSITION 7.2. For any (ε1, ε2, . . .) ∈ {±1}N, the sequence {R(ε1, . . . , εm)}∞m=1
converges.

PROOF. It suffices to show that {R(ε1, . . . , εm)}∞m=1 is a Cauchy sequence. To see this,
note that

|R(ε1, . . . , εm) − R(ε1, . . . , εn)|≤
m−1∑
k=n

|R(ε1, . . . , εk+1) − R(ε1, . . . , εk)|

for any positive integers m,n with m > n. Here we have

|R(ε1, . . . , εk+1) − R(ε1, . . . , εk)|

= |R(ε1, . . . , εk+1)
2 − R(ε1, . . . , εk)

2|
|R(ε1, . . . , εk+1) + R(ε1, . . . , εk)|

= |R(ε2, . . . , εk+1) − R(ε2, . . . , εk)|
|R(ε1, . . . , εk+1) + R(ε1, . . . , εk)|
...

=
√

c∏k
i=1 |R(εi, . . . , εk+1) + R(εi, . . . , εk)|

.
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As for the denominator, using Lemma 7.1, we obtain

k∏
i=1

|R(εi, . . . , εk+1) + R(εi, . . . , εk)|

≥ 2k
k∏

i=1

|R(εi, . . . , εk+1)R(εi, . . . , εk)|1/2

= 2k|R(εk+1)|− 1
2

( k+1∏
i=1

|R(εi, . . . , εk+1)|
) 1

2
( k∏

i=1

|R(εi, . . . , εk)|
) 1

2

≥ 2k · c− 1
4 ·

(
2c

s

) 1
2 ·

(
2c

s

) 1
2

= 2k+1c
3
4

s
.

Therefore

|R(ε1, . . . , εm) − R(ε1, . . . , εn)| ≤
m−1∑
k=n

s

2k+1c1/4 <
s

2nc1/4

for any m > n. This implies that {R(ε1, . . . , εm)}∞m=1 is a Cauchy sequence. �

Now, recall that f (x) is a monotonously increasing continuous function on [ω,∞) and
f (ω) = −c. Note that −c ≤ −s/2 and

Rc(e) ≤ Rc(1, 1, . . .) = s

2

for any e ∈ {±1}N. Therefore for any e ∈ {±1}N there exists a unique real number λ(e) ∈
[ω,∞) such that f (λ(e)) = R(ε1, ε2, . . . , εi, . . .).

THEOREM 7.3. Given an infinite sequence e = (ε1, ε2, . . .) ∈ {±1}N, define integers
Am as in Theorem 6.7. Then

lim
m→∞

ρ(Am + 1)

sm
= λ(e) .

PROOF. Since Am + 1 ≤ 2m, we have

ρ(Am + 1) ≥ ρ(2m) = τ (2m+1 − 1) > τ(2m+1) = smτ(2) = smω .

Hence ω < ρ(Am + 1)/sm < 0. Then by Theorem 6.7 we have

lim
m→∞ f

(
ρ(Am + 1)

sm

)
= lim

m→∞ Rc(ε1, . . . , εm) = f (λ(e)) .
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This implies that

lim
m→∞

ρ(Am + 1)

sm
= λ(e) ,

which completes the proof. �

8. A generalization of Viéta’s formula

In this section we give a generalization of Viéta’s formula (7). Let us start with a propo-
sition.

PROPOSITION 8.1. Let s be a complex number with |s| > 1. Then

f (x) − f (y) = s(x − y)

∞∏
n=1

1

s

(
f

(
x

sn

)
+ f

(
y

sn

))

for any x, y ∈ C.

PROOF. Using the functional equation

f (sx) = f (x)2 − c ,

we have

f (x) − f (y) = f

(
x

s

)2

− f

(
y

s

)2

= s

(
f

(
x

s

)
− f

(
y

s

))
1

s

(
f

(
x

s

)
+ f

(
y

s

))

= s

(
f

(
x

s2

)2

− f

(
y

s2

)2)1

s

(
f

(
x

s

)
+ f

(
y

s

))

= s2
(

f

(
x

s2

)
− f

(
y

s2

))
1

s

(
f

(
x

s

)
+ f

(
y

s

))
·

1

s

(
f

(
x

s2

)
+ f

(
y

s2

))

= · · ·

= sm

(
f

(
x

sm

)
− f

(
y

sm

)) m∏
n=1

1

s

(
f

(
x

sn

)
+ f

(
y

sn

))
.

Since the Taylor expansion of f (x) at x = 0 is

f (x) = s

2
+ sx + · · · ,
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the limit

lim
m→∞ sm

(
f

(
x

sm

)
− f

(
y

sm

)) m∏
n=1

1

s

(
f

(
x

sn

)
+ f

(
y

sn

))

exists and equals

s(x − y)

∞∏
n=1

1

s

(
f

(
x

sn

)
+ f

(
y

sn

))
.

This proves the proposition. �

THEOREM 8.2. Suppose s ≥ 4. Then

1

2|ρ(k)| =
∞∏

n=1

1

s

(
f

(
ρ(k)

sn

)
+ s

2

)
. (43)

PROOF. Setting x = ρ(k), y = 0 in Proposition 8.1, we have

− s

2
= sρ(k)

∞∏
n=1

1

s

(
f

(
ρ(k)

sn

)
+ s

2

)
.

Since ρ(k) < 0, we obtain the theorem. �

We should remark that the formula (43) can be viewed as a generalization of Viéta’s
formula. To see this, note that the quantity f (ρ(k)/sn) in the product of the right hand side
of (43) is a nested square root by Corollary 6.6. For example, if k = 1, then

1

2|ρ(1)| = 1

s

(
s

2
+ √

c

)
1

s

(
s

2
+

√
c + √

c

)
· · · . (44)

If k = 2, then

1

2|ρ(2)| = 1

s

(
s

2
− √

c

)
1

s

(
s

2
+

√
c − √

c

)
· · · .

If we set s = 4 (i.e. c = 2) in (44), then ρ(1) = −π2/16 by Remark 6.8. Hence (44) reduces
to Viéta’s formula

2

π
=

√
2

2

√
2 + √

2

2

√
2 +

√
2 + √

2

2
· · · .
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