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Abstract. We introduce Bu
w-function spaces which unify Lebesgue, Morrey-Campanato, Lipschitz, Bp ,

CMO, local Morrey-type spaces, etc., and investigate the interpolation property of Bu
w-function spaces. We also

apply it to the boundedness of linear and sublinear operators, for example, the Hardy-Littlewood maximal and frac-
tional maximal operators, singular and fractional integral operators with rough kernel, the Littlewood-Paley operator,
Marcinkiewicz operator, and so on.

1. Introduction

The purpose of this paper is to introduce Bu
w-function spaces which unify many function

spaces, Lebesgue, Morrey-Campanato, Lipschitz, Bp , CMO, local Morrey-type spaces, etc.
We investigate the interpolation property of Bu

w-function spaces and apply it to the bounded-
ness of linear and sublinear operators, for example, the Hardy-Littlewood maximal operator,
singular and fractional integral operators, and so on, which contains previous results and ex-
tends them to Bu

w-function spaces.
Let Rn be the n-dimensional Euclidean space. We denote by Qr the open cube centered

at the origin and sidelength 2r , or the open ball centered at the origin and of radius r , that is,

Qr =
{
y = (y1, y2, . . . , yn) ∈ R

n : max
1≤i≤n

|yi | < r

}
or

Qr = {y ∈ R
n : |y| < r} .

For each r ∈ (0,∞), let E(Qr) be a function space on Qr with quasi-norm ‖ · ‖E(Qr).
Let EQ(Rn) be the set of all measurable functions f on R

n such that f |Qr ∈ E(Qr) for all
r > 0. We assume the following restriction property :

f |Qr ∈ E(Qr) and 0 < t < r < ∞
⇒ f |Qt ∈ E(Qt) and ‖f ‖E(Qt ) ≤ CE‖f ‖E(Qr) , (1.1)

Received June 11, 2015; revised July 27, 2015
Mathematics Subject Classification: 42B35, 46B70 (Primary), 46E30, 46E35, 42B20, 42B25 (Secondary)
Key words and phrases: interpolation, Morrey spaces, Campanato space, BMO, Bp-space, CMO, Hardy-Littlewood
maximal operator, singular integral operator, fractional integral operator



484 EIICHI NAKAI AND TAKUYA SOBUKAWA

where CE is a positive constant independent of r , t and f . For example, E = Lp, Lipα ,
BMO, etc. Then, for a weight function w : (0,∞) → (0,∞) and an exponent u ∈ (0,∞],
we define function spaces Bu

w(E) = Bu
w(E)(Rn) and Ḃu

w(E) = Ḃu
w(E)(Rn) as the sets of all

functions f ∈ EQ(Rn) such that ‖f ‖Bu
w(E) < ∞ and ‖f ‖Ḃu

w(E) < ∞, respectively, where

‖f ‖Bu
w(E) = ∥∥w(r)‖f ‖E(Qr )

∥∥
Lu([1,∞),dr/r)

,

‖f ‖Ḃu
w(E) = ∥∥w(r)‖f ‖E(Qr )

∥∥
Lu((0,∞),dr/r)

.

In the above we abbreviated ‖f |Qr‖E(Qr ) to ‖f ‖E(Qr).
In this paper we always assume that w has some decreasingness condition. Note that, if

w(r) → ∞ as r → ∞, then Bu
w(E) = Ḃu

w(E) = {0}. In particular, if w(r) = r−σ , σ ≥ 0 and

u = ∞, we denote Bu
w(E)(Rn) and Ḃu

w(E)(Rn) by Bσ (E)(Rn) and Ḃσ (E)(Rn), respectively,
which were introduced recently by Komori-Furuya, Matsuoka, Nakai and Sawano [25]. These
Bσ -function spaces unify several function spaces, see the following Examples 1–4. Moreover,

if E = Lp, then Ḃu
w(Lp)(Rn) is the local Morrey-type space introduced by Burenkov and

Guliyev [7], see Example 5.

EXAMPLE 1. Beurling [3] introduced the space Bp(Rn) together with its predual
Ap(Rn) so-called the Beurling algebra. Later, to extend Wiener’s ideas [46, 47] which
describe the behavior of functions at infinity, Feichtinger [16] gave an equivalent norm
on Bp(Rn), which is a special case of norms to describe non-homogeneous Herz spaces
Kα

p,r (R
n) introduced in [22]. The function space Bp(Rn) and its homogeneous version

Ḃp(Rn) are characterized by the following norms, respectively:

‖f ‖Bp = sup
r≥1

(
1

|Qr |
∫

Qr

|f (x)|p dx

)1/p

and

‖f ‖Ḃp = sup
r>0

(
1

|Qr |
∫

Qr

|f (x)|p dx

)1/p

,

where |Qr | is the Lebesgue measure of Qr . In this case Bp(Rn) = Bσ (Lp)(Rn) and

Ḃp(Rn) = Ḃσ (Lp)(Rn) with σ = n/p.

EXAMPLE 2. Chen and Lau [13] and García-Cuerva [18] introduced the central mean
oscillation space CMOp(Rn) with the norm

‖f ‖CMOp = sup
r≥1

(
1

|Qr |
∫

Qr

|f (x) − fQr |p dx

)1/p

,

and Lu and Yang [28, 29] introduced the central bounded mean oscillation space CBMOp(Rn)

with the norm

‖f ‖CBMOp = sup
r>0

(
1

|Qr |
∫

Qr

|f (x) − fQr |p dx

)1/p

,
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where fQr is the mean value of f on Qr . Then CMOp(Rn) and CBMOp(Rn) are expressed

by Bσ (E)(Rn) and Ḃσ (E)(Rn), respectively, with E = Lp (modulo constants), ‖f ‖E(Qr) =
‖f − fQr ‖Lp(Qr) and σ = n/p.

EXAMPLE 3. García-Cuerva and Herrero [19] and Alvarez, Guzmán-Partida and
Lakey [2] introduced the non-homogeneous central Morrey space Bp,λ(Rn), the central

Morrey space Ḃp,λ(Rn), the λ-central mean oscillation space CMOp,λ(Rn) and the λ-

central bounded mean oscillation space CBMOp,λ(Rn) as an extension of Bp(Rn), Ḃp(Rn),
CMOp(Rn) and CBMOp(Rn), respectively, with the following norms:

‖f ‖Bp,λ = sup
r≥1

1

rλ

(
1

|Qr |
∫

Qr

|f (x)|p dx

)1/p

,

‖f ‖Ḃp,λ = sup
r>0

1

rλ

(
1

|Qr |
∫

Qr

|f (x)|p dx

)1/p

,

‖f ‖CMOp,λ = sup
r≥1

1

rλ

(
1

|Qr |
∫

Qr

|f (x) − fQr |p dx

)1/p

and

‖f ‖CBMOp,λ = sup
r>0

1

rλ

(
1

|Qr |
∫

Qr

|f (x) − fQr |p dx

)1/p

.

Then these spaces are expressed by Bσ (E)(Rn) and Ḃσ (E)(Rn) with E = Lp (or E = Lp

(modulo constants)) and σ = n/p + λ.

EXAMPLE 4. If E = Lp,λ (Morrey space) or Lp,λ (Campanato space), then the func-

tion spaces Bσ (Lp,λ)(R
n), Ḃσ (Lp,λ)(R

n), Bσ (Lp,λ)(R
n) and Ḃσ (Lp,λ)(R

n) unify the func-
tion spaces in above examples and the usual Morrey-Campanato and Lipschitz spaces. Ac-

tually, if λ = −n/p, then Lp,λ = Lp . If σ = 0, then B0(Lp,λ)(R
n) = Ḃ0(Lp,λ)(R

n) =
Lp,λ(R

n) and B0(Lp,λ)(R
n) = Ḃ0(Lp,λ)(R

n) = Lp,λ(R
n). If λ = 0, then Lp,λ(R

n) =
BMO(Rn) for all p ∈ [1,∞) (John and Nirenberg [23]). If λ = α ∈ (0, 1], then
Lp,λ(R

n) = Lipα(Rn) for all p ∈ [1,∞) (Campanato [12], Meyers [31], Spanne [45]).
Bσ -Morrey-Campanato spaces were investigated in [24, 25, 26, 30]. For the definitions of
Lp,λ and Lp,λ, see Subsection 3.2.

EXAMPLE 5. Burenkov and Guliyev [7] introduced local Morrey-type space
LMpθ,w(Rn) with the (quasi-)norm

‖f ‖LMpθ,w = ∥∥w(r)‖f ‖Lp(Qr)

∥∥
Lθ(0,∞)

,

and investigated the boundedness of the Hardy-Littlewood maximal operator. LMpθ,w̃(Rn)

is expressed by Ḃu
w(E)(Rn) with E = Lp and w̃(r) = w(r)/r . For recent progress of local

Morrey-type spaces, see [4, 5]. See also [6, 10] for interpolation spaces for local Morrey-type
spaces.
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In this paper we investigate the interpolation property of Bu
w-function spaces(

Ḃu0
w0

(E)(Rn), Ḃu1
w1

(E)(Rn)
)
θ,u

= Ḃu
w(E)(Rn) .

Moreover, we give the interpolation property with w = w0 Θ(w1/w0) for some pseudocon-
cave function Θ (Theorem 1). To do this we assume that, for any f ∈ EQ(Rn) and for any
r > 0, there exists a decomposition f = f r

0 + f r
1 such that

‖f r
0 ‖E(Qt ) ≤

{
CE‖f ‖E(Qt ) (0 < t < r) ,

CE‖f ‖E(Qar ) (r ≤ t < ∞) ,
(1.2)

and

‖f r
1 ‖E(Qt ) ≤

{
0 (0 < t < cr) ,

CE‖f ‖E(Qbt ) (cr ≤ t < ∞) ,
(1.3)

where CE, a, b, c are positive constants independent of r , t and f . We call such property the
decomposition property. For example, Lebesgue, Orlicz, Lorentz and Morrey spaces have the
decomposition property. Actually, f = f χr +f (1 −χr) is the desired decomposition, where
χr is the characteristic function of Qr . Moreover, we prove that Campanato and Lipschitz
spaces also have the decomposition property (Proposition 1).

As applications of the interpolation property, we also give the boundedness of linear
and sublinear operators. It is known that the Hardy-Littlewood maximal operator, fractional
maximal operators, singular and fractional integral operators are bounded on Bσ -Morrey-
Campanato spaces, see [24, 25, 26, 30]. Using these boundedness, we get the boundedness of

these operators on Bu
w(Lp,λ),Ḃu

w(Lp,λ), Bu
w(Lp,λ) and Ḃu

w(Lp,λ), which are also generaliza-
tion of the results on the local Morrey-type spaces LMpu,w(Rn).

We give notation and definitions in Section 2 to state main results in Section 3. We prove
them in Section 4 and give applications for the boundedness of linear and sublinear operators
in Section 5.

2. Notation and definitions

In this section we give several notation and definitions to state main result.
A function w : (0,∞) → (0,∞) is said to be almost increasing (almost decreasing) if

there exists a constant C > 0 such that

w(r) ≤ Cw(s) (w(r) ≥ Cw(s)) for r ≤ s . (2.1)

A function w : (0,∞) → (0,∞) is said to satisfy the doubling condition if there exists a
constant C > 0 such that

C−1 ≤ w(r)

w(s)
≤ C for

1

2
≤ r

s
≤ 2 . (2.2)
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For functions w1, w2 : (0,∞) → (0,∞), we write w1 ∼ w2 if there exists a constant C > 0
such that

C−1 ≤ w1(r)

w2(r)
≤ C for r > 0 . (2.3)

Note that, if w1 ∼ w2, then Bu
w1

(E) = Bu
w2

(E) and Ḃu
w1

(E) = Ḃu
w2

(E) with equiv-
alent norms. Note also that, if w satisfies the doubling condition, then, for any η > 0,∥∥w(r)‖f ‖E(Qr)

∥∥
Lu([η,∞),dr/r)

and
∥∥w(r)‖f ‖E(Qr)

∥∥
Lu([1,∞),dr/r)

are equivalent each other,

by the restriction property of {E(Qr)}.
We denote by Wu, u ∈ (0,∞], the set of all almost decreasing functions w : (0,∞) →

(0,∞) such that w satisfies the doubling condition and w ∈ Lu([1,∞), dr/r). Note that,

if w /∈ Lu([1,∞), dr/r), then Bu
w(E) = Ḃu

w(E) = {0}. We also denote by W∗ the set
of all almost decreasing functions w : (0,∞) → (0,∞) such that w satisfies the doubling
condition and ∫ ∞

r

w(t)
dt

t
≤ Cw(r) , r ∈ (0,∞) , (2.4)

where C is a positive constant independent of r . If w satisfies the doubling condition, then

w(r) ≤ C

∫ ∞

r

w(t)
dt

t
, r ∈ (0,∞) ,

for some positive constant C independent of r , that is, the condition (2.4) implies that w(r) ∼∫ ∞
r

w(t) dt/t . Then the condition (2.4) is equivalent that there exists a positive constant ε

such that w(r)rε is almost decreasing, see [38, Lemma 7.1]. Therefore, we have the relation

W∗ ⊂ Wu1 ⊂ Wu2 ⊂ W∞ , 0 < u1 < u2 < ∞ .

Moreover, if w satisfies the doubling condition, then there exists a positive constant ν such
that w(r)rν is almost increasing. Actually, take ν such that C ≤ 2ν , here C is the doubling

constant in (2.2). Then, for r ≤ s, choosing an integer k such that 2k−1r ≤ s < 2kr , we have

w(r)rν ≤ Ckw(s)rν ≤ 2νkw(s)(s/2k−1)ν = 2νw(s)sν .

We say that a function Θ : (0,∞) → (0,∞) is pseudoconcave if there exists a concave

function Θ̃ : (0,∞) → (0,∞) such that Θ ∼ Θ̃ . All pseudoconcave functions satisfy the
doubling condition. Let Θ∗ be the set of all functions Θ : (0,∞) → (0,∞) such that, for
some constants C ∈ (0,∞) and ε, ε′ ∈ (0, 1),

Θ(tr)

Θ(r)
≤ C max(tε, tε

′
) for all r, t ∈ (0,∞) .

Then all functions Θ ∈ Θ∗ are pseudoconcave, see [41]. Note that Θ ∈ Θ∗ if and only if

there exist constants ε, ε′ ∈ (0, 1) such that Θ(r)r−ε is almost increasing and that Θ(r)r−ε′

is almost decreasing. In this case ε ≤ ε′.
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We consider a couple (A0, A1) = (Ḃ
u0
w0(E), Ḃ

u1
w1(E)) or (B

u0
w0(E), B

u1
w1(E)). For f ∈

A0 + A1, let

K(r, f ; A0, A1) = inf
f=f0+f1

(‖f0‖A0 + r‖f0‖A1

)
(0 < r < ∞) ,

where the infimum is taken over all decompositions f = f0 + f1 in A0 + A1. For a pseudo-
concave function Θ and u ∈ (0,∞], let

(A0, A1,Θ)u =
{
f ∈ EQ(Rn) : ∥∥Θ(r−1)K(r, f ; A0, A1)

∥∥
Lu((0,∞),dr/r)

< ∞
}

.

We also consider the following:

(A0, A1,Θ)u, [1,∞) =
{
f ∈ EQ(Rn) : ∥∥Θ(r−1)K(r, f ; A0, A1)

∥∥
Lu([1,∞),dr/r)

< ∞
}

.

In particular, for Θ(r) = rθ , θ ∈ (0, 1), we denote (A0, A1,Θ)u and (A0, A1,Θ)u, [1,∞) by
(A0, A1)θ,u and (A0, A1)θ,u, [1,∞), respectively.

3. Main results

In this section we investigate the interpolation properties of Ḃu
w(E) = Ḃu

w(E)(Rn) and
Bu

w(E) = Bu
w(E)(Rn), using the restriction and decomposition properties (1.1), (1.2) and

(1.3) of
{
(E(Qr), ‖ · ‖E(Qr ))

}
0<r<∞.

3.1. Interpolation. The main theorem is the following:

THEOREM 1. Assume that a family
{
(E(Qr), ‖ · ‖E(Qr ))

}
0<r<∞ has the restriction

and decomposition properties. Let u0, u1, u ∈ (0,∞], w0, w1 ∈ W∞, Θ ∈ Θ∗ and

w = w0 Θ(w1/w0) .

For each i = 0, 1, if min(ui, u) < ∞, then we assume that wi ∈ W∗. Assume also that,
for some positive constant ε, (w0(r)/w1(r))r

−ε is almost increasing, or, (w1(r)/w0(r))r
−ε

is almost increasing. Then
(
Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn), Θ

)
u

= Ḃu
w(E)(Rn) ,

and (
Bu0

w0
(E)(Rn), Bu1

w1
(E)(Rn), Θ

)
u, [1,∞)

= Bu
w(E)(Rn) .

REMARK 1. The function w = w0 Θ(w1/w0) in Theorem 1 is in W∞, since the
function R(r, s) = r Θ(s/r) is almost increasing with respect to both r and s. For properties
of pseudoconcave functions, see [21]. If (w0(r)/w1(r))r

−ε is almost increasing, then w1(r)r
ε

is almost decreasing, that is, w1 ∈ W∗. Similarly, if (w1(r)/w0(r))r
−ε is almost increasing,

then w0 ∈ W∗.
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Take u0 = u1 = ∞, w0(r) = r−σ0 , w1(r) = r−σ1 in Theorem 1. Then we have the
following:

COROLLARY 1. Assume that a family
{
(E(Qr), ‖ · ‖E(Qr))

}
0<r<∞ has the restriction

and decomposition properties. Let u ∈ (0,∞], σ0, σ1 ∈ [0,∞) with σ0 = σ1, Θ ∈ Θ∗ and

w(r) = r−σ0 Θ(rσ0−σ1). (3.1)

If u < ∞, we assume that σ0, σ1 ∈ (0,∞). Then
(
Ḃσ0(E)(Rn), Ḃσ1(E)(Rn), Θ

)
u

= Ḃu
w(E)(Rn) ,

and (
Bσ0(E)(Rn), Bσ1(E)(Rn), Θ

)
u, [1,∞)

= Bu
w(E)(Rn) .

REMARK 2. For any w ∈ W∗, there exist σ0, σ1 ∈ [0,∞) and Θ ∈ Θ∗ such that (3.1)
holds. Actually, since w(r)rν is almost increasing and w(r)rη is almost decreasing for some
positive constants ν and η with ν > η, choosing σ0, σ1 ∈ [0,∞) and ε, ε′ ∈ (0, 1) such that

σ0 > σ1 , ε < ε′ , σ0 − (σ0 − σ1)ε = ν , σ0 − (σ0 − σ1)ε
′ = η , (3.2)

and setting Θ as

Θ(rσ0−σ1) = w(r)rσ0 ,

we have

Θ(rσ0−σ1)r(σ0−σ1)(−ε) = w(r)rν , Θ(rσ0−σ1)r(σ0−σ1)(−ε′) = w(r)rη . (3.3)

These show that Θ(r)r−ε is almost increasing and Θ(r)r−ε′
is almost decreasing, that is

Θ ∈ Θ∗.
Conversely, for any Θ ∈ Θ∗ and σ0, σ1 ∈ [0,∞) with σ0 > σ1, the function w defined

by (3.1) is in W∗ by the relations (3.2) and (3.3).

EXAMPLE 6. Let σ0, σ1 ∈ [0,∞), σ0 > σ1, w0(r) = rσ0 , w1(r) = rσ1 , α, β ∈ (0, 1),
and let

w = w0 Θ(w1/w0) , Θ(r) = max(rα, rβ) .

Then

w(r) = max(r−(σ0+α(σ1−σ0)), r−(σ0+β(σ1−σ0))) ,

and Θ ∈ Θ∗, since

Θ(tr)

Θ(r)
≤ max(tα, tβ ) for all r, t ∈ (0,∞) .
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EXAMPLE 7. Let L be the set of all continuous functions � : (0,∞) → (0,∞) for
which there exists a constant c ≥ 1 such that

c−1 ≤ �(s)

�(r)
≤ c whenever

1

2
≤ log s

log r
≤ 2 . (3.4)

If � ∈ L, then, for all α > 0, there exists a constant cα ≥ 1 such that

c−1
α �(r) ≤ �(rα) ≤ cα�(r) for 0 < r < ∞ . (3.5)

For other properties on functions � ∈ L, see [33, Section 7]. For example, the following
function �β1,β2 is in L:

�β1,β2(r) =

⎧⎪⎪⎨
⎪⎪⎩

(
log 1

r

)−β1 (0 < r < e−1) ,

1 (e−1 ≤ r ≤ e) ,

(log r)β2 (e < r) ,

β1, β2 ∈ (−∞,∞) .

Let σ0, σ1 ∈ [0,∞), σ0 > σ1, w0(r) = r−σ0 , w1(r) = r−σ1 , θ ∈ (0, 1), and let

w = w0 Θ(w1/w0) , Θ(r) = rθ�(r) , � ∈ L .

Then Θ ∈ Θ∗ and

w(r) ∼ r−σ �(r) , σ = (1 − θ)σ0 + θσ1 .

We can take �β1,β2 as �.

Take u = ∞ and Θ(r) = rθ in Corollary 1. Then we have the following:

COROLLARY 2. Assume that a family
{
(E(Qr), ‖ · ‖E(Qr))

}
0<r<∞ has the restriction

and decomposition properties. Let σ0, σ1 ∈ [0,∞) with σ0 = σ1, θ ∈ (0, 1) and

σ = (1 − θ)σ0 + θσ1 .

Then (
Ḃσ0(E)(Rn), Ḃσ1(E)(Rn)

)
θ,∞ = Ḃσ (E)(Rn) ,

and (
Bσ0(E)(Rn), Bσ1(E)(Rn)

)
θ,∞, [1,∞)

= Bσ (E)(Rn) .

Let E = Lp. Then, using Corollaries 1 and 2 we have the following:

EXAMPLE 8. Take σ0 = σ ∈ (0,∞), σ1 = 0 and τ = (1 − θ)σ with θ ∈ (0, 1) in
Corollary 2. Then, since B0(L

p)(Rn) = Lp(Rn),
(
Ḃσ (Lp)(Rn), Lp(Rn)

)
θ,∞ = Ḃτ (L

p)(Rn) ,
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and (
Bσ1(L

p)(Rn), Lp(Rn)
)
θ,∞, [1,∞)

= Bτ (L
p)(Rn) .

EXAMPLE 9. Take u = ∞, σ0 = σ ∈ (0,∞), σ1 = 0, w(r) = r−σ Θ(rσ ) with
w ∈ W∗ and Θ ∈ Θ∗, in Corollary 1. Then

(
Ḃσ (Lp)(Rn), Lp(Rn), Θ

)
∞ = Ḃ∞

w (Lp)(Rn) ,

and (
Bσ1(L

p)(Rn), Lp(Rn), Θ
)
∞, [1,∞)

= B∞
w (Lp)(Rn) .

EXAMPLE 10. Take u ∈ (0,∞), σ0, σ1 ∈ (0,∞), w(r) = r−σ0Θ(rσ0−σ1) with w ∈
W∗ and Θ ∈ Θ∗, in Corollary 1. Then

(
Ḃσ0(L

p)(Rn), Ḃσ1(L
p)(Rn), Θ

)
u

= Ḃu
w(Lp)(Rn) ,

and (
Bσ0(L

p)(Rn), Bσ1(L
p)(Rn), Θ

)
u, [1,∞)

= Bu
w(Lp)(Rn) .

In this case Ḃu
w(Lp)(Rn) is the local Morrey-type space LMpu,w̃(Rn) with w̃(r) = w(r)/r .

3.2. Morrey, Campanato and Lipschitz spaces. In this subsection, we consider
Morrey, Campanato and Lipschitz spaces as concrete examples of the function space E which
does not satisfy the lattice condition (3.11). Let

Q(x, r) = x + Qr = {x + y : y ∈ Qr } .

For a measurable set G ⊂ R
n, we denote by |G| and χG the Lebesgue measure of G and the

characteristic function of G, respectively. We also abbreviate χQr to χr .

For a function f ∈ L1
loc(R

n) and a measurable set G ⊂ R
n with |G| > 0, let

fG = 1

|G|
∫

G

f (y) dy . (3.6)

For a measurable function f on R
n, a measurable set G ⊂ R

n with |G| > 0 and t ∈ [0,∞),
let

m(G, f, t) = |{y ∈ G : |f (y)| > t}| . (3.7)

We recall the definitions of Morrey, weak Morrey, Campanato and Lipschitz spaces be-
low. These function spaces have the restriction properties. The first two have also the support
property (3.10) and the lattice property (3.11), and then the decomposition property. The last
two also have the decomposition property by Theorem 2 and Proposition 1. Therefore, we
can take these function spaces as E in Theorem 1 and Corollaries 1 and 2.
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DEFINITION 1. Let U = R
n or U = Qr with r > 0. For p ∈ [1,∞), λ ∈ R and

α ∈ (0, 1], let Lp,λ(U), WLp,λ(U), Lp,λ(U) and Lipα(U) be the sets of all functions f such
that the following functionals are finite, respectively:

‖f ‖Lp,λ(U) = sup
Q(x,s)⊂U

1

sλ

(
1

|Q(x, s)|
∫

Q(x,s)

|f (y)|p dy

)1/p

,

‖f ‖WLp,λ(U) = sup
Q(x,s)⊂U

1

sλ

(
supt>0 tp m(Q(x, s), f, t)

|Q(x, s)|
)1/p

,

‖f ‖Lp,λ(U) = sup
Q(x,s)⊂U

1

sλ

(
1

|Q(x, s)|
∫

Q(x,s)

|f (y) − fQ(x,s)|p dy

)1/p

,

and

‖f ‖Lipα(U) = sup
x,y∈U, x =y

|f (x) − f (y)|
|x − y|α .

Then Lp,λ(U) is a Banach space and WLp,λ(U) is a complete quasi-normed space. In
this paper we regard Lp,λ(U) and Lipα(U) as spaces of functions modulo constant func-
tions. Then Lp,λ(R

n) and Lipα(Rn) are Banach spaces equipped with the norms ‖f ‖Lp,λ
and

‖f ‖Lipα
, respectively.

By the definition, if λ = −n/p, then Lp,−n/p(U) = Lp(U) and WLp,−n/p(U) =
WLp(U), the weak Lp space. If p = 1 and λ = 0, then L1,0(U) is the usual BMO(U).

REMARK 3. We note that Bσ (Lp,λ)(R
n) unifies Lp,λ(R

n) and Bp,λ(Rn) and that

Bσ (Lp,λ)(R
n) unifies Lp,λ(R

n) and CMOp,λ(Rn). Actually, we have the following relations:

B0(Lp,λ)(R
n) = Lp,λ(R

n) , B0(Lp,λ)(R
n) = Lp,λ(R

n) , (3.8)

Bλ+n/p(Lp,−n/p)(Rn) = Bp,λ(Rn) , Bλ+n/p(Lp,−n/p)(Rn) = CMOp,λ(Rn) . (3.9)

In the above relations, the first three follow immediately from their definitions, and the last
one follows from Theorem 3 below. We also have the same properties for the function spaces

Ḃσ (Lp,λ)(R
n) and Ḃσ (Lp,λ)(R

n).

Here we state two known theorems which give the relations among Morrey, Campanato
and Lipschitz spaces. For the proofs of Theorems 2 and 3 below, see [12, 31, 45] and [32, 37],
respectively. For other relations among function spaces in Remark 3, see [25, Proposition 1].

THEOREM 2. If p ∈ [1,∞) and λ = α ∈ (0, 1], then, for each r > 0, Lp,λ(Qr ) =
Lipα(Qr ) modulo null-functions and there exists a positive constant C, dependent only on n

and λ, such that

C−1‖f ‖Lp,λ(Qr) ≤ ‖f ‖Lipα(Qr) ≤ C‖f ‖Lp,λ(Qr) .

The same conclusion holds on R
n.
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THEOREM 3. If p ∈ [1,∞) and λ ∈ [−n/p, 0), then, for each r > 0, Lp,λ(Qr) ∼=
Lp,λ(Qr). More precisely, the map f �→ f −fQr is bijective and bicontinuous from Lp,λ(Qr)

to Lp,λ(Qr), that is, there exists a positive constant C, dependent only on n and λ, such that

C−1‖f ‖Lp,λ(Qr) ≤ ‖f − fQr ‖Lp,λ(Qr) ≤ C‖f ‖Lp,λ(Qr) .

The same conclusion holds on R
n by using limr→∞ fQr instead of fQr .

Now we consider the decomposition property. Recall that EQ(Rn) is the set of all mea-
surable functions f on R

n such that f |Qr ∈ E(Qr) for all r > 0. If the family {E(Qr)}
has the restriction property and the following two conditions, then it has the decomposition
property.

f ∈ E(Qt ), 0 < r < t < ∞ and supp f ⊂ Qr ⇒ ‖f ‖E(Qt ) ≤ CE‖f ‖E(Qr) , (3.10)

g ∈ E(Qr) and |f (x)| ≤ |g(x)| for a.e. x ∈ Qr

⇒ f ∈ E(Qr) and ‖f ‖E(Qr) ≤ CE‖g‖E(Qr ) .
(3.11)

Actually, for f ∈ EQ(Rn), letting

f r
0 = f χr , f r

1 = f − f r
0 ,

we have the desired decomposition with a = b = c = 1, where χr is the characteristic
function of Qr . Lebesgue, Orlicz and Lorentz spaces satisfy these conditions. Moreover,
Morrey and weak Morrey spaces also satisfy them.

Next we prove the decomposition property of Campanato spaces. For r > 0, let

hr(x) = h(x/r) , h(x) =
{

1 , |x| ≤ 1 ,

0 , |x| ≥ 2 ,
‖h‖Lip1(R

n) ≤ 1 . (3.12)

PROPOSITION 1. Let p ∈ [1,∞) and λ ∈ [−n/p, 1]. Then the family {Lp,λ(Qr)} has
the decomposition property. More precisely, for any f ∈ (Lp,λ)Q(Rn) and for any r > 0, let

f r
0 = (f − fQ2r

)hr , f r
1 = f − (f − fQ2r

)hr .

Then f = f r
0 + f r

1 ,

‖f r
0 ‖Lp,λ(Qt ) ≤

{
C‖f ‖Lp,λ(Qt) (0 < t < r)

C‖f ‖Lp,λ(Q3r ) (r ≤ t < ∞) ,

and

‖f r
1 ‖Lp,λ(Qt) ≤

{
0 (0 < t < r)

C‖f ‖Lp,λ(Q3t ) (r ≤ t < ∞) ,

where C is a positive constant independent of r , t and f .
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PROOF. If 0 < t < r , then f r
0 = f − fQ2r

, f r
1 = fQ2r

and

‖f r
0 ‖Lp,λ(Qt )

= ‖f ‖Lp,λ(Qt )
, ‖f r

1 ‖Lp,λ(Qt )
= 0 .

If r ≤ t < ∞, then, by the same argument as [30, Lemma 3.5] we have

‖f r
0 ‖Lp,λ(Qt )

≤ C‖f ‖Lp,λ(Q3r ) ,

and

‖f r
1 ‖Lp,λ(Qt )

≤ ‖f ‖Lp,λ(Qt )
+ ‖f r

0 ‖Lp,λ(Qt )

≤ ‖f ‖Lp,λ(Qt) + C‖f ‖Lp,λ(Q3r )

≤ C‖f ‖Lp,λ(Q3t ) .

Then we have the conclusion. �

By Theorem 2 we have the following:

COROLLARY 3. Let α ∈ (0, 1]. Then the family {Lipα(Qr)} has the decomposition
property.

Therefore, it turned out that we can take Lp,λ, WLp,λ, Lp,λ, BMO and Lipα instead of
Lp in Examples 8, 9 and 10. Actually, we have the following:

EXAMPLE 11. Take σ0 = σ ∈ (0,∞), σ1 = 0 and τ = (1 − θ)σ with θ ∈ (0, 1) in
Corollary 2. Then

(
Ḃσ (E)(Rn), E(Rn)

)
θ,∞ = Ḃτ (E)(Rn) ,

and (
Bσ1(E)(Rn), E(Rn)

)
θ,∞, [1,∞)

= Bτ (E)(Rn) ,

where E = Lp,λ, WLp,λ, Lp,μ, BMO, or Lipα, with p ∈ [1,∞), λ ∈ [−n/p, 0], μ ∈
[−n/p, 1] and α ∈ (0, 1].

EXAMPLE 12. Take u = ∞, σ0 = σ ∈ (0,∞), σ1 = 0, w(r) = r−σ Θ(rσ ) with
w ∈ W∗ and Θ ∈ Θ∗, in Corollary 1. Then

(
Ḃσ (E)(Rn), E(Rn), Θ

)
∞ = Ḃ∞

w (E)(Rn) ,

and (
Bσ1(E)(Rn), E(Rn), Θ

)
∞, [1,∞)

= B∞
w (E)(Rn) ,

where E = Lp,λ, WLp,λ, Lp,μ, BMO, or Lipα, with p ∈ [1,∞), λ ∈ [−n/p, 0], μ ∈
[−n/p, 1] and α ∈ (0, 1].



Bu
w-FUNCTION SPACES AND THEIR INTERPOLATION 495

EXAMPLE 13. Take u ∈ (0,∞), σ0, σ1 ∈ (0,∞), w(r) = r−σ0Θ(rσ0−σ1) with w ∈
W∗ and Θ ∈ Θ∗, in Corollary 1. Then

(
Ḃσ0(E)(Rn), Ḃσ1(E)(Rn), Θ

)
u

= Ḃu
w(E)(Rn) ,

and (
Bσ0(E)(Rn), Bσ1(E)(Rn), Θ

)
u, [1,∞)

= Bu
w(E)(Rn) ,

where E = Lp,λ, WLp,λ, Lp,μ, BMO, or Lipα, with p ∈ [1,∞), λ ∈ [−n/p, 0], μ ∈
[−n/p, 1] and α ∈ (0, 1].

EXAMPLE 14. Let p ∈ [1,∞), λ0, λ1 ∈ [−n/p,∞), θ ∈ (0, 1) and λ = (1 − θ)λ0 +
θλ1. Then (

Ḃp,λ0(Rn), Ḃp,λ1(Rn)
)
θ,∞ = Ḃp,λ(Rn) ,

(
CBMOp,λ0(Rn), CBMOp,λ1(Rn)

)
θ,∞ = CBMOp,λ(Rn) ,

and (
Bp,λ0(Rn), Bp,λ1(Rn)

)
θ,∞, [1,∞)

= Bp,λ(Rn) ,

(
CMOp,λ0(Rn), CMOp,λ1(Rn)

)
θ,∞, [1,∞)

= CMOp,λ(Rn) .

4. Proof of the main theorem

To prove the main theorem we need several lemmas. We also use a weighted Hardy’s
inequality by Muckenhoupt [35].

LEMMA 1. Let 0 < u0 < u1 ≤ ∞ and w : (0,∞) → (0,∞). If w satisfies the
doubling condition, then

Bu0
w (E)(Rn) ⊂ Bu1

w (E)(Rn) and Ḃu0
w (E)(Rn) ⊂ Ḃu1

w (E)(Rn)

with

‖f ‖
B

u1
w (E)

≤ C‖f ‖
B

u0
w (E)

and ‖f ‖
Ḃ

u1
w (E)

≤ C‖f ‖
Ḃ

u0
w (E)

,

respectively, where C is independent of f .

PROOF. Let f ∈ Ḃ
u1
w (E).

‖f ‖
Ḃ

u1
w (E)

= ∥∥w(r)‖f ‖E(Qr )

∥∥
Lu1 ((0,∞),dr/r)

=
∥∥∥{∥∥w(r)‖f ‖E(Qr)

∥∥
Lu1 ([2j−1,2j ),dr/r)

}
j∈Z

∥∥∥
�u1

�
∥∥∥{

w(2j )‖f ‖E(Q2j )

}
j∈Z

∥∥∥
�u1

≤
∥∥∥{

w(2j )‖f ‖E(Q2j )

}
j∈Z

∥∥∥
�u0
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�
∥∥∥{∥∥w(r)‖f ‖E(Qr)

∥∥
Lu0 ([2j ,2j+1),dr/r)

}
j∈Z

∥∥∥
�u0

= ∥∥w(r)‖f ‖E(Qr )

∥∥
Lu0 ((0,∞),dr/r)

= ‖f ‖
Ḃ

u0
w (E)

.

For f ∈ B
u1
w (E), take j ≥ 1 instead of j ∈ Z in the above calculation. �

LEMMA 2. Let functions φ,G : (0,∞) → (0,∞) satisfy the doubling condition,
ε > 0 and u ∈ (0,∞]. Assume that φ(r)r−ε is almost increasing or φ(r)rε is almost
decreasing. Then

C−1‖G‖Lu((0,∞),dr/r) ≤ ‖G ◦ φ‖Lu((0,∞),dr/r) ≤ C‖G‖Lu((0,∞),dr/r) ,

and

C−1‖G‖Lu([1,∞),dr/r) ≤ ‖G ◦ φ‖Lu([1,∞),dr/r) ≤ C‖G‖Lu([1,∞),dr/r) ,

where C is a positive constant depending only on ε, u and the doubling constants of φ and G.

PROOF. If φ satisfies the doubling condition and φ(r)r−ε is almost increasing, then
φ(r) ∼ ∫ r

0 φ(t) dt/t . Let φ1(r) = ∫ r

0 φ(t) dt/t . Then φ1 is continuous and φ ∼ φ1, that is, φ1

satisfies the doubling condition and φ1(r)r
−ε is almost increasing. Let φ2(r) = ∫ r

0 φ1(t) dt/t .

Then φ2 is differentiable, strictly increasing and φ ∼ φ2. In this case φ2(r)r
−ε is almost

increasing, and then limr→0 φ2(r) = 0 and limr→∞ φ2(r) = ∞. Therefore, φ2 is bijective
from (0,∞) to itself. Moreover,

φ′
2(r)

φ2(r)
= φ1(r)/r

φ2(r)
∼ 1

r
.

Using the doubling condition of G, we have

‖G ◦ φ‖Lu((0,∞),dr/r) ∼ ‖G ◦ φ2‖Lu((0,∞),dr/r)

∼ ‖G ◦ φ2‖Lu((0,∞),(φ′
2(r)/φ2(r))dr)

= ‖G‖Lu((0,∞),dr/r) .

Further, let φ3(r) = φ2(r)/φ2(1). Then φ3(1) = 1 and φ3 has the same properties as φ2.
Hence, using φ3, we have

‖G ◦ φ‖Lu([1,∞),dr/r) ∼ ‖G‖Lu([1,∞),dr/r) .

If φ(r)rε is almost decreasing, letting φ1(r) = ∫ ∞
r φ(t) dt/t and φ2(r) =∫ ∞

r
φ1(t) dt/t , we see that φ2 is differentiable and bijective from (0,∞) to itself, and

lim
r→0

φ2(r) = ∞ , lim
r→∞ φ2(r) = 0 , −φ′

2(r)

φ2(r)
= φ1(r)/r

φ2(r)
∼ 1

r
.

In this case, we also have the same conclusion. �
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THEOREM 4 (Muckenhoupt [35]). Let p ∈ [1,∞] and 1/p + 1/p′ = 1. Let F ∗(r) =∫ r

0 f (t) dt and F∗(r) = ∫ ∞
r

f (t) dt . Then

‖UF ∗‖Lp(0,∞) ≤ C‖Vf ‖Lp(0,∞)

if and only if

sup
r>0

(∫ ∞

r

|U(t)|p dt

)1/p (∫ r

0
|V (t)|−p′

dt

)1/p′

< ∞ . (4.1)

Also,

‖UF∗‖Lp(0,∞) ≤ C‖Vf ‖Lp(0,∞)

if and only if

sup
r>0

(∫ r

0
|U(t)|p dt

)1/p (∫ ∞

r

|V (t)|−p′
dt

)1/p′

< ∞ . (4.2)

In the above, we use the obvious modification when p = ∞ or p′ = ∞. That is, we regard(∫ b

a |W(t)|±∞ dt
)1/∞

as supt∈(a,b) |W(t)|±1 for 0 ≤ a < b ≤ ∞.

LEMMA 3. Let u0, u1, u ∈ (0,∞], max(u0, u1) ≤ u, w0, w1 ∈ W∞, Θ ∈ Θ∗, and
let

w = w0 Θ(w1/w0) , w∗ = w0/w1 .

(i) Let max(u0, u1) < ∞ and w0, w1 ∈ W∗. Assume that w∗(r)r−ε is almost in-
creasing for some positive constant ε. For f ∈ Ḃu

w(E), let

F0(t) = w0(t)
u0‖f ‖u0

E(Qt )
t−1 , U0(r) = (

Θ(w∗(r)−1)
)u0r−u0/u ,

and

F1(t) = w1(t)
u1‖f ‖u1

E(Qt )
t−1 , U1(r) = (

w∗(r)Θ(w∗(r)−1)
)u1r−u1/u .

Then∥∥∥∥U0(r)

∫ r

0
F0(t) dt

∥∥∥∥
1/u0

Lu/u0 (0,∞)

+
∥∥∥∥U1(r)

∫ ∞

r

F1(t) dt

∥∥∥∥
1/u1

Lu/u1 (0,∞)

≤ C‖f ‖Ḃu
w(E) ,

where C is independent of f .
(ii) Let u0 = u = ∞. Assume that w∗(r) is almost increasing. For f ∈ Ḃu

w(E), let

F0(t) = w0(t)‖f ‖E(Qt ) , U0(r) = Θ(w∗(r)−1) .
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Then ∥∥∥∥U0(r)

(
sup

t∈(0,r)

F0(t)

)∥∥∥∥
L∞(0,∞)

≤ C‖f ‖Ḃu
w(E) ,

where C is independent of f .

(iii) Let u1 = u = ∞. Assume that w∗(r) is almost increasing. For f ∈ Ḃu
w(E), let

F1(t) = w1(t)‖f ‖E(Qt ) , U1(r) = w∗(r)Θ(w∗(r)−1) .

Then ∥∥∥∥U1(r)

(
sup

t∈(r,∞)

F1(t)

)∥∥∥∥
L∞(0,∞)

≤ C‖f ‖Ḃu
w(E) ,

where C is independent of f .

REMARK 4. In the definition of F0 and F1 of Lemma 3, using ‖f ‖E(Qr )χ[1,∞)(r)

instead of ‖f ‖E(Qr ), we have the result for f ∈ Bu
w(E).

PROOF OF LEMMA 3. (i) We may assume that w∗(r)r−ε and Θ(r)r−ε are almost in-

creasing and Θ(r)rε−1 is almost decreasing for the same small ε. First note that, using these
properties and the doubling condition of Θ , we have that, for a > 0,∫ r

0

(
Θ(w∗(t)−1)

)−a dt

t
=

∫ r

0

(
Θ(w∗(t)−1)w∗(t)ε

)−a(
w∗(t)−1tε

)−εa

tε
2a dt

t

�
(
Θ(w∗(r)−1)w∗(r)ε

)−a(
w∗(r)−1rε

)−εa
∫ r

0
tε

2a dt

t

∼
(
Θ(w∗(r)−1)

)−a

,

and ∫ r

0

(
w∗(t)Θ(w∗(t)−1)

)a dt

t
=

∫ r

0

(
w∗(t)1−εΘ(w∗(t)−1)

)a(
w∗(t)t−ε

)εa

tε
2a dt

t

�
(
w∗(r)1−εΘ(w∗(r)−1)

)a(
w∗(r)r−ε

)εa
∫ r

0
tε

2a dt

t

∼
(
w∗(r)Θ(w∗(r)−1)

)a

.

Similarly, we can get ∫ ∞

r

(
Θ(w∗(t)−1)

)a dt

t
�

(
Θ(w∗(r)−1)

)a

,

and ∫ ∞

r

(
w∗(t)Θ(w∗(t)−1)

)−a dt

t
�

(
w∗(r)Θ(w∗(r)−1)

)−a

.
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Let

V0(r) = (
Θ(w∗(r)−1)

)u0r1−u0/u , V1(r) = (
w∗(r)Θ(w∗(r)−1)

)u1r1−u1/u .

Part 1. Proof of

∥∥∥∥U0(r)

∫ r

0
F0(t) dt

∥∥∥∥
1/u0

Lu/u0 (0,∞)

≤ C‖f ‖Bu
w(E) .

Case 1: u0 < u < ∞.(∫ ∞

r

U0(t)
u/u0 dt

)u0/u
(∫ r

0
V0(t)

−u/(u−u0) dt

)(u−u0)/u

=
(∫ ∞

r

(
Θ(w∗(t)−1)

)u dt

t

)u0/u
(∫ r

0

(
Θ(w∗(t)−1)

)−u0u/(u−u0) dt

t

)(u−u0)/u

�
(
Θ(w∗(r)−1)

)u0
(
Θ(w∗(r)−1)

)−u0 = 1 .

Case 2: u0 = u < ∞.(∫ ∞

r

U0(t) dt

) (
sup

t∈(0,r)

V0(t)
−1

)

=
(∫ ∞

r

(
Θ(w∗(t)−1)

)u0 dt

t

) (
sup

t∈(0,r)

(
Θ(w∗(t)−1)

)−u0

)

�
(
Θ(w∗(r)−1)

)u0
(
Θ(w∗(r)−1)

)−u0 = 1 .

Case 3: u0 < u = ∞. In this case

U0(r) =
(
Θ(w∗(r)−1)

)u0
, V0(r) =

(
Θ(w∗(r)−1)

)u0
r .

Then (
sup

t∈(r,∞)

U0(t)

) (∫ r

0
V0(t)

−1 dt

)

=
(

sup
t∈(r,∞)

(
Θ(w∗(t)−1)

)u0
)(∫ r

0

(
Θ(w∗(t)−1)

)−u0 dt

t

)

∼
(
Θ(w∗(r)−1)

)u0
(
Θ(w∗(r)−1)

)−u0 = 1 .

In any cases, U0 and V0 satisfy the condition (4.1) in Theorem 4. Since

V0(r)F0(r) =
(
Θ(w∗(r)−1)

)u0
r1−u0/uw0(r)

u0‖f ‖u0
E(Qr )

r−1

= w(r)u0‖f ‖u0
E(Qr )

r−u0/u ,
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using Theorem 4, we have∥∥∥∥U0(r)

∫ r

0
F0(t) dt

∥∥∥∥
1/u0

Lu/u0 (0,∞)

�
∥∥∥∥V0(r)F0(r)

∥∥∥∥
1/u0

Lu/u0 (0,∞)

=
∥∥∥w(r)u0‖f ‖u0

E(Qr )
r−u0/u

∥∥∥1/u0

Lu/u0 (0,∞)

=
∥∥∥w(r)‖f ‖E(Qr )

∥∥∥
Lu((0,∞),dr/r)

= ‖f ‖Ḃu
w(E) .

Part 2. Proof of

∥∥∥∥U1(r)

∫ ∞

r

F1(t) dt

∥∥∥∥
1/u1

Lu/u1 (0,∞)

≤ C‖f ‖Bu
w(E) .

Case 1: u1 < u < ∞.(∫ r

0
U1(t)

u/u1 dt

)u1/u
(∫ ∞

r

V1(t)
−u/(u−u1) dt

)(u−u1)/u

=
(∫ r

0

(
w∗(t)Θ(w∗(t)−1)

)u dt

t

)u1/u

×
( ∫ ∞

r

(
w∗(t)Θ(w∗(t)−1)

)−u1u/(u−u1) dt

t

)(u−u1)/u

�
(
w∗(r)Θ(w∗(r)−1)

)u1
(
w∗(r)Θ(w∗(r)−1)

)−u1 = 1.

Case 2: u1 = u < ∞.(∫ r

0
U1(t) dt

) (
sup

t∈(r,∞)

V1(t)
−1

)

=
(∫ r

0

(
w∗(t)Θ(w∗(t)−1)

)u1 dt

t

) (
sup

t∈(r,∞)

(
w∗(t)Θ(w∗(t)−1)

)−u1
)

�
(
w∗(r)Θ(w∗(r)−1)

)u1
(
w∗(r)Θ(w∗(r)−1)

)−u1 = 1 .

Case 3: u1 < u = ∞. In this case

U1(r) =
(
w∗(r)Θ(w∗(r)−1)

)u1
, V1(r) =

(
w∗(r)Θ(w∗(r)−1)

)u1
r.

Then (
sup

t∈(0,r)

U1(t)

) (∫ ∞

r

V1(t)
−1 dt

)

=
(

sup
t∈(0,r)

(
w∗(t)Θ(w∗(t)−1)

)u1
)( ∫ ∞

r

(
w∗(t)Θ(w∗(t)−1)

)−u1 dt

t

)
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�
(
w∗(r)Θ(w∗(r)−1)

)u1
(
w∗(r)Θ(w∗(r)−1)

)−u1 = 1 .

In any cases, U1 and V1 satisfy the condition (4.2) in Theorem 4. Since

V1(r)F1(r) =
(
w∗(r)Θ(w∗(r)−1)

)u1
r1−u1/uw1(r)

u1‖f ‖u1
E(Qr)

r−1

= w(r)u1‖f ‖u1
E(Qr)

r−u1/u ,

using Theorem 4, we have∥∥∥∥U1(r)

∫ ∞

r

F1(t) dt

∥∥∥∥
1/u1

Lu/u1 (0,∞)

� ‖V1(r)F1(r)‖1/u1

Lu/u1 (0,∞)

=
∥∥∥w(r)u1‖f ‖u1

E(Qt )
r−u1/u

∥∥∥1/u1

Lu/u1 (0,∞)

=
∥∥∥w(r)‖f ‖E(Qr)

∥∥∥
Lu((0,∞),dr/r)

= ‖f ‖Ḃu
w(E).

(ii) Since U0(r) = Θ(w∗(r)−1) is almost decreasing,∥∥∥∥U0(r)

(
sup

t∈(0,r)

F0(t)

)∥∥∥∥
L∞(0,∞)

�
∥∥∥∥
(

sup
t∈(0,r)

U0(t)F0(t)

)∥∥∥∥
L∞(0,∞)

=
∥∥∥U0(t)F0(t)

∥∥∥
L∞(0,∞)

=
∥∥∥w(t)‖f ‖E(Qt )

∥∥∥
L∞(0,∞)

= ‖f ‖Ḃ∞
w (E) .

(iii) Since U1(r) = w∗(r)Θ(w∗(r)−1) is almost increasing,∥∥∥∥U1(r)

(
sup

t∈(r,∞)

F1(t)

)∥∥∥∥
L∞(0,∞)

�
∥∥∥∥
(

sup
t∈(r,∞)

U1(t)F1(t)

)∥∥∥∥
L∞(0,∞)

=
∥∥∥U1(t)F1(t)

∥∥∥
L∞(0,∞)

=
∥∥∥w(t)‖f ‖E(Qt )

∥∥∥
L∞(0,∞)

= ‖f ‖Ḃ∞
w (E).

Therefore, we have the conclusion. �

PROOF OF THEOREM 1. We may assume that (w0(r)/w1(r))r
−ε is almost increasing,

by changing w0 and w1 if need.
Part 1. Proof of

(
Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn), Θ

)
u

⊂ Ḃu
w(E)(Rn) . (4.3)

Let f ∈ (
Ḃ

u0
w0(E)(Rn), Ḃ

u1
w1(E)(Rn), Θ

)
u

and f = f0 +f1 with fi ∈ Ḃ
ui
wi (E)(Rn), i = 1, 2.

Then

w(r)‖f ‖E(Qr) ≤ Cw(r)
(‖f0‖E(Qr) + ‖f1‖E(Qr )

)

≤ C
w(r)

w0(r)

(
w0(r)‖f0‖E(Qr ) + w0(r)

w1(r)
w1(r)‖f1‖E(Qr)

)
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≤ C
w(r)

w0(r)

(
‖f0‖Ḃ∞

w0
(E) + w0(r)

w1(r)
‖f1‖Ḃ∞

w1
(E)

)

≤ C Θ

(
w1(r)

w0(r)

) (
‖f0‖Ḃ

u0
w0 (E)

+ w0(r)

w1(r)
‖f1‖Ḃ

u1
w1 (E)

)
.

Then, letting w∗ = w0/w1, we have

w(r)‖f ‖E(Qr ) ≤ CΘ(w∗(r)−1)K
(
w∗(r), f ; Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn)

)
.

By Lemma 2 we have

‖f ‖Ḃu
w(E) =

∥∥∥w(r)‖f ‖E(Qr)

∥∥∥
Lu((0,∞),dr/r)

�
∥∥∥Θ(w∗(r)−1)K

(
w∗(r), f ; Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn)

)∥∥∥
Lu((0,∞),dr/r)

∼
∥∥∥Θ(r−1)K

(
r, f ; Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn)

)∥∥∥
Lu((0,∞),dr/r)

= ‖f ‖(
Ḃ

u0
w0 (E)(Rn), Ḃ

u1
w1 (E)(Rn), Θ

)
u

.

This shows (4.3).
Part 2. Proof of

(
Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn), Θ

)
u

⊃ Ḃu
w(E)(Rn) . (4.4)

We may assume that 0 < max(u0, u1) ≤ u ≤ ∞, since
(
Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn), Θ

)
u

⊃ (
Ḃmin(u0,u)

w0
(E)(Rn), Ḃmin(u1,u)

w1
(E)(Rn), Θ

)
u
.

Let f ∈ Ḃu
w(E)(Rn) and r > 0. From the decomposition property of {E(Qr)}, we can take

functions f r
0 and f r

1 satisfying f = f r
0 + f r

1 ,

‖f r
0 ‖E(Qt ) ≤

{
CE‖f ‖E(Qt ) (0 < t < r) ,

CE‖f ‖E(Qar ) (r ≤ t < ∞) ,
(4.5)

and

‖f r
1 ‖E(Qt ) ≤

{
0 (0 < t < cr) ,

CE‖f ‖E(Qbt ) (cr ≤ t < ∞) .
(4.6)

Here we may assume that a ≥ 1 and b ≥ 1. We will show that f r
0 ∈ Ḃ

u0
w0(E)(Rn), f r

1 ∈
Ḃ

u1
w1(E)(Rn) and

∥∥∥Θ(w∗(r)−1)‖f r
0 ‖

Ḃ
u0
w0 (E)

∥∥∥
Lu((0,∞),dr/r)

+
∥∥∥w∗(r)Θ(w∗(r)−1)‖f r

1 ‖
Ḃ

u1
w1 (E)

∥∥∥
Lu((0,∞),dr/r)

� ‖f ‖Ḃu
w(E) . (4.7)
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Then, by Lemma 2

‖f ‖(
Ḃ

u0
w0 (E)(Rn), Ḃ

u1
w1 (E)(Rn), Θ

)
u

=
∥∥∥Θ(r−1)K

(
r, f ; Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn)

)∥∥∥
Lu((0,∞),dr/r)

∼
∥∥∥Θ(w∗(r)−1)K

(
w∗(r), f ; Ḃu0

w0
(E)(Rn), Ḃu1

w1
(E)(Rn)

)∥∥∥
Lu((0,∞),dr/r)

≤
∥∥∥Θ(w∗(r)−1)‖f r

0 ‖
Ḃ

u0
w0 (E)

+ w∗(r)Θ(w∗(r)−1)‖f r
1 ‖

Ḃ
u1
w1 (E)

∥∥∥
Lu((0,∞),dr/r)

� ‖f ‖Ḃu
w(E) .

This shows (4.4).
Now we prove (4.7). From Lemma 3 we see that∥∥∥w0(t)‖f ‖E(Qt )

∥∥∥
Lu0 ((0,2ar),dt/t)

< ∞,

∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([r,∞),dt/t)

< ∞ ,

and
∥∥∥∥Θ(w∗(2ar)−1)

∥∥∥w0(t)‖f ‖E(Qt )

∥∥∥
Lu0 ((0,2ar),dt/t)

∥∥∥∥
Lu((0,∞),dr/r)

+
∥∥∥∥w∗(r)Θ(w∗(r)−1)

∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([r,∞),dt/t)

∥∥∥∥
Lu((0,∞),dr/r)

� ‖f ‖Ḃu
w(E) .

Therefore, to prove (4.7) it is enough to show∥∥∥w0(t)‖f r
0 ‖E(Qt )

∥∥∥
Lu0 ((0,∞),dt/t)

�
∥∥∥w0(t)‖f ‖E(Qt )

∥∥∥
Lu0 ((0,2ar),dt/t)

, (4.8)

and ∥∥∥w1(t)‖f r
1 ‖E(Qt )

∥∥∥
Lu1 ((0,∞),dt/t)

�
∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([r,∞),dt/t)

. (4.9)

Since w0 ∈ W∞ if u0 = ∞, or w0 ∈ W∗ if u0 < ∞,

‖w0(t)‖Lu0 ([r,∞),dt/t) � w0(r) � ‖w0(t)‖Lu0 ([ar,2ar),dt/t) .

From (4.5) it follows that∥∥∥w0(t)‖f r
0 ‖E(Qt )

∥∥∥
Lu0 ((0,∞),dt/t)

�
∥∥∥w0(t)‖f ‖E(Qt )

∥∥∥
Lu0 ((0,r),dt/t)

+ ‖f ‖E(Qar )‖w0(t)‖Lu0 ([r,∞),dt/t)

�
∥∥∥w0(t)‖f ‖E(Qt )

∥∥∥
Lu0 ((0,2ar),dt/t)

.
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This shows (4.8). Next we show (4.9). From (4.6) it follows that∥∥∥w1(t)‖f r
1 ‖E(Qt )

∥∥∥
Lu1 ((0,∞),dt/t)

�
∥∥∥w1(t)‖f ‖E(Qbt )

∥∥∥
Lu1 ([cr,∞),dt/t)

∼
∥∥∥w1(bt)‖f ‖E(Qbt )

∥∥∥
Lu1 ([cr,∞),dt/t)

=
∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([cr/b,∞),dt/t)

.

If c/b ≥ 1, then we have (4.9). If c/b < 1, then∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([cr/b,∞),dt/t)

=
∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([cr/b,r),dt/t)

+
∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([r,∞),dt/t)

�
∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([r,br/c),dt/t)

+
∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([r,∞),dt/t)

≤ 2
∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([r,∞),dt/t)

.

This shows (4.9).
Part 3. Proof of

(
Bu0

w0
(E)(Rn), Bu1

w1
(E)(Rn), Θ

)
u, [1,∞)

⊂ Bu
w(E)(Rn) . (4.10)

Using Lu([1,∞), dr/r) instead of Lu((0,∞), dr/r) in Part 1, we have the conclusion.
Part 4. Proof of

(
Bu0

w0
(E)(Rn), Bu1

w1
(E)(Rn), Θ

)
u, [1,∞)

⊃ Bu
w(E)(Rn). (4.11)

Instead of (4.7) we need∥∥∥Θ(w∗(r)−1)‖f r
0 ‖

B
u0
w0 (E)

∥∥∥
Lu([1,∞),dr/r)

+
∥∥∥w∗(r)Θ(w∗(r)−1)‖f r

1 ‖
B

u1
w1 (E)

∥∥∥
Lu([1,∞),dr/r)

� ‖f ‖Bu
w(E) . (4.12)

By the same way as (4.8) and (4.9) we can get, for r ≥ 1,∥∥∥w0(t)‖f r
0 ‖E(Qt )

∥∥∥
Lu0 ([1,∞),dt/t)

�
∥∥∥w0(t)‖f ‖E(Qt )

∥∥∥
Lu0 ([1,2ar),dt/t)

,

and ∥∥∥w1(t)‖f r
1 ‖E(Qt )

∥∥∥
Lu1 ([1,∞),dt/t)

�
∥∥∥w1(t)‖f ‖E(Qt )

∥∥∥
Lu1 ([r,∞),dt/t)

,

respectively. By Remark 4 we see that (4.12) follows from these inequalities. �
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5. Boundedness of linear and sublinear operators

In this section we consider the boundedness of linear and sublinear operators on

Bu
w(E)(Rn) and Ḃu

w(E)(Rn) with E = Lp,λ or Lp,λ. It is known that some classical operators

are bounded on Bσ (E)(Rn) and Ḃσ (E)(Rn), see [25]. Applying the interpolation property,

we extend these boundedness to Bu
w(E)(Rn) and Ḃu

w(E)(Rn). We consider sublinear opera-

tors T defined on L1
comp(R

n). That is, the operator T satisfies that, for all f, g ∈ L1
comp(R

n)

and for a.e. x ∈ R
n,

|T (f + g)(x)| ≤ |Tf (x)| + |T g(x)| .
We also assume that

|Tf (x) − T g(x)| ≤ C|T (f − g)(x)| (5.1)

for some positive constant C. For example, if T is linear, or, sublinear and Tf (x) ≥ 0 for all
f and a.e. x, then T satisfies the condition (5.1) with C = 1.

In general, for quasi-normed function spaces Ai and Bi , i = 0, 1, let a sublinear operator
T : A0 + A1 → B0 + B1 be bounded from Ai to Bi , i = 0, 1, and satisfy (5.1) for all
f, g ∈ A0 +A1. If T is not linear, we also assume that Bi , i = 0, 1, satisfy the lattice property
(3.11). Then we conclude that

K(r, Tf ; B0, B1) ≤ CT K(r, f ; A0, A1) ,

where CT is a positive constant dependent on T and C in (5.1). Therefore we can use the
interpolation property for the boundedness of T . Actually, if T is linear, then

Tf = Tf0 + Tf1, Tf0 ∈ B0, Tf1 ∈ B1

for any decomposition f = f0 + f1 in A0 + A1. Hence

K(r, Tf ; B0, B1) ≤ ‖Tf0‖B0 + r‖Tf1‖B1 ≤ CT (‖f0‖A0 + r‖f1‖A1) .

If T is not linear, then, using (5.1) and the lattice property, we have

|Tf (x) − Tf0(x)| ≤ C|Tf1(x)|
and

Tf = Tf0 + (Tf − Tf0), Tf0 ∈ B0, Tf − Tf0 ∈ B1 .

Hence

K(r, Tf ; B0, B1) ≤ ‖Tf0‖B0 + r‖Tf − Tf0‖B1 ≤ CT (‖f0‖A0 + r‖f1‖A1) ,

for any decomposition f = f0 + f1 in A0 + A1.
We also point out that the condition (5.1) is important to extend Lp-bounded operators to

bounded operators on Morrey spaces. Actually, there exists an Lp-bounded sublinear operator
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T such that T does not satisfy (5.1) and that T cannot be extended to a bounded operator on
Morrey spaces, see Remark 5.

In this section, first we give the boundedness of the Hardy-Littlewood maximal and frac-
tional maximal operators in Subsection 5.1. Next we investigate singular and fractional in-
tegral operators and more general sublinear operators with (5.1) in Subsection 5.2. In Sub-
sections 5.3 and 5.4 we consider singular integral operators with the cancellation property
and modified fractional integral operators, respectively. Finally, we show the vector-valued
boundedness in Subsection 5.5.

If λ = −n/p, then Lp,λ = Lp and Ḃu
w(Lp,λ)(R

n) = Ḃu
w(Lp)(Rn) = LMpu,w̃(Rn) with

w̃(r) = w(r)/r . Let Ḃu
w(WLp)(Rn) = WLMpu,w̃(Rn) with w̃(r) = w(r)/r , where WLp is

the weak Lp space.

5.1. The Hardy-Littlewood maximal and fractional maximal operators. The
fractional maximal operators Mα of order α ∈ [0, n) are sublinear, which is defined as

Mαf (x) = sup
Q�x

1

|Q|1−α/n

∫
Q

|f (y)| dy ,

where the supremum is taken over all cubes (or balls) Q containing x ∈ R
n. If α = 0, then

Mα is the Hardy-Littlewood maximal operator denoted by M .
It is known that, for α ∈ [0, n), p, q ∈ [1,∞] and −n/p + α = −n/q , the operator Mα

is bounded from Lp(Rn) to Lq(Rn) if p ∈ (1,∞], and from L1(Rn) to WLq(Rn) if p = 1.
It is also known that, for α ∈ [0, n), p, q ∈ [1,∞), λ ∈ [−n/p, 0), μ ∈ [−n/q, 0),

μ = λ + α and q ≤ (λ/μ)p, the operator Mα is bounded from Lp,λ(R
n) to Lq,μ(Rn) if

p ∈ (1,∞), and from L1,λ(R
n) to WLq,μ(Rn) if p = 1. In particular, the Hardy-Littlewood

maximal operator M is bounded from Lp,λ(R
n) to itself if p ∈ (1,∞) and from L1,λ(R

n) to
WL1,λ(Rn), see [14].

Moreover, the boundedness of Mα on Bσ -Morrey spaces is known by [25, Theorem 7].
Using this boundedness and Example 13, we have the following:

THEOREM 5. Let α ∈ [0, n), p, q ∈ [1,∞), λ ∈ [−n/p, 0), μ ∈ [−n/q, 0), u ∈
(0,∞], Θ ∈ Θ∗, and let

w(r) = r−σ Θ(rτ ) , σ, τ ∈ (0,∞) with σ > τ .

Assume that

μ = λ + α , q ≤ (λ/μ)p and σ + λ + α ≤ 0 .

Then the operator Mα is bounded from Bu
w(Lp,λ)(R

n) to Bu
w(Lq,μ)(Rn) if p ∈ (1,∞), from

Bu
w(L1,λ)(R

n) to Bu
w(WLq,μ)(Rn) if p = 1. The same conclusion holds for Ḃu

w(Lp,λ)(R
n).

Taking λ = −n/p and μ = −n/q in Theorem 5, we have the following:
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COROLLARY 4. Let α ∈ [0, n), p, q ∈ [1,∞), u ∈ (0,∞], Θ ∈ Θ∗, and let

w̃(r) = w(r)/r , w(r) = r−σ Θ(rτ ) , σ, τ ∈ (0,∞) with σ > τ .

Assume that

−n/q = −n/p + α and σ − n/p + α ≤ 0 .

Then the operator Mα is bounded from LMpu,w̃(Rn) to LMqu,w̃(Rn) if p ∈ (1,∞), from
LM1u,w̃(Rn) to WLMqu,w̃(Rn) if p = 1.

For necessary and sufficient conditions for the boundedness of M on local Morrey-type
spaces, see [7].

5.2. Singular and fractional integral operators. We consider sublinear operators
T which satisfy (5.1) and the following condition: There exist constants α ∈ [0, n) and

C ∈ (0,∞) such that, for all f ∈ L1
comp(R

n),

|Tf (x)| ≤ C

∫
Rn

|Ω(x − y)|
|x − y|n−α

|f (y)| dy , x /∈ supp f , (5.2)

where Ω is a function on R
n which is homogeneous of degree zero and Ω ∈ Lp̃(Sn−1) for

some p̃ ∈ [1,∞]. For example, singular and fractional integral operators satisfy (5.2) with
Ω ≡ 1. More precisely, the singular integral operator T is defined by

Tf (x) =
∫
Rn

K(x, y)f (y) dy , x /∈ supp f , f ∈ L1
comp(R

n) (5.3)

with kernel K(x, y) satisfying the condition

|K(x, y)| ≤ C|x − y|−n , x = y , (5.4)

and some regularity conditions. (For regularity conditions, see Yabuta [48] and references
therein.) Then the singular integral operator T satisfies the condition (5.2) with α = 0 and

it is bounded on Lp(Rn), p ∈ (1,∞), and from L1(Rn) to WL1(Rn). Moreover, under the
assumption that p ∈ [1,∞) and λ ∈ [−n/p, 0), T can be extended to a bounded operator
on Lp,λ(R

n) if p ∈ (1,∞), and from L1,λ(R
n) to WL1,λ(R

n) if p = 1, see [14, 36, 40].
Fractional integral operators Iα , α ∈ (0, n), are defined by

Iαf (x) =
∫
Rn

f (y)

|x − y|n−α
dy .

Then Iα satisfies (5.2) with this α and it is bounded from Lp(Rn) to Lq(Rn), 1 < p < q < ∞,
−n/p +α = −n/q , and from L1(R) to WLn/(n−α)(R). Moreover, under the assumption that
p, q ∈ [1,∞), λ ∈ [−n/p, 0), μ ∈ [−n/q, 0), λ + α = μ and q ≤ (λ/μ)p, Iα can
be extended to a bounded operator from Lp,λ(R

n) to Lq,μ(Rn) if p ∈ (1,∞), and from
L1,λ(R

n) to WLq,μ(Rn) if p = 1, see [1, 14].
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For the Lp-boundedness of Calderón-Zygmund singular integral operators

TΩf (x) = p.v.

∫
Rn

Ω(x − y)

|x − y|n f (y) dy ,

and fractional integral operators with rough kernel

IΩ,αf (x) =
∫
Rn

Ω(x − y)

|x − y|n−α
f (y) dy ,

see [11] and [34], respectively.

REMARK 5. Let T be a sublinear operator satisfying (5.1) and (5.2) for some α ∈
[0, n). Let p, q ∈ [1,∞), λ ∈ [−n/p, 0), μ ∈ [−n/q, 0) and μ = λ + α. Assume that T

is bounded from Lp(Rn) to Lq(Rn) or to WLq(Rn). Then, for f ∈ Lp,λ(R
n) and R > 0,

T (f χR) is well defined and limR→∞ T (fχR) exists a.e. on R
n, or in L

q

loc(R
n), with some

additional assumption on Ω in (5.2). Actually, f χR ∈ Lp(Rn) and we can prove that

|T (fχS)(x) − T (fχR)(x)| ≤ C|T (f (χS − χR)(x)| → 0

as R, S → ∞ for a.e. Rn, or in L
q

loc(R
n), see [25, Lemmas 3 and 4]. Then, letting Tf =

limR→∞ T (f χR) for f ∈ Lp,λ(R
n), we can define T as a bounded operator from Lp,λ(R

n)

to Lq,μ(Rn) or to WLq,μ(Rn), see [25, Remark 15] in which we point out that we need the

condition (5.1). For example, the operator Tf = ei‖f ‖Lp(Rn)Mf , where M is the Hardy-
Littlewood maximal operator, is bounded on Lp(Rn) but not well defined on Morrey spaces
in general.

REMARK 6. If T is a singular integral operator defined by (5.3), then the equality

lim
R→∞ T (f χR)(x) = T (fχQ(z,2r))(x) +

∫
Rn\Q(z,2r)

K(x, y)f (y) dy

holds for a.e. x ∈ Q(z, r) and for any Q(z, r), see [36, 39, 43]. See also Rosenthal and
Triebel [42] for the extension of singular integral (Calderón-Zygmund) operators to Morrey
spaces.

Let T be a sublinear operator defined on L1
comp(R

n) and satisfy (5.1) and (5.2). It is

known that, under some conditions, if T can be extended to a bounded operator on Morrey
spaces, then T can be further extended to a bounded operator on Bσ -Morrey spaces, see [25,
Theorem 8]. Using this boundedness and Example 13, we have the following:

THEOREM 6. Let p, q ∈ [1,∞), λ ∈ [−n/p, 0), μ ∈ [−n/q, 0), u ∈ (0,∞], Θ ∈
Θ∗, and let

w(r) = r−σ Θ(rτ ) , σ, τ ∈ (0,∞) with σ > τ . (5.5)

Let T be a sublinear operator defined on L1
comp(R

n) and satisfy (5.1) and (5.2) for some

α ∈ [0, n) and Ω ∈ Lp̃(Sn−1) with p̃ ∈ [1,∞]. Assume one of the following conditions:
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(i) μ = λ + α, p̃ ≥ p′ and σ + λ + α < 0,
(ii) μ = λ + α, p̃ ≥ q and σ + λ + n/p̃ + α < 0.

Assume in addition T can be extended to a bounded operator from Lp,λ(R
n) to Lq,μ(Rn) or

to WLq,μ(Rn). Then T can be further extended to a bounded operator from Bu
w(Lp,λ)(R

n)

to Bu
w(Lq,μ)(Rn) or to Bu

w(WLq,μ)(Rn), respectively. The same conclusion holds for

Ḃu
w(Lp,λ)(R

n).

REMARK 7. Let f ∈ Bu
w(Lp,λ)(R

n) and R > 0. Then fχR ∈ Bτ (Lp,λ)(R
n) and

f (1 −χR) ∈ Bσ (Lp,λ)(R
n). Hence T (f χR), T (f (1 −χR)) and Tf = limR→∞ T (f χR) are

well defined by [25, Theorem 8], see also its proof.

COROLLARY 5. Let T be a singular integral operator with kernel K(x, y) satisfying
the condition (5.4). Let p ∈ [1,∞), λ ∈ [−n/p, 0), u ∈ (0,∞], Θ ∈ Θ∗, and define w by
(5.5). Assume that σ + λ < 0. If T is bounded on Lp(Rn) with p ∈ (1,∞), then T can be

extended to a bounded operator on Bu
w(Lp,λ)(R

n). If T is bounded from L1(Rn) to WL1(Rn),
then T can be extended to a bounded operator from Bu

w(L1,λ)(R
n) to Bu

w(WL1,λ)(R
n). The

same conclusion holds for Ḃu
w(Lp,λ)(R

n).

COROLLARY 6. Let α ∈ (0, n), p, q ∈ [1,∞), λ ∈ [−n/p, 0), μ ∈ [−n/q, 0),
u ∈ (0,∞], Θ ∈ Θ∗, and define w by (5.5). Assume that λ + α = μ, q ≤ (λ/μ)p

and σ + μ < 0. Then fractional integral operators Iα are bounded from Bu
w(Lp,λ)(R

n) to
Bu

w(Lq,μ)(Rn) if p ∈ (1,∞), and from Bu
w(L1,λ)(R

n) to Bu
w(WLq,μ)(Rn) if p = 1. The

same conclusion holds for Ḃu
w(Lp,λ)(R

n).

Further, Theorem 6 is valid for the Calderón-Zygmund singular integral operators,
fractional integral operators with rough kernel, C. Fefferman’s singular multipliers, the
Littlewood-Paley operator, the Marcinkiewicz operator, Ricci-Stein’s oscillatory singular in-
tegral, the Bochner-Riesz operator at the critical index, and so on. For these operators, see
[15, 20, 27, 44].

Taking λ = −n/p and μ = −n/q in Theorem 6, we have the following:

COROLLARY 7. Let p, q ∈ [1,∞), u ∈ (0,∞], Θ ∈ Θ∗, and let

w̃(r) = w(r)/r , w(r) = r−σ Θ(rτ ) , σ, τ ∈ (0,∞) with σ > τ .

Let T be a sublinear operator defined on L1
comp(R

n) and satisfy (5.1) and (5.2) for some

α ∈ [0, n) and Ω ∈ Lp̃(Sn−1) with p̃ ∈ [1,∞]. Assume one of the following conditions:
(i) −n/q = −n/p + α, p̃ ≥ p′ and σ − n/p + α < 0,

(ii) −n/q = −n/p + α, p̃ ≥ q and σ − n/p + n/p̃ + α < 0.

Assume in addition T is a bounded operator from Lp(Rn) to Lq(Rn) or to WLq(Rn).
Then T can be extended to a bounded operator from LMpu,w̃(Rn) to LMqu,w̃(Rn) or to
WLMqu,w̃(Rn), respectively.
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For the boundedness of singular and fractional integral operators on local Morrey-type
spaces, see [8, 9].

5.3. Singular integral operators with the cancellation property. Let κ ∈ (0, 1].
In this section we consider a singular integral operator T with kernel K(x, y) satisfying the
following properties;

|K(x, y)| ≤ C

|x − y|n for x = y ;

|K(x, y) − K(z, y)| + |K(y, x) − K(y, z)| ≤ C

|x − y|n
( |x − z|

|x − y|
)κ

for |x − y| ≥ 2|x − z| ;∫
r≤|x−y|<R

K(x, y) dy =
∫

r≤|x−y|<R

K(y, x) dy = 0

for 0 < r < R < ∞ and x ∈ R
n ,

where C is a positive constant independent of x, y, z ∈ R
n. For η > 0, let

Tηf (x) =
∫

|x−y|≥η

K(x, y)f (y) dy .

Then the integral defining Tηf (x) is convergent whenever f ∈ L
p
comp(R

n) with p ∈ (1,∞).
We assume that, for all p ∈ (1,∞), there exists a positive constant Cp such that for all η > 0

and f ∈ L
p
comp(R

n),

‖Tηf ‖p ≤ Cp‖f ‖p ,

and that

lim
η→0

Tηf = Tf

exists in Lp(Rn). By this assumption, the operator T can be extended to a continuous linear
operator on Lp(Rn). We shall say the operator T satisfying the above conditions is a singular
integral operator of type κ . For example, Riesz transforms Rj , j = 1, . . . , n, are singular
integral operators of type 1.

To define T for Campanato spaces, we first define the modified version of Tη as follows:

T̃ηf (x) =
∫

|x−y|≥η

[
K(x, y) − K(0, y)(1 − χ1(y))

]
f (y) dy .

Then, for f ∈ Lp,λ(R
n), p ∈ (1,∞), λ ∈ [−n/p, 1), we can show that the integral in the

definition above converges absolutely for all x and that T̃ηf converges in Lp(Q) as η → 0

for each Q (see the proof of [39, Theorem 4.1]). We denote the limit by T̃ f .
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REMARK 8. If Tf is well defined, then T̃ f is also well defined and Tf − T̃ f is a

constant function. Furthermore, for the constant function 1, T 1 is undefined, while T̃ 1 = 0.
See [25, Remark 10] for details.

Let T be a singular integral operator of type κ ∈ (0, 1]. It is known that, under some con-

ditions, T̃ can be extended to a bounded operator on Campanato spaces and on Bσ -Campanato
spaces, see [39, 40] and [25, Theorem 10], respectively. Using the boundedness on Bσ -
Campanato spaces and Example 13, we have the following:

THEOREM 7. Let T be a singular integral operator of type κ ∈ (0, 1]. Let p ∈ (1,∞),
u ∈ (0,∞], Θ ∈ Θ∗, and let

w(r) = r−σ Θ(rτ ) , σ, τ ∈ (0,∞) with σ > τ . (5.6)

If −n/p + σ < κ and if λ ∈ [−n/p, κ − σ), then T̃ can be extended to a bounded operator

on Bu
w(Lp,λ)(R

n) and Ḃu
w(Lp,λ)(R

n). Moreover, if σ < κ and if λ ∈ [0, κ − σ), then T̃ can

be also extended to a bounded operator on Bu
w(L1,λ)(R

n) and Ḃu
w(L1,λ)(R

n).

Let λ = 0 in Theorem 7 we have the following.

COROLLARY 8. Let T be a singular integral operator of type κ ∈ (0, 1]. Let u ∈
(0,∞], Θ ∈ Θ∗, and define w by (5.6). If σ < κ , then T̃ can be extended to a bounded
operator on Bu

w(BMO)(Rn) and Ḃu
w(BMO)(Rn).

By Theorem 2 we have the following:

COROLLARY 9. Let T be a singular integral operator of type κ ∈ (0, 1]. Let u ∈
(0,∞], Θ ∈ Θ∗, and define w by (5.6). If σ < σ + α < κ , then T̃ can be extended to a
bounded operator on Bu

w(Lipα)(Rn) and Ḃu
w(Lipα)(Rn).

5.4. Modified fractional integral operators. To define fractional integral operators
on Campanato spaces we define the modified version of Iα , α ∈ (0, n), as follows;

Ĩαf (x) =
∫
Rn

f (y)

(
1

|x − y|n−α
− 1 − χ1(y)

|y|n−α

)
dy .

If Iαf is well defined, then Ĩαf is also well defined and Iαf − Ĩαf is a constant function.

For the constant function 1, Iα1 ≡ ∞, while Ĩα1 is well defined and also a constant function,
see [30, Remark 2.1] for example.

It is known that, under some conditions, Ĩα is bounded on Bσ -Campanato spaces, see
[30, Theorem 2.6]. Using this boundedness and Example 13, we have the following:

THEOREM 8. Let α ∈ (0, 1), p, q ∈ [1,∞), λ ∈ [−n/p, 1), μ ∈ [−n/q, 1) and
λ + α = μ. Let u ∈ (0,∞], Θ ∈ Θ∗, and let

w(r) = r−σ Θ(rτ ), σ, τ ∈ (0,∞) with σ > τ. (5.7)
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Assume that σ +λ+α < 1. Assume also that p and q satisfy one of the following conditions:
(i) p = 1 and 1 ≤ q < n/(n − α);

(ii) 1 < p < n/α and 1 ≤ q ≤ pn/(n − pα);
(iii) n/α ≤ p < ∞ and 1 ≤ q < ∞ (in this case, 0 ≤ μ < 1).

Then Ĩα is bounded from Bu
w(Lp,λ)(R

n) to Bu
w(Lq,μ)(Rn) and from Ḃu

w(Lp,λ)(R
n) to

Ḃu
w(Lq,μ)(Rn).

If λ = 0, then Lp,λ = BMO. If 0 < λ < 1, then Lp,λ = Lipλ. Therefore, we have the
following:

COROLLARY 10. Let α, β, γ ∈ (0, 1) and α + β = γ . Let u ∈ (0,∞], Θ ∈ Θ∗,

and define w by (5.7) with α + β + σ < 1. Then Ĩα is bounded from Bu
w(BMO)(Rn) to

Bu
w(Lipα)(Rn), from Bu

w(Lipβ)(Rn) to Bu
w(Lipγ )(Rn), from Ḃu

w(BMO)(Rn) to Ḃu
w(Lipα)(Rn)

and from Ḃu
w(Lipβ)(Rn) to Ḃu

w(Lipγ )(Rn).

5.5. Vector-valued boundedness. In this section we state the vector-valued inequal-
ities for Bu

w(Lp,λ)(R
n) and Ḃu

w(Lp,λ)(R
n).

DEFINITION 2. Let U = R
n or Qr with r > 0. Let p ∈ [1,∞), λ ∈ R and v ∈

(0,∞]. For

E = Lp , WLp , Lp,λ or WLp,λ ,

let E(�v)(U) be the sets of all sequences of functions {fj }∞j=1 such that the following func-

tional is finite:

∥∥{fj }∞j=1

∥∥
E(�v)(U)

=
∥∥∥∥
( ∞∑

j=1

|fj |v
)1/v∥∥∥∥

E(U)

,

where we use the obvious modification when v = ∞.

Then
{
(E(�v)(Qr), ‖ · ‖E(�v)(Qr))

}
0<r<∞ has the restriction and decomposition proper-

ties for E = Lp, WLp, Lp,λ or WLp,λ, since
( ∞∑

j=1

∣∣∣ fj

∣∣
Qr

∣∣∣v
)1/v

=
( ∞∑

j=1

|fj |v
)1/v∣∣∣∣

Qr

and

( ∞∑
j=1

|fjχr |v
)1/v

=
( ∞∑

j=1

|fj |v
)1/v

χr .

DEFINITION 3. Let p ∈ [1,∞), λ ∈ R, u, v ∈ (0,∞] and w ∈ Wu. For

E = Lp , WLp , Lp,λ or WLp,λ ,
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let Bu
w(E(�v))(Rn) and Ḃu

w(E(�v))(Rn) be the sets of all sequences {fj }∞j=1, fj ∈ EQ(Rn),

such that ‖{fj }∞j=1‖Bu
w(E(�v)) < ∞ and ‖{fj }∞j=1‖Ḃu

w(E(�v)) < ∞, respectively, where

∥∥{fj }∞j=1

∥∥
Bu

w(E(�v))
=

∥∥∥w(r)
∥∥{fj }∞j=1

∥∥
E(�v)(Qr)

∥∥∥
Lu([1,∞),dr/r)

,

∥∥{fj }∞j=1

∥∥
Ḃu

w(E(�v))
=

∥∥∥w(r)
∥∥{fj }∞j=1

∥∥
E(�v)(Qr)

∥∥∥
Lu((0,∞),dr/r)

.

We consider sublinear operators T as in Subsection 5.2 on vector-valued function spaces,
that is,

T : {fj }∞j=1 �→ {Tfj }∞j=1 .

Then the vector-valued boundedness of T on Bσ -Morrey spaces is known, see [25, Theo-
rem 14]. Using this boundedness and Example 13, we have the following:

THEOREM 9. Let{
p, q ∈ [1,∞), λ ∈ [−n/p, 0), μ ∈ [−n/q, 0), v ∈ (1,∞], u ∈ (0,∞] ,

w(r) = r−σ Θ(rτ ), Θ ∈ Θ∗, and σ, τ ∈ (0,∞) with σ > τ .
(5.8)

Let T be a sublinear operator defined on L1
comp(R

n) and satisfy (5.1) and (5.2) for some

α ∈ [0, n) and Ω ∈ Lp̃(Sn−1) with p̃ ∈ [1,∞]. Assume one of the following conditions:
(i) μ = λ + α, p̃ ≥ p′ and σ + λ + α < 0,

(ii) μ = λ + α, p̃ ≥ q and σ + λ + n/p̃ + α < 0.

If T can be extended to a bounded operator from Lp,λ(�
v)(Rn) to Lq,μ(�v)(Rn)

or to WLq,μ(�v)(Rn), then T can be further extended to a bounded operator from
Bu

w(Lp,λ(�
v))(Rn) to Bu

w(Lq,μ(�v))(Rn) or to Bu
w(WLq,μ(�v))(Rn), respectively. That is,

∥∥∥∥
( ∞∑

j=1

|Tfj |v
)1/v∥∥∥∥

Bu
w(Lq,μ)

≤ C

∥∥∥∥
( ∞∑

j=1

|fj |v
)1/v∥∥∥∥

Bu
w(Lp,λ)

, if p ∈ (1,∞) ,

and
∥∥∥∥
( ∞∑

j=1

|Tfj |v
)1/v∥∥∥∥

Bu
w(WLq,μ)

≤ C

∥∥∥∥
( ∞∑

j=1

|fj |v
)1/v∥∥∥∥

Bu
w(L1,λ)

, if p = 1 ,

where we use the obvious modification when v = ∞. The same conclusion holds for
Ḃu

w(Lp,λ(�
v))(Rn).

COROLLARY 11. Let p, λ, u, v,Θ, σ, τ and w be as in (5.8). Assume that σ +λ < 0.
If a singular integral operator T is bounded on Lp(�v)(Rn) with p ∈ (1,∞), then T can

be extended to a bounded operator on Bu
w(Lp,λ(�

v))(Rn). If T is bounded from L1(�v)(Rn)
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to WL1(�v)(Rn), then T can be extended to a bounded operator from Bu
w(L1,λ(�

v))(Rn) to

Bu
w(WL1,λ(�

v))(Rn). The same conclusion holds for Ḃu
w(Lp,λ(�

v))(Rn).

COROLLARY 12. Let α ∈ (0, n), and let p, q, λ,μ, u, v,Θ, σ, τ and w be as in (5.8).
Assume that μ = λ + α, q ≤ (λ/μ)p and σ + λ + α < 0. Then fractional integral op-
erators Iα are bounded from Bu

w(Lp,λ(�
v))(Rn) to Bu

w(Lq,μ(�v))(Rn) if p ∈ (1,∞), and
from Bu

w(L1,λ(�
v))(Rn) to Bu

w(WLq,μ(�v))(Rn) if p = 1. The same conclusion holds for

Ḃu
w(Lp,λ(�

v))(Rn).

On fractional maximal operators Mα , α ∈ [0, n), using Theorem 9 and [25, Theorem 15],
we have the following:

COROLLARY 13. Let α ∈ [0, n), and let p, q, λ,μ, u,Θ, σ, τ and w be as in (5.8).
Assume that μ = λ + α and q ≤ (λ/μ)p. Assume also one of the following conditions.

(i) σ + λ + α < 0 and v ∈ (1,∞],
(ii) σ + λ + α = 0 and v = ∞.

Then the operator Mα can be extended to a bounded operator from Bu
w(Lp,λ(�

v))(Rn) to
Bu

w(Lq,μ(�v))(Rn) if p ∈ (1,∞), and from Bu
w(L1,λ(�

v))(Rn) to Bu
w(WLq,μ(�v))(Rn) if

p = 1. The same conclusion holds for Ḃu
w(Lp,λ(�

v))(Rn).
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