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Abstract. We present new blow-up results for nonlocal reaction-diffusion equations with nonlocal nonlinear-
ities. The nonlocal source terms we consider are of several types, and are relevant to various models in physics and
engineering. They may involve an integral of an unknown function, either in space, in time, or both in space and time,
or they may depend on localized values of the solution. We first show the existence and uniqueness of the solution
to problem relying on contraction mapping fixed point theorem. Then, the comparison principles for problem are
established through a standard method. Finally, for the radially symmetric and non-increasing initial data, we give
a complete classification in terms of global and single point blow-up according to the parameters. Moreover, the
blow-up rates are also determined in each case.

1. Introduction

Our goal is to study the blow-up rate of the nonlocal heat equation with the nonlocal
nonlinear reaction terms, namely,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut =

∫
RN
J (x − y)(u(y, t)− u(x, t))dy + a(x)

(∫
Ω

|u(x, t)|rdx
) p
r

, x ∈ Ω, t > 0 ,

u(x, t) = 0 , x �∈ Ω, t ≥ 0 ,
u(x, 0) = u0(x) , x ∈ Ω,

(1.1)
whereΩ is a unitary ball, J : RN → R is a nonnegative, smooth, radially symmetric function

with
∫

RN
J (z)dz = 1 and supported in the unit ball, p > 1, r ≥ 1, a(x), u0(x) ∈ C2(Ω);

a(x), u0(x) > 0 in Ω and a(x) = u0(x) = 0 on ∂Ω .
Nonlocal problems related to (1.1) have been recently widely used to model diffusion

processes. Since the Laplacian operator in the reaction diffusion system is not sufficiently
accurate in modeling the spatial diffusion of the individuals in some cases (see [17, 22]),
especially in many biological areas, such as the embryological development cases. One way
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of overcoming this disadvantage is to introduce the non-local diffusion model related to (1.1)
(see [3, 23, 24]). Equation (1.1) is called a non-local diffusion-like equation, as stated in
[14], if u(x, t) is thought of as the density of a species at the point x and at time t , and
J (x − y) is thought of as the probability distribution of jumping from location y to location
x, then

∫
RN J (x − y)u(y, t)dy and −u(x, t) = − ∫

RN J (x − y)u(x, t)dy is the rate at which
individuals are arriving at position x from all other places and which they are leaving location
x to travel to all other sites, respectively. It is known that equation

∂

∂t
u(x, t) = J ∗ u− u(x, t) =

∫
RN
J (x − y)(u(y, t)− u(x, t))dy (1.2)

shares many properties with the classical heat equation ut = �u, such as the bounded sta-
tionary solutions and the maximum principle ([14]).

In the past few decades, many physical phenomena have been formulated into nonlocal
mathematical models (see [1, 2, 8, 7, 15], [5, 6, 9], [11], [12], [14], [21] and references
therein), and they have been extensively studied by many authors. In particular, Pérez-Llanos
and Rossi ([21]) studied the following non-local diffusion-like equation

ut =
∫

RN
J (x − y)(u(y, t)− u(x, t))dy + up

with homogeneous Neumann boundary conditions and non-negative and non-trivial data.
They concluded that the non-negative and non-trivial solutions blow up in finite time if and
only if p > 1. Moreover, they found that the blow-up rate is the same as the one that holds
for the ODE ut = up.

On the other hand, in last decades, special attentions have been paid to blow-up proper-
ties for local nonlinear degenerate or singular diffusion-like equations with local or nonlocal
sources. We refer to, e.g., [28, 29, 27, 30, 25, 19, 18, 20]. It is pointed that Souplet ([27])
introduced a new method for investigating the rate and profile of blow-up of solutions of the
local diffusion-like equations with nonlocal nonlinear reaction terms. For large classes of
equations, he mainly proved that the solutions have global blow-up and that the rate of blow-
up is uniform in all compact subsets of the domain. In [19], Liu et al. discussed the following
local diffusion-like equations with nonlocal nonlinear reaction terms, space integral source
term or nonlocal (or localized) source and local term, that is, equations with space integral
term of the form

ut = Δu+ a(x)g

(∫
Ω

f (u(x, t))dx

)
; (1.3)

equations with localized source of the form

ut = Δu+ a(x)f (u(0, t))+ h(u(x, t)) (1.4)
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and equations with space-time integral of the form

ut = Δu+ a(x)f

(∫ t

0

∫
Ω

β(x)u(x, s)dxds

)
. (1.5)

Each equation will be studied with homogeneous Dirichlet boundary conditions. They mainly
determined the blow-up rate of solutions for large classes of nonlocal problems of each type
above. Namely, they proved that the solutions have global blow-up, and that the blow-up rate
is uniform in all compact subsets of the domain. In each case, the blow-up rate of ‖u(t)‖L∞(Ω)
is precisely determined. However, to the best of our knowledge, there do not seem to be
any results in the literature on uniform blow-up rate estimates for corresponding non-local
problems of these types. In this paper, we use other techniques to prove the global blow-
up and to get the blow-up rate for these cases. Moreover, the blow up analysis of nonlocal
dispersal equation (1.1) is different from the case of local dispersal equation (1.3). As we
all know that for the local cases, we can prove the main results by invoking the regularizing
effect (see e.g. [26, 29]). However, due to the lack of compactness and regularity of nonlocal
dispersal operators ([10]), some difficulties, which do not arise in the study of spectral theory
of local(random) dispersal operators, arise in the study of spectral theory of nonlocal dispersal
operators. Hence, in order to give a complete analysis of the nonlocal problem, we must do
more analysis.

In the following, we assume that
(H1) a(x) and u0(x) are radially symmetric, i.e., a(x) = a(r) and u0(x) = u0(r) with

r = |x|, a(r) and u0(r) are non-increasing for r ∈ [0, 1].
Motivated by the above works, the purpose of this paper is to analyze the blow up condi-

tion for the problem (1.1), that is, we want to show that problem (1.1) shares many important
properties with the corresponding reaction diffusion equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut = Δu+ a(x)

(∫
Ω

|u(x, t)|rdx
)p
r

, x ∈ Ω, t > 0 ,

u(x, t) = 0 , x ∈ ∂Ω, t ≥ 0 ,
u(x, 0) = u0(x) , x ∈ Ω ,

(1.6)

such as blow up condition and blow up rate ([19, 27]).
As we all know that problem (1.1) can be rewritten in the form⎧⎪⎪⎨
⎪⎪⎩
ut =

∫
RN
J (x − y)(u(y, t)− u(x, t))dy + a(x)g(t) , x ∈ Ω, t > 0 ,

u(x, t) = 0 , x �∈ Ω, t ≥ 0 ,
u(x, 0) = u0(x) , x ∈ Ω ,

(1.7)

where the function g(t) ≥ 0 depends on the solution u. Through this section, we use the

notationG(t) = ∫ t
0 g(s)ds.

Now our main results can be stated as follows.
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THEOREM 1.1 (Blow-up). (i) Let u be the solution of (1.1) and p > 1. Then there
exists 0 < T < +∞, such that

lim
t→T − ‖u(x, t)‖L∞(Ω) = +∞ .

(ii) Let u be the solution of (1.7). If there exists 0 < T < +∞, such that
∫ T

0 g(t)dt =
+∞, then

lim
t→T− u(x, t) = +∞

uniformly in all compact subsets of Ω .

THEOREM 1.2 (Blow-up rate). Let u(x, t) be the blow-up solution of (1.1) which
blows up at time T . Moreover, assuming that u(x, t) is non-decreasing in time. Then

lim
t→T −(T − t)

1
p−1 u(x, t) = a(x)(p− 1)

1
1−p

(∫
Ω

ar(x)dx

) p
r(1−p)

(1.8)

uniformly in all compact subsets of Ω .

Employing almost exactly the same arguments as in the proof of Theorem 1.2 (the minor
necessary changes are left as an easy exercise to the reader), we conclude that:

COROLLARY 1.1. Let u(x, t) be a solution to⎧⎪⎪⎨
⎪⎪⎩
ut =

∫
RN
J (x − y)(u(y, t)− u(x, t))dy + a(x)F (u(x, t), t) , x ∈ Ω, t > 0 ,

u(x, t) = 0 , x �∈ Ω, t ≥ 0 ,
u(x, 0) = u0(x) , x ∈ Ω

(1.9)

which blows up at time T .

(1) If F = (
∫ t

0

∫
Ω
β(x)u(x, s)dxds)p, p > 1 and χ = ∫

Ω
β(x)a(x)dx, then

lim
t→T −(T − t)

p+1
p−1 u(x, t) = a(x)(p− 1)

p+1
1−p

(
2p(p + 1)

χp

) 1
p−1

(1.10)

uniformly in all compact subsets of Ω .

(2) Let F(t) = k exp (
∫ t

0

∫
Ω β(x)u(x, s)dxds) − 1, k ≥ 1 and χ = ∫

Ω β(x)a(x)dx.
Then

lim
t→T −(T − t)

p+1
p−1 u(x, t) = a(x)(p− 1)

p+1
1−p

(
2p(p + 1)

χp

) 1
p−1

(1.11)

uniformly in all compact subsets of Ω .

The rest of the paper is organized as follows. In Section 2, we prove the existence
and uniqueness of local solutions for problem (1.1) and show a comparison principle for the
solutions. In Section 3, the blow-up rate of solutions of problem (1.1) is given.
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2. Local existence and uniqueness of solutions to problem (1.1)

In this section, we establish the comparison principle and some propositions about the
local existence, uniqueness and boundedness of solutions to problem (1.1).

The local existence and uniqueness of the solution to problem (1.1) can be obtained via
the Banach fixed point theorem.

Let t0 > 0 be fixed and consider the Banach spaceXt0 = C([0, t0];C(Ω̄)) with the norm

‖w‖Xt0 = max
0≤t≤t0

‖w(·, t)‖L∞(Ω̄) = max
0≤t≤t0

max
Ω̄

|w(x, t)| .

We will obtain the solution of problem (1.1) as a fixed point of the operator F : B0 → B0

defined by

Hw0(w)(x,t)=w0(x)+
∫ t

0

∫
RN
J (x−y)(w(y,s)−w(x,s))dyds+

∫ t

0
a(x)

(∫
Ω

|w(x,s)|rdx
)p
r

ds,

where B0 = B(u0, 2‖u0‖L∞). The following lemma is the main ingredient of the proof of the
main results.

LEMMA 2.1. The operator Hu0 is well defined, mapping B0 into B0. Moreover, let
w, z ∈ B0. Then there exists a positive constant C = C(J,Ω, u0, a, p, r) such that

‖Hu0(w)(x, t)−Hu0(z)(x, t)‖Xt0 ≤ Ct‖w − z‖Xt0 . (2.1)

Thus Hu0 is a strict contraction in the ball B0 provided t0 is small enough.

PROOF. Since the convolution in space with the function J being uniformly continu-
ous, it is easy to see that Hu0(w) is continuous as the function of x. We first prove that the

operatorHu0 maps B0 into B0. For any (x, t) ∈ Ω × [0, t0], we have

|Hu0(w)(x, t)− u0(x)|

≤
∣∣∣∣∣
∫ t

0

∫
RN
J (x − y)(w(y, s)−w(x, s))dyds +

∫ t

0
a(x)

(∫
Ω

|w|rdx
) p
r

ds

∣∣∣∣∣
≤

∫ t

0

∫
RN
J (x − y)|w(y, s)− w(x, s)|dyds + ‖a‖L∞

∫ t

0

(∫
Ω

|w|rdx
)p
r

ds

≤ (2‖J‖L∞‖w‖Xt0 + ‖a‖L∞‖w‖pXt0 |Ω | pr ) · t ,

which assures that Hu0(w) is continuous at t = 0. And for any w ∈ B0, we conclude
Hu0(w) ∈ B0. Thus Hu0 maps B0 into B0.

In addition, for any (x, t1), (x, t2) ∈ Ω × [0, t0], taking into account that w vanishes
outside Ω , we have

|Hu0(w)(x, t2)−Hu0(w)(x, t1)|



204 JIASHAN ZHENG

≤
∣∣∣∣∣
∫ t2

t1

∫
RN
(w(y, s)− w(x, s))dyds +

∫ t2

t1

a(x)

(∫
Ω

|w|rdx
) p
r

ds

∣∣∣∣∣
≤

∣∣∣∣
∫ t2

t1

∫
RN
J (x − y)|w(y, s)−w(x, s)|dyds

∣∣∣∣ + ‖a‖L∞

∣∣∣∣∣
∫ t2

t1

(∫
Ω

|w|rdx
)p
r

ds

∣∣∣∣∣
≤ (2‖J‖L∞‖w‖Xt0 + ‖a‖L∞‖w‖pXt0 |Ω | pr )|t2 − t1| ,

which shows that Hu0(w) is continuous in time for any t ∈ [0, t0].
To prove the estimate (2.1), we recall the following p-laplacian type inequality, see for

instance [4]. If p > 0 and |a| + |b| > 0 it holds that

|ap − bp| ≤ c|a − b|(|a| + |b|)p−1 . (2.2)

Then, for any (x, t) ∈ Ω × [0, t0], by the Minkowski inequality, we have

|Hu0(w)(x, t)−Hu0(z)(x, t)|

≤
∫ t

0

∫
RN

|J (x − y)[w(y, s)− z(y, s)− (w(x, s)− z(x, s))]| dyds

+‖a‖L∞
∫ t

0
|‖w‖pLr − ‖z‖pLr |ds

≤
∫ t

0

∫
RN

|J (x − y)[w(y, s)− z(y, s)− (w(x, s)− z(x, s))]| dyds

+c‖a‖L∞
∫ t

0
(|‖w‖Lr − ‖z‖Lr |)(‖w‖Lr + ‖z‖Lr )p−1ds

≤
∫ t

0

∫
RN

|J (x − y)[w(y, s)− z(y, s)− (w(x, s)− z(x, s))]| dyds

+c‖a‖L∞
∫ t

0
(‖w − z‖Lr )(‖w‖Lr + ‖z‖Lr )p−1ds

≤ 2‖J‖L∞‖w − z‖Xt0 · t + c2p−1‖a‖L∞|ξ |p−1‖w − z‖Xt0 |Ω | 1
r · t

=Ct‖w − z‖Xt0 , (2.3)

where C = c2p−1‖a‖L∞|ξ |p−1|Ω | 1
r + 2‖J‖L∞ and ξ ≥ max{‖w‖Xt0 , ‖z‖Xt0 }. The arbi-

trariness of (x, t) ∈ Ω × [0, t0] gives the desired estimate (2.1).
Finally, choosing t0 such that Ct0 < 1, (2.1) ensures that Hu0(w) is a strict contraction

in the ball B0 ⊂ Xt0 and thus the proof of this Lemma is completed. �

Employing the above Lemmas, we derive:

THEOREM 2.1. For every u0 ∈ C(Ω̄), problem (1.1) admits a unique solution u ∈
C([0, T );C(Ω̄)). Moreover, if the maximal existence time T < ∞, then the solution blows
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up in L∞(Ω̄)-norm, that is

lim sup
t→T

‖u(·, t)‖L∞(Ω̄) = +∞ . (2.4)

PROOF. It follows from Lemma 2.1 that Fu0 is a strict contraction in B0 for t0 small
enough. By the Banach fixed point theorem, there exists only one fixed point of Fu0 in B0.
This proves the existence and uniqueness of solution of (1.1) in the time interval [0, t0]. To
be continue, we may take u(x, t0) as an initial data and obtain a unique solution of (1.1) in
the time interval [0, t1]. If ‖u‖Xt1 < ∞, taking as initial datum u(·, t1) ∈ C(Ω̄) and arguing

as before, it is possible to extend the solution up to some interval [0, t2) for certain t2 > t1.
Hence we can conclude that if the maximal time T of the existence of the solution is finite,
then the solution blows up in L∞(Ω̄)-norm, that is,

lim sup
t→T

‖u(·, t)‖L∞(Ω̄) = +∞ .

Otherwise, the solution of problem (1.1) is global. �

DEFINITION 2.1. A nonnegative function ū ∈ C1([0, T );C(Ω̄)) is a supersolution of
problem (1.1) if it satisfies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂t
ū(x, t) ≥

∫
Ω

J (x − y)(ū(y, t)− ū(x, t))dy

−
∫

RN\Ω
J (x−y)ū(x, t)dy+a(x)

(∫
Ω

|ū(x, t)|rdx
)p
r

, (x,t)∈QT
ū(x, 0) ≥ u0(x), x ∈ Ω ,

(2.5)

where QT := Ω × (0, T ). The subsolution is defined similarly by reversing the inequalities.
Furthermore, if u is a supersolution as well as a subsolution, then we call it a solution of
problem (1.1).

LEMMA 2.2. Let u be a supersolution of problem (1.1). Then, if u0 ≥ 0, we have

u(x, t) ≥ 0 for (x, t) ∈ Ω × [0, T ).
PROOF. By an approximation procedure we restrict ourselves to consider strict inequal-

ities for the supersolution. Indeed, we can take ū(x, t)+δt+δ(δ > 0) as a strict supersolution,
and take limit as δ → 0 at the end.

Arguing by contradiction, we assume that there exists a first time t0 and some point
x0 ∈ Ω at which ū(x0, t0) = 0, and then u(y, t0) ≥ 0 for all y ∈ Ω . Therefore we derive

∂

∂t
ū(x0, t0) >

∫
Ω

J (x0 − y)(ū(y, t0)− ū(x0, t0))dy

−
∫

RN\Ω
J (x0 − y)ū(x0, t0)dy + a(x)

(∫
Ω

|ū(y, t0)|rdy
)p
r
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=
∫
Ω

J (x0 − y)ū(y, t0)dy + a(x)

(∫
Ω

|ū(y, t0)|rdy
)p
r ≥ 0 ,

which contradicts with
∂

∂t
ū(x0, t0) ≤ 0. �

Applying the Lemma 2.2, we can derive:

LEMMA 2.3. Let ū, u be supersolutions and subsolutions to (1.1), respectively. Then,

ū(x, t) ≥ u(x, t) for every (x, t) ∈ Ω̄ × [0, T ).

3. Blow-up condition and blow-up rate

Once the existence and uniqueness of the solutions to problems (1.1) is ensured, we can
analyze the blow-up condition for nonnegative solutions to problems (1.1).

THE PROOF OF THEOREM 1.1. (i) For any fixed x0 ∈ Ω , let w(x0, t) = g(t)ψ(x0),
where g(t) satisfies the following ODE problem⎧⎨

⎩ g ′(t)− a(x0)(
∫
Ω
ψ(x)rdx)

p
r

m
gp(t)+ λ1g(t) = 0 , t > 0 ,

g(0) = g0 > 0 .
(3.1)

Here g0 is an appropriately big positive constant. Due to p > 1, g(t) is nondecreasing and
there exists 0 < T ∗ < +∞ such that limt→T ∗ g(t) = +∞. Hence, we can infer that w(x0, t)

is the subsolution of (1.1) provided that g0 ≤ minx∈Ω̄ u0(x)

m
. In fact, with the help of p > 1, we

readily find that

Pw(x0, t) = wt(x0, t)−
[∫

RN
J (x0−y)(w(y, t)−w(x0, t))dy+a(x0)

(∫
Ω

|wr |dx
)p
r

]

≤ ψ(x0)

[
g ′(t)− a(x0)

(
∫
Ω |ψ(x)|rdx) pr

m
gp(t)+ λ1g(t)

]

= 0 .

Here

Pw :=wt(x,t)−
[∫
RN
J(x−y)(w(y,t)−w(x,t))dy+a(x)

(∫
Ω

|wr |dx
)p
r

]
and m := max

x∈Ω̄
ψ(x) .

Thus, thanks to Lemma 2.3, we derive u(x0, t) ≥ w(x0, t) (0 < t < T ) for any fixed T < T ∗.
Therefore, ‖u(·, T )‖L∞(Ω̄) ≥ w(x0, T ), which together with the arbitrariness of T < T ∗ and

lim
t→T ∗w(x0, t) = +∞ implies that lim

t→T ∗ ‖u(·, t)‖L∞(Ω̄) = +∞. Thus, the solution of (1.1)

blows up in finite time for any appropriately large initial data.
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(ii) For any 0 < t < T , integrating (1.7)1 (the first equation of (1.7)) over (0, t), we
obtain

u(x, t) = u0(x)+
∫ t

0

∫
RN
J (x − y)(u(y, s)− u(x, s))dyds + a(x)

∫ t

0
g(s)ds

≥ u0(x)+
∫ t

0

∫
RN
J (x − y)u(y, s)dyds − u(x, t)T + a(x)

∫ t

0
g(s)ds

≥ −u(x, t)T + a(x)

∫ t

0
g(s)ds ,

that is,

u(x, t) ≥ a(x)

∫ t
0 g(s)ds

T + 1
. (3.2)

Now, letting t → T on both sides of (3.2) and using the fact that
∫ T

0 g(t)dt = +∞, we can
get

lim
t→T− u(x, t) = +∞

uniformly in all compact subsets of Ω . �

Next we discuss the blow-up rate, that is the speed at which the solutions blow up. Firstly,
we prove a lemma that says that if the initial condition has a unique maximum at the origin,
then the solution has a unique maximum at this point for every t ∈ (0, T ).

LEMMA 3.1. Under the hypothesis on the initial conditions imposed in Theorem 1.2,
we have that the solution u(x, t) is radially symmetric and ur < 0 in (0, 1)× (0, T ).

PROOF. It is easily to have that w(x, t) = u(−x, t) is also a solution to (1.1). Then by
the uniqueness of solution to (1.1), we have the solution u(x, t) is symmetric. Let v = ur .
Then v verifies the following equation

vt =
∫
B1(0)

N∑
i=1

∂J (x1 − y1, . . . , xi − yi, . . . , xN − yN)

∂xi

∂xi

∂r
u(y, t)dy − v(x, t)+ a′(r)g(t)

with dy := dy1...dyN. Notice that J is a smooth and radially symmetric function, we have

vt =
∫
B1(0)

J ′(r)u(y, t)dy − v(x, t) + a′(r)g(t) .

From this equation it is easy to obtain a contradiction, if we assume that there exists a point
(x0, t0) ∈ B1(0)× (0, T ) at which v(x0, t0) = 0. Here we have use the fact that J ′ is odd and
the solution u(x, t) is symmetric. �

LEMMA 3.2. Assume (H1) and g(t) non-negative, continuous on (0, T ), and g(t) non-
decreasing in time. Let u be the blow-up solution of (1.7) and limt→T G(t) = ∞. Then we
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have

lim
t→T

u(x, t)

G(t)
= a(x) (3.3)

uniformly in all compact subsets of Ω .

PROOF. Firstly, using limt→T G(t) = +∞, we obtain

lim
t→T

g(t) = +∞ . (3.4)

On the other hand, due to Lemma 3.1, we have maxx∈Ω̄ u(x, t) = u(0, t). Therefore, by the
first equation of (1.7) we have∫

RN
J (x − y)(u(y, t)− u(0, t))dy ≤ 0 .

Combining with (1.7) and the above inequality, we then get

ut (0, t) ≤ a(0)g(t) for all 0 < t < T ,

that is,

lim sup
t→T

u(0, t)

G(t)
≤ a(0) . (3.5)

Since g(t) is non-decreasing and limt→T G(t) = +∞, we have for all ε > 0,

0 ≤ G(t)

g(t)
=

∫ t
0 g(t)dt

g(t)
≤

∫ T−ε
0 g(t)dt

g(t)
+ ε ,

which together with (3.4) implies that limt→T
G(t)
g(t) = 0. Therefore, by (3.5) we derive

0 ≤ lim
t→T

u(0, t)

g(t)
= lim
t→T

u(0, t)

G(t)
lim
t→T

G(t)

g(t)
≤ lim sup

t→T

u(0, t)

G(t)
lim
t→T

G(t)

g(t)
≤ a(0)× 0 = 0 ,

therefore,

lim
t→T

u(0, t)

g(t)
= 0 . (3.6)

Let R1 ∈ (0, 1), Ω1 = {x ∈ RN : |x| < R1} and b(x) = 1
a(x)

(x ∈ Ω1). Since a′(r) ≤ 0, we

have

b′(r) ≥ 0 for 0 ≤ r ≤ R1 . (3.7)

Now, we introduce a function

w(x, t) = b(x)u(x, t) , x ∈ Ω1 , 0 < t < T .
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A simple calculation yields that

b(x)

∫
RN
J (x − y)(u(y, t)− u(x, t))dy

=
∫

RN
J (x − y)(w(y, t)−w(x, t))dy −

∫
RN
J (x − y)(b(y)− b(x))u(y, t)dy .

(3.8)

On the other hand, by Lemma 3.1, we have

ur ≤ 0 for 0 ≤ r ≤ 1 . (3.9)

By (3.7), (3.9) and the fact that u(x, t) and b are radially symmetric, we have

(b(y)− b(x))(u(y, t)− u(x, t)) ≤ 0 .

Inserting the above inequality into (3.8), we have

b(x)

∫
RN
J (x − y)(u(y, t)− u(x, t))dy

≥
∫

RN
J (x − y)(w(y, t)− w(x, t))dy − u(x, t)

∫
RN
J (x − y)(b(y)− b(x))dy.

(3.10)

Now, setting γ = maxx∈Ω̄1
| ∫RN J (x − y)(b(y) − b(x))dy|, ρ(t) = γ u(0,t )

g(t) . From

limt→T
u(0,t )
g(t) = 0, we derive that there exists τ ∈ (0, T ) such that 0 < ρ(t) ≤ 1

2 for

τ ≤ t < T . Therefore, using (1.7) and (3.10), we obtain

wt = b(x)ut= b(x)
(∫

RN
J (x − y)(u(y, t)− u(x, t))dy + a(x)g(t)

)

= b(x)
∫

RN
J (x − y)(u(y, t)− u(x, t))dy + g(t)

≥
∫

RN
J(x−y)(w(y,t)−w(x,t))dy−u(x,t)

∫
RN
J(x−y)(b(y)−b(x))dy+g(t) .

(3.11)

Putting g1(t) = (1 − ρ(t))g(t) andG1(t) = ∫ t
τ
g1(s)ds. We then obtain

lim
t→T

G1(t) = +∞

and

lim
t→T

G1(t)

G(t)
= 1 . (3.12)

Clearly, w(x, t) is a supersolution of the following equation⎧⎪⎪⎨
⎪⎪⎩
vt =

∫
RN
J (x − y)(v(y, t)− v(x, t))dy + g(t), x ∈ Ω1 , τ < t < T ,

v(x, t) = 0 , x �∈ Ω1 , τ < t < T ,

v(x, 0) = v0(x) , x ∈ Ω1 ,

(3.13)
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where 0 ≤ v0(x) ≤ w(x, τ ) in Ω1 and v0(x) ∈ C1(Ω̄1) with v0(x)|∂Ω1 = 0. It also assumes
that v0(x) is symmetric and non-increasing as a function of |x|(r = |x|). By the maximum
principle ([14]), we have

0 ≤ v(x, t) ≤ w(x, t) and vr ≤ 0 in Ω1 for τ ≤ t < T .

Now, let ϕ(x) be the solution of⎧⎨
⎩

∫
RN
J (x − y)(ϕ(y)− ϕ(x))dy = −μϕ(x) x ∈ Ω1 ,

ϕ(x) = 0 x �∈ Ω̄1 .

(3.14)

By Theorem 2.1 of [16], problem (3.14) admits a unique eigenvalue μ1 := μ1(Ω) associated
to a positive eigenfunction ϕ1 ∈ C(Ω̄1) which is normalized by∫

Ω1

a(x)ϕ1(x)dx = 1 . (3.15)

Next, multiplying both sides of (3.13)1 by ϕ1 and integrating overΩ1 × (τ, t), we have∫
Ω1

v(x, t)ϕ1(x)dx −
∫
Ω1

v0(x)ϕ1(x)dx

= μ1

∫ t

τ

∫
Ω1

v(x, s)ϕ1(x)dxds +G1(t) for τ <t <T .
(3.16)

By (3.6) and (3.15) v(0, s) = maxx∈Ω̄1
v(x, s) (for τ ≤ s < t), we have∫ t

τ

∫
Ω1

v(x, s)ϕ1(x)dxds ≤
∫ t

τ

v(0, s)ds ≤
∫ t

τ

w(0, s)ds

and

lim
t→T

w(0, t)

g1(t)
= lim
t→T

w(0, t)

g(t)
= 1

a(0)
lim
t→T

u(0, t)

g(t)
= 0 ,

which together with (3.12) implies

lim
t→T

∫ t
τ

∫
Ω1
v(x, s)ϕ1(x)dxds

G1(t)
= lim
t→T

∫ t
τ

∫
Ω1
v(x, s)ϕ1(x)dxds

G(t)
= 0 .

Inserting the above inequality into (3.16) and applying the basic calculation, we have

lim
t→T

∫
Ω1
v(x, t)ϕ1(x)dx

G1(t)
= 1 , (3.17)

which implies that

lim
t→T

inf
v(0, t)

G1(t)
≥ 1 . (3.18)
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On the other hand, by (3.13) and
∫

RN J (x − y)(v(y, t)− v(0, t))dy ≤ 0, we have

vt (0, t) ≤ g1(t), τ < t < T ,

Integrating the above inequality over (0, t),

v(0, t)− v(0, 0) ≤ G1(t) ,

that is,

lim
t→T

sup
v(0, t)

G1(t)
≤ 1 , (3.19)

which together with (3.18) implies that

lim
t→T

v(0, t)

G1(t)
= 1 . (3.20)

Applying
∫
Ω1
ϕ1(x)dx = 1, vr ≤ 0, (3.17) and (3.20), we derive

lim
t→T

v(x, t)

G1(t)
= lim
t→T

v(x, t)

G(t)
= 1 (3.21)

uniformly in all compact subsets of Ω1, that is,

lim
t→T

inf
u(x, t)

G(t)
≥ a(x) uniformly in all compact subsets of Ω1. (3.22)

Due to the arbitrariness of Ω1, we obtain

lim
t→T

inf
u(x, t)

G(t)
≥ a(x) uniformly in all compact subsets of Ω. (3.23)

In particular,

lim
t→T

inf
u(0, t)

G(t)
≥ a(0) , (3.24)

which combined with (3.5) implies that

lim
t→T

inf
u(0, t)

G(t)
= a(0) . (3.25)

Now, multiplying (1.7)1 by ϕ and integrating overΩ × (0, t), we have,∫
Ω

u(x, t)ϕ(x)dx −
∫
Ω

u0(x)ϕ(x)dx

= μ1

∫ t

0

∫
Ω

u(x, s)ϕ(x)dxds +G(t) for 0 < t < T .

(3.26)
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Due to
∫ t

0

∫
Ω
u(x, s)ϕ(x)dxds ≤ ∫

Ω
ϕ(x)dx

∫ t
0 u(0, s)ds and limt→T

u(0,t )
g(t) = 0, we have

lim
t→T

∫ t
0

∫
Ω
u(x, s)ϕ(x)dxds

G(t)
= 0 , (3.27)

which together with (3.26) implies that

lim
t→T

∫
Ω u(x, t)ϕ(x)dx

G(t)
= 1 . (3.28)

In the following, we will prove that

lim
t→T

u(x, t)

G(t)
= a(x) uniformly in all compact subsets of Ω. (3.29)

Assuming that there exists x0 ∈ Ω\0 such that limt→T
u(x,t)
G(t)

= c > a(x0), that is, there exists

a sequence tn → T such that limtn→T
u(x,tn)
G(tn)

= c. Using the continuity of a(x), we deduce

that there exists x1 ∈ Ω(|x1| < |x0|) such that a(x) < c for |x1| ≤ |x| ≤ |x0|. By ur ≤ 0,
(3.25) and (3.28), we deduce that

lim
t→T

∫
Ω

u(x, t)ϕ(x)

G(t)
dx

=lim
tn→T

(∫
|x0|<|x|<R

u(x, tn)ϕ(x)

G(tn)
dx+

∫
|x1|<|x|<|x0|

u(x, tn)ϕ(x)

G(tn)
dx+

∫
|x|<|x1|

u(x, tn)ϕ(x)

G(tn)
dx

)

≥
∫

|x0|<|x|<R
a(x)ϕ(x)dx + lim

tn→T

∫
|x1|<|x|<|x0|

u(x, tn)ϕ(x)

G(tn)
dx +

∫
|x|<|x1|

a(x)ϕ(x)dx

=
∫

|x0|<|x|<R
a(x)ϕ(x)dx + c

∫
|x1|<|x|<|x0|

ϕ(x)dx +
∫

|x|<|x1|
a(x)ϕ(x)dx

>

∫
|x0|<|x|<R

a(x)ϕ(x)dx +
∫

|x1|<|x|<|x0|
a(x)ϕ(x)dx +

∫
|x|<|x1|

a(x)ϕ(x)dx = 1 .

(3.30)
This contradicts (3.28) and we then get the desired result. �

THE PROOF OF THEOREM 1.2. Set g(t) = ‖u(t)‖pLr (Ω), G(t) = ∫ t
0 g(s)ds. Since

u(x, t) is non-decreasing in time, it then follows by (H1) that g ′(t) ≥ 0(t > 0) and ur ≤ 0 on
[0, 1] for t > 0 that

lim
t→T

u(0, t) = ∞ . (3.31)

Obviously,

ut (0, t) ≤ a(0)g(t), 0 < t < T ,
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which implies

lim
t→T

sup
u(0, t)

G(t)
≤ a(0) ,

which combined with (3.31) implies that

lim
t→T

G(t) = ∞ .

Hence, by Theorem 3.2, we have

lim
t→T

u(x, t)

G(t)
= a(x) uniformly in all compact subsets of Ω.
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