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Abstract. A conjecture on a relation between two different Rubin-Stark elements was recently proposed by
the author, and also by Mazur and Rubin. For a tower of finite extensions of global fields K/L/k such that K/k is
abelian, this conjecture gives a relation between Rubin-Stark elements εK,S,T ,V and εL,S,T ,V ′ , where S, T , V and

V ′ are suitable sets of places of k. In this paper, we prove this conjecture under the following three assumptions: (i)
V contains all infinite places of k; (ii) all v ∈ S split completely in L; (iii) Gal(K/L) is the direct product of the
inertia groups at v ∈ S \ V .

1. Introduction

In [7, Conjecture 3], motivated to generalize Gross’s conjecture ([4, Conjecture 4.1])
and Darmon’s conjecture ([3, Conjecture 4.3]), the author presented a conjecture concerning
Rubin-Stark elements. In [5, Conjecture 5.2], Mazur and Rubin formulated essentially the
same conjecture as [7, Conjecture 3]. In this paper, we prove this conjecture in a special case.

We briefly recall the formulation of [7, Conjecture 3]. Let K/L/k be a tower of finite
extensions of global fields, such that K/k is abelian. Take S and T , finite sets of finite places
of k, satisfying certain conditions (see §3.1). Take proper subsets V ⊂ V ′ ⊂ S so that all
v ∈ V (resp. V ′) split completely in K (resp. L). Then, assuming the Rubin-Stark conjecture
([6, Conjecture B′]), which predicts the existence of Rubin-Stark elements, our conjecture [7,
Conjecture 3] predicts the following equality:

NK/L(εK,S,T ,V ) = ±RV ′,V (εL,S,T ,V ′) , (1)

where εK,S,T ,V and εL,S,T ,V ′ are Rubin-Stark elements for the data (K/k, S, T , V ) and
(L/k, S, T , V ′) respectively, NK/L is the “higher norm” introduced in [7, Definition 2.12]
(see §4.1), and RV ′,V is the “algebraic regulator map”, constructed by using the reciprocity
maps at v ∈ V ′ \ V (more precisely, this is νK/L ◦ (

∧
v∈V ′\V ϕv) with the notation in §4.1).

In this paper, we always assume that the Rubin-Stark conjecture holds for any finite
abelian extensions of k. We prove the equality (1) under the following three assumptions:

(i) V contains all infinite places of k,
(ii) all v ∈ S split completely in L,
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(iii) Gal(K/L) = ∏
v∈S\V Jv (direct product), where Jv ⊂ Gal(K/k) is the inertia group at

v.

(See Theorem 4.7.) For example, the above assumptions are satisfied in the following case:
L is the Hilbert class field of k, S is the union of all infinite places of k and some principal
prime ideals p1, . . . , pn, K is the composite field of the ray class fields modulo pei

i ’s (ei is a
positive integer), and V is the set of all infinite places of k.

Proving the main theorem, the author is inspired by the induction method used by Dar-
mon in [3, §8]. We prove the main theorem by induction on the cardinality of S \V . A key of
our inductive argument is in Lemma 5.5, whose proof is similar to [3, Lemma 8.1]. Darmon
used his induction method to prove a weaker statement of his conjecture, which he called
“order of vanishing” (see [3, Theorem 4.2]). We remark that Mazur and Rubin generalized
this method directly to prove the “order of vanishing” statement in a more general setting (see
[5, Theorem 6.3]). On the other hand, under our assumptions, we use Darmon’s induction
method to prove our conjecture completely.

The organization of this paper is as follows. In §2, we summarize useful constructions
on exterior powers. In §3, we review the formulation of the Rubin-Stark conjecture, and
summarize some known facts. In §4, we review the precise formulation of [7, Conjecture 3],
and state the main theorem of this paper (Theorem 4.7). In §5, we give the proof of the main
theorem.

NOTATION. For any finite set Σ , the cardinality of Σ is denoted by |Σ|.
For any abelian group G, Z[G]-modules are simply called G-modules. The tensor prod-

uct over Z[G] is denoted by

− ⊗G −.

Similarly, the exterior power over Z[G], and Hom of Z[G]-modules are denoted by
∧

G

, HomG(−,−) ,

respectively.
For any subgroup H of G, we define the norm element NH ∈ Z[G] by

NH =
∑

σ∈H

σ .

2. Exterior powers

Let G be a finite abelian group. For a G-module M and ϕ ∈ HomG(M, Z[G]), there is
a G-homomorphism

r∧

G

M −→
r−1∧

G

M
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for all r ∈ Z≥1, defined by

m1 ∧ · · · ∧ mr 
→
r∑

i=1

(−1)i−1ϕ(mi)m1 ∧ · · · ∧ mi−1 ∧ mi+1 ∧ · · · ∧ mr .

This homomorphism is also denoted by ϕ.
This construction gives a homomorphism

s∧

G

HomG(M, Z[G]) −→ HomG

( r∧

G

M,

r−s∧

G

M

)

(2)

for all r, s ∈ Z≥0 such that r ≥ s, defined by

ϕ1 ∧ · · · ∧ ϕs 
→ (m 
→ ϕs ◦ · · · ◦ ϕ1(m)) .

From this, we often regard an element of
∧s

G HomG(M, Z[G]) as an element of

HomG(
∧r

G M,
∧r−s

G M). Note that if r = s, ϕ1 ∧ · · · ∧ ϕr ∈ ∧r
G HomG(M, Z[G]) and

m1 ∧ · · · ∧ mr ∈ ∧r
G M , then we have

(ϕ1 ∧ · · · ∧ ϕr)(m1 ∧ · · · ∧ mr) = det(ϕi(mj ))1≤i,j≤r .

3. The Rubin-Stark conjecture

In this section, we review the formulation of the Rubin-Stark conjecture ([6, Conjecture
B]). In §3.1, we set notation which we use throughout this paper. In §3.2, we state the Rubin-
Stark conjecture. In §3.3, we summarize some known properties of Rubin-Stark elements.

3.1. Notation. Let k be a global field. We fix a separable closure ksep of k, and any
separable extension of k is considered to be in ksep. We denote the set of all infinite places
of k by S∞(k). For any finite separable extension K/k and any set Σ of places of k, we
denote the set of places of K lying above places in Σ by ΣK . For a finite place w of K , the
normalized additive valuation at w is denoted by ordw. Let S and T be finite sets of places
of k. In this paper, we call the (ordered) pair (S, T ) admissible for the extension K/k if the
following conditions are satisfied:

• S is nonempty and contains S∞(k) and all places ramifying in K ,
• S ∩ T = ∅,
• O×

K,S,T is torsion-free,

where O×
K,S,T is the (S, T )-unit group of K , defined by

O×
K,S,T

:= {a ∈ K× | ordw(a) = 0 for all w /∈ SK and a ≡ 1 (mod w′) for all w′ ∈ TK} .

Note that the condition “O×
K,S,T is torsion-free” is only relevant to the set T and that it implies

T �= ∅.
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Let Ω(k) be the set of quadruples (K, S, T , V ) satisfying the following:

• K is a finite abelian extension of k,
• S and T are finite sets of places of k such that (S, T ) is admissible for K/k,
• V is a proper subset of S such that all v ∈ V split completely in K .

If we fix a finite set T of finite places of k, then we define

Ω(k, T ) := {(K, S, V ) | (K, S, T , V ) ∈ Ω(k)} .

Take (K, S, T , V ) ∈ Ω(k). Let GK denote the Galois group Gal(K/k). For a character

χ ∈ ĜK := Hom(GK, C×), the (S, T )-L-function is defined by

Lk,S,T (s, χ) :=
∏

v∈T

(1 − χ(Frv)Nv1−s )
∏

v /∈S

(1 − χ(Frv)Nv−s )−1 ,

where Frv ∈ GK is the Frobenius automorphism at v, and Nv is the cardinality of the residue
field at v. The product in the right hand side converges if Re(s) > 1. It is well-known that
Lk,S,T (s, χ) has analytic continuation on the whole complex plane, and is holomorphic at
s = 0. We define rχ = rχ,S := ords=0Lk,S,T (s, χ). It is well-known that

rχ =
{

|{v ∈ S | χ(Gv) = 1}| if χ �= 1 ,

|S| − 1 if χ = 1 ,

where Gv ⊂ GK is the decomposition group at v (see [9, Proposition 3.4, Chpt. I]). Note that

rχ = rχ−1 for any χ ∈ ĜK . For r ∈ Z≥0, define “r-th order Stickelberger element” by

θ
(r)
K/k,S,T :=

∑

χ∈ĜK,r=rχ

lim
s→0

s−rLk,S,T (s, χ−1)eχ ∈ C[GK ],

where eχ := |GK |−1 ∑
σ∈GK

χ(σ)σ−1. It is easy to see that θ
(r)
K/k,S,T ∈ R[GK ]. Note that,

when r = 0, this is the usual Stickelberger element. Define

XK,S :=
{ ∑

w∈SK

aww ∈
⊕

w∈SK

Zw

∣
∣
∣
∣

∑

w∈SK

aw = 0

}

.

Note that XK,S has a natural structure of GK -module, since GK acts on SK . We define

λK,S : O×
K,S,T → R ⊗Z XK,S

by λK,S(a) := − ∑
w∈SK

log |a|ww, where | · |w is the normalized absolute value at w. By

Dirichlet’s unit theorem, λK,S induces an isomorphism of R[GK ]-modules

R ⊗Z O×
K,S,T

∼→ R ⊗Z XK,S .
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3.2. The statement of the Rubin-Stark conjecture. In this subsection, we state the
Rubin-Stark conjecture. We need the following definition, due to Rubin ([6, §1.2]).

DEFINITION 3.1. For (K, S, T , V ) ∈ Ω(k), define

r⋂

GK

O×
K,S,T

:=
{

a ∈ Q ⊗Z

r∧

GK

O×
K,S,T

∣
∣
∣
∣ Φ(a) ∈ Z[GK ] for all Φ ∈

r∧

GK

HomGK
(O×

K,S,T , Z[GK ])
}

,

where r = rV := |V |. (Note that
⋂0

GK
O×

K,S,T = Z[GK ].)
Note that

⋂
is not the intersection.

From now, we fix a total order on the set of all places of k, and any exterior powers
indexed by a set of places of k is arranged by this fixed order. We also fix, for each place v

of k, a place w of ksep lying above v. For any finite separable extension K/k, the place of K

lying under w is also denoted by w.

DEFINITION 3.2. Let (K, S, T , V ) ∈ Ω(k), and put r := |V |. Choose v0 ∈ S \ V ,
and define

xK,S,T ,V := θ
(r)
K/k,S,T

∧

v∈V

(w − w0) ∈ R ⊗Z

r∧

GK

XK,S ,

where w0 denotes the fixed place of K lying above v0.

The following proposition shows that the element xK,S,T ,V is well-defined, i.e. xK,S,T ,V

does not depend on the choice of v0 ∈ S \ V .

PROPOSITION 3.3. Let (K, S, T , V ) ∈ Ω(k), and put r := |V |. Take v0, v
′
0 ∈ S \ V .

Then we have

θ
(r)
K/k,S,T

∧

v∈V

(w − w0) = θ
(r)
K/k,S,T

∧

v∈V

(w − w′
0) in R ⊗Z

r∧

GK

XK,S .

PROOF. If r < min{|S| − 1, |{v ∈ S | v splits completely in K}|}, then θ
(r)
K/k,S,T = 0,

so the proposition is trivial. If r = |S| − 1, then we must have v0 = v′
0, so there is nothing

to prove. Hence we may assume V = {v ∈ S | v splits completely in K} and r < |S| − 1.
In this case, v0 and v′

0 do not split completely in K , so we see that eχ(w0 − w′
0) = 0 (in

C ⊗Z XK,S) for every χ ∈ ĜK such that rχ = r . The proposition follows by noting that
w − w′

0 = (w − w0) + (w0 − w′
0). �



464 TAKAMICHI SANO

For any r ∈ Z≥0, the isomorphism

R ⊗Z

r∧

GK

O×
K,S,T

∼→ R ⊗Z

r∧

GK

XK,S

induced by λK,S is also denoted by λK,S .
Now we state the Rubin-Stark conjecture.

CONJECTURE 1 (The Rubin-Stark conjecture, [6, Conjecture B]). For

(K, S, T , V ) ∈ Ω(k), there exists a unique εK,S,T ,V ∈ ⋂r
GK

O×
K,S,T such that

λK,S(εK,S,T ,V ) = xK,S,T ,V ,

where r = |V |.
REMARK 3.4. Our formulation of the Rubin-Stark conjecture is slightly different from

the original formulation of Rubin in [6, Conjecture B]. But from [6, Proof of Proposition 2.4],
one easily sees that our formulation is equivalent to the original one. Note also that the
unique element εK,S,T ,V predicted by this conjecture coincides with the one predicted by [6,
Conjecture B′].

The element εK,S,T ,V predicted by the Rubin-Stark conjecture is called Rubin-Stark ele-
ment.

REMARK 3.5. The Rubin-Stark conjecture for (K, S, T , V ) ∈ Ω(k) is known to be
true, for example, in the following cases:

(i) V = ∅ ([6, Theorem 3.3]),
(ii) K is a finite abelian extension of Q or a function field ([1, Theorem A]),

(iii) all v ∈ S split completely in K ([6, Proposition 3.1]).

3.3. Some properties of Rubin-Stark elements. In this subsection, we fix a finite
set T of finite places of k such that Ω(k, T ) �= ∅, and assume that the Rubin-Stark conjecture
holds for every (K, S, T , V ) such that (K, S, V ) ∈ Ω(k, T ). For the proof of the following
two propositions, see [6] or [7].

PROPOSITION 3.6 ([6, Proposition 6.1], [7, Proposition 3.5]). Let
(K, S, V ), (K ′, S′, V ) ∈ Ω(k, T ), and suppose that K ⊂ K ′ and S ⊂ S′. Then we
have

Nr
K ′/K εK ′,S ′,T ,V =

( ∏

v∈S ′\S
(1 − Fr−1

v )

)

εK,S,T ,V in
r⋂

GK

O×
K,S,T ,

where r = |V |, NK ′/K := NGal(K ′/K) = ∑
σ∈Gal(K ′/K) σ and Nr

K ′/K denotes the r-th power

of NK ′/K . (When r = 0, N0
K ′/K means the natural map Z[GK ′ ] → Z[GK ].)
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PROPOSITION 3.7 ([6, Proposition 5.2], [7, Proposition 3.6]). Let
(K, S, V ), (K, S′, V ′) ∈ Ω(k, T ), and suppose that S ⊂ S′, V ⊂ V ′ and S′ \ S = V ′ \ V .
Put

ΦV ′,V = sgn(V ′, V )
∧

v∈V ′\V

( ∑

σ∈GK

ordw(σ(·))σ−1
)

∈
r ′−r∧

GK

HomGK
(O×

K,S ′,T , Z[GK ]) ,

where r = |V |, r ′ = |V ′|, and sgn(V ′, V ) = ±1 is the sign of the permutation

(V ′ \ V V ) 
→ V ′ .

Then we have

ΦV ′,V (εK,S ′,T ,V ′) = εK,S,T ,V in
r⋂

GK

O×
K,S,T .

4. The refined conjecture

In this section, we recall the formulation of [7, Conjecture 3]. The main result of this
paper is stated in §4.2 (Theorem 4.7). Throughout this section, we assume that the Rubin-
Stark conjecture holds for every (K, S, T , V ) ∈ Ω(k). In particular, note that Conjecture 2
and Theorem 4.7 are stated under the assumption that the Rubin-Stark conjecture holds for
every (K, S, T , V ) ∈ Ω(k).

4.1. The statement of the conjecture. Let S and T be finite sets of places of k. Let
Υ (k, S, T ) be the set of quadruples (K,L, V, V ′) satisfying the following:

• (K, S, T , V ), (L, S, T , V ′) ∈ Ω(k),
• L ⊂ K ,
• V ⊂ V ′.

Assume Υ (k, S, T ) �= ∅, and fix (K,L, V, V ′) ∈ Υ (k, S, T ). We use the following nota-
tions:

• r := |V |,
• r ′ := |V ′|,
• d := r ′ − r ,
• G := GK(= Gal(K/k)),
• H := Gal(K/L),
• I (H) := ker(Z[H ] → Z) (the augmentation ideal),
• IH := I (H)Z[G](= ker(Z[G] → Z[G/H ])).

For n ∈ Z≥0,

• Q(H)n := I (H)n/I (H)n+1,

• Qn
H := In

H /In+1
H .
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Note that, for any m,n ∈ Z≥0, we can define a product ab ∈ Q(H)m+n of a ∈ Q(H)m

and b ∈ Q(H)n in the obvious way. We will use this product in computation in §5.
It is easy to see that there is a natural isomorphism of G/H -modules

Z[G/H ] ⊗Z Q(H)n � Qn
H .

We define

NK/L :
r⋂

G

O×
K,S,T →

( r⋂

G

O×
K,S,T

)

⊗Z Z[H ]/I (H)d+1

by

NK/L(a) :=
∑

σ∈H

σa ⊗ σ−1 .

Note that, when r = 0, this definition is different from the definition of N(0,d)
K/L in [7, §3.4].

This modification is due to Mazur and Rubin (see Remark 4.1(ii) below).
For v ∈ V ′ \ V , define

ϕv = ϕv,K/L : O×
L,S,T → Q1

H

by ϕv(a) := ∑
σ∈G/H(recw(σa) − 1)σ−1, where recw is the reciprocity map at w. By [7,

Proposition 2.7],
∧

v∈V ′\V ϕv ∈ ∧d
G/H HomG/H (O×

L,S,T ,Q1
H ) defines the homomorphism

∧

v∈V ′\V
ϕv :

r ′
⋂

G/H

O×
L,S,T →

( r⋂

G/H

O×
L,S,T

)

⊗Z Q(H)d .

Recall the definition of the canonical injection

νK/L :
r⋂

G/H

O×
L,S,T →

r⋂

G

O×
K,S,T

constructed in [7, Lemma 2.11]. Define

ιG :
r∧

G

HomG(O×
K,S,T , Z[G]) → HomG

( r∧

G

O×
K,S,T , Z[G]

)

by ιG(ϕ1 ∧ · · · ∧ ϕr)(u1 ∧ · · · ∧ ur) = det(ϕi(uj ))1≤i,j≤r . (This is the map constructed in
(2).) It is not difficult to see that the map

αG :
r⋂

G

O×
K,S,T → HomG(im ιG, Z[G])
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defined by αG(a)(Φ) = Φ(a) is an isomorphism (see [6, §1.2]). Similarly we can define the
map

ιG/H :
r∧

G/H

HomG/H (O×
L,S,T , Z[G/H ]) → HomG/H

( r∧

G/H

O×
L,S,T , Z[G/H ]

)

,

and we have the isomorphism

αG/H :
r⋂

G/H

O×
L,S,T

∼→ HomG/H (im ιG/H , Z[G/H ]) .

Let κK/L : Z[G/H ] ∼→ Z[G]H be the isomorphism of G/H -modules characterized by 1 
→
NH . Define

βK/L : HomG/H (im ιG/H , Z[G/H ]) → HomG(im ιG, Z[G])
by βK/L(f )(Φ) = κK/L(f (ΦK/L)), where ΦK/L ∈ im ιG/H is the image of Φ ∈ im ιG

under the map im ιG → im ιG/H induced by the map

r∧

G

HomG(O×
K,S,T , Z[G]) →

r∧

G/H

HomG/H (O×
L,S,T , Z[G/H ])

defined by ϕ1 ∧ · · · ∧ ϕr 
→ (κ−1
K/L ◦ ϕ1) ∧ · · · ∧ (κ−1

K/L ◦ ϕr). Now we define

νK/L := α−1
G ◦ βK/L ◦ αG/H .

Note that, if r = 0, then we have νK/L = κK/L. As proved in [7, Lemma 2.11], the map νK/L

is injective. The same result shows that the map

( r⋂

G/H

O×
L,S,T

)

⊗ZQ(H)d →
( r⋂

G

O×
K,S,T

)

⊗ZQ(H)d→
( r⋂

G

O×
K,S,T

)

⊗ZZ[H ]/I (H)d+1

induced by νK/L and the inclusion Q(H)d ↪→ Z[H ]/I (H)d+1 is also injective. This injection
is also denoted by νK/L.

CONJECTURE 2 ([7, Conjecture 3], [5, Conjecture 5.2]). We have

NK/L(εK,S,T ,V ) ∈ im νK/L,

and an equality

ν−1
K/L(NK/L(εK,S,T ,V )) = sgn(V ′, V )

( ∧

v∈V ′\V
ϕv

)

(εL,S,T ,V ′) . (3)

(sgn(V ′, V ) is as in Proposition 3.7.)
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REMARK 4.1. The formulation of Conjecture 2 is slightly different from that of the
original conjecture [7, Conjecture 3], but they are equivalent for the following reasons.

(i) The formulation of the conjecture [7, Conjecture 3] replaces the right hand side of the
equality (3) by

sgn(V ′, V )

( ∏

v∈S\S ′
(1 − Fr−1

v )

)( ∧

v∈V ′\V
ϕv

)

(εL,S ′,T ,V ′) ,

where S′ is a subset of S such that (L, S′, T , V ′) ∈ Ω(k). Since we know by Proposi-
tion 3.6 that

εL,S,T ,V ′ =
( ∏

v∈S\S ′
(1 − Fr−1

v )

)

εL,S ′,T ,V ′ ,

this does not make any changes.
(ii) In the case r = 0, the definitions of the maps corresponding to NK/L and νK/L are

different in the original conjecture [7, Conjecture 3]. More precisely, in the case r = 0,
define

N ′
K/L :

0⋂

G

O×
K,S,T = Z[G] → Z[G]/Id+1

H

to be the natural map, and

ν′
K/L :

( 0⋂

G/H

O×
L,S,T

)

⊗Z Q(H)d = Z[G/H ] ⊗Z Q(H)d � Qd
H ↪→ Z[G]/Id+1

H

to be the natural injection. Then [7, Conjecture 3] in this case claims

N ′
K/L(εK,S,T ,∅) ∈ im ν′

K/L(= Qd
H) ,

and an equality

ν′−1
K/L(N ′

K/L(εK,S,T ,∅)) =
( ∧

v∈V ′
ϕv

)

(εL,S,T ,V ′) .

In [5, Lemma 5.6], Mazur and Rubin observed that N ′
K/L(εK,S,T ,∅) ∈ im ν′

K/L if and

only if NK/L(εK,S,T ,∅) ∈ im νK/L(= Z[G]H ⊗Z Q(H)d), and if this equivalent condi-
tions are satisfied, then

ν−1
K/L(NK/L(εK,S,T ,∅)) = ν′−1

K/L(N ′
K/L(εK,S,T ,∅)) .

By the above observation, we see that Conjecture 2 is equivalent to [7, Conjecture
3].
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REMARK 4.2. Conjecture 2 is equivalent to the conjecture of Mazur and Rubin in [5,
Conjecture 5.2]. To see this, define a map

jK/L : Q ⊗Z

r∧

G/H

O×
L,S,T → Q ⊗Z

r∧

G

O×
K,S,T

by

jK/L(a) :=
{

|H |−(r−1)a if r > 0 ,

κK/L(a)(= νK/L(a)) if r = 0 .

This map induces a map

r⋂

G/H

O×
L,S,T ⊗Z Q(H)d →

r⋂

G

O×
K,S,T ⊗Z Z[H ]/I (H)d+1 ,

which we also denote by jK/L (see [5, Lemma 4.8]). This map is essentially the same as the
map constructed in [5, Lemma 4.9]. The conjecture of Mazur and Rubin [5, Conjecture 5.2]
states that

NK/L(εK,S,T ,V ) = sgn(V ′, V )jK/L

(( ∧

v∈V ′\V
ϕv

)

(εL,S,T ,V ′)

)

.

One can show that our injection νK/L coincides with the map jK/L. Hence, we see that
Conjecture 2 and [5, Conjecture 5.2] are equivalent.

REMARK 4.3. The result of Burns, Kurihara and the author [2, Corollary 1.2] shows
that Conjecture 2 is true in the case that k = Q or k is a function field.

For later use, we record some properties of the injection νK/L.

LEMMA 4.4. (i) For every a ∈ ⋂r
G O×

K,S,T , we have Nr
K/L a ∈ ⋂r

G/H O×
L,S,T and

νK/L(Nr
K/L a) = NK/L a ,

where NK/L := NH . (When r = 0, N0
K/L means the natural map Z[G] → Z[G/H ].)

(ii) For any intermediate field K ′ of K/L, we have

νK/L = νK/K ′ ◦ νK ′/L on
r⋂

G/H

O×
L,S,T .

PROOF. (i) Take a ∈ ⋂r
G O×

K,S,T . Note that Nr
K/L a ∈ ⋂r

G/H O×
L,S,T , since the map

im ιG → im ιG/H ; Φ 
→ ΦK/L
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is surjective (see [7, Lemma 2.10]) and

ΦK/L(Nr
K/L a) ≡ Φ(a) (mod IH ). (4)

By the definitions of νK/L and αG, it is sufficient to prove that the equality

βK/L(αG/H (Nr
K/L a))(Φ) = Φ(NK/L a)

holds for every Φ ∈ im ιG. By the definitions of βK/L and αG/H , we see that the left

hand side is equal to κK/L(ΦK/L(Nr
K/L a)). By (4) and the definition of κK/L, we have

κK/L(ΦK/L(Nr
K/L a)) = NK/L Φ(a) = Φ(NK/L a). This completes the proof of (i).

(ii) It is sufficient to prove βK/L = βK/K ′ ◦ βK ′/L. For every f ∈
HomG/H (im ιG/H , Z[G/H ]) and Φ ∈ im ιG, we have

βK/K ′(βK ′/L(f ))(Φ) = κK/K ′(βK ′/L(f )(ΦK/K ′
))

= κK/K ′(κK ′/L(f ((ΦK/K ′
)K

′/L)))

= κK/L(f (ΦK/L))

= βK/L(f )(Φ) ,

where the third equality follows from the fact that κK/L = κK/K ′ ◦ κK ′/L, which is easily
checked. This shows (ii). �

REMARK 4.5. It is easy to see that the map jK/L defined in Remark 4.2 has the same
properties as νK/L described in Lemma 4.4. So Lemma 4.4 can also be proved by using the
fact that jK/L = νK/L.

Conjecture 2 has a natural functorial property as follows.

PROPOSITION 4.6. Assume that Conjecture 2 holds for (K,L, V, V ′) ∈ Υ (k, S, T ).
Then Conjecture 2 holds for (K ′, L, V, V ′) ∈ Υ (k, S, T ) such that K ′ ⊂ K .

PROOF. Set G = Gal(K/k), H = Gal(K/L), G′ = Gal(K ′/k), and H ′ =
Gal(K ′/L). Let π denote the restriction map H → H ′. The maps

Q1
H → Q1

H ′ ,

( r⋂

G

O×
K,S,T

)

⊗Z Z[H ]/I (H)d+1 →
( r⋂

G

O×
K,S,T

)

⊗Z Z[H ′]/I (H ′)d+1

induced by π are also denoted by π . For each σ ∈ H ′, fix a lift σ̃ ∈ H . Then we compute

π(NK/L(εK,S,T ,V )) =
∑

σ∈H ′
σ̃ (NK/K ′ εK,S,T ,V ) ⊗ σ−1

=
∑

σ∈H ′
σ̃ (νK/K ′(Nr

K/K ′ εK,S,T ,V )) ⊗ σ−1
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=
∑

σ∈H ′
σ̃ (νK/K ′(εK ′,S,T ,V )) ⊗ σ−1

= νK/K ′(NK ′/L(εK ′,S,T ,V )) ,

where the first equality follows from direct computation, the second from Lemma 4.4 (i), and
the third from Proposition 3.6. We have

π

(( ∧

v∈V ′\V
ϕv,K/L

)

(εL,S,T ,V ′)

)

=
( ∧

v∈V ′\V
ϕv,K ′/L

)

(εL,S,T ,V ′)

by using the fact that ϕv,K ′/L = π ◦ ϕv,K/L (see [8, Proposition 12, Chpt. XIII]). Hence,

assuming Conjecture 2 for (K,L, V, V ′), we have

νK/K ′(NK ′/L(εK ′,S,T ,V )) = sgn(V ′, V )νK/L

(( ∧

v∈V ′\V
ϕv,K ′/L

)

(εL,S,T ,V ′)

)

.

Since νK/L = νK/K ′ ◦ νK ′/L by Lemma 4.4 (ii), the proposition follows from the injectivity
of νK/K ′ and νK ′/L. �

4.2. The statement of the main theorem.

THEOREM 4.7. Assume:

(i) S∞(k) ⊂ V ,
(ii) all v ∈ S split completely in L,

(iii) H = ∏
v∈S\V Jv,

where Jv ⊂ G is the inertia group at v. Then Conjecture 2 is true.

EXAMPLE 4.8. The assumptions in Theorem 4.7 are satisfied in the following case.
Let L be the Hilbert class field of k. Take principal prime ideals p1, . . . , pn, and put S :=
S∞(k)∪{p1, . . . , pn}. Let K be the composite field of the ray class fields modulo pei

i ’s, where
ei is a positive integer. If we set V := S∞(k), then the assumptions (i)–(iii) are satisfied. Note
that εK,S,T ,V can be non-trivial since V = {v ∈ S | v splits completely in K}. Note also that
εL,S,T ,V ′ is non-trivial if and only if |V ′| = |S| − 1 since all v ∈ S split completely in L.

REMARK 4.9. To prove Theorem 4.7, we do not need to assume that the Rubin-Stark
conjecture holds for every (K, S, T , V ) ∈ Ω(k). More precisely, Remark 3.5 (iii) and the
proof which we will describe in the next section show that we only need to assume that the
Rubin-Stark conjecture holds for (KX, SX, T , V ) for every nonempty subset X ⊂ S \ V ,
where KX is the unique intermediate field of K/L such that Gal(KX/L) = ∏

v∈X Jv , and
SX = V ∪ X.

By Proposition 4.6, we have the following corollary.

COROLLARY 4.10. Assume the assumptions of Theorem 4.7 hold for (K,L, V, V ′) ∈
Υ (k, S, T ). Then Conjecture 2 is true for (K ′, L, V, V ′) ∈ Υ (k, S, T ) such that K ′ ⊂ K .



472 TAKAMICHI SANO

5. Proof

In this section, we give a proof of Theorem 4.7.
We assume that the assumptions (i)–(iii) in Theorem 4.7 are satisfied. By the assumption

(ii) and [7, Proposition 3.12], note that Theorem 4.7 is reduced to the case that r ′ = |S| − 1.
Henceforth we assume that V ′ = S \ {v0} with some v0 ∈ S \ V .

LEMMA 5.1. For any v′
0 ∈ S \ V , we have

sgn(V ′, V )

( ∧

v∈V ′\V
ϕv

)

(εL,S,T ,V ′) = sgn(V ′′, V )

( ∧

v∈V ′′\V
ϕv

)

(εL,S,T ,V ′′ ) ,

where V ′′ = S \ {v′
0}.

PROOF. By the product formula of reciprocity maps, we see that
∑

v∈S\V
ϕv,K/L = 0 on O×

k,S,T . (5)

Since all v ∈ S split completely in L, we see that εL,S,T ,V ′, εL,S,T ,V ′′ ∈ e1(Q ⊗Z
∧r ′

G/H O×
L,S,T ) = Q ⊗Z

∧r ′
Z O×

k,S,T . We also see that εL,S,T ,V ′ = ±εL,S,T ,V ′′ by the charac-

terization of Rubin-Stark elements. Hence, by (5), we have
( ∧

v∈V ′\V
ϕv

)

(εL,S,T ,V ′) = ±
( ∧

v∈V ′′\V
ϕv

)

(εL,S,T ,V ′′ ) .

The lemma follows from explicit computation of sign. �

REMARK 5.2. Since all v ∈ S split completely in L, the proof of [6, Proposition 3.1]
shows that the Rubin-Stark element εL,S,T ,V ′ is described explicitly as follows:

εL,S,T ,V ′ = |Ak,S,T |
|G/H |r ′ u1 ∧ · · · ∧ ur ′ ,

where Ak,S,T is the “S-ray class group modulo T ” (see [6, §1.1]), and {ui} is a basis of O×
k,S,T

such that
( ∧

v∈S\{v0}
(− log | · |v)

)

(u1 ∧ · · · ∧ ur ′) < 0 .

Lemma 5.1 can also be proved by using this description.

We set some notations. Put W := S \ V . For each subset X ⊂ W , define

HX :=
∏

v∈X

Jv .
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HX is regarded as a quotient of H , and also a subgroup of H . Let KX denote the unique
intermediate field of K/L such that Gal(KX/L) = HX. Put GX := Gal(KX/k) and SX :=
V ∪ X. Note that GW = G, HW = H , KW = K , and SW = S. Define a map

πX : H → HX ↪→ H ,

where the first arrow is the natural projection, and the second is the natural inclusion. The

endomorphisms of Z[H ] and Q1
H induced by πX are also denoted by πX. If X �= ∅, choose

v′
0 ∈ X, then we easily see that (KX,L, V, V ′

X) ∈ Υ (k, SX, T ), where V ′
X := SX \ {v′

0}. We
define

LX :=
∑

σ∈HX

σεKX,SX,T ,V ⊗ σ−1 ∈
( r⋂

GX

O×
KX,SX,T

)

⊗Z Z[HX] ,

RX := sgn(V ′
X, V )

( ∧

v∈V ′
X\V

ϕv,KX/L

)

(εL,SX,T ,V ′
X
) ∈

( r⋂

G/H

O×
L,SX,T

)

⊗Z Q(HX)|X|−1.

Note that LX is a lift of NKX/L(εKX,SX,T ,V ) ∈ (
⋂r

GX
O×

KX,SX,T ) ⊗Z Z[HX]/I (HX)|X|. Note

also that, by Lemma 5.1, RX does not depend on the choice of v′
0 ∈ X.

In the next lemma, the endomorphisms of (
⋂r

G O×
K,S,T ) ⊗Z Z[H ]/I (H)d+1 and

(
⋂r

G/H O×
L,S,T ) ⊗Z Q(H)d induced by πX are also denoted by πX.

LEMMA 5.3. Let X ⊂ W be a nonempty subset. Then:

(i)

πX(LW) = νK/KX(LX) ·
(

1 ⊗
∏

v∈W\X
(1 − Fr−1

v )

)

in

( r⋂

G

O×
K,S,T

)

⊗Z Z[H ]/I (H)d+1,

(ii)

πX(RW) = RX ·
(

1 ⊗
∏

v∈W\X
(Frv − 1)

)

in

( r⋂

G/H

O×
L,S,T

)

⊗Z Q(H)d.

(Here Frv is considered to be in HX, hence in H .)

PROOF. For each σ ∈ HX, fix a lift σ̃ ∈ H . We compute

πX(LW ) =
∑

σ∈HX

σ̃ (NK/KX εK,S,T ,V ) ⊗ σ−1

=
∑

σ∈HX

σ̃ (νK/KX(Nr
K/KX

εK,S,T ,V )) ⊗ σ−1
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= νK/KX

( ∑

σ∈HX

σ

( ∏

v∈W\X
(1 − Fr−1

v )

)

εKX,SX,T ,V ⊗ σ−1
)

= νK/KX

( ∑

σ∈HX

σεKX,SX,T ,V ⊗ σ−1
)

·
(

1 ⊗
∏

v∈W\X
(1 − Fr−1

v )

)

= νK/KX(LX) ·
(

1 ⊗
∏

v∈W\X
(1 − Fr−1

v )

)

,

where the second equality follows from Lemma 4.4 (i), the third from Proposition 3.6, and
the fourth from direct computation. This shows (i).

Next, we compute πX(RW). By Lemma 5.1, we may assume v0 ∈ X and V ′
X = SX\{v0}.

Note that, for v ∈ W \ X, we have

ϕv,KX/L =
∑

σ∈G/H

ordw(σ(·))σ−1(Frv − 1) , (6)

since v is unramified in KX (see [8, Proposition 13, Chpt. XIII]). We compute

πX(RW ) = sgn(V ′, V )

( ∧

v∈W\{v0}
ϕv,KX/L

)

(εL,S,T ,V ′)

= sgn(V ′, V )sgn(W \ {v0}, V ′
X \ V )

( ∧

v∈V ′
X\V

ϕv,KX/L

)

◦
( ∧

v∈W\X

( ∑

σ∈G/H

ordw(σ(·))σ−1
))

(εL,S,T ,V ′) ·
(

1 ⊗
∏

v∈W\X
(Frv − 1)

)

= sgn(V ′, V )sgn(W \ {v0}, V ′
X \ V )sgn(V ′, V ′

X)

×
( ∧

v∈V ′
X\V

ϕv,KX/L

)

(εL,SX,T ,V ′
X
) ·

(

1 ⊗
∏

v∈W\X
(Frv − 1)

)

= sgn(V ′
X, V )

( ∧

v∈V ′
X\V

ϕv,KX/L

)

(εL,SX,T ,V ′
X
) ·

(

1 ⊗
∏

v∈W\X
(Frv − 1)

)

= RX ·
(

1 ⊗
∏

v∈W\X
(Frv − 1)

)

,

where the first equality follows from the fact that ϕv,KX/L = πX ◦ϕv,K/L (see [8, Proposition
12, Chpt. XIII]), the second from (6), the third from Proposition 3.7, and the fourth from sign
computation. This shows (ii). �
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LEMMA 5.4.

π∅(LW ) = π∅(νK/L(RW )) in

( r⋂

G

O×
K,S,T

)

⊗Z Z[H ]/I (H)d+1 .

PROOF. We compute

π∅(LW) = NK/L εK,S,T ,V ⊗ 1

= νK/L(Nr
K/L εK,S,T ,V ) ⊗ 1

= νK/L(εL,S,T ,V ) ⊗ 1 ,

where the second equality follows from Lemma 4.4 (i), and the third from Proposition 3.6.
Note that, since all v ∈ S split completely in L, we have εL,S,T ,V = 0 unless r = |S| − 1, i.e.
V = V ′. On the other hand, we easily see that

π∅(RW) =
{

εL,S,T ,V ⊗ 1 ∈ (
⋂r

G/H O×
L,S,T ) ⊗Z Z[H ]/I (H) if V = V ′

0 if V �= V ′ .
Hence, we have π∅(LW ) = π∅(νK/L(RW)). �

The following algebraic lemma is due to Darmon’s method ([3, §8]).

LEMMA 5.5. Let a ∈ ⋂r
G O×

K,S,T ⊗Z Z[H ]/I (H)d+1. Then we have

a = −
∑

X⊂W,X �=W

(−1)|W\X|πX(a) .

PROOF. Take σ ∈ H , and write σ = ∏
v∈W σv with σv ∈ Jv . Then we have

∑

X⊂W

(−1)|W\X|πX(σ) =
∏

v∈W

(σv − 1) ∈ I (H)|W | = I (H)d+1 .

From this, we see that
∑

X⊂W

(−1)|W\X|πX = 0 on

( r⋂

G

O×
K,S,T

)

⊗Z Z[H ]/I (H)d+1 .

Since πW = id, the lemma follows. �

PROOF OF THEOREM 4.7. We prove that the equality LW = νK/L(RW ) holds in

(
⋂r

G O×
K,S,T ) ⊗Z Z[H ]/I (H)d+1 by induction on |W |. When |W | = 1, this follows from

Proposition 3.6 and Lemma 4.4 (i). We assume LX = νKX/L(RX) for all proper nonempty
subsets X ⊂ W . By Lemma 5.5, it is sufficient to prove that πX(LW ) = πX(νK/L(RW ))

for each proper subset X ⊂ W . If X = ∅, then this follows from Lemma 5.4. Suppose
X �= ∅. Note that, by the inductive hypothesis and Lemma 4.4 (ii), we have νK/KX(LX) =
νK/L(RX) ∈ (

⋂r
G O×

K,S,T ) ⊗Z Q(H)|X|−1. Note that

H → Q(H)1; σ 
→ σ − 1
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is an isomorphism of abelian groups. In particular, we have 1 − Fr−1
v = Frv − 1 in Q(H)1 for

every v ∈ W \ X. Using this fact and Lemma 5.3 (i), we have

πX(LW ) = νK/KX(LX) ·
(

1 ⊗
∏

v∈W\X
(Frv − 1)

)

= νK/L(RX) ·
(

1 ⊗
∏

v∈W\X
(Frv − 1)

)

.

On the other hand, we know by Lemma 5.3 (ii) that

πX(RW) = RX ·
(

1 ⊗
∏

v∈W\X
(Frv − 1)

)

,

so we have πX(LW ) = πX(νK/L(RW )). �

ACKNOWLEDGMENT. The author would like to thank Professor Masato Kurihara for
his constant encouragement, and helpful advice. He also wishes to thank Professor David
Burns for stimulating discussions on the subject of this paper, and providing him a good
atmosphere when he visited King’s College London.

References

[ 1 ] BURNS, D., Congruences between derivatives of abelian L-functions at s = 0, Invent. Math. 169 (2007),
451–499.

[ 2 ] BURNS, D., KURIHARA, M. and SANO, T., On arithmetic properties of zeta elements, I, preprint (2014),
arXiv:1407.6409v1.

[ 3 ] DARMON, H., Thaine’s method for circular units and a conjecture of Gross, Canad. J. Math. 47 (1995),
302–317.

[ 4 ] GROSS, B., On the values of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo 35 (1988), 177–197.
[ 5 ] MAZUR, B. and RUBIN, K. Refined class number formulas for Gm, preprint (2013), arXiv:1312.4053v1.
[ 6 ] RUBIN, K., A Stark conjecture “over Z” for abelian L-functions with multiple zeros, Ann. Inst. Fourier

(Grenoble) 46 (1996), 33–62.
[ 7 ] SANO, T., Refined abelian Stark conjectures and the equivariant leading term conjecture of Burns, Compositio

Math. 150 (2014), 1809–1835.
[ 8 ] SERRE, J.-P., Local Fields, Graduate Texts in Math. 67, Springer Verlag (1979).
[ 9 ] TATE, J., Les conjectures de Stark sur les fonctions L d’Artin en s = 0, vol. 47 of Progress in Mathematics,

Boston, Birkh’́auser (1984).

Present Address:
DEPARTMENT OF MATHEMATICS,
KEIO UNIVERSITY,
3–14–1 HIYOSHI, KOHOKU-KU, YOKOHAMA 223–8522, JAPAN.
e-mail: tkmc310@a2.keio.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ARA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /BGR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHT (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CZE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DAN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ENU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ESP (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ETI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /FRA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /GRE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HEB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HRV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HUN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ITA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFFff08682aff0956fd969b6587732e53705237793e306e51fa529b6a5f306b90693057305f002000410064006f0062006500200050004400460020658766f830924f5c62103057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LTH (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LVI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NLD (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /POL (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /PTB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUM (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SKY (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SLV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SUO (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /TUR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /UKR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


