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Abstract. We refer generalized degenerate zigzag nanotubes as periodic metric graphs which consist of seg-
ments of length 1 and rings of length 2 throughout this paper. In this paper, we consider the case where there are one
segment and three rings in the basic period cell and analyze the spectrum of periodic Schrödinger operators on the
generalized degenerate zigzag nanotube. We obtain the relationship between the structure of the metric graph and the
nondegenerate spectral gaps of the Schrödinger operators.

1. Introduction

In this paper, we discuss a spectral problem for a quantum graph originating from carbon
nanotubes. First, quantum graph is defined in [1] as a triplet of a metric graph, a differen-
tial operator and an appropriate vertex condition (for example, Kirchhoff vertex condition, δ
vertex condition and so on. See also [4, 12].). In this paper, we define Schrödinger operators
with periodic potentials and Kirchhoff vertex conditions on a periodic quasi-1-dimensional
metric graph consisting of lines of length 1 and rings of length 2 and investigate their spec-
tra. We call the metric graph the generalized degenerate zigzag nanotube throughout this
paper. We give more precise definition in the next paragraph. Although we later describe
the relationship between this paper and [11, 16] in detail, we now introduce earlier paper
[2, 3, 5, 11, 13, 18] on the subject of periodic Schrödinger operators on metric graphs in
brief before we define our operators. One example of quasi-1-dimensional metric graph is a
homogeneous tree, whose vertices have a common number of edges. Carlson [3] analyzed
the spectra of periodic Schrödinger operators with δ vertex conditions on the homogeneous
trees by using one-dimensional tools for Hill operators like the monodromy matrix and the
Lyapunov function. Since a homogeneous tree does not have any loop, our graph possess-
ing rings is not included in this class. Spectral analysis of periodic Schrödinger operators
on metric graphs consisting of loops is seen in [2]. Duclos, Exner and Turek gave spectral
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results on the straight case and the bending case of the metric graph with δ vertex condi-
tions. As one of attractive graphs, there are the hexagonal lattices. Physically, the hexagonal
lattice corresponds to the graphene, which is an allotrope of carbon. As for the carbon nan-
otubes, which are also allotropes of carbon with cylindrical structure, Korotyaev and Lobanov
[11] and Kuchment and Post [13] established the spectral theory. Especially, it is effective for
spectral analysis of periodic Schrödinger operators with Kirchhoff vertex conditions on zigzag
nanotubes to consider the so-called degenerate zigzag nanotube, which is the periodic metric
graph possessing one line of length 1 and one ring of length 2 in the basic period cell (see
also [1] for the carbon nanotube and [9] for the magnetic case). In this paper, we generalize
the degenerate zigzag nanotube and investigate the spectra of Schrödinger operators on it.
The spectrum of the Schrödinger operator on the zigzag nanotube consists of the absolutely
continuous spectrum and eigenvalues of infinite multiplicities [11, 13]. Furthermore, we see
other affluent results of this type of spectrum in [17]. Pankrashkin established the example
where the spectrum consists of eigenvalues of infinite multiplicities (and also another inter-
esting example where the spectrum consists of absolutely continuous spectrum and infinite
multiplicities) for the Rashaba Hamiltonians on T3 lattice. The paper [5] also includes inter-
esting results on spectral analysis for periodic Schrödinger operators on the model of carbon
nanostructure, the graphyne. The structure of the graph corresponding to graphyne defined by
Do and Kuchment consists of hexagons and rhombuses. Whereas the simplest one of zigzag
nanotube made of the graphene is the degenerate zigzag nanotube, the simplest one of zigzag
nanotube made of the graphyne can be the generalized degenerate zigzag nanotube. Actually,
the zigzag part of hexagons and rhombuses corresponds to rings of the generalized degener-
ate zigzag nanotube defined below and vertical lines of hexagons correspond to lines of the
generalized degenerate zigzag nanotube.

We now define a periodic metric graph which possesses one line of length 1 and three
rings of length 2 in the basic period cell (see FIGURE 1). The precise definition of this graph

is given as follows. We put r0 = 1
π

, T = 6
π

+ 1, J = {1, 2, 3, 4, 5, 6, 7} and Z = Z × J .

For (n, j) ∈ Z , we define the segment Γn,j ⊂ R2 as

Γn,1 = {(x, 0)| nT < x < nT + 1},
Γn,2 = {(x, y)| {x − (nT + 1 + r0)}2 + y2 = r2

0 , y > 0} ,
Γn,3 = {(x, y)| {x − (nT + 1 + r0)}2 + y2 = r2

0 , y < 0} ,
Γn,4 = {(x, y)| {x − (nT + 1 + 3r0)}2 + y2 = r2

0 , y > 0} ,
Γn,5 = {(x, y)| {x − (nT + 1 + 3r0)}2 + y2 = r2

0 , y < 0} ,
Γn,6 = {(x, y)| {x − (nT + 1 + 5r0)}2 + y2 = r2

0 , y > 0} ,
Γn,7 = {(x, y)| {x − (nT + 1 + 5r0)}2 + y2 = r2

0 , y < 0} .
Let each segment Γn,j be oriented as x increases. We put Γ = ∪(n,j)∈ZΓn,j .

Next, we define periodic Schrödinger operator on Γ . To this end, we describe the defi-
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FIGURE 1. The graph Γ .

nition of the Hilbert space L2(Γn,j ) for each α = (n, j) ∈ Z . For a function y defined on Γ ,
we abbreviate yα = y|Γα for α := (n, j) ∈ Z . Since the length of each segment Γn,j is 1, we
identify each Γn,j as the interval (0, 1). Owing to this identification, each yα can be identified
with a function on the interval (0, 1) through the local coordinate x ∈ (0, 1). Through this

identification, we define the Hilbert space L2(Γn,j ) as L2(0, 1) with the standard Lebesgue

measure on (0, 1). Moreover, we consider the Hilbert space H = ⊕(n,j)∈ZL2(Γn,j ) equipped

with the inner product 〈ψ, ϕ〉H = ∑
α∈Z〈ψα, ϕα〉L2(Γα)

for ψ, ϕ ∈ L2(Γ ). For α ∈ Z , let

f ′
α(1) and f ′

α(0) imply f ′
α(1 − 0) and f ′

α(+0), respectively. In order to introduce the Kirch-
hoff vertex condition through a simple formula, we prepare notations. For n ∈ Z, we put

Γn,1 ∩Γn,2 = {Xn,1}, Γn,2 ∩Γn,4 = {Xn,2}, Γn,4 ∩Γn,6 = {Xn,3} and Γn,6 ∩Γn+1,1 = {Xn,4}.
Furthermore, we put

A1 =
⎛
⎝ 1 −1 0

0 1 −1
0 0 0

⎞
⎠ , B1 =

⎛
⎝ 0 0 0

0 0 0
−1 1 1

⎞
⎠ ,

A2 = A3 =

⎛
⎜⎜⎝

1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0

⎞
⎟⎟⎠ , B2 = B3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

−1 −1 1 1

⎞
⎟⎟⎠ ,

A4 =
⎛
⎝ 1 −1 0

0 1 −1
0 0 0

⎞
⎠ , B4 =

⎛
⎝ 0 0 0

0 0 0
−1 −1 1

⎞
⎠ ,

F (Xn,1) =
⎛
⎝ fn,1(1)
fn,2(0)
fn,3(0)

⎞
⎠ , F ′(Xn,1) =

⎛
⎜⎝ f ′

n,1(1)
f ′
n,2(0)
f ′
n,3(0)

⎞
⎟⎠ ,
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F(Xn,2) =

⎛
⎜⎜⎝
fn,2(1)
fn,3(1)
fn,4(0)
fn,5(0)

⎞
⎟⎟⎠ , F ′(Xn,2) =

⎛
⎜⎜⎜⎝
f ′
n,2(1)
f ′
n,3(1)
f ′
n,4(0)
f ′
n,5(0)

⎞
⎟⎟⎟⎠ ,

F (Xn,3) =

⎛
⎜⎜⎝
fn,4(1)
fn,5(1)
fn,6(0)
fn,7(0)

⎞
⎟⎟⎠ , F ′(Xn,3) =

⎛
⎜⎜⎝
f ′
n,4(1)
f ′
n,5(1)
fn,6(0)
fn,7(0)

⎞
⎟⎟⎠ ,

F (Xn,4) =
⎛
⎝ fn,6(1)

fn,7(1)
fn+1,1(0)

⎞
⎠ , F ′(Xn,3) =

⎛
⎜⎝ f ′

n,6(1)
f ′
n,7(1)

f ′
n+1,1(0)

⎞
⎟⎠

for n ∈ Z. For a real-valued function q ∈ L2(0, 1), we define periodic Schrödinger operators
in H as

(Hfα)(x) = −f ′′
α (x)+ q(x)fα(x) , x ∈ Γα 
 (0, 1) , α ∈ Z ,

Dom(H) =
{⊕
α∈Z

fα ∈ H
∣∣∣∣

⊕
α∈Z (−f ′′

α + qfα) ∈ H,
AjF (Xn,j )+ BjF

′(Xn,j ) = O for (n, j) ∈ Z
}
,

where O is the null matrix. The self-adjointness of this operator is derived in [17].
In order to analyze the spectrum of H , we need to review the spectral theory of the

related Hill operator H0 := −d2/dx2 + q in L2(R), where q ∈ L2(0, 1) is extended to the
1-periodic function on R, i.e., q(x) satisfies q(x + 1) = q(x) for all x ∈ R. According
to the Floquet–Bloch theory [6, 14, 20], we see that σ(H0) has the band structure. That is,
σ(H0) is purely absolutely continuous and consists of infinitely many closed intervals whose
interiors are disjoint each other. The intervals are characterized as follows. We consider the
Schrödinger equation corresponding to H0:

−y ′′(x, λ)+ q(x)y(x, λ) = λy(x, λ) , x ∈ R , λ ∈ C . (1)

Let θ(x, λ) and ϕ(x, λ) be the solutions to (1) subject to the initial conditions

θ(0, λ) = 1 , θ ′(0, λ) = 0 and ϕ(0, λ) = 0 , ϕ′(0, λ) = 1 ,

respectively. Since θ(x, λ), θ ′(x, λ), ϕ(x, λ), ϕ′(x, λ) are entire in λ ∈ C, so is the function
Δ(λ) := (θ(1, λ) + ϕ′(1, λ))/2. This function is called the discriminant of the spectrum of
H0 or the Lyapunov function for (1). It is known that Δ(λ) − c has only real simple zeroes
for a fixed c ∈ (−1, 1). Moreover, the function Δ(λ) ± 1 has infinitely many real zeroes

λ+
0,0, λ

−
0,1, λ

+
0,1, λ

−
0,2, λ

+
0,2, . . . , which are labeled in increasing order. We consider that 0 of

λ±
0,j means that we are considering the case where there are no rings in the basic period cell.
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Then, the inequality λ+
0,0 < λ−

0,1 ≤ λ+
0,1 < λ−

0,2 ≤ λ+
0,2 < . . . holds true. The spectrum of H0

is characterized by the Lyapunov functionΔ(λ) and the zeroes of Δ(λ)± 1 as follows:

σ(H0) = {λ ∈ R| |Δ(λ)| ≤ 1} =
∞⋃
j=1

[λ+
0,j−1, λ

−
0,j ] .

For j ∈ N = {1, 2, 3, . . . }, the interval Bj := [λ+
0,j−1, λ

−
0,j ] is called the j th band of σ(H0).

The consecutive two bandsBj andBj+1 are separated by the open intervalGj := (λ−
0,j , λ

+
0,j ).

The sequence {λ+
0,2j }∞j=0∪{λ−

0,2j }∞j=1 is the spectrum of the equation −y ′′+qy = λy satisfying

the 1-periodic boundary condition: y(x+ 1) = y(x) on R. On the other hand, {λ+
0,2j−1}∞j=1 ∪

{λ−
0,2j−1}∞j=1 is the spectrum of the equation −y ′′+qy = λy with the 1-anti-periodic boundary

condition: y(x + 1) = −y(x) on R. If there exists some j ∈ N such that λ−
0,j = λ+

0,j is valid,

then the j th spectral gap is degenerate, i.e., Gj = ∅. This implies that Bj and Bj+1 merge,
or there exists an eigenvalue, whose multiplicity is 2, of the spectral problem −y ′′ + qy = λy

subject to the periodic or anti-periodic boundary conditions. Let σD(H0) := {μn}∞n=1 be

the Dirichlet spectrum, namely, the spectrum of the eigenvalue problem −y ′′ + qy = λy

with y(0) = y(1) = 0, where {μn}∞n=1 is arranged in the increasing order. Then, we have

σD(H0) = {λ ∈ R| ϕ(1, λ) = 0} and μn ∈ [λ−
0,n, λ

+
0,n] for each n ∈ N (see [19]).

Let σ∞(H) be the set of eigenvalues of H with infinite multiplicities. This set is called
the flat band of H . Defining the function

D(λ) = 8Δ4(λ)+ (−9 + θ(1, λ)ϕ′(1, λ))Δ2(λ)+ 5

4
− θ(1, λ)ϕ′(1, λ)

4

on R in advance, we state our theorems.

THEOREM 1. We have σ(H) = σ∞(H) ∪ σac(H), where

σ∞(H) = σD(H0) and σac(H) = {λ ∈ R| D(λ) ∈ [−1, 1]} .
In this sense, we call the functionD(λ) the discriminant of σ(H). Next, we describe the

properties of D(λ).

THEOREM 2. (I) We have limλ→−∞D(λ) = ∞.

(II) For c ∈ (− 649
576 , 1), D(λ) − c has only real simple zeroes.

(III) The function D′(λ) has only real simple zeroes λ3,1, λ3,2, λ3,3, . . . , which are sep-
arated by the simple zeroes η3,1, η3,2, η3,3, . . . , of D(λ). Namely, we have

η3,1 < λ3,1 < η3,2 < λ3,2 < η3,3 < λ3,3 < . . . . (2)

Furthermore, we haveD(λ3,2n) ≥ 1 andD(λ3,2n−1) ≤ −1 for any n ∈ N.

(IV) The functionD(λ)−1 has only real zeroes. Let z+0 , z
−
1 , z

+
1 , z

−
2 , z

+
2 , . . . be its zeroes

counted with multiplicities. Then, we have

z+0 < z
−
1 < z+1 < z−2 ≤ z+2 < z−3 < z+3 < z−4 ≤ z+4 < . . . .
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(V) We have

z+0 < x
−
1 < x+

1 < z−1 < z+1 < x−
2 < x+

2 < z−2 ≤ z+2
< x−

3 < x+
3 < z−3 < z+3 < x−

4 < x+
4 < z−4 ≤ z+4 < . . . ,

where x−
1 , x

+
1 , x

−
2 , x

+
2 , . . . are the zeroes of D(λ) + 1.

Next, we prepare notations to describe the band structure of σ(H). Let

λ+
3,0, λ

−
3,2, λ

+
3,2, λ

−
3,4, λ

+
3,4, . . . be the eigenvalues, labeled in increasing order, of the opera-

tor Hp in H, where

(Hpfα)(x) = −f ′′
α (x)+ q(x)fα(x) , x ∈ Γα 
 (0, 1) , α ∈ Z ,

Dom(Hp) =

⎧⎪⎪⎨
⎪⎪⎩
⊕
α∈Z

fα ∈ H

∣∣∣∣∣∣∣∣

⊕
α∈Z (−f ′′

α + qfα) ∈ H ,

AjF (Xn,j )+ BjF
′(Xn,j ) = O for (n, j) ∈ Z ,

fn,j (x) = fn+1,j (x) and f ′
n,j (x) = f ′

n+1,j (x) ,

for (n, j) ∈ Z and x ∈ (0, 1) .

⎫⎪⎪⎬
⎪⎪⎭ .

On the other hand, let λ−
3,1, λ

+
3,1, λ

−
3,3, λ

+
3,3, . . . , be the spectrum of Hap in H, where

(Hapfα)(x) = −f ′′
α (x)+ q(x)fα(x) , x ∈ Γα 
 (0, 1) , α ∈ Z ,

Dom(Hap) =

⎧⎪⎪⎨
⎪⎪⎩
⊕
α∈Z

fα ∈ H

∣∣∣∣∣∣∣∣

⊕
α∈Z (−f ′′

α + qfα) ∈ H ,

AjF (Xn,j )+ BjF
′(Xn,j ) = O for (n, j) ∈ Z,

fn,j (x) = −fn+1,j (x) and f ′
n,j (x) = −f ′

n+1,j (x ) ,

for (n, j) ∈ Z and x ∈ (0, 1) .

⎫⎪⎪⎬
⎪⎪⎭ .

The number 3 of λ±
3,j implies the number of rings in the basic period cell. Furthermore,

we put α±
1 = arccos

√
37∓√

73
72 , α±

2 = arccos(−
√

37±√
73

72 ), α±
3 = − arccos(−

√
37∓√

73
72 ),

α±
4 = − arccos

√
37±√

73
72 . For q ∈ L2(0, 1) and n ∈ N, we moreover define q0 =∫ 1

0 q(x)dx, qs,0,n = ∫ 1
0 q(x) sin 2nπxdx, q̂n = ∫ 1

0 q(x)e
2πinxdx, u±

4n = 2nπ , u±
4n−1 =

2nπ − arccos(± 1
6 ), u

±
4n−2 = 2(n − 1)π + π , u±

4n−3 = 2(n − 1)π + arccos(∓ 1
6 ), v

±
4n−3 =

2(n − 1)π + α±
1 , v±

4n−2 = 2(n − 1)π + α±
2 , v±

4n−1 = 2nπ + α±
3 , v±

4n = 2nπ + α±
4 . Under

these preparations, we have the followings:

THEOREM 3. (I) We have D(λ±
3,n) = (−1)n for any n, and the inequality

λ+
3,0 <λ

−
3,1 < λ+

3,1 < λ−
3,2 < λ+

3,2 < λ−
3,3 < λ+

3,3 < λ−
3,4 ≤ λ+

3,4

<λ−
3,5 < λ+

3,5 < λ−
3,6 < λ+

3,6 < λ−
3,7 < λ+

3,7 < λ−
3,8 ≤ λ+

3,8 < . . . .
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FIGURE 2. The graph Γ 1.

(II) The absolutely continuous spectrum of H has the band structure. Namely, we have

σac(H) =
∞⋃
j=1

[λ+
3,j−1, λ

−
3,j ] .

(III) For j ∈ N, we define the j th gap of σ(H) by γj = (λ−
3,j , λ

+
3,j ). Then, we have

γ4n−3 �= ∅, γ4n−2 �= ∅ and γ4n−1 �= ∅ for any n ∈ N.
(IV) We have the following asymptotics:

λ±
3,8n−7 = (v±

4n−3)
2 + q0 + o

(
1

n

)
, (3)

λ±
3,8n−6 = (u±

4n−3)
2 + q0 + o

(
1

n

)
, (4)

λ±
3,8n−5 = (v±

4n−2)
2 + q0 + o

(
1

n

)
, (5)

λ±
3,8n−4 = (u±

4n−2)
2 + q0 ±

√
|q̂2n−1|2 − 3

35
(qs,0,2n−1)2 + O

(
1

n

)
, (6)

λ±
3,8n−3 = (v±

4n−1)
2 + q0 + o

(
1

n

)
, (7)

λ±
3,8n−2 = (u±

4n−1)
2 + q0 + o

(
1

n

)
, (8)

λ±
3,8n−1 = (v±

4n)
2 + q0 + o

(
1

n

)
, (9)

λ±
3,8n = (u±

4n)
2 + q0 ±

√
|q̂2n|2 − 3

35
(qs,0,2n)2 + O

(
1

n

)
(10)

as n → ∞.

We compare our results with the classical results and related results [11, 16]. As stated
above, the spectrum of H0 has the band structure and the band edges {λ±

0,n} satisfy the in-
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FIGURE 3. The graph Γ 2.

equality λ+
0,0 < λ−

0,1 ≤ λ+
0,1 < λ−

0,2 ≤ λ+
0,2 < . . . . We next see the results of only the part

of the degenerate zigzag nanotube established by Korotyaev and Lobanov [11]. Cutting real
line R and adding rings of the length 1 periodically, we obtain the degenerate zigzag nanotube

Γ 1 = ∪(n,j)∈Z1Γ
1
n,j (see FIGURE 2.), where J1 = {1, 2, 3} and Z1 = Z × J1. We shall

omit the description of the precise definition of this metric graph since there may be no fear

of confusion. For the operator H1 in the Hilbert space H1 = L2(Γ 1) = ⊕(n,j)∈Z1L
2(Γ 1

n,j )

defined as

(H1fn,j )(x) = −f ′′
n,j (x)+ q(x)fn,j (x), x ∈ (0, 1) 
 Γ 1

n,j , (n, j) ∈ Z1,

Dom(H1)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⊕
(n,j)∈Z1

fn,j ∈ L2(Γ 1)

∣∣∣∣∣∣∣∣∣∣∣

⊕
α∈Z1

(−f ′′
α + qfα) ∈ L2(Γ 1) ,

−f ′
n,1(1)+ f ′

n,2(0)− f ′
n,3(1) = 0 ,

fn,2(0) = fn,1(1) = fn,3(1) ,
f ′
n+1,1(0)− f ′

n,2(1)+ f ′
n,3(0) = 0 ,

fn,2(1) = fn+1,1(0) = fn,3(0) for n ∈ Z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

The boundary condition appearing in the Dom(H1) is the Kirchhoff vertex condition. Ko-
rotyaev and Lobanov [11] proved that σ(H1) = σ∞(H1)∪σac(H1) and σac(H1) has the band
structure, where σ∞(H1) = σD(H0). Designating the j th band of σac(H1) by [λ+

1,j−1, λ
−
1,j ]

for each j ∈ N, they obtained the inequality

λ+
1,0 < λ−

1,1 < λ
+
1,1 < λ−

1,2 ≤ λ+
1,2 < λ

−
1,3 < λ+

1,3 < λ
−
1,4 ≤ λ+

1,4 < . . . .

This implies that every odd-numbered spectral gap is never degenerate, i.e., γ1,2n−1 :=
(λ−

1,2n−1, λ
+
1,2n−1) �= ∅ for any n ∈ N. Furthermore, let us see the result [16] in the case

where we add additional rings periodically to the degenerate zigzag nanotube (see FIGURE

3). We put Γ 2 = ∪(n,j)∈Z2Γ
2
n,j , where J2 = {1, 2, 3, 4, 5} and Z2 = Z × J2. We define the

operatorH2 in the Hilbert space H2 = L2(Γ 2) = ⊕(n,j)∈Z2L
2(Γ 2

n,j ) as

(H2fα)(x) = −f ′′
α (x)+ q(x)fα(x) , x ∈ Γα 
 (0, 1) , α ∈ Z2 ,

Dom(H2)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕
α∈Z

fα ∈ H2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊕
α∈Z(−f ′′

α + qfα) ∈ H2 ,

fn,1(1) = fn,2(1) = fn,3(0) ,
−f ′

n,1(1)− f ′
n,2(1)+ f ′

n,3(0) = 0 ,
fn,3(1) = fn,4(0) = fn,5(0) ,
−f ′

n,3(1)+ f ′
n,4(0)+ f ′

n,5(0) = 0 ,
fn,4(1) = fn,5(1) = fn+1,1(0) = fn+1,2(0) ,
−f ′

n,4(1)− f ′
n,5(1)+ f ′

n+1,1(0)+ f ′
n+1,2(0) = 0

for n ∈ Z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The boundary condition appearing in the Dom(H2) is also the Kirchhoff vertex condition. In
this case, we see that σ(H2) = σ∞(H2) ∪ σac(H2), σ∞(H2) = σD(H0) and σac(H2) consists
of infinitely many closed intervals. Let [λ+

2,j−1, λ
−
2,j ] be the j th band of σac(H2) for j ∈ N.

Then, the edges {λ±
2,j } satisfies the inequality

λ+
2,0 < λ

−
2,1 < λ+

2,1 < λ−
2,2 < λ+

2,2 < λ−
2,3 ≤ λ+

2,3

< λ−
2,4 < λ+

2,4 < λ−
2,5 < λ+

2,5 < λ−
2,6 ≤ λ+

2,6 < . . . .

It follows by this inequality that γ3n−2 �= ∅ and γ3n−1 �= ∅ for any n ∈ N, where γj =
(λ−

2,j , λ
+
2,j ) is the j th gap of σac(H2). These results are worthful to compare the result in

Theorem 3 (III). From earlier results, we see that adding rings to the real line closely relate
to the existence of non-degenerate spectral gaps. In order to show the results established by
Korotyaev and Lobanov, it is necessary to solve quadratic equations onΔ(λ). In order to show
the result [16], it is necessary to solve cubic equations on Δ(λ). On the other hand, we need
to solve quartic equations on Δ(λ) in this paper because D(λ) is quartic on Δ(λ). However,

we see that this is not difficult because D(λ) does not include the term of Δ3(λ) and Δ(λ).
In this sense, it seems to be difficult to consider the generalized degenerate zigzag nanotube
which possesses 4 rings and 1 line in the basic period cell because we have to solve quintic
equations. The role of this paper is to make sure that the inequality in Theorem 3 (I) holds
true and that we can generalize the results [11, 16] when we add one ring periodically into the

metric graph Γ 2.
In the next section, we prove that σac(H) has the band structure including the sense of

the flat band. Namely, we prove Theorem 1.1 and 1.2. In the 3rd section, we examine the
asymptotic behavior of the band edges and give the proof of Theorem 1.3.

2. Proof of Theorem 1.1 and 1.2

First, we give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. We pick λ ∈ σD(H0), arbitrarily. We construct infinitely
many linearly independent eigenfunctions corresponding to λ. Putting Ψ0,2(x, λ) = ϕ(x, λ),
Ψ0,3(x, λ) = −ϕ(x, λ) and Ψn,j (x, λ) = 0 for (n, j) ∈ Z \ {(0, 2), (0, 3)}, we define Ψn =



418 HIROAKI NIIKUNI

(Ψm−n,j )(m,j)∈Z , which belongs to Dom(H). For n ∈ N, we see that Ψn is an eigenvalue
corresponding to λ. Thus, we have σD(H0) ⊂ σ∞.

We next find the spectrum of H besides σ(H0). We utilize a direct integral decomposi-
tion for H (see [7, 20]). For μ ∈ [0, 2π), we define a fiber operator Hμ in the Hilbert space

Hμ = ⊕7
j=1L

2(Γ0,j ) as follows:

(Hμfj )(x) = −f ′′
j (x)+ q(x)fj (x) , x ∈ Γ0,j 
 (0, 1) , j ∈ J ,

Dom(Hμ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

7⊕
j=1

fj ∈ Hμ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊕7
j=1(−f ′′

j + qfj ) ∈ Hμ ,

f1(1) = f2(1) = f3(0) ,
−f ′

1(1)+ f ′
2(1)+ f ′

3(0) = 0 ,
f2(1) = f3(1) = f4(0) = f5(0) ,
−f ′

2(1)− f ′
3(1)+ f ′

4(0)+ f ′
5(0) = 0 ,

f4(1) = f5(1) = f6(0) = f7(0) ,
−f ′

4(1)− f ′
5(1)+ f ′

6(0)+ f ′
7(0) = 0 ,

f6(1) = f7(1) = eiμf1(0) ,
−f ′

6(1)− f ′
7(1)+ eiμf ′

1(0) = 0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Considering the Hilbert space

H =
∫ ⊕

[0,2π)
Hμ

dμ

2π
= L2

(
[0, 2π),Hμ,

dμ

2π

)

and the unitary operator U : L2(Γ ) → H defined as

(Uf )(μ) =
∑
n∈Z

einμfn, f = (fn)n∈Z = (fn,j )(n,j)∈Z1 ∈ L2(Γ ) ,

we have the direct integral representation of H :

UHU−1 =
∫ ⊕

[0,2π)
H(μ)

dμ

2π
.

Since H(μ) acts on the finite graph ∪7
j=1Γ0,j , the spectrum of H(μ) is discrete spectrum.

For μ ∈ [0, 2π), let {En(μ)}n∈N stand for the increasing sequence of the eigenvalues of
H(μ), which is counted with multiplicities. Let N be the set of natural numbers n such
that En(μ) does depend on μ ∈ [0, 2π). Then, we have σ(H) = σ∞(H) ∪ σac(H), where
σ∞(H) = {En(μ)| En(μ) is independent of μ ∈ [0, 2π)} and

σac(H) =
⋃
n∈N

⋃
μ∈[0,2π)

{En(μ)} .

Since σD(H0) ⊂ σ∞, we next examine σ(H)\σD(H0). We pick λ �∈ σD(H0), arbitrarily.
We stress that ϕ(1, λ) �= 0. In order to investigate the part of σ(H)\σD(H0), we consider the



GENERALIZED DEGENERATE ZIGZAG NANOTUBE 419

characteristic equation Hμf = λf for 0 �= f ∈ Dom(Hμ), that is, we consider the following
system consisted of 9 equations:

−f ′′
j (x)+ q(x)fj (x) = λfj (x) , x ∈ (0, 1) , j ∈ J , (11)

f1(1) = f2(1) = f3(0) , (12)

−f ′
1(1)+ f ′

2(1)+ f ′
3(0) = 0 , (13)

f2(1) = f3(1) = f4(0) = f5(0) , (14)

−f ′
2(1)− f ′

3(1)+ f ′
4(0)+ f ′

5(0) = 0 , (15)

f4(1) = f5(1) = f6(0) = f7(0) , (16)

−f ′
4(1)− f ′

5(1)+ f ′
6(0)+ f ′

7(0) = 0 . (17)

f6(1) = f7(1) = eiμf1(0) , (18)

−f ′
6(1)− f ′

7(1)+ eiμf ′
1(0) = 0 . (19)

For fundamental solutions θ(x, λ) and ϕ(x, λ), we put

w(x, λ) = θ(x, λ)− θ(1, λ)

ϕ(1, λ)
ϕ(x, λ) .

Then, any solution y to (1) is given by

y(x, λ) = w(x, λ)y(0, λ)+ ϕ(x, λ)

ϕ(1, λ)
y(1, λ) .

We put X1 = f1(0), X2 = f1(1), X3 = f2(1) and X4 = f4(1). Then, we obtain the
followings by using (12), (14), (16) and (18):

f1(x)=w(x, λ)X1 + ϕ(x, λ)

ϕ(1, λ)
X2 ,

f2(x)= f3(x) = w(x, λ)X2 + ϕ(x, λ)

ϕ(1, λ)
X3 ,

f4(x)= f5(x) = w(x, λ)X3 + ϕ(x, λ)

ϕ(1, λ)
X4 ,

f6(x)= f7(x) = w(x, λ)X4 + ϕ(x, λ)

ϕ(1, λ)
eiμX1 .

Substituting these into (13), (15), (17) and (19), we have

X1 − (ϕ′(1, λ)+ 2θ(1, λ))X2 + 2X3 = 0 ,

X2 − (θ(1, λ)+ ϕ′(1, λ))X3 +X4 = 0 ,

X3 − (θ(1, λ)+ ϕ′(1, λ))X4 + eiμX1 = 0 ,

2X4 − (2ϕ′(1, λ)+ θ(1, λ))eiμX1 + eiμX2 = 0 .
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Since θ(1, λ)+ ϕ′(1, λ) = 2Δ(λ), we obtain a system

M(λ,μ)

⎛
⎜⎜⎝
X1

X2

X3

X4

⎞
⎟⎟⎠ = 0 ,

where

M(λ,μ) =

⎛
⎜⎜⎝

1 −(2Δ(λ)+ θ(1, λ)) 2 0
0 1 −2Δ(λ) 1
eiμ 0 1 −2Δ(λ)

−(2Δ(λ)+ ϕ′(1, λ))eiμ eiμ 0 2

⎞
⎟⎟⎠ .

The characteristic equationHμf = λf has a non-trivial solution f ∈ Dom(Hμ) if and only if
this system has a non-trivial solution. Thus, we obtain detM(λ,μ) = 0. By straightforward
calculations, we obtain

e−iμ detM(λ,μ)= 4 cosμ− 32Δ4(λ)+ 36Δ2(λ)− 5 + (1 − 4Δ2(λ))θ(1, λ)ϕ′(1, λ) .

Since λ satisfying detM(λ,μ) = 0 does depend on μ, we see that σ∞(H) \ σD(H0) = ∅ and
each component of {En(μ)}n∈N solvesD(λ) = 4 cosμ. Thus, we have

σac(H) \ σD(H0) = {λ ∈ R| D(λ) ∈ [−1, 1]} \ σD(H0) .

Since σac(H) is a closed set, we obtain σac(H) = {λ ∈ R| D(λ) ∈ [−1, 1]}. �

Let us study the properties of D(λ). As stated in [19], we have

θ(1, λ)= cos
√
λ+ 1

2
√
λ

∫ 1

0
(sin

√
λ+ sin

√
λ(1 − 2t))q(t)dt + O

(
e|�

√
λ|

|λ|

)
, (20)

ϕ′(1, λ)= cos
√
λ+ 1

2
√
λ

∫ 1

0
(sin

√
λ+ sin

√
λ(1 − 2t))q(t)dt + O

(
e|�

√
λ|

|λ|

)
(21)

as |λ| → ∞ and hence

Δ(λ) = cos
√
λ+ q0 sin

√
λ

2
√
λ

+ S(λ)

2
√
λ

+ O
(
e|�

√
λ|

|λ|

)
(22)

as |λ| → ∞, where �z stands for the imaginary part of a complex number z and

S(λ) =
∫ 1

0
sin

√
λ(1 − 2t)q(t)dt .

Note that S(λ) → 0 as |λ| → ∞. Substituting (20), (21) and (22) into D(λ), we obtain

D(λ) = D0(λ)+ O(e4|�√
λ|)

|λ|1/2 as |λ| → ∞ , (23)
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where D0(λ) = 9 cos4
√
λ− 37

4 cos2
√
λ+ 5

4 is the discriminant in the case where q ≡ 0.

PROOF OF THEOREM 1.2 (I). The asymptotics (23) gives us the proof of the statement
(I) of Theorem 1.2. �

Our first lemma is on the zeroes of D(λ) − 1 and D(λ) + 649
576 . To describe the results,

we prepare notations. For a ∈ C and r > 0, we put

Ω(a, r) = {λ ∈ C| |√λ− a| < r} and C(a, r) = {λ ∈ C| |√λ− a| = r} .
Moreover, we define C(r) = C1(r)− C2(r)− C3(r)+ C4(r), where

C1(r) = {λ ∈ C| √
λ = r + irt , −1 ≤ t ≤ 1} ,

C2(r) = {λ ∈ C| √
λ = rt + ir , −1 ≤ t ≤ 1} ,

C3(r) = {λ ∈ C| √
λ = −r + irt , −1 ≤ t ≤ 1} ,

C4(r) = {λ ∈ C| √
λ = rt − ir , −1 ≤ t ≤ 1}

for r > 0. Let Ω̃(r) be the region surrounded by C(r).

LEMMA 1. (I) There exists some n0 ∈ N such that D(λ) − 1 has exactly two zeroes

in both Ω(nπ, π8 ) and Ω(nπ + π
2 ,

π
8 ) and 8n − 1 zeroes in Ω̃(2nπ − π

8 ) for any n ≥ n0,
counted with multiplicities. There are no other zeroes.

(II) There exists some n0 ∈ N such that D(λ) + 649
576 has exactly two zeroes in both

Ω(nπ + π
4 ,

π
8 ) and Ω(nπ + 3π

4 ,
π
8 ) and 8n zeroes in Ω̃(2nπ − π

8 ) for any n ≥ n0, counted
with multiplicities. There are no other zeroes.

PROOF. We put
√
λ = nπ +α+ iβ, where α = π

8 cos θ , β = π
8 sin θ and θ = [0, 2π].

We note that

D0(λ)− 1 = 9(cos
√
λ+ 1)(cos

√
λ− 1)(cos

√
λ+ 1

6
)(cos

√
λ− 1

6
) . (24)

For p = 1,−1, 1
6 ,− 1

6 , we claim that there exists some constantCp > 0 satisfying | cos
√
λ+

p| ≥ Cp . It follows by a straightforward calculation that

| cos
√
λ+ p|2 = A(θ)2 + B(θ)2 ,

where A(θ) = (−1)n cosα coshβ + p and B(θ) = sin α sinhβ. Let us show that
(A(θ), B(θ)) = (0, 0) does not hold true for any θ . We first consider the case where

sin α = 0, which implies θ = π
2 ,

3
2π . If θ = π

2 , then we have β = π
8 and hence

A(π2 ) = (−1)n cosh π
8 + p �= 0. If θ = 3

2π , then we have β = −π
8 and hence

A( 3
2π) = (−1)n cosh π

8 + p �= 0. On the other hand, we consider the case where sinhβ = 0,
which implies β = 0. Then, we see that θ = 0, π, 2π . If θ = 0, 2π , then we have
α = π

8 and hence A(θ) = cos π8 + p �= 0. If θ = π , then we obtain α = −π
8 and
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hence A(θ) = cos π8 + p �= 0. Since | cos
√
λ + p|2 is continuous in θ ∈ [0, 2π],

there exists its minimum. The minimum is strictly positive because there does not exist
θ satisfying (A(θ), B(θ)) = (0, 0). Thus, there exists some constant Cp > 0 satisfying

| cos
√
λ + p| ≥ Cp . This combined with (24) means that there exists some constant C > 0

satisfying |D0(λ)−1| ≥ C on C(nπ, π8 ). Similarly, we see that there exists some C > 0 such

that |D0(λ)− 1| ≥ C onΩ(nπ + π
2 ,

π
8 ). So, we see that

|(D(λ) − 1)− (D0(λ)− 1)|
|D0(λ)− 1| ≤ O

(
1

n

)
as n → ∞

on both C(nπ, π8 ) and C(nπ + π
2 ,

π
8 ) due to (23). This combined with Rouché’s theorem

means that the number of zeroes of D(λ) − 1 and D0(λ) − 1 inside both Ω(nπ, π8 ) and

Ω(nπ + π
2 ,

π
8 ) are the same for a large n ∈ N. Let us show that D0(λ) − 1 has exactly two

zeroes in bothΩ(nπ, π8 ) andΩ(nπ+ π
2 ,

π
8 ). We recall (24), which implies thatD0(λ)−1 = 0

is equivalent to cos
√
λ = ±1,± 1

6 . Since 3
8π < arccos 1

6 <
π
2 and π

2 < arccos(− 1
6 ) <

5
8π

because of cos2 3
8π = (1 + cos 3

4π)/2 >
1

36 , we see thatΩ(nπ + π
2 ,

π
8 ) includes exactly two

zeroes of D0(λ)− 1, counted with multiplicities. On the other hand, since the multiplicity of

both cos
√
λ = 1 and cos

√
λ = −1 is 2, we see thatΩ(nπ, π8 ) includes 2 zeroes ofD0(λ)−1,

counted with multiplicities. Thus, we see that D(λ)− 1 has exactly two zeroes, counted with
multiplicities, in bothΩ(nπ, π8 ) and Ω(nπ + π

2 ,
π
8 ) for a large n ∈ N.

We next show thatD(λ)− 1 has exactly 8n− 1 zeroes in Ω̃(2nπ− π
8 ) for a large n ∈ N.

We claim that for p = ±1,± 1
6 , there exists some Mp > 0 such that

e|�
√
λ| < Mp| cos

√
λ+ p|

on C1(2nπ − π
8 ), C2(2nπ − π

8 ), C3(2nπ − π
8 ) and C4(2nπ − π

8 ). We first consider λ ∈
C1(2nπ − π

8 ). Putting
√
λ = 2nπ − π

8 + i(2nπ − π
8 )t and −1 ≤ t ≤ 1, we have

| cos
√
λ+p|2 = (cos(2nπ− π

8
) cosh(2nπ− π

8
)t+p)2 + sin2(2nπ− π

8
) sinh2(2nπ − π

8
)t.

So, we see that

e2|�√
λ|

| cos
√
λ+ p|2 = e2|2nπ− π

8 |t

(cos π8 cosh(2nπ − π
8 )t + p)2 + sin2 π

8 sinh2(2nπ − π
8 )t

. (25)

We put

f (x) = e2x

(cos π8 cosh x + p)2 + sin2 π
8 sinh2 x

and g(x) = (cos π8 cosh x + p)2 + sin2 π
8 sinh2 x. We show that there exists some C̃p > 0

such that g(x) ≥ C̃p . We see that sinh x = 0 and cos π8 cosh x + p = 0 do not hold true
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simultaneously. In addition, g(x) → ∞ as x → ±∞. So, we see that there exists some

C̃p > 0 such that g(x) ≥ C̃p . Since g(x) is continuous and g(x) �= 0 on R, f (x) is
continuous on R. Furthermore, we see f (x) → 4 as x → ∞ and f (x) → 0 as x → −∞.

Thus, we notice that there exists some Čp > 0 such that f (x) ≤ Čp. This combined with (25)

means that there exists some Mp > 0 such that e|�
√
λ| < Mp| cos

√
λ+ p| on C1(2nπ − π

8 ).

Similarly, we obtain the same inequality on C3(2nπ − π
8 ).

We next pick λ ∈ C2(2nπ − π
8 ), arbitrarily. Putting 2nπ − π

8 = m, −1 ≤ t ≤ 1 and√
λ = mt + im, we have | cos

√
λ+ p|2 = (cosmt coshm+ p)2 + sin2mt sinh2m. Putting

gm(t) =
(

cosmt · coshm

em
+ p

em

)2

+ sin2mt · sinh2m

e2m ,

we have

e2|�√
λ|

| cos
√
λ+ p|2 = 1

gm(t)
≤
∣∣∣∣ 1

gm(t)
− 4

∣∣∣∣+ 4 = 4

gm(t)

∣∣∣∣14 − gm(t)

∣∣∣∣ + 4 . (26)

We obtain

gm(t)

= e2m + 2 + e−2m

4e2m
cos2mt + 2p

em + e−m

2e2m
cosmt + p2

e2m
+ sin2mt

e2m − 2 + e−2m

4e2m

= e2m + e−2m

4e2m + 1

2e2m cos 2mt + p
em + e−m

e2m cosmt + p2

e2m

≥ e2m + e−2m

4e2m − 1

2e2m − |p|e
m + e−m

e2m + p2

e2m

= cosh2m− 1 − 2|p| coshm+ |p|2
e2m

= (coshm− |p|)2 − 1

e2m
.

Putting h(x) = e2x

(coshx−|p|)2−1
, we have

h′(x) = − 5
2 |p|e3x + o(e3x)

(cosh x − |p|)2 − 1
as x → ∞ .

This implies that there exists some x0(p) ∈ R such that h′(x) < 0 for x > x0(p). Namely, if
x > x0(p), then we have h(x) < h(x0(p)). That is, there exists some m0(p) ∈ N such that

gm(t) ≥ (coshm0(p)− |p|)2 − 1

e2m0(p)
> 0 (27)
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for m > m0(p). Since∣∣∣∣gm(t)− 1

4

∣∣∣∣=
∣∣∣∣14e−4m + 1

2e2m cos 2mt + 2p cosmt
coshm

e2m + p2

e2m

∣∣∣∣
≤ 1

4
+ 1

2
+ 2|p| + |p|2 ,

it follows by (26) and (27) that there exists someMp > 0 such that e|�
√
λ| < Mp| cos

√
λ+p|

on C2(2nπ − π
8 ) for a large n ∈ N. Similarly, we obtain the same inequality on C2(2nπ − π

8 )

if n ∈ N is enough large. Thus, (23) and (24) imply that

|(D(λ) − 1)− (D0(λ)− 1)| = |D0(λ)− 1| · O
(

1

n

)

on C(2nπ − π
8 ) for a large n ∈ N. Since D0(λ) − 1 has exactly 8n − 1 zeroes inside

Ω(2nπ − π
8 ), it follows by Rouché’s theorem that D(λ) − 1 also has exactly 8n − 1 zeroes

inside Ω(2nπ − π
8 ) if n ∈ N is enough large.

Noting that D0(λ)+ 649
576 = 9

(
cos2

√
λ− 37

72

)2
, we also get the statement (II). �

Our next goal is to show that D(λ) − c has only simple real zeroes for a fixed c ∈
(− 649

576 , 1). We first examine the zeroes ofD0(λ)− c = 9 cos4
√
λ− 37

4 cos2
√
λ+ 5

4 − c. We
see that D0(λ)− c = 0 is equivalent to

cos
√
λ=

√
37 + √

649 + 576c

72
∈
(√

37

72
, 1

)
, −

√
37 + √

649 + 576c

72
∈
(

−1,−
√

37

72

)
,

√
37 − √

649 + 576c

72
∈
(

1

6
,

√
37

72

)
, −

√
37 − √

649 + 576c

72
∈
(

−
√

37

72
,−1

6

)
.

For a fixed c ∈ (− 649
576 , 1), D0(λ)− c has 8 zeroes in (2nπ, 2(n+ 1)π) for each n ∈ N. For a

fixed c ∈ (− 649
576 , 1), we put

α1(c)= arccos

√
37 + √

649 + 576c

72
∈ (0, arccos

√
37

72
) ,

α2(c)= arccos

√
37 − √

649 + 576c

72
∈ (arccos

√
37

72
, arccos

1

6
) ,

α3(c)= arccos

⎛
⎝−

√
37 − √

649 + 576c

72

⎞
⎠ ∈ (arccos

(
−1

6

)
, arccos

(
−
√

37

72

)
) ,
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α4(c)= arccos

⎛
⎝−

√
37 + √

649 + 576c

72

⎞
⎠ ∈ (arccos

(
−
√

37

72

)
, π) .

For any c ∈ (− 649
576 , 1), we see that α1(c) < α2(c) < α3(c) < α4(c). Furthermore, α1(c)

and α3(c) are increasing in c ∈ (− 649
576 , 1), whereas α2(c) and α4(c) are decreasing in c ∈

(− 649
576 , 1). Thus, we see that cosα1(c) and cosα3(c) are increasing in c ∈ (− 649

576 , 1), whereas

cosα2(c) and cosα4(c) are decreasing in c ∈ (− 649
576 , 1). Moreover, we see that

0 = α1(1) < α1(c) < α1(−649

576
) = arccos

√
37

72
= α2(−649

576
) < α2(c)

< α2(1) = arccos
1

6
< arccos(−1

6
) < α3(1) < α3(c) < α3(−649

576
)

= arccos(−
√

37

72
) = α4(−649

576
) < α4(c) < α4(1) = π

for any c ∈ (− 649
576 , 1). Putting α5(c) = 2π−α4(c), α6(c) = 2π−α3(c), α7(c) = 2π−α2(c)

and α8(c) = 2π − α1(c), we define αn,j (c) = αj (c) + 2nπ for j = 1, 2, 3, . . . , 8 and
n ∈ N0 := {0, 1, 2, . . . }. Note that αn,j ∈ (2nπ, 2(n+ 1)π).

We prepare notations to use the Rouché’s theorem. Putting γ0 = 0, γ1 = arccos
√

37
72 ,

γ2 = arccos 1
6 , γ3 = arccos(− 1

6 ), γ4 = arccos(−
√

37
72 ), γ5 = π , γ6 = 2π−γ4, γ7 = 2π−γ3,

γ8 = 2π − γ2, γ9 = 2π − γ1 and γ10 = 2π , we reset notations by

C1(n)= C−
0 (n)+ C̃1(n)− C+

0 (n)− C̃0(n) ,

C2(n)= C−
1 (n)+ C̃2(n)− C+

1 (n)− C̃1(n) ,

C3(n)= C−
3 (n)+ C̃4(n)− C+

3 (n)− C̃3(n) ,

C4(n)= C−
4 (n)+ C̃5(n)− C+

4 (n)− C̃4(n) ,

C5(n)= C−
5 (n)+ C̃6(n)− C+

5 (n)− C̃5(n) ,

C6(n)= C−
6 (n)+ C̃7(n)− C+

6 (n)− C̃6(n) ,

C7(n)= C−
8 (n)+ C̃9(n)− C+

8 (n)− C̃8(n) ,

C8(n)= C−
9 (n)+ C̃10(n)− C+

9 (n)− C̃9(n) ,

where

C̃j (n) = {λ ∈ C| √
λ = 2nπ + γj + nit, −1 ≤ t ≤ 1} ,

C±
j (n) = {λ ∈ C| √

λ = 2nπ + t ± ni, γj ≤ t ≤ γj+1}
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for j = 0, 1, 2, . . . , 10 and n ∈ N. Furthermore, we put

C̃0(−n)= {λ ∈ C| √
λ = −2nπ + nit, −1 ≤ t ≤ 1} ,

C̃±
0 (n)= {λ ∈ C| √

λ = ±ni + 2πt, −1 ≤ t ≤ 1}
and C0(n) = C̃−

0 (n) + C̃0(n) − C̃+
0 (n) − C̃0(−n) for n ∈ N. For a fixed c ∈ (− 649

576 , 1),
we see that D0(λ)− c has exactly 8n zeroes in C0(n) and exactly one zero in Cj(n) for each
j = 1, 2, 3, . . . , 8 and n ∈ N. Furthermore, we obtain the followings.

LEMMA 2. For a fixed c ∈ (− 649
576 , 1), there exists some n0 ∈ N such that D(λ) − c

has exactly 8n0 zeroes in C0(n0) and exactly one zeroes in Cj(n) for each j = 1, 2, 3, . . . , 8
if n ≥ n0, where the number of zeroes is counted with multiplicities. Moreover, there are no
other zeroes of D(λ)− c.

PROOF. For a fixed c ∈ (− 649
576 , 1), we put p1(c) =

√
37+√

649+576c
72 , p2(c) =

−
√

37+√
649+576c
72 , p3(c) =

√
37−√

649+576c
72 , p4(c) = −

√
37−√

649+576c
72 . We recall that

D0(λ)−c=(cos
√
λ−p1(c))(cos

√
λ−p2(c))(cos

√
λ−p3(c))(cos

√
λ−p4(c)) . (28)

For p(c) = p1(c), p2(c), p3(c), p4(c) and j = 0, 1, 2, . . . , 8, there exist some constants
Cp(c),j > 0 and n0(p(c), j) ∈ N such that

e|�
√
λ| ≤ Cp(c),j | cos

√
λ− p(c)| (29)

on Cj (n) if n ≥ n0(p(c), j). This statement is shown in a similar way to Lemma 1. It follows
by (23), (28) and (29) that

|(D(λ)− c)− (D0(λ)− c)| = |D0(λ)− c| · O
(

1

|λ|1/2
)

on Cj (n) if n ≥ n0(p(c), j). Thus, it holds true for a large n ∈ N that

|(D(λ)− c)− (D0(λ)− c)| < |D0(λ)− c|
on Cj(n). So, it follows by the Rouché’s theorem that the numbers ofD(λ)−c andD0(λ)−c
are the same for a large n ∈ N. Therefore, we obtain our assertion. �

In order to prove that D(λ)− c has only simple real zeroes for a fixed c ∈ (− 649
576 , 1), we

need two more lemma.

LEMMA 3. (I) If λ ∈ σD(H0), then we have D(λ) ≥ 1.

(II) If λ satisfies that Δ(λ) = 0, then we have D(λ) ≥ 5
4 .

(III) If λ satisfies that Δ2(λ) = 37
72 , then we haveD(λ) ≤ − 649

576 .
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PROOF. Let us show the first statement. We pick λ ∈ σD(H0), arbitrarily. Since
ϕ(1, λ) = 0, it follows by θ(1, λ)ϕ(1, λ) − θ ′(1, λ)ϕ(1, λ) = 1 that θ(1, λ)ϕ′(1, λ) = 1.

Thus, we see that D(λ) = 8Δ4(λ)− 8Δ2(λ)+ 1 = 8(Δ2(λ)− 1
2 )

2 − 1. Since Δ2(λ) ≥ 1 for
λ ∈ σD(H0), we haveD(λ) ≥ 1.

We next show that second statement. We see that Δ(λ) = 0 implies that θ(1, λ) =
−ϕ′(1, λ). Thus, we have D(λ) = 5

4 + (θ(1,λ))2

4 ≥ 5
4 .

We finally show the third statement. We put

Δ−(λ) = θ(1, λ)− ϕ′(1, λ)
2

. (30)

By straightforward calculations, we have

Δ2(λ)+Δ2−(λ) = θ2(1, λ)+ (ϕ′(1, λ))2

2

and 4Δ2(λ) = θ2(1, λ)+2θ(1, λ)ϕ′(1, λ)+(ϕ′(1, λ))2 and hence θ(1, λ)ϕ′(1, λ) = Δ2(λ)−
Δ2−(λ). So, we obtain

D(λ)= 9Δ4(λ)− 37

4
Δ2(λ)+ 5

4
+
(

1

4
−Δ2(λ)

)
Δ2−(λ)

= 9(Δ2(λ)− 37

72
)2 − 649

576
+
(

1

4
−Δ2(λ)

)
Δ2−(λ) .

Therefore, we see that D(λ) ≤ − 649
576 if Δ2(λ) = 37

72 . �

Due to Theorem 2 (I), Lemma 3 (III) and the intermediate value theorem, there exists
λ ∈ R such that D(λ) = 1. Let η0 ∈ R be the minimum of λ satisfying D(λ) = 1. Moreover,
we define {η+

j }∞j=1, {η−
j }∞j=1 and {ηj }∞j=1 be the increasing sequence satisfying

{η+
j }∞j=1 = {λ ∈ R| Δ(λ) =

√
37

72
} ,

{η−
j }∞j=1 = {λ ∈ R| Δ(λ) = −

√
37

72
} ,

{ηj }∞j=1 = {λ ∈ R| Δ(λ) = 0} .
Since the behavior of Δ(λ) is well-known in [14, Theorem 2.1], we see that

η0 < η
+
1 < η1 < η−

1 < μ1 < η−
2 < η2 < η+

2 < μ2 < . . .

< η+
2n−1 < η2n−1 < η−

2n−1 < μ2n−1 < η−
2n < η2n < η

+
2n < μ2n < . . . .

Due to Lemma 3, we obtain the following lemma:
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LEMMA 4. We have D(η0) = 1, D(η+
2n−1) ≥ − 649

576 , D(η2n−1) ≥ 5
4 , D(η−

2n−1) ≤
− 649

576 , D(μ2n−1) ≥ 1, D(η−
2n) ≤ − 649

576 , D(η2n) ≥ 5
4 , D(η+

2n) ≤ − 649
576 , D(μ2n) ≥ 1 for

n ∈ N.

Using Lemma 2 and 4, we demonstrate the proof of Theorem 2 (II).

PROOF OF THEOREM 2 (II). We fix a c ∈ (− 649
576 , 1). For this c, we pick a large n0 ∈ N

satisfying the statement of Lemma 2. We first shall show that the simple zero of D(λ) − c

inside C7(n) is real for n ≥ n0. By virtue of (22), we notice that the zeroes of Δ(λ)− γ and

cos
√
λ − γ are close for a fixed γ ∈ [−1, 1] if λ is enough large. Thus, for a fixed small

ε > 0, there exists some n1 = n1(ε) ∈ N such that η2n ∈ (2nπ + 3
2π − ε, 2nπ + 3

2π + ε),

η+
2n ∈ (2nπ + γ9 − ε, 2nπ + γ9 + ε), μ2n ∈ (2(n+ 1)π − ε, 2(n+ 1)π + ε), η+

2n+1 ∈ (2(n+
1)π+γ1−ε, 2(n+1)π+γ1+ε) and η2n+1 ∈ (2(n+1)π+π

2 −ε, 2(n+1)π+π
2 +ε) if n ≥ n1.

Let the above number ε > 0 be taken such that ε < min{(γj+1 − γj )/2| j = 0, 1, 2, . . . , 9}
and n ≥ max{n1, n0}. Since D(η2n) ≥ 1 and D(η+

2n) ≤ − 649
576 , we see by the intermediate

value theorem that there exists at least one zero ofD(λ)− c in the interval (η2n, η
+
2n). Due to

Lemma 2, there are no zeroes of D(λ) − c in (2nπ + γ7, 2nπ + γ8). Hence, there exists at
least one zero of D(λ)− c in (2nπ + γ8, η

+
2n).

We prove that D(2nπ + γ9) ≤ − 649
576 by a contradiction. Seeking a contradiction, we

assume that D(2nπ + γ9) > − 649
576 . This implies that there exists some c0 ∈ (− 649

576 , 1) such
that the simple zero of D(λ)− c is real for c ∈ (c0, 1) and the simple zero of D(λ)− c is not

real for c ∈ (− 649
576 , c0). Since η+

2n ∈ (2nπ + γ9 − ε, 2nπ + γ9 + ε), D(η+
2n) ≤ − 649

576 and our

assumptionD(2nπ + γ9) > − 649
576 , we see by the intermediate value theorem that there exists

at least one zero ofD(λ)−c in (2nπ+γ9, 2nπ+γ9+ε) for any c ∈ (− 649
576 , c0). By Lemma 2,

we see that there is exactly one zero ofD(λ)−c inC8(n) for a fixed c ∈ (− 649
576 , 1). This means

that D(λ) ≤ − 649
576 in (2nπ + γ9 + ε, 2(n + 1), π) (Otherwise, there are at least two zeroes

of D(λ) − c in C8(n) for c ∈ (− 649
576 , 1). This violates the statement of Lemma 2.). Next, we

recall that μ2n ∈ (2(n+ 1)π − ε, 2(n+ 1)π + ε). This combined with the intermediate value
theorem means that there exist at least one real zero ofD(λ)−c in (2(n+1)π, 2(n+1)π+ε)
for c ∈ (− 649

576 , 1). By virtue of Lemma 2, we see that there exists exactly one zero ofD(λ)−c
in C1(n+ 1) for c ∈ (− 649

576 , 1). Thus, we haveD(λ) ≥ 1 in (2(n+ 1)π + ε, 2(n+ 1)π + γ1).

We next take account of η+
2n+1 ∈ (2(n+ 1)π + γ1 − ε, 2(n+ 1)π + γ1 + ε) andD(η+

2n+1) ≤
− 649

576 . It follows by the intermediate value theorem thatD(λ)− c has at least one real zero in

(2(n+1)π+γ1, 2(n+1)π+γ1+ε) for c ∈ (− 649
576 , 1). The number of zero ofD(λ)−c inside

C2(n+ 1) for c ∈ (− 649
576 , 1) is exactly one, due to Lemma 2. So, we notice thatD(λ)− c has

no zeroes in (2(n+ 1)π + γ1 + ε, 2(n+ 1)π + γ2) for c ∈ (− 649
576 , 1). Moreover, there are no

zeroes ofD(λ)−c in (2(n+1)π+γ2, 2(n+1)π+γ3) for c ∈ (− 649
576 , 1) because of Lemma 2.
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However, we notice thatD(η2n+1) ≥ 1 for η2n+1 ∈ (2(n+1)π+ π
2 −ε, 2(n+1)π+ π

2 +ε) ⊂
(2(n + 1)π + γ2, 2(n + 1)π + γ3). This contradict the continuity of D(λ) and hence the

intermediate value theorem. This is why we see that D(2nπ + γ9) ≤ − 649
576 and the simple

zero of D(λ) − c in C7(n) is real for c ∈ (− 649
576 , 1). In a similar way, we see that the simple

zero of D(λ) − c in Cj(n) is real for c ∈ (− 649
576 , 1), n ≥ n2 := max{n1, n0} and every

j = 1, 2, 3, . . . , 8.
Furthermore, it follows by Lemma 2 and 4 that D(λ) − c has exactly 8n2 real zeroes in

C0(n2) for c ∈ (− 649
576 , 1). Therefore, we conclude that the zeroes ofD(λ)− c are simple and

real for c ∈ (− 649
576 , 1). �

To prove Theorem 2 (III), we make use of Laguerre’s theorem. We quote it from [21].

DEFINITION 1. An entire function f (z) is said to be of finite order if there is a positive
number A such that

f (z) = O(erA) as |z| = r → ∞ .

The lower bound ρ of numbersA for which this is true is called the order of the function f (z).

THEOREM 4 (Laguerre, see Section 8.52 in [21]). If f (z) is an entire function, is real
for a real z, of order less than 2, with real zeroes, then the zeroes of f ′(z) are also all real
and are separated from each other by the zeroes of f (z).

PROOF OF THEOREM 2 (III), (IV), (V). We shall show the statement (III). It follows
by (23) that the order ofD(λ) is less than 2. Furthermore,D(λ) has only simple real zero, due
to Theorem 2 (II). Since θ(x, λ), θ ′(x, λ), ϕ(x, λ), ϕ′(x, λ) are entire in λ ∈ C and real for
real λ, so is the functionD(λ). Utilizing Laguerre’s theorem, we see that the zeroes of D′(λ)
are also all real and are separated from each other by the zeroes of D(λ). Taking account
of Theorem 2 (I), we obtain the inequality (2). Since the zeroes of D(λ) − c is simple for

c ∈ (− 649
576 , 1), we see that D(λ3,2n) ≥ 1 and D(λ3,2n−1) ≤ − 649

576 < −1 for any n ∈ N.
Combining Lemma 2, 4 and Theorem (II), (III), we obtain (IV) and (V). �

3. Proof of Theorem 1.3

We first introduce the monodromy matrix for H .

DEFINITION 2. For λ ∈ C \ σD(H0), let Θ(x, λ) = {Θα(x, λ)}α∈Z and Φ(x, λ) =
{Φα(x, λ)}α∈Z be the solutions to the equations

−f ′′
α (x)+ q(x)fα(x) = λfα(x) , x ∈ Γα 
 (0, 1) , α ∈ Z , (31)

fn,1(1) = fn,2(1) = fn,3(0) , (32)

−f ′
n,1(1)+ f ′

n,2(1)+ f ′
n,3(0) = 0 , (33)

fn,2(1) = fn,3(1) = fn,4(0) = fn,5(0) , (34)
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−f ′
n,2(1)− f ′

n,3(1)+ f ′
n,4(0)+ f ′

n,5(0) = 0 , (35)

fn,4(1) = fn,5(1) = fn,6(0) = fn,7(0) , (36)

−f ′
n,4(1)− f ′

n,5(1)+ f ′
n,6(0)+ f ′

n,7(0) = 0 . (37)

fn,6(1) = fn,7(1) = fn+1,1(0) , (38)

−f ′
n,6(1)− f ′

n,7(1)+ f ′
n+1,1(0) = 0 (39)

for n ∈ N subject to the initial conditions

Θ0,1(0, λ) = 1 , Θ ′
0,1(0, λ) = 0 , and Φ0,1(0, λ) = 0 , Φ ′

0,1(0, λ) = 1,

respectively. Then, we define the monodromy matrix with respect to H as

M(λ) =
(
Θ1,1(0, λ) Φ1,1(0, λ)
Θ ′

1,1(0, λ) Φ ′
1,1(0, λ)

)
.

We abbreviate θ(1, λ), θ ′(1, λ), ϕ(1, λ), ϕ′(1, λ) and Δ(λ) to θ1, θ ′
1, ϕ1, ϕ′

1 and Δ,

respectively. Then, the components of M(λ) are written by θ1, θ ′
1, ϕ1, ϕ′

1 andΔ:

LEMMA 5. We have

Θ1,1(0)= 2Δ2(2θ1 + ϕ′
1)θ1 − 2Δ2 − 2Δθ1 − θ1(2θ1 + ϕ′

1)

2
+ 1

2
, (40)

Θ ′
1,1(0)=

2ϕ′
1

ϕ1
Θ1,1(0)− 2

ϕ1
{(2θ1 + ϕ′

1)Δθ1 −Δ− θ1} , (41)

Φ1,1(0)=Δ{2Δ(2θ1 + ϕ′
1)ϕ1 − 2ϕ1} − 2θ1 + ϕ′

1

2
ϕ1 , (42)

Φ ′
1,1(0)=

2ϕ′
1

ϕ1
Φ1,1(0)− 2Δ(2θ1 + ϕ′

1)+ 2 , (43)

detM(λ) = 1 and trM(λ) = 2D(λ).

PROOF. For λ ∈ C\σD(H0), any solution to −f ′′(x)+q(x)f (x) = λf (x) is given as

f (x, λ) = f (0, λ)θ(x, λ)+ f (1, λ)− θ(1, λ)f (0, λ)

ϕ(1, λ)
ϕ(x, λ) .

Thus, we have

f ′
α(0, λ) = fα(1, λ)− θ(1, λ)fα(0, λ)

ϕ(1, λ)
and f ′

α(1, λ) = ϕ′(1, λ)fα(1, λ)− fα(0, λ)

ϕ(1, λ)

(44)

for a solution fα(x, λ) to (31), where α ∈ Z . Substituting these for (33), we derive

−ϕ
′
1f0,1(1, λ)− f0,1(0, λ)

ϕ1
+ f0,2(1, λ)− θ1f0,2(0, λ)

ϕ1
+ f0,3(1, λ)− θ1f0,3(0, λ)

ϕ1
= 0 .
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We abbreviate fα(1, λ) and fα(0, λ) to fα(1) and fα(0), respectively. Then, we obtain

−(2θ1 + ϕ′
1)f0,1(1)+ f0,1(0)+ f0,2(1)+ f0,3(1) = 0 (45)

because of (32). Similarly, it follows by using (34), (36) and (38) after substituting (44) for
(35), (37) and (39) that

−4Δf0,2(1)+ f0,2(0)+ f0,3(0)+ f0,4(1)+ f0,5(1) = 0 , (46)

−4Δf0,4(1)+ f0,4(0)+ f0,5(0)+ f0,6(1)+ f0,7(1) = 0 , (47)

−2ϕ′
1f0,6(1)+ f0,6(0)+ f0,7(0)+ ϕ1f

′
1,1(0) = 0 . (48)

Notice that Θ0,1(x, λ) = θ(x, λ). Thus, (45) implies that

−(2θ1 + ϕ′
1)θ1 + 1 + 2Θ0,2(1) = 0 (49)

because of Θ0,2(1) = Θ0,3(1). Since θ0,2(0) = Θ0,3(0) = θ1 and Θ0,4(1) = Θ0,5(1), it
follows by (46) that

−4ΔΘ0,2(1)+ 2θ1 + 2Θ0,4(1) = 0 . (50)

Since Θ0,4(0) = Θ0,5(0) and Θ0,6(1) = Θ0,7(1) = Θ1,1(0), we have

−4ΔΘ0,4(1)+ 2Θ0,2(1)+ 2Θ1,1(0) = 0 (51)

by (47). We derive (40) by (49), (50) and (51). Furthermore, we have

Θ ′
1,1(0) = 2ϕ′

1

ϕ1
Θ1,1(0)− 2

ϕ1
Θ0,4(1) (52)

by virtue of Θ0,6(0) = Θ0,7(0) = Θ0,4(1) and Θ0,6(1) = Θ1,1(0). This combined with (49),
(50) produces (41). In a similar way, we also derive (42) and (43). Direct calculations yield
both detM(λ) = 1 and trM(λ) = 2D(λ). �

PROOF OF THEOREM 1.3 (I), (II) AND (III). It follows by detM(λ) = 1 and
trM(λ) = 2D(λ) that det(M(λ) ± I) = 2(1 ± D(λ)), where I stands for the unit ma-
trix. So, we have σ(Hap) = {λ ∈ R| D(λ) = −1} and σ(Hp) = {λ ∈ R| D(λ) = 1}.
Thus, we see that z+0 = λ+

3,0, z±n = λ±
3,2n and x±

n = λ±
3,2n−1 for n ∈ N. Hence, we have (I) by

Theorem 2 (V). This statement and Theorem 1 yield (II) and (III). �

To make sure of Theorem 3 (IV), we use the following lemma:

LEMMA 6. (I) The sequence {z±n } satisfies the asymptotics√
z±4n = u±

4n + q0

2u±
4n

+ o

(
1

n

)
, (53)

√
z±4n−3 = u±

4n−3 + q0

2u±
4n−3

+ o

(
1

n2

)
, (54)
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√
z±4n−2 = u±

4n−2 + q0

2u±
4n−2

+ o

(
1

n

)
, (55)

√
z±4n−1 = u±

4n−1 + q0

2u±
4n−1

+ o

(
1

n2

)
as n → ∞ . (56)

(II) The sequence {x±
n } satisfies the asymptotics√
x±
n = v±

n + q0

2v±
n

+ o

(
1

n2

)
as n → ∞ . (57)

PROOF. Recall (30). Noting that Δ2(λ)−Δ2−(λ) = θ(1, λ)ϕ′(1, λ), we have

D(λ) = 9Δ4(λ)−
(

37

4
+ 3

4
Δ2−(λ)

)
Δ2(λ)+ 5

4
. (58)

Solving the quartic equation D(λ) − 1 = 0 with respect to Δ(λ), we obtain Δ(λ) =
Δ1(λ),Δ2(λ),Δ3(λ),Δ4(λ), where

Δ1(λ)=

√√√√37 + 3Δ2−(λ)+
√
(37 + 3Δ2−(λ))2 − 144

72
,

Δ2(λ)=

√√√√37 + 3Δ2−(λ)−
√
(37 + 3Δ2−(λ))2 − 144

72
,

Δ3(λ)= −

√√√√37 + 3Δ2−(λ)−
√
(37 + 3Δ2−(λ))2 − 144

72
,

Δ4(λ)= −

√√√√37 + 3Δ2−(λ)+
√
(37 + 3Δ2−(λ))2 − 144

72
.

Note that Δ1(λ) → 1, Δ2(λ) → 1
6 , Δ3(λ) → 1

6 , Δ4(λ) → −1 as λ → ∞ because of

Δ−(λ) → 0 as λ → ∞. Reset Ω(a, r) = {λ ∈ C| |√λ − a| < r} for a ∈ C and r > 0. It
follows by Lemma 1 and Theorem 2 (IV) that z±4n ∈ Ω(2nπ, π8 ), z

±
4n−1 ∈ Ω(2nπ − π

2 ,
π
8 ),

z±4n−2 ∈ Ω(2nπ − π, π8 ) and z±4n−3 ∈ Ω(2nπ − 3
2π,

π
8 ) if n ∈ N is enough large. On the

other hand, we see that (u±
4n−3)

2 ∈ Ω(2nπ − 3
2 ,

π
8 ), (u

±
4n−2)

2 ∈ Ω(2nπ − π, π8 ), (u
±
4n−1)

2 ∈
Ω(2nπ− π

2 ,
π
8 ) and (u±

4n)
2 ∈ Ω(2nπ, π8 ) for any n ∈ N. Thus, we see that |

√
z±4n−u±

4n| < π
4 ,

|
√
z±4n−1 − u±

4n−1| < π
4 , |

√
z±4n−2 − u±

4n−2| < π
4 and |

√
z±4n−3 − u±

4n−3| < π
4 for large n ∈ N.
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According to [10], we see that

Δ(λ) = cosχ(λ) , χ(λ) = √
λ− q0

2
√
λ

+ o(1)

λ
as |λ| → ∞ .

Thus, we see that χ(z±n ) = a±
n + ib±

n , where

a±
n =

√
z±n − q0

2
√
z±n

+ o(1)

z±n
∈ R and b±

n = o(1)

z±n
∈ R as n → ∞ .

We see that Δ2(z
−
4n−3) → 1

6 andΔ2(z
+
4n−1) → 1

6 as n → ∞ as well as

Δ2(z
−
4n−3) = cosχ(z−4n−3) = cos a−

4n−3 cosh b−
4n−3 − i sin a−

4n−3 sinh b−
4n−3 ,

Δ2(z
+
4n−1) = cosχ(z+4n−1) = cos a+

4n−1 cosh b+
4n−1 − i sin a+

4n−1 sinh b+
4n−1 .

These imply that cos a−
4n−3 → 1

6 and cos a+
4n−1 → 1

6 as n → ∞. This combined with

|
√
z−4n−3 − u−

4n−3| < π
4 and |

√
z+4n−1 − u+

4n−1| < π
4 means that

√
z−4n−3 − u−

4n−3 − q0

2
√
z−4n−3

+ o(1)

z−4n−3

→ 0 ,

√
z+4n−1 − u+

4n−1 − q0

2
√
z+4n−1

+ o(1)

z+4n−1

→ 0

as n → ∞. Similarly (and collectively), we have√
z±n − u±

n − q0

2
√
z±n

+ o(1)

z±n
→ 0 as n → ∞ .

Thus, we have

ε±n =
√
z±n − u±

n − q0

2u±
n

+ o(1)

n2 → 0 as n → ∞ .

Owing to Taylor’s theorem, there exists some θ±
n ∈ (0, 1) such that

cosχ(z±n )= cos(u±
n + ε±n )

= cosu±
n − (sin u±

n )ε
±
n − cosu±

n

2
(ε±n )2 + sin(u±

n + ε±n θ±
n )

6
(ε±n )3

and hence

cosχ(z±4n)= 1 − 1

2
(ε±4n)

2(1 + O(ε±4n)) , (59)

cosχ(z±4n−2)= −1 + 1

2
(ε±4n−2)

2(1 + O(ε±4n−2)) , (60)
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cosχ(z±4n−1))= ±1

6
+ (sin(arccos(±1

6
)))ε±4n−1(1 + O(ε±4n−1)) , (61)

cosχ(z±4n−3))= ∓1

6
− (sin(arccos(∓1

6
)))ε±4n−3(1 + O(ε±4n−3)) . (62)

We shall show that

cosχ(z±4n) = 1 + o

(
1

n2

)
as n → ∞ .

It follows by (20) and (21) that

Δ−(λ) = −S(λ)√
λ

+ O(e|�
√
λ|)

|λ| as λ → ∞ . (63)

Thus, we haveΔ2−(z±4n) = o( 1
n2 ) as n → ∞. We now utilize Taylor’s theorem for

cosχ(z±4n) = Δ1(z
±
4n) =

√√√√37 + 3Δ2−(z±4n)+
√
(37 + 3Δ2−(z±4n))2 − 144

72
.

Thus, for any x ∈ R, there exists some θ ∈ (0, 1) such that

√
(37 + x)2 − 144 = 35 + θx + 37√

(37 + θx)2 − 144
x .

Hence, we have √
(37 + 3Δ2−(z±4n))2 − 144 = 35 + o

(
1

n2

)
as n → ∞

and hence

cosχ(z±4n) =
√

37 + o( 1
n2 )+ 35 + o( 1

n2 )

72
=
√

1 + o

(
1

n2

)
= 1 + o

(
1

n2

)
as n → ∞ .

This combined with (59) means that ε±4n = o( 1
n
) as n → ∞. Likewise, we obtain ε±4n−2 =

o( 1
n
), ε±4n−1 = o( 1

n2 ) and ε±4n−3 = o( 1
n2 ) as n → ∞. By the definition of ε±n , we derive (53),

(54), (55) and (56). The proof of the statement (II) is much alike. �

PROOF OF THEOREM 3 (IV). Since λ+
3,0 = z+0 , λ±

3,2n−1 = x±
n and λ±

3,2n = z±n for any

n ∈ N, Lemma 6 directly means (3), (4), (5), (7), (8) and (9) as well as λ±
3,8n = (u±

4n)
2 + q0 +

o(1) and λ±
3,8n−4 = (u±

4n−2)
2 + q0 + o(1) as n → ∞. Below, we investigate the part of o(1)

of these.

Since
√
λ±

3,8n = u±
4n + q0

2u±
4n

+ o( 1
n
) as n → ∞, we consider λ satisfying

√
λ =

2nπ + O( 1
n
) as n → ∞. We define qc,j,n = ∫ 1

0 (1 − 2t)j q(t) cos 2nπtdt and
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qs,j,n = ∫ 1
0 (1 − 2t)j q(t) sin 2nπtdt for j ∈ N ∪ {0}. Let ḟ (λ) imply that the derivative

of f with respect to λ for a differentiable function f (λ). Using the definition of S(λ) and

Ṡ(λ) = 1

2
√
λ

∫ 1

0
(1 − 2t)q(t) cos

√
λ(1 − 2t)dt ,

we have

S(λ) = −(qs,0,2n + O(1

n
)) , Ṡ(λ) = qc,1,2n + O( 1

n
)

4nπ

if
√
λ = 2nπ + O( 1

n
) as n → ∞. These together with (63) yield

Δ−(λ) = qs,0,2n + O( 1
n
)

4nπ
, Δ̇−(λ) = −qc,1,2n + O( 1

n
)

(4nπ)2
(64)

if
√
λ = 2nπ + O( 1

n
) as n → ∞. Furthermore, we derive

Δ(λ) = 1 + O
(

1

n2

)
, Δ̇(λ) = O

(
1

n2

)
, Δ̈(λ) = −1 + O( 1

n
)

(4nπ)2
. (65)

Let {λn}∞n=1 be the increasing sequence consists of zeroes of Δ̇(λ). We have

Ḋ(λ) = 36Δ3(λ)Δ̇(λ)− 3

2
Δ−(λ)Δ̇−(λ)Δ2(λ)− 3

2
Δ2−(λ)Δ(λ)Δ̇(λ)

by virtue of (58). We put ε±3,8n = λ±
3,8n − λ2n and ε±2n = λ±

2n − λ2n for n ∈ N. Then,

we have ε±3,8n → 0 and ε±2n → 0 as n → ∞ because λ±
3,8n = 4n2π2 + q0 + o(1), λ2n =

4n2π2 + q0 + �2(n) and λ±
n = n2π2 + q0 ± |q̂n| +O( 1

n
) as n → ∞, which appear from (53)

and [6, 8]. Utilizing Taylor’s theorem, we have

Δ(λ±
3,8n) = Δ(λ2n)+ Δ̇(λ2n)ε

±
3,8n + Δ̈(λ2n)

2
(ε±3,8n)

2 +
...
Δ(λ2n)

6
(ε±3,8n)

3(1 + O(ε±3,8n)) .

Thus, Δ̇(λ2n) = 0 means that Δ(λ±
3,6n) = Δ(λ2n)+ A±

3,2n, where

A±
3,2n = Δ̈(λ2n)

2
(ε±3,8n)

2(1 + O(ε
±
3,8n

n2
))

as n → ∞. It follows by Taylor’s theorem that 1 = Δ(λ±
2n) = Δ(λ2n)+ A±

2n, where

A±
2n = Δ̈(λ2n)

2
(ε±2n)

2(1 + O(ε
±
2n

n2 ))

as n → ∞. Thus, we obtain Δ(λ±
3,8n) = 1 + A±

3,2n − A±
2n. Using D(λ±

3,8n) = 1 and (58), we
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have

9Δ4(λ±
3,8n)−

(
37

4
+ 3

4
Δ2−(λ

±
3,8n)

)
Δ2(λ)+ 1

4
= 0 .

SubstitutingΔ(λ±
3,8n) = 1 +A±

3,2n−A±
2n andΔ−(λ±

3,8n) = − qs,0,2n+O( 1
n
)

(4nπ)2
into this, we obtain

9(1 + A±
3,2n − A±

2n)
4 −

⎛
⎝37

4
+ 3

4

(
qs,0,2n + O( 1

n
)

(4nπ)2

)2
⎞
⎠ (1 + A±

3,2n − A±
2n)

2 + 1

4
= 0 .

(66)

Using Δ̈(λ) = − 1+O( 1
n )

(4nπ)2
, we have

A±
3,2n = −1 + O( 1

n
)

2(4nπ)2
(ε±3,8n)

2(1 + O(ε
±
3,8n

n2
)) and A±

2n = −1 + O( 1
n
)

2(4nπ)2
(ε±2n)

2(1 + O(ε
±
2n

n2
))

as n → ∞. Putting B±
2n = (ε±2n)2−(ε±3,8n)2

2(4nπ)2
, we have

A±
3,2n − A±

2n = B±
2n + o

(
1

n3

)
(67)

as n → ∞. Noting B±
2n = o( 1

n2 ) as n → ∞ and substituting (67) for (66), we have

B±
2n − 3

70
·
(
qs,0,2n + O( 1

n
)

4nπ

)2

+ o

(
1

n3

)
= 0

as n → ∞. It follows by the definition of B±
2n that

(ε±2n)
2 − (ε±3,8n)

2 − 3

35
(qs,0,2n + O

(
1

n

)
)2 + o

(
1

n

)
= 0 as n → ∞ . (68)

Since qs,0,2n = �q̂2n, we see that |qs,0,2n| = O(q̂2n) as n → ∞. We note that λ±
n =

n2π2 +q0 ±|q̂n|+O( 1
n
) and λn = n2π2 +q0 +O( 1

n
), which follow from [15] and [8]. Thus,

we see that ε±2n = ±|q̂2n| + O( 1
n
) as n → ∞. This combined with (68) yields (ε±3,8n)2 =

|q̂2n|2 − 3
35q

2
2,0,2n + O

(
1
n

)
and hence

ε±3,8n = ±
√

|q̂2n|2 − 3

35
q2

2,0,2n + O
(

1

n

)
as n → ∞ .

This combined with λn = n2π2 + q0 + O( 1
n
) as n → ∞ yields (10). In a similar way, we

also obtain (6). �
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