The *-transforms of Acyclic Complexes

Taro INAGAWA

Chiba University

(Communicated by H. Nawa)

Abstract. Let R be an n-dimensional Cohen-Macaulay local ring and Q a parameter ideal of R. Suppose that an acyclic complex $(F_{\bullet}, \varphi_{\bullet})$ of length n of finitely generated free R-modules is given. We put $M = \operatorname{Im} \varphi_1$, which is an R-submodule of F_0 . Then F_{\bullet} is an R-free resolution of F_0/M . In this paper, we describe a concrete procedure to get an acyclic complex ${}^*F_{\bullet}$ of length n that resolves $F_0/(M:F_0,Q)$.

1. Introduction

Let I and J be ideals of a commutative ring R. The ideal quotient

$$I:_R J=\{a\in R\,|\, aJ\subseteq I\}$$

is an important notion in the theory of commutative algebra. For example, if (R, \mathfrak{m}) is a Noetherian local ring and I is an \mathfrak{m} -primary ideal of R, the Gorenstein property of R/I is characterized by the socle $Soc(R/I) = (I:_R \mathfrak{m})/I$. The *-transform of an acyclic complex of length 3 is introduced in [1] for the purpose of composing an R-free resolution of the ideal quotient of a certain ideal I whose R-free resolution is given. Here, let us recall its outline.

Let (R, \mathfrak{m}) be a 3-dimensional Cohen-Macaulay local ring and Q a parameter ideal of R. Suppose that an acyclic complex

$$F_{\bullet}: 0 \longrightarrow F_3 \xrightarrow{\varphi_3} F_2 \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 = R$$

of finitely generated free *R*-modules such that $\operatorname{Im} \varphi_3 \subseteq QF_2$ is given. Then, taking the *-transform of F_{\bullet} , we get an acyclic complex

$$^*F_{\bullet}: 0 \longrightarrow ^*F_3 \xrightarrow{^*\varphi_3} ^*F_2 \xrightarrow{^*\varphi_2} ^*F_1 \xrightarrow{^*\varphi_1} ^*F_0 = R$$

of finitely generated free R-modules such that $\operatorname{Im}^* \varphi_1 = \operatorname{Im} \varphi_1 :_R Q$ and $\operatorname{Im}^* \varphi_3 \subseteq \mathfrak{m} \cdot {}^*F_2$. If R is regular, for any ideal I of R, we can take \mathfrak{m} and the minimal R-free resolution of R/I as Q and F_{\bullet} , respectively, and then ${}^*F_{\bullet}$ gives an R-free resolution of $R/(I:_R \mathfrak{m})$. Here, let us notice that we can take the *-transform of ${}^*F_{\bullet}$ again since $\operatorname{Im}^* \varphi_3 \subseteq \mathfrak{m} \cdot {}^*F_2$, and an R-free resolution of $R/(I:_R \mathfrak{m}^2)$ is induced. Repeating this procedure, we get an R-free resolution

212 TARO INAGAWA

of $R/(I:_R \mathfrak{m}^k)$ for any k>0, and it contains complete information about the 0-th local cohomology module of R/I with respect to \mathfrak{m} . This method is very useful for computing the symbolic powers of the ideal generated by the maximal minors of a certain 2×3 matrix as is described in [1].

Thus, in [1], the theory of *-transform is developed for only acyclic complexes of length 3 on a 3-dimensional Cohen-Macaulay local ring. The purpose of this paper is to generalize the machinery of *-transform so that we can apply it to acyclic complexes of length n as follows. Let (R, \mathfrak{m}) be an n-dimensional Cohen-Macaulay local ring, where $2 \le n \in \mathbb{Z}$, and let Q be a parameter ideal of R. Suppose that an acyclic complex

$$0 \longrightarrow F_n \xrightarrow{\varphi_n} F_{n-1} \longrightarrow \cdots \longrightarrow F_1 \xrightarrow{\varphi_1} F_0$$

of finitely generated free R-modules such that $\operatorname{Im} \varphi_n \subseteq QF_{n-1}$ is given. We aim to give a concrete procedure to get an acyclic complex

$$0 \longrightarrow {}^*F_n \xrightarrow{{}^*\varphi_n} {}^*F_{n-1} \longrightarrow \cdots \longrightarrow {}^*F_1 \xrightarrow{{}^*\varphi_1} {}^*F_0 = F_0$$

of finitely generated free R-modules such that $\operatorname{Im}^* \varphi_1 = \operatorname{Im} \varphi_1 :_{F_0} Q$ and $\operatorname{Im}^* \varphi_n \subseteq \mathfrak{m} \cdot {}^*F_{n-1}$. Let us notice that we do not need any restriction on the rank of F_0 , so there may be some application to the study of $M :_F Q$, where F is a finitely generated free R-module and M is an R-submodule of F. Moreover, as the generalized *-transform works for acyclic complexes of length $n \geq 2$, we can apply it to the study of some ideal quotients in n-dimensional Cohen-Macaulay local rings. In fact, in the subsequent paper [2], setting I to be the m-th power of the ideal generated by the maximal minors of the matrix

$$\begin{pmatrix} x_1^{\alpha_{1,1}} & x_2^{\alpha_{1,2}} & x_3^{\alpha_{1,3}} & \cdots & x_m^{\alpha_{1,m}} & x_{m+1}^{\alpha_{1,m+1}} \\ x_2^{\alpha_{2,1}} & x_3^{\alpha_{2,2}} & x_4^{\alpha_{2,3}} & \cdots & x_{m+1}^{\alpha_{2,m}} & x_1^{\alpha_{2,m+1}} \\ x_3^{\alpha_{3,1}} & x_4^{\alpha_{3,2}} & x_5^{\alpha_{3,3}} & \cdots & x_1^{\alpha_{3,m}} & x_2^{\alpha_{3,m+1}} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ x_m^{\alpha_{m,1}} & x_{m+1}^{\alpha_{m,2}} & x_1^{\alpha_{m,3}} & \cdots & x_{m-2}^{\alpha_{m,m}} & x_{m-1}^{\alpha_{m,m+1}} \end{pmatrix}$$

and setting $Q = (x_1, x_2, x_3, \dots, x_m, x_{m+1})R$, where $x_1, x_2, x_3, \dots, x_m, x_{m+1}$ is an sop for an (m+1)-dimensional Cohen-Macaulay local ring R and $\{\alpha_{i,j}\}_{1 \le i \le m, 1 \le j \le m+1}$ is a family of positive integers, the ideal quotient $I :_R Q$ is computed, and it is proved that $I :_R Q$ coincides with the saturation of I, that is, the depth of $R/(I :_R Q)$ is positive.

Throughout this paper, R is a commutative ring, and in the last section, we assume that R is an n-dimensional Cohen-Macaulay local ring. For R-modules G and H, the elements of $G \oplus H$ are denoted by

$$(q, h)$$
 $(q \in G, h \in H)$.

In particular, the elements of the forms

$$(g,0)$$
 and $(0,h)$

are denoted by [g] and $\langle h \rangle$, respectively. Moreover, if V is a subset of G, then the family $\{[v]\}_{v \in V}$ is denoted by [V]. Similarly $\langle W \rangle$ is defined for a subset W of H. If T is a subset of an R-module, we denote by $R \cdot T$ the R-submodule generated by T. If S is a finite set, $\sharp S$ denotes the number of elements of S.

2. Preliminaries

In this section, we summarize preliminary results. Let R be a commutative ring.

LEMMA 2.1. Let G_{\bullet} and F_{\bullet} be acyclic complexes, whose boundary maps are denoted by ∂_{\bullet} and φ_{\bullet} , respectively. Suppose that a chain map $\sigma_{\bullet}: G_{\bullet} \longrightarrow F_{\bullet}$ is given and $\sigma_{0}^{-1}(\operatorname{Im}\varphi_{1}) = \operatorname{Im}\partial_{1}$ holds. Then the mapping cone $\operatorname{Cone}(\sigma_{\bullet}):$

$$\cdots \longrightarrow G_{p-1} \oplus F_p \xrightarrow{\psi_p} G_{p-2} \oplus F_{p-1} \longrightarrow \cdots \longrightarrow G_1 \oplus F_2 \xrightarrow{\psi_2} G_0 \oplus F_1 \xrightarrow{\psi_1} F_0 \longrightarrow 0$$
is acyclic, where

$$\psi_p = \begin{pmatrix} \partial_{p-1} & (-1)^{p-1} \cdot \sigma_{p-1} \\ 0 & \varphi_p \end{pmatrix} \quad \textit{for all} \ \ p \geq 2 \ \ \textit{and} \ \ \psi_1 = \begin{pmatrix} \sigma_0 \\ \varphi_1 \end{pmatrix} \, .$$

Hence, if G_{\bullet} and F_{\bullet} are complexes of finitely generated free R-modules, then $Cone(\sigma_{\bullet})$ gives an R-free resolution of $F_0/(\operatorname{Im} \varphi_1 + \operatorname{Im} \sigma_0)$.

PROOF. See [1, 2.1].
$$\Box$$

LEMMA 2.2. Let $2 \le n \in \mathbb{Z}$ and $C_{\bullet \bullet}$ be a double complex such that $C_{p,q} = 0$ unless $0 \le p, q \le n$. For any $p, q \in \mathbb{Z}$, we denote the boundary maps $C_{p,q} \longrightarrow C_{p-1,q}$ and $C_{p,q} \longrightarrow C_{p,q-1}$ by $d'_{p,q}$ and $d''_{p,q}$, respectively. We assume that $C_{p \bullet}$ and $C_{\bullet q}$ are acyclic for $0 \le p, q \le n$. Let T_{\bullet} be the total complex of $C_{\bullet \bullet}$ and let d_{\bullet} be its boundary map, that is, if $\xi \in C_{p,q} \subseteq T_r$ (p+q=r), then

$$d_r(\xi) = (-1)^p \cdot d''_{p,q}(\xi) + d'_{p,q}(\xi) \in C_{p,q-1} \oplus C_{p-1,q} \subseteq T_{r-1}.$$

Then the following assertions hold.

(1) Suppose that $\xi_n \in C_{n,0}$ and $\xi_{n-1} \in C_{n-1,1}$ such that $d'_{n,0}(\xi_n) = (-1)^n \cdot d''_{n-1,1}(\xi_{n-1})$ are given. Then there exist elements $\xi_p \in C_{p,n-p}$ for all $p = 0, 1, \ldots, n-2$ such that

$$\xi_n + \xi_{n-1} + \xi_{n-2} + \dots + \xi_0 \in \text{Ker } d_n$$

 $\subseteq T_n = C_{n,0} \oplus C_{n-1,1} \oplus C_{n-2,2} \oplus \dots \oplus C_{0,n}$.

(2) Suppose that $\xi_n + \xi_{n-1} + \cdots + \xi_1 + \xi_0 \in \operatorname{Ker} d_n \subseteq T_n = C_{n,0} \oplus C_{n-1,1} \oplus \cdots \oplus C_{1,n-1} \oplus C_{0,n}$ and $\xi_0 \in \operatorname{Im} d'_{1,n}$. Then

$$\xi_n + \xi_{n-1} + \dots + \xi_1 + \xi_0 \in \operatorname{Im} d_{n+1}$$
.

In particular, we have $\xi_n \in \operatorname{Im} d_{n,1}''$.

PROOF. (1) It is enough to show that if $1 \le p \le n-1$ and two elements $\xi_{p+1} \in C_{p+1,n-p-1}, \xi_p \in C_{p,n-p}$ such that

$$d'_{p+1,n-p-1}(\xi_{p+1}) = (-1)^{p+1} \cdot d''_{p,n-p}(\xi_p)$$

are given, then we can take $\xi_{p-1} \in C_{p-1,n-p+1}$ so that

$$d'_{p,n-p}(\xi_p) = (-1)^p \cdot d''_{p-1,n-p+1}(\xi_{p-1}).$$

In fact, if the assumption of the claim stated above is satisfied, we have

$$\begin{split} d''_{p-1,n-p}(d'_{p,n-p}(\xi_p)) &= d'_{p,n-p-1}(d''_{p,n-p}(\xi_p)) \\ &= d'_{p,n-p-1}((-1)^{p+1} \cdot d'_{p+1,n-p-1}(\xi_{p+1})) \\ &= 0 \end{split}$$

and so

$$d'_{p,n-p}(\xi_p) \in \operatorname{Ker} d''_{p-1,n-p} = \operatorname{Im} d''_{p-1,n-p+1},$$

which means the existence of the required element ξ_{p-1} .

(2) We set $\eta_0 = 0$. By the assumption, there exists $\eta_1 \in C_{1,n}$ such that

$$\xi_0 = d'_{1,n}(\eta_1) = d'_{1,n}(\eta_1) + d''_{0,n+1}(\eta_0).$$

Here we assume $0 \le p \le n-1$ and two elements $\eta_p \in C_{p,n-p+1}, \eta_{p+1} \in C_{p+1,n-p}$ such that

$$\xi_p = d'_{p+1,n-p}(\eta_{p+1}) + (-1)^p \cdot d''_{p,n-p+1}(\eta_p)$$

are fixed. We would like to find $\eta_{p+2} \in C_{p+2,n-p-1}$ such that

$$\xi_{p+1} = d'_{p+2,n-p-1}(\eta_{p+2}) + (-1)^{p+1} \cdot d''_{p+1,n-p}(\eta_{p+1}).$$

Now $d'_{p+1,n-p-1}(\xi_{p+1}) = (-1)^{p+1} \cdot d''_{p,n-p}(\xi_p)$ holds, since $\xi_n + \xi_{n-1} + \dots + \xi_1 + \xi_0 \in \text{Ker } d_n$. Hence, we have

$$\begin{split} d'_{p+1,n-p-1}(\xi_{p+1} + (-1)^p \cdot d''_{p+1,n-p}(\eta_{p+1})) \\ &= d'_{p+1,n-p-1}(\xi_{p+1}) + (-1)^p \cdot d'_{p+1,n-p-1}(d''_{p+1,n-p}(\eta_{p+1})) \\ &= (-1)^{p+1} \cdot d''_{p,n-p}(\xi_p) + (-1)^p \cdot d''_{p,n-p}(d'_{p+1,n-p}(\eta_{p+1})) \end{split}$$

$$= (-1)^{p+1} \cdot d''_{p,n-p}(\xi_p - d'_{p+1,n-p}(\eta_{p+1}))$$

= $(-1)^{p+1} \cdot d''_{p,n-p}((-1)^p \cdot d''_{p,n-p+1}(\eta_p))$
= 0 ,

and it follows that

$$\xi_{p+1} + (-1)^p \cdot d''_{p+1,n-p}(\eta_{p+1}) \in \operatorname{Ker} d'_{p+1,n-p-1} = \operatorname{Im} d'_{p+2,n-p-1}.$$

Thus we see the existence of the required element η_{p+2} .

LEMMA 2.3. Suppose that

$$0 \longrightarrow F \stackrel{\varphi}{\longrightarrow} G \stackrel{\psi}{\longrightarrow} H \stackrel{\rho}{\longrightarrow} L$$

is an exact sequence of R-modules. Then the following assertions hold.

(1) If there exists a homomorphism $\phi: G \longrightarrow F$ of R-modules such that $\phi \circ \varphi = \mathrm{id}_F$, then

$$0 \longrightarrow {}^*G \stackrel{{}^*\psi}{\longrightarrow} H \stackrel{\rho}{\longrightarrow} L$$

is exact, where ${}^*G = \operatorname{Ker} \phi$ and ${}^*\psi$ is the restriction of ψ to *G .

(2) If
$$F = {}^{\prime}F \oplus {}^{\ast}F$$
, $G = {}^{\prime}G \oplus {}^{\ast}G$, $\varphi({}^{\prime}F) = {}^{\prime}G$ and $\varphi({}^{\ast}F) \subseteq {}^{\ast}G$, then

$$0 \longrightarrow {}^*F \stackrel{{}^*\varphi}{\longrightarrow} {}^*G \stackrel{{}^*\psi}{\longrightarrow} H \stackrel{\rho}{\longrightarrow} L$$

is exact, where $^*\varphi$ and $^*\psi$ are the restrictions of φ and ψ to *F and *G , respectively.

PROOF. See
$$[1, 2.3]$$
.

3. *-transform

Let $2 \le n \in \mathbb{Z}$ and let R be an n-dimensional Cohen-Macaulay local ring with the maximal ideal m. Suppose that an acyclic complex

$$0 \longrightarrow F_n \xrightarrow{\varphi_n} F_{n-1} \longrightarrow \cdots \longrightarrow F_1 \xrightarrow{\varphi_1} F_0$$

of finitely generated free R-modules such that $\operatorname{Im} \varphi_n \subseteq QF_{n-1}$ is given, where $Q = (x_1, x_2, \ldots, x_n)R$ is a parameter ideal of R. We put $M = \operatorname{Im} \varphi_1$, which is an R-submodule of F_0 . In this section, transforming F_{\bullet} suitably, we aim to construct an acyclic complex

$$0 \longrightarrow {}^*F_n \stackrel{{}^*\varphi_n}{\longrightarrow} {}^*F_{n-1} \longrightarrow \cdots \longrightarrow {}^*F_1 \stackrel{{}^*\varphi_1}{\longrightarrow} {}^*F_0 = F_0$$

of finitely generated free R-modules such that $\operatorname{Im}^*\varphi_n \subseteq \mathfrak{m} \cdot {}^*F_{n-1}$ and $\operatorname{Im}^*\varphi_1 = M :_{F_0} Q$. Let us call ${}^*F_{\bullet}$ the *-transform of F_{\bullet} with respect to x_1, x_2, \ldots, x_n .

In this operation, we use the Koszul complex $K_{\bullet} = K_{\bullet}(x_1, x_2, ..., x_n)$. We denote the boundary map of K_{\bullet} by ∂_{\bullet} . Let $e_1, e_2, ..., e_n$ be an R-free basis of K_1 such that $\partial_1(e_i) = x_i$ for all i = 1, 2, ..., n. Moreover, we use the following notation:

- $N := \{1, 2, \dots, n\}.$
- $N_p := \{I \subseteq N \mid \sharp I = p\} \text{ for } 1 \leq p \leq n \text{ and } N_0 := \{\emptyset\}.$
- If $1 \le p \le n$ and $I = \{i_1, i_2, \dots, i_p\} \in N_p$, where $1 \le i_1 < i_2 < \dots < i_p \le n$, we set

$$e_I = e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_n} \in K_p$$
.

In particular, for $1 \le i \le n$, $\check{e}_i := e_{N \setminus \{i\}}$. Furthermore, e_\emptyset denotes the identity element 1_R of $R = K_0$.

• If $1 \le p \le n$, $I \in N_p$ and $i \in I$, we set

$$s(i, I) = \sharp \{j \in I \mid j < i\}.$$

We define $\sharp \emptyset = 0$, so s(i, I) = 0 if $i = \min I$.

Then, for any p = 0, 1, ..., n, $\{e_I\}_{I \in N_p}$ is an R-free basis of K_p and

$$\partial_p(e_I) = \sum_{i \in I} (-1)^{s(i,I)} \cdot x_i \cdot e_{I \setminus \{i\}}.$$

THEOREM 3.1. $(M:_{F_0}Q)/M \cong F_n/QF_n$.

PROOF. We put $L_0 = F_0/M$. Moreover, for $1 \le p \le n-1$, we put $L_p = \operatorname{Im} \varphi_p \subseteq F_{p-1}$ and consider the exact sequence

$$0 \longrightarrow L_p \longrightarrow F_{p-1} \xrightarrow{\varphi_{p-1}} L_{p-1} \longrightarrow 0$$
,

where $\varphi_0: F_0 \longrightarrow L_0$ is the canonical surjection. Because

$$\operatorname{Ext}_{P}^{p-1}(R/Q, F_{p-1}) = \operatorname{Ext}_{P}^{p}(R/Q, F_{p-1}) = 0$$

we get

$$\operatorname{Ext}_{R}^{p}(R/Q, L_{p}) \cong \operatorname{Ext}_{R}^{p-1}(R/Q, L_{p-1}).$$

Therefore $\operatorname{Ext}_R^{n-1}(R/Q,L_{n-1})\cong \operatorname{Hom}_R(R/Q,F_0/M)\cong (M:_{F_0}Q)/M$. Now, we see that

$$\operatorname{Ext}_R^n(R/Q, F_n) \cong \operatorname{Hom}_R(R/Q, F_n/QF_n) \cong F_n/QF_n$$

and

$$\operatorname{Ext}_R^n(R/Q, F_{n-1}) \cong \operatorname{Hom}_R(R/Q, F_{n-1}/QF_{n-1}) \cong F_{n-1}/QF_{n-1}$$

hold, because x_1, x_2, \dots, x_n is an R-regular sequence. Furthermore, we look at the exact sequence

$$0 \longrightarrow F_n \stackrel{\varphi_n}{\longrightarrow} F_{n-1} \stackrel{\varphi_{n-1}}{\longrightarrow} L_{n-1} \longrightarrow 0.$$

Then, we get the following commutative diagram

$$0 \longrightarrow \operatorname{Ext}_R^{n-1}(R/Q, L_{n-1}) \longrightarrow \operatorname{Ext}_R^n(R/Q, F_n) \xrightarrow{\widetilde{\varphi_n}} \operatorname{Ext}_R^n(R/Q, F_{n-1}) \text{ (ex)}$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$F_n/QF_n \xrightarrow{\overline{\varphi_n}} F_{n-1}/QF_{n-1},$$

where $\widetilde{\varphi_n}$ and $\overline{\varphi_n}$ denote the maps induced from φ_n . Let us notice $\overline{\varphi_n} = 0$ as $\operatorname{Im} \varphi_n \subseteq QF_{n-1}$. Hence

$$\operatorname{Ext}_{R}^{n-1}(R/Q,L_{n-1})\cong F_{n}/QF_{n}$$
,

and so the required isomorphism follows.

Let us fix an R-free basis of F_n , say $\{v_{\lambda}\}_{{\lambda}\in\Lambda}$. We set $\widetilde{\Lambda}=\Lambda\times N$ and take a family $\{v_{(\lambda,i)}\}_{(\lambda,i)\in\widetilde{\Lambda}}$ of elements in F_{n-1} so that

$$\varphi_n(v_\lambda) = \sum_{i \in N} x_i \cdot v_{(\lambda,i)}$$

for all $\lambda \in \Lambda$. This is possible as $\operatorname{Im} \varphi_n \subseteq QF_{n-1}$. The next result is the essential part of the process to get ${}^*F_{\bullet}$.

THEOREM 3.2. There exists a chain map $\sigma_{\bullet}: F_n \otimes_R K_{\bullet} \longrightarrow F_{\bullet}$

satisfying the following conditions.

- $(1) \ \sigma_0^{-1}(\operatorname{Im}\varphi_1) = \operatorname{Im}(F_n \otimes \partial_1).$
- (2) $\operatorname{Im} \sigma_0 + \operatorname{Im} \varphi_1 = M :_{F_0} Q$.
- (3) $\sigma_{n-1}(v_{\lambda} \otimes \check{e}_i) = (-1)^{n+i-1} \cdot v_{(\lambda,i)} \text{ for all } (\lambda,i) \in \widetilde{\Lambda}.$
- (4) $\sigma_n(v_\lambda \otimes e_N) = (-1)^n \cdot v_\lambda \text{ for all } \lambda \in \Lambda.$

PROOF. Let us notice that, for any $p=0,1,\ldots,n$, $\{v_{\lambda}\otimes e_I\}_{(\lambda,I)\in\Lambda\times N_p}$ is an R-free basis of $F_n\otimes_R K_p$, so $\sigma_p:F_n\otimes_R K_p\longrightarrow F_p$ can be defined by choosing suitable element $w_{(\lambda,I)}\in F_p$ that corresponds to $v_{\lambda}\otimes e_I$ for $(\lambda,I)\in\Lambda\times N_p$. We set $w_{(\lambda,N)}=(-1)^n\cdot v_{\lambda}$ for $\lambda\in\Lambda$ and $w_{(\lambda,N\setminus\{i\})}=(-1)^{n+i-1}\cdot v_{(\lambda,i)}$ for $(\lambda,i)\in\widetilde{\Lambda}$. Then

$$\varphi_n(w_{(\lambda,N)}) = (-1)^n \cdot \varphi_n(v_\lambda)$$

$$= (-1)^n \cdot \sum_{i \in N} x_i \cdot v_{(\lambda,i)}$$

$$= \sum_{i \in N} (-1)^{s(i,N)} \cdot x_i \cdot w_{(\lambda,N\setminus\{i\})}.$$

Moreover, we can take families $\{w_{(\lambda,I)}\}_{(\lambda,I)\in\Lambda\times N_p}$ of elements in F_p for any $p=0,1,\ldots,n-2$ so that

$$\varphi_p(w_{(\lambda,I)}) = \sum_{i \in I} (-1)^{s(i,I)} \cdot x_i \cdot w_{(\lambda,I \setminus \{i\})}$$
 (\$\pmu\$)

for all $p=1,2,\ldots,n$ and $(\lambda,I)\in \Lambda\times N_p$. If this is true, an R-linear map $\sigma_p:F_n\otimes_R K_p\longrightarrow F_p$ is defined by setting $\sigma_p(v_\lambda\otimes e_I)=w_{(\lambda,I)}$ for $(\lambda,I)\in \Lambda\times N_p$ and $\sigma_\bullet:F_n\otimes_R K_\bullet\longrightarrow F_\bullet$ becomes a chain map satisfying (3) and (4).

In order to see the existence of $\{w_{(\lambda,I)}\}_{(\lambda,I)\in A\times N_p}$, let us consider the double complex $F_{\bullet}\otimes_R K_{\bullet}$.

We can take it as $C_{\bullet \bullet}$ of 2.2. Let T_{\bullet} be the total complex and d_{\bullet} be its boundary map. In particular, we have

$$T_n = (F_n \otimes_R K_0) \oplus (F_{n-1} \otimes_R K_1) \oplus \cdots \oplus (F_1 \otimes_R K_{n-1}) \oplus (F_0 \otimes_R K_n).$$

For $I \subseteq N$, we define

$$t(I) = \begin{cases} \sum_{i \in I} (i-1) & \text{if } I \neq \emptyset, \\ 0 & \text{if } I = \emptyset. \end{cases}$$

For a while, we fix $\lambda \in \Lambda$ and set

$$\xi_{n}(\lambda) = (-1)^{\frac{n(n+1)}{2}} \cdot (-1)^{t(N)} \cdot w_{(\lambda,N)} \otimes e_{\emptyset} \in F_{n} \otimes_{R} K_{0},$$

$$\xi_{n-1}(\lambda) = (-1)^{\frac{(n-1)n}{2}} \cdot \sum_{i \in N} (-1)^{t(N\setminus\{i\})} \cdot w_{(\lambda,N\setminus\{i\})} \otimes e_{i} \in F_{n-1} \otimes_{R} K_{1}.$$

It is easy to see that

$$\xi_n(\lambda) = v_\lambda \otimes e_\emptyset$$

since t(N) = (n-1)n/2 and $n^2 + n \equiv 0 \pmod{2}$. Moreover, we have

$$\xi_{n-1}(\lambda) = (-1)^n \cdot \sum_{i \in N} v_{(\lambda,i)} \otimes e_i$$

since
$$t(N \setminus \{i\}) = (n-1)n/2 - (i-1)$$
. Then
$$(\varphi_n \otimes K_0)(\xi_n(\lambda)) = \varphi_n(v_\lambda) \otimes e_\emptyset$$

$$= \left(\sum_{i \in N} x_i \cdot v_{(\lambda,i)}\right) \otimes e_\emptyset$$

$$= \sum_{i \in N} v_{(\lambda,i)} \otimes x_i$$

$$= (F_{n-1} \otimes \partial_1) \left(\sum_{i \in N} v_{(\lambda,i)} \otimes e_i\right)$$

$$= (-1)^n \cdot (F_{n-1} \otimes \partial_1)(\xi_{n-1}(\lambda)).$$

Hence, by (1) of 2.2 there exist elements $\xi_p(\lambda) \in F_p \otimes K_{n-p}$ for all p = 0, 1, ..., n-2 such that

$$\xi_n(\lambda) + \xi_{n-1}(\lambda) + \xi_{n-2}(\lambda) + \cdots + \xi_0(\lambda) \in \operatorname{Ker} d_n \subseteq T_n$$

which means

$$(\varphi_p \otimes K_{n-p})(\xi_p(\lambda)) = (-1)^p \cdot (F_{p-1} \otimes \partial_{n-p+1})(\xi_{p-1}(\lambda))$$

for any p = 1, 2, ..., n. Let us denote $N \setminus I$ by I^c for $I \subseteq N$. Because $\{e_{I^c}\}_{I \in N_p}$ is an R-free basis of K_{n-p} , it is possible to write

$$\xi_p(\lambda) = (-1)^{\frac{p(p+1)}{2}} \cdot \sum_{I \in N_p} (-1)^{t(I)} \cdot w_{(\lambda,I)} \otimes e_{I^c}$$

for any p = 0, 1, ..., n - 2 (Notice that $\xi_n(\lambda)$ and $\xi_{n-1}(\lambda)$ are defined so that they satisfy the same equalities), where $w_{(\lambda,I)} \in F_p$. Then we have

$$(\varphi_p \otimes K_{n-p})(\xi_p(\lambda)) = (-1)^{\frac{p(p+1)}{2}} \cdot \sum_{I \in N_p} (-1)^{t(I)} \cdot \varphi_p(w_{(\lambda,I)}) \otimes e_{I^c}.$$

On the other hand,

$$(-1)^{p} \cdot (F_{p-1} \otimes \partial_{n-p+1})(\xi_{p-1}(\lambda))$$

$$= (-1)^{p} \cdot (-1)^{\frac{(p-1)p}{2}} \cdot \sum_{J \in N_{p-1}} \left\{ (-1)^{t(J)} \cdot w_{(\lambda,J)} \otimes \left(\sum_{i \in J^{c}} (-1)^{s(i,J^{c})} \cdot x_{i} \cdot e_{J^{c} \setminus \{i\}} \right) \right\}.$$

Here we notice that if $I \in N_p$, $J \in N_{p-1}$ and $i \in N$, then

$$I^{c} = J^{c} \setminus \{i\} \iff I = J \cup \{i\}.$$

Hence we get

$$(-1)^{p} \cdot (F_{p-1} \otimes \partial_{n-p+1})(\xi_{p-1}(\lambda))$$

$$= (-1)^{\frac{p(p+1)}{2}} \cdot \sum_{I \in N_{n}} \left\{ \left(\sum_{i \in I} (-1)^{t(I \setminus \{i\}) + s(i, I^{c} \cup \{i\})} \cdot x_{i} \cdot w_{(\lambda, I \setminus \{i\})} \right) \otimes e_{I^{c}} \right\}.$$

For $I \in N_p$ and $i \in I$, we have

$$t(I \setminus \{i\}) = t(I) - (i-1),$$

$$s(i, I) + s(i, I^{c} \cup \{i\}) = s(i, N) = i - 1,$$

and so

$$t(I \setminus \{i\}) + s(i, I^{c} \cup \{i\}) = t(I) - s(i, I)$$

$$\equiv t(I) + s(i, I) \pmod{2}.$$

Therefore we see that the required equality (\sharp) holds for all $I \in N_p$.

Let us prove (1). We have to show $\sigma_0^{-1}(\operatorname{Im}\varphi_1) \subseteq \operatorname{Im}(F_n \otimes \partial_1)$. Take any $\eta_n \in F_n \otimes_R K_0$ such that $\sigma_0(\eta_n) \in \operatorname{Im}\varphi_1$. As $\{\xi_n(\lambda)\}_{\lambda \in \Lambda}$ is an R-free basis of $F_n \otimes_R K_0$, we can express

$$\eta_n = \sum_{\lambda \in \Lambda} a_{\lambda} \cdot \xi_n(\lambda) = \sum_{\lambda \in \Lambda} a_{\lambda} \cdot (v_{\lambda} \otimes e_{\emptyset}),$$

where $a_{\lambda} \in R$ for $\lambda \in \Lambda$. Then we have

$$\sum_{\lambda \in \Lambda} a_{\lambda} \cdot w_{(\lambda,\emptyset)} = \sum_{\lambda \in \Lambda} a_{\lambda} \cdot \sigma_0(v_{\lambda} \otimes e_{\emptyset}) = \sigma_0(\eta_n) \in \operatorname{Im} \varphi_1.$$

Now we set

$$\eta_p = \sum_{\lambda \in \Lambda} a_{\lambda} \cdot \xi_p(\lambda) \in F_p \otimes_R K_{n-p}$$

for $0 \le p \le n - 1$. Then

$$\eta_n + \eta_{n-1} + \dots + \eta_1 + \eta_0 = \sum_{\lambda \in \Lambda} a_{\lambda} \cdot (\xi_n(\lambda) + \xi_{n-1}(\lambda) + \dots + \xi_1(\lambda) + \xi_0(\lambda))$$

$$\in \operatorname{Ker} d_n \subseteq T_n.$$

Because

$$\begin{split} \eta_0 &= \sum_{\lambda \in \Lambda} a_\lambda \cdot \xi_0(\lambda) \\ &= \sum_{\lambda \in \Lambda} a_\lambda \cdot (w_{(\lambda,\emptyset)} \otimes e_N) \\ &= \left(\sum_{\lambda \in \Lambda} a_\lambda \cdot w_{(\lambda,\emptyset)}\right) \otimes e_N \end{split}$$

$$\in \operatorname{Im}(\varphi_1 \otimes K_n)$$
,

we get $\eta_n \in \text{Im}(F_n \otimes \partial_1)$ by (2) of 2.2.

Finally we prove (2). Let us consider the following commutative diagram

where $\overline{\sigma_0}$ is the map induced from σ_0 . For all $\lambda \in \Lambda$ and $i \in N$, we have

$$x_i \cdot w_{(\lambda,\emptyset)} = \varphi_1(w_{(\lambda,\{i\})}) \in M$$

which means $w_{(\lambda,\emptyset)} \in M :_{F_0} Q$. Hence $\operatorname{Im} \sigma_0 \subseteq M :_{F_0} Q$, and so $\operatorname{Im} \overline{\sigma_0} \subseteq (M :_{F_0} Q)/M$. On the other hand, as $\sigma_0^{-1}(\operatorname{Im} \varphi_1) = \operatorname{Im}(F_n \otimes \partial_1)$, we see that $\overline{\sigma_0}$ is injective. Therefore we get $\operatorname{Im} \overline{\sigma_0} = (M :_{F_0} Q)/M$ since $(M :_{F_0} Q)/M \cong F_n/QF_n$ by 3.1 and F_n/QF_n has a finite length. Thus the assertion (2) follows and the proof is complete.

In the rest, $\sigma_{\bullet}: F_n \otimes_R K_{\bullet} \longrightarrow F_{\bullet}$ is the chain map constructed in 3.2. Then, by 2.1 the mapping cone Cone(σ_{\bullet}) gives an *R*-free resolution of $F_0/(M:_{F_0}Q)$, that is,

$$0 \longrightarrow F_n \otimes_R K_n \xrightarrow{\psi_{n+1}} (F_n \otimes_R K_{n-1}) \oplus F_n \xrightarrow{\psi_n} (F_n \otimes_R K_{n-2}) \oplus F_{n-1}$$

$$\xrightarrow{'\varphi_{n-1}} (F_n \otimes_R K_{n-3}) \oplus F_{n-2} \xrightarrow{*\varphi_{n-2}} (F_n \otimes_R K_{n-4}) \oplus F_{n-3} \longrightarrow \cdots$$

$$\longrightarrow (F_n \otimes_R K_1) \oplus F_2 \xrightarrow{*\varphi_2} (F_n \otimes_R K_0) \oplus F_1 \xrightarrow{*\varphi_1} F_0$$

is acyclic and $\operatorname{Im} {}^*\varphi_1 = M :_{F_0} Q$, where

$$\psi_{n+1} = \begin{pmatrix} F_n \otimes \partial_n & (-1)^n \cdot \sigma_n \end{pmatrix}, \quad \psi_n = \begin{pmatrix} F_n \otimes \partial_{n-1} & (-1)^{n-1} \cdot \sigma_{n-1} \\ 0 & \varphi_n \end{pmatrix},$$

$$'\varphi_{n-1} = \begin{pmatrix} F_n \otimes \partial_{n-2} & (-1)^{n-2} \cdot \sigma_{n-2} \\ 0 & \varphi_{n-1} \end{pmatrix},$$

$$^*\varphi_p = \begin{pmatrix} F_n \otimes \partial_{p-1} & (-1)^{p-1} \cdot \sigma_{p-1} \\ 0 & \varphi_n \end{pmatrix} \quad \text{for } 2 \le p \le n-2 \text{ and } ^*\varphi_1 = \begin{pmatrix} \sigma_0 \\ \varphi_1 \end{pmatrix}.$$

Because $\sigma_n: F_n \otimes_R K_n \longrightarrow F_n$ is an isomorphism by (4) of 3.2, we can define

$$\phi = \begin{pmatrix} 0 \\ (-1)^n \cdot \sigma_n^{-1} \end{pmatrix} : (F_n \otimes_R K_{n-1}) \oplus F_n \longrightarrow F_n \otimes_R K_n.$$

Then $\phi \circ \psi_{n+1} = \mathrm{id}_{F_n \otimes_R K_n}$ and $\mathrm{Ker} \phi = F_n \otimes_R K_{n-1}$. Hence, by (1) of 2.3, we get the acyclic complex

$$0 \longrightarrow {}'F_n \xrightarrow{{}'\varphi_n} {}'F_{n-1} \xrightarrow{{}'\varphi_{n-1}} {}^*F_{n-2} \xrightarrow{{}^*\varphi_{n-2}} {}^*F_{n-3} \longrightarrow \cdots \longrightarrow {}^*F_2 \xrightarrow{{}^*\varphi_2} {}^*F_1 \xrightarrow{{}^*\varphi_1} {}^*F_0 = F_0$$

where

$${}^{\prime}F_{n} = F_{n} \otimes_{R} K_{n-1}, \quad {}^{\prime}F_{n-1} = (F_{n} \otimes_{R} K_{n-2}) \oplus F_{n-1},$$

$$^*F_p = (F_n \otimes_R K_{p-1}) \oplus F_p$$
 for $1 \le p \le n-2$ and $'\varphi_n = (F_n \otimes \partial_{n-1} (-1)^{n-1} \cdot \sigma_{n-1})$.

Although Im $'\varphi_n$ may not be contained in $\mathfrak{m} \cdot 'F_{n-1}$, removing non-minimal components from $'F_n$ and $'F_{n-1}$, we get free R-modules *F_n and $^*F_{n-1}$ such that

$$0 \longrightarrow {}^*F_n \stackrel{{}^*\varphi_n}{\longrightarrow} {}^*F_{n-1} \stackrel{{}^*\varphi_{n-1}}{\longrightarrow} {}^*F_{n-2} \longrightarrow \cdots \longrightarrow {}^*F_1 \stackrel{{}^*\varphi_1}{\longrightarrow} {}^*F_0 = F_0$$

is acyclic and $\operatorname{Im} {}^*\!\varphi_n \subseteq \mathfrak{m} \cdot {}^*\!F_{n-1}$, where ${}^*\!\varphi_n$ and ${}^*\!\varphi_{n-1}$ are the restrictions of ${}^{'}\!\varphi_n$ and ${}^{'}\!\varphi_{n-1}$, respectively. In the rest of this section, we describe a concrete procedure to get ${}^*\!F_n$ and ${}^*\!F_{n-1}$. For that purpose, we use the following notation. As described in Introduction, for any $\xi \in F_n \otimes_R K_{n-2}$ and $\eta \in F_{n-1}$,

$$[\xi] := (\xi, 0) \in {}'F_{n-1}$$
 and $\langle \eta \rangle := (0, \eta) \in {}'F_{n-1}$.

In particular, for any $(\lambda, I) \in \Lambda \times N_{n-2}$, we denote $[v_{\lambda} \otimes e_I]$ by $[\lambda, I]$. Moreover, for a subset U of F_{n-1} , $\langle U \rangle := \{\langle u \rangle\}_{u \in U}$.

Now, let us choose a subset Λ of $\widetilde{\Lambda}$ and a subset U of F_{n-1} so that

$$\{v_{(\lambda,i)}\}_{(\lambda,i)\in\mathcal{U}}\cup U$$

is an R-free basis of F_{n-1} . We would like to choose Λ as big as possible. The following almost obvious fact is useful to find Λ and U.

LEMMA 3.3. Let V be an R-free basis of F_{n-1} . If a subset Λ of Λ and a subset U of V satisfy

- (i) $\sharp \Lambda + \sharp U < \sharp V$, and
- (ii) $V \subseteq R \cdot \{v_{(\lambda,i)}\}_{(\lambda,i) \in \mathcal{U}} + R \cdot U + \mathfrak{m} F_{n-1}$,

then $\{v_{(\lambda,i)}\}_{(\lambda,i)\in\mathcal{U}}\cup U$ is an R-free basis of F_{n-1} .

Let us notice that

$$\{[\lambda,I]\}_{(\lambda,I)\in\Lambda\times N_{n-2}}\cup\{\langle v_{(\lambda,i)}\rangle\}_{(\lambda,i)\in\Lambda}\cup\langle U\rangle$$

is an R-free basis of ${}'F_{n-1}$. We define ${}^*F_{n-1}$ to be the direct summand of ${}'F_{n-1}$ generated by

$$\{[\lambda, I]\}_{(\lambda, I) \in A \times N_{n-2}} \cup \langle U \rangle$$
.

Let ${}^*\varphi_{n-1}$ be the restriction of ${}^t\varphi_{n-1}$ to ${}^*F_{n-1}$.

THEOREM 3.4. If we can take $\widetilde{\Lambda}$ itself as Λ , then

$$0 \longrightarrow {}^*F_{n-1} \stackrel{{}^*\varphi_{n-1}}{\longrightarrow} {}^*F_{n-2} \longrightarrow \cdots \longrightarrow {}^*F_1 \stackrel{{}^*\varphi_1}{\longrightarrow} {}^*F_0 = F_0$$

is acyclic. Hence we have depth_R $F_0/(M:_{F_0}Q) > 0$.

PROOF. If $\Lambda = \widetilde{\Lambda}$, there exists a homomorphism $\phi: {}'F_{n-1} \longrightarrow {}'F_n$ such that $\phi([\lambda, I]) = 0$ for any $(\lambda, I) \in \Lambda \times N_{n-2}$, $\phi(\langle v_{(\lambda, i)} \rangle) = (-1)^i \cdot v_\lambda \otimes \check{e}_i$ for any $(\lambda, i) \in \widetilde{\Lambda}$, $\phi(\langle u \rangle) = 0$ for any $u \in U$.

Then $\phi \circ \varphi_n = \mathrm{id}_{F_n}$ and $\mathrm{Ker} \, \phi = {}^*F_{n-1}$. Hence, by (1) of 2.3 we get the required assertion. \square

In the rest of this section, we assume $\Lambda \subsetneq \widetilde{\Lambda}$ and put $\Lambda = \widetilde{\Lambda} \setminus \Lambda$. Then, for any $(\mu, j) \in \Lambda$, it is possible to write

$$v_{(\mu,j)} = \sum_{(\lambda,i) \in \Lambda} a_{(\lambda,i)}^{(\mu,j)} \cdot v_{(\lambda,i)} + \sum_{u \in U} b_u^{(\mu,j)} \cdot u ,$$

where $a_{(\lambda,i)}^{(\mu,j)}, b_u^{(\mu,j)} \in R$. Here, if Λ is big enough, we can choose every $b_u^{(\mu,j)}$ from \mathfrak{m} . In fact, if $b_u^{(\mu,j)} \notin \mathfrak{m}$ for some $u \in U$, then we can replace Λ and U by $\Lambda \cup \{(\mu,j)\}$ and $U \setminus \{u\}$, respectively. Furthermore, because of a practical reason, let us allow that some terms of $v_{(\lambda,i)}$ for $(\lambda,i) \in {}^*\Lambda$ with non-unit coefficients appear in the right hand side, that is, for any $(\mu,j) \in {}^*\Lambda$, we write

$$v_{(\mu,j)} = \sum_{(\lambda,i) \in \widetilde{A}} a_{(\lambda,i)}^{(\mu,j)} \cdot v_{(\lambda,i)} + \sum_{u \in U} b_u^{(\mu,j)} \cdot u ,$$

where

$$a_{(\lambda,i)}^{(\mu,j)} \in \begin{cases} R & \text{if } (\lambda,i) \in \Lambda, \\ \mathfrak{m} & \text{if } (\lambda,i) \in {}^{*}\!\!\Lambda \end{cases} \text{ and } b_{u}^{(\mu,j)} \in \mathfrak{m}\,.$$

Using this expression, for any $(\mu, j) \in {}^*\Lambda$, the following element in ${}'F_n$ can be defined.

$$^*v_{(\mu,j)} := (-1)^j \cdot v_{\mu} \otimes \check{e}_j + \sum_{(\lambda,i) \in \widetilde{\Lambda}} (-1)^{i-1} \cdot a_{(\lambda,i)}^{(\mu,j)} \cdot v_{\lambda} \otimes \check{e}_i.$$

LEMMA 3.5. For any $(\mu, j) \in {}^*\Lambda$, we have

As a consequence, we have $\varphi_n({}^*v_{(\mu,j)}) \in \mathfrak{m} \cdot {}^*F_{n-1}$ for any $(\mu,j) \in {}^*\Lambda$.

PROOF. By the definition of φ_n , for any $(\mu, j) \in {}^*\Lambda$, we have

$$'\varphi_n(^*v_{(\mu,j)}) = [(F_n \otimes \partial_{n-1})(^*v_{(\mu,j)})] + \langle (-1)^{n-1} \cdot \sigma_{n-1}(^*v_{(\mu,j)}) \rangle.$$

Because

$$(F_n \otimes \partial_{n-1})(^*v_{(\mu,j)}) = (-1)^j \cdot v_{\mu} \otimes \partial_{n-1}(\check{e}_j) + \sum_{(\lambda,i) \in \widetilde{\Lambda}} (-1)^{i-1} \cdot a_{(\lambda,i)}^{(\mu,j)} \cdot v_{\lambda} \otimes \partial_{n-1}(\check{e}_i)$$

and

$$\begin{split} \sigma_{n-1}(^*v_{(\mu,j)}) &= (-1)^j \cdot \sigma_{n-1}(v_{\mu} \otimes \check{e}_j) + \sum_{(\lambda,i) \in \widetilde{\Lambda}} (-1)^{i-1} \cdot a_{(\lambda,i)}^{(\mu,j)} \cdot \sigma_{n-1}(v_{\lambda} \otimes \check{e}_i) \\ &= (-1)^{n-1} \cdot v_{(\mu,j)} + (-1)^n \cdot \sum_{(\lambda,i) \in \widetilde{\Lambda}} a_{(\lambda,i)}^{(\mu,j)} \cdot v_{(\lambda,i)} \\ &= (-1)^{n-1} \cdot (v_{(\mu,j)} - \sum_{(\lambda,i) \in \widetilde{\Lambda}} a_{(\lambda,i)}^{(\mu,j)} \cdot v_{(\lambda,i)}) \\ &= (-1)^{n-1} \cdot \sum_{u \in U} b_u^{(\mu,j)} \cdot u \,, \end{split}$$

we get the required equality.

Let *F_n be the R-submodule of tF_n generated by $\{{}^*v_{(\mu,j)}\}_{(\mu,j)\in{}^*\Lambda}$ and let ${}^*\varphi_n$ be the restriction of ${}^t\varphi_n$ to *F_n . By 3.5 we have $\operatorname{Im}{}^*\varphi_n\subseteq{}^*F_{n-1}$. Thus we get a complex

$$0 \longrightarrow {}^*F_n \stackrel{{}^*\varphi_n}{\longrightarrow} {}^*F_{n-1} \longrightarrow \cdots \longrightarrow {}^*F_1 \stackrel{{}^*\varphi_1}{\longrightarrow} {}^*F_0 = F_0.$$

This is the complex we desire. In fact, the following result holds.

THEOREM 3.6. (* F_{\bullet} , * ϕ_{\bullet}) is an acyclic complex of finitely generated free R-modules with the following properties.

- (1) $\operatorname{Im}^* \varphi_1 = M :_{F_0} Q \text{ and } \operatorname{Im}^* \varphi_n \subseteq \mathfrak{m} \cdot {}^*F_{n-1}.$
- (2) $\{v_{(\mu,j)}\}_{(\mu,j)\in *\Lambda}$ is an R-free basis of $*F_n$.
- (3) $\{[\lambda, I]\}_{(\lambda, I) \in \Lambda \times N_{n-2}} \cup \langle U \rangle$ is an R-free basis of F_{n-1} .

PROOF. First, let us notice that $\{v_{\lambda} \otimes \check{e}_i\}_{(\lambda,i) \in \widetilde{\Lambda}}$ is an *R*-free basis of F_n and

$$v_{\mu} \otimes \check{e}_{i} \in R \cdot {}^{*}v_{(\mu, i)} + R \cdot \{v_{\lambda} \otimes \check{e}_{i}\}_{(\lambda, i) \in \Lambda} + \mathfrak{m} \cdot {}^{\prime}F_{n}$$

for any $(\mu, j) \in {}^*\Lambda$. Hence, by Nakayama's lemma it follows that ${}'F_n$ is generated by

$$\{v_{\lambda} \otimes \check{e}_i\}_{(\lambda,i)\in \Lambda} \cup \{v_{(\mu,j)}\}_{(\mu,j)\in \Lambda},$$

which must be an R-free basis since $\operatorname{rank}_R{'F_n} = \sharp \widetilde{\Lambda} = \sharp '\Lambda + \sharp *\Lambda$. Let ${''F_n}$ be the R-submodule of ${'F_n}$ generated by $\{v_\lambda \otimes \check{e}_i\}_{(\lambda,i)\in\Lambda}$. Then ${'F_n} = {''F_n} \oplus {*F_n}$.

Next, let us recall that

$$\{[\lambda, I]\}_{(\lambda, I) \in \Lambda \times N_{n-2}} \cup \{\langle v_{(\lambda, i)} \rangle\}_{(\lambda, i) \in \Lambda} \cup \langle U \rangle$$

is an R-free basis of ${}^{\prime}F_{n-1}$. Because

$$'\varphi_n(v_\lambda \otimes \check{e}_i) = [v_\lambda \otimes \partial_{n-1}(\check{e}_i)] + (-1)^i \cdot \langle v_{(\lambda,i)} \rangle,$$

we see that

$$\{[\lambda, I]\}_{(\lambda, I) \in \Lambda \times N_{n-2}} \cup \{\varphi_n(v_\lambda \otimes \check{e}_i)\}_{(\lambda, i) \in \Lambda} \cup \langle U \rangle$$

is also an R-free basis of ${}'F_{n-1}$. Let ${}''F_{n-1} = R \cdot \{ \varphi_n(v_\lambda \otimes \check{e}_i) \}_{(\lambda,i) \in A}$. Then ${}'F_{n-1} = {}''F_{n-1} \oplus {}^*F_{n-1}$.

It is obvious that $'\varphi_n(''F_n) = ''F_{n-1}$. Moreover, by 3.5 we get $'\varphi_n(^*F_n) \subseteq ^*F_{n-1}$. Therefore, by (2) of 2.3, it follows that $^*F_{\bullet}$ is acyclic. We have already seen (3) and the first assertion of (1). The second assertion of (1) follows from 3.5. Moreover, the assertion (2) is now obvious.

References

- [1] K. FUKUMURO, T. INAGAWA and K. NISHIDA, On a transform of an acyclic complex of length 3, J. Algebra 384 (2013), 84–109.
- [2] K. FUKUMURO, T. INAGAWA and K. NISHIDA, Saturations of powers of certain determinantal ideals, to appear in J. Commutative Algebra.

Present Address:

GRADUATE SCHOOL OF SCIENCE,

CHIBA UNIVERSITY,

1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan.

e-mail: kado@ta3.so-net.ne.jp