The $*$-transforms of Acyclic Complexes

Taro INAGAWA
Chiba University
(Communicated by H. Nawa)

Abstract

Let R be an n-dimensional Cohen-Macaulay local ring and Q a parameter ideal of R. Suppose that an acyclic complex ($F_{\bullet}, \varphi_{\bullet}$) of length n of finitely generated free R-modules is given. We put $M=\operatorname{Im} \varphi_{1}$, which is an R-submodule of F_{0}. Then F_{\bullet} is an R-free resolution of F_{0} / M. In this paper, we describe a concrete procedure to get an acyclic complex ${ }^{*} F_{\bullet}$ of length n that resolves $F_{0} /\left(M: F_{0} Q\right)$.

1. Introduction

Let I and J be ideals of a commutative ring R. The ideal quotient

$$
I:_{R} J=\{a \in R \mid a J \subseteq I\}
$$

is an important notion in the theory of commutative algebra. For example, if (R, \mathfrak{m}) is a Noetherian local ring and I is an \mathfrak{m}-primary ideal of R, the Gorenstein property of R / I is characterized by the $\operatorname{socle} \operatorname{Soc}(R / I)=\left(I:_{R} \mathfrak{m}\right) / I$. The $*$-transform of an acyclic complex of length 3 is introduced in [1] for the purpose of composing an R-free resolution of the ideal quotient of a certain ideal I whose R-free resolution is given. Here, let us recall its outline.

Let (R, \mathfrak{m}) be a 3-dimensional Cohen-Macaulay local ring and Q a parameter ideal of R. Suppose that an acyclic complex

$$
F_{\bullet}: \quad 0 \longrightarrow F_{3} \xrightarrow{\varphi_{3}} F_{2} \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0}=R
$$

of finitely generated free R-modules such that $\operatorname{Im} \varphi_{3} \subseteq Q F_{2}$ is given. Then, taking the $*-$ transform of F_{\bullet}, we get an acyclic complex

$$
{ }^{*} F_{\bullet} \quad: \quad 0 \longrightarrow{ }^{*} F_{3} \xrightarrow{*{ }^{*} \varphi_{3}}{ }^{*} F_{2} \xrightarrow{{ }^{*} \varphi_{2}}{ }^{*} F_{1} \xrightarrow{*}{ }^{*} \varphi_{1}{ }^{*} F_{0}=R
$$

of finitely generated free R-modules such that $\operatorname{Im}{ }^{*} \varphi_{1}=\operatorname{Im} \varphi_{1}:_{R} Q$ and $\operatorname{Im}{ }^{*} \varphi_{3} \subseteq \mathfrak{m} \cdot{ }^{*} F_{2}$. If R is regular, for any ideal I of R, we can take \mathfrak{m} and the minimal R-free resolution of R / I as Q and F_{\bullet}, respectively, and then ${ }^{*} F_{\bullet}$ gives an R-free resolution of $R /\left(I:_{R} \mathfrak{m}\right)$. Here, let us notice that we can take the $*$-transform of ${ }^{*} F_{\bullet}$ again since $\operatorname{Im}{ }^{*} \varphi_{3} \subseteq \mathfrak{m} \cdot{ }^{*} F_{2}$, and an R-free resolution of $R /\left(I:_{R} \mathfrak{m}^{2}\right)$ is induced. Repeating this procedure, we get an R-free resolution
of $R /\left(I:_{R} \mathfrak{m}^{k}\right)$ for any $k>0$, and it contains complete information about the 0 -th local cohomology module of R / I with respect to \mathfrak{m}. This method is very useful for computing the symbolic powers of the ideal generated by the maximal minors of a certain 2×3 matrix as is described in [1].

Thus, in [1], the theory of $*$-transform is developed for only acyclic complexes of length 3 on a 3-dimensional Cohen-Macaulay local ring. The purpose of this paper is to generalize the machinery of $*$-transform so that we can apply it to acyclic complexes of length n as follows. Let (R, \mathfrak{m}) be an n-dimensional Cohen-Macaulay local ring, where $2 \leq n \in \mathbb{Z}$, and let Q be a parameter ideal of R. Suppose that an acyclic complex

$$
0 \longrightarrow F_{n} \xrightarrow{\varphi_{n}} F_{n-1} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{\varphi_{1}} F_{0}
$$

of finitely generated free R-modules such that $\operatorname{Im} \varphi_{n} \subseteq Q F_{n-1}$ is given. We aim to give a concrete procedure to get an acyclic complex

$$
0 \longrightarrow{ }^{*} F_{n} \xrightarrow{*{ }^{*} \varphi_{n}}{ }^{*} F_{n-1} \longrightarrow \cdots \longrightarrow{ }^{*} F_{1} \xrightarrow{* \varphi_{1}}{ }^{*} F_{0}=F_{0}
$$

of finitely generated free R-modules such that $\operatorname{Im}{ }^{*} \varphi_{1}=\operatorname{Im} \varphi_{1}:_{F_{0}} Q$ and $\operatorname{Im}{ }^{*} \varphi_{n} \subseteq \mathfrak{m} \cdot{ }^{*} F_{n-1}$. Let us notice that we do not need any restriction on the rank of F_{0}, so there may be some application to the study of $M:_{F} Q$, where F is a finitely generated free R-module and M is an R-submodule of F. Moreover, as the generalized $*$-transform works for acyclic complexes of length $n \geq 2$, we can apply it to the study of some ideal quotients in n-dimensional CohenMacaulay local rings. In fact, in the subsequent paper [2], setting I to be the m-th power of the ideal generated by the maximal minors of the matrix

$$
\left(\begin{array}{cccccc}
x_{1}^{\alpha_{1,1}} & x_{2}^{\alpha_{1,2}} & x_{3}^{\alpha_{1,3}} & \cdots & x_{m}^{\alpha_{1, m}} & x_{m+1}^{\alpha_{1, m+1}} \\
x_{2}^{\alpha_{2,1}} & x_{3}^{\alpha_{2,2}} & x_{4}^{\alpha_{2,3}} & \cdots & x_{m+1}^{\alpha_{2, m}} & x_{1}^{\alpha_{2, m+1}} \\
x_{3}^{\alpha_{3,1}} & x_{4}^{\alpha_{3,2}} & x_{5}^{\alpha_{3,3}} & \cdots & x_{1}^{\alpha_{3, m}} & x_{2}^{\alpha_{3, m+1}} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
x_{m}^{\alpha_{m, 1}} & x_{m+1}^{\alpha_{m, 2}} & x_{1}^{\alpha_{m, 3}} & \cdots & x_{m-2}^{\alpha_{m, m}} & x_{m-1}^{\alpha_{m, m+1}}
\end{array}\right)
$$

and setting $Q=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m}, x_{m+1}\right) R$, where $x_{1}, x_{2}, x_{3}, \ldots, x_{m}, x_{m+1}$ is an sop for an $(m+1)$-dimensional Cohen-Macaulay local ring R and $\left\{\alpha_{i, j}\right\}_{1 \leq i \leq m, 1 \leq j \leq m+1}$ is a family of positive integers, the ideal quotient $I:_{R} Q$ is computed, and it is proved that $I:_{R} Q$ coincides with the saturation of I, that is, the depth of $R /\left(I:_{R} Q\right)$ is positive.

Throughout this paper, R is a commutative ring, and in the last section, we assume that R is an n-dimensional Cohen-Macaulay local ring. For R-modules G and H, the elements of $G \oplus H$ are denoted by

$$
(g, h) \quad(g \in G, h \in H)
$$

In particular, the elements of the forms

$$
(g, 0) \quad \text { and } \quad(0, h)
$$

are denoted by $[g]$ and $\langle h\rangle$, respectively. Moreover, if V is a subset of G, then the family $\{[v]\}_{v \in V}$ is denoted by $[V]$. Similarly $\langle W\rangle$ is defined for a subset W of H. If T is a subset of an R-module, we denote by $R \cdot T$ the R-submodule generated by T. If S is a finite set, $\sharp S$ denotes the number of elements of S.

2. Preliminaries

In this section, we summarize preliminary results. Let R be a commutative ring.
Lemma 2.1. Let G_{\bullet} and F_{\bullet} be acyclic complexes, whose boundary maps are denoted by ∂_{\bullet} and φ_{\bullet}, respectively. Suppose that a chain map $\sigma_{\bullet}: G_{\bullet} \longrightarrow F_{\bullet}$ is given and $\sigma_{0}^{-1}\left(\operatorname{Im} \varphi_{1}\right)=\operatorname{Im} \partial_{1}$ holds. Then the mapping cone Cone $\left(\sigma_{\bullet}\right)$:

$$
\cdots \longrightarrow G_{p-1} \oplus F_{p} \xrightarrow{\psi_{p}} G_{p-2} \oplus F_{p-1} \longrightarrow \cdots \longrightarrow G_{1} \oplus F_{2} \xrightarrow{\psi_{2}} G_{0} \oplus F_{1} \xrightarrow{\psi_{1}} F_{0} \longrightarrow 0
$$

is acyclic, where

$$
\psi_{p}=\left(\begin{array}{cc}
\partial_{p-1} & (-1)^{p-1} \cdot \sigma_{p-1} \\
0 & \varphi_{p}
\end{array}\right) \quad \text { for all } p \geq 2 \text { and } \psi_{1}=\binom{\sigma_{0}}{\varphi_{1}}
$$

Hence, if G_{\bullet} and F_{\bullet} are complexes of finitely generated free R-modules, then $\operatorname{Cone}\left(\sigma_{\bullet}\right)$ gives an R-free resolution of $F_{0} /\left(\operatorname{Im} \varphi_{1}+\operatorname{Im} \sigma_{0}\right)$.

Proof. See [1, 2.1].
Lemma 2.2. Let $2 \leq n \in \mathbb{Z}$ and $C \bullet$. be a double complex such that $C_{p, q}=0$ unless $0 \leq p, q \leq n$. For any $p, q \in \mathbb{Z}$, we denote the boundary maps $C_{p, q} \longrightarrow C_{p-1, q}$ and $C_{p, q} \longrightarrow C_{p, q-1}$ by $d_{p, q}^{\prime}$ and $d_{p, q}^{\prime \prime}$, respectively. We assume that $C_{p \bullet}$ and $C_{\bullet q}$ are acyclic for $0 \leq p, q \leq n$. Let T_{\bullet} be the total complex of $C_{\bullet \bullet}$ and let d_{\bullet} be its boundary map, that is, if $\xi \in C_{p, q} \subseteq T_{r}(p+q=r)$, then

$$
d_{r}(\xi)=(-1)^{p} \cdot d_{p, q}^{\prime \prime}(\xi)+d_{p, q}^{\prime}(\xi) \in C_{p, q-1} \oplus C_{p-1, q} \subseteq T_{r-1}
$$

Then the following assertions hold.
(1) Suppose that $\xi_{n} \in C_{n, 0}$ and $\xi_{n-1} \in C_{n-1,1}$ such that $d_{n, 0}^{\prime}\left(\xi_{n}\right)=(-1)^{n}$. $d_{n-1,1}^{\prime \prime}\left(\xi_{n-1}\right)$ are given. Then there exist elements $\xi_{p} \in C_{p, n-p}$ for all $p=$ $0,1, \ldots, n-2$ such that

$$
\begin{aligned}
& \xi_{n}+\xi_{n-1}+\xi_{n-2}+\cdots+\xi_{0} \in \operatorname{Ker} d_{n} \\
& \quad \subseteq T_{n}=C_{n, 0} \oplus C_{n-1,1} \oplus C_{n-2,2} \oplus \cdots \oplus C_{0, n}
\end{aligned}
$$

(2) Suppose that $\xi_{n}+\xi_{n-1}+\cdots+\xi_{1}+\xi_{0} \in \operatorname{Ker} d_{n} \subseteq T_{n}=C_{n, 0} \oplus C_{n-1,1} \oplus \cdots \oplus$ $C_{1, n-1} \oplus C_{0, n}$ and $\xi_{0} \in \operatorname{Im} d_{1, n}^{\prime}$. Then

$$
\xi_{n}+\xi_{n-1}+\cdots+\xi_{1}+\xi_{0} \in \operatorname{Im} d_{n+1}
$$

In particular, we have $\xi_{n} \in \operatorname{Im} d_{n, 1}^{\prime \prime}$.
Proof. (1) It is enough to show that if $1 \leq p \leq n-1$ and two elements $\xi_{p+1} \in$ $C_{p+1, n-p-1}, \xi_{p} \in C_{p, n-p}$ such that

$$
d_{p+1, n-p-1}^{\prime}\left(\xi_{p+1}\right)=(-1)^{p+1} \cdot d_{p, n-p}^{\prime \prime}\left(\xi_{p}\right)
$$

are given, then we can take $\xi_{p-1} \in C_{p-1, n-p+1}$ so that

$$
d_{p, n-p}^{\prime}\left(\xi_{p}\right)=(-1)^{p} \cdot d_{p-1, n-p+1}^{\prime \prime}\left(\xi_{p-1}\right)
$$

In fact, if the assumption of the claim stated above is satisfied, we have

$$
\begin{aligned}
d_{p-1, n-p}^{\prime \prime}\left(d_{p, n-p}^{\prime}\left(\xi_{p}\right)\right) & =d_{p, n-p-1}^{\prime}\left(d_{p, n-p}^{\prime \prime}\left(\xi_{p}\right)\right) \\
& =d_{p, n-p-1}^{\prime}\left((-1)^{p+1} \cdot d_{p+1, n-p-1}^{\prime}\left(\xi_{p+1}\right)\right) \\
& =0,
\end{aligned}
$$

and so

$$
d_{p, n-p}^{\prime} p\left(\xi_{p}\right) \in \operatorname{Ker} d_{p-1, n-p}^{\prime \prime}=\operatorname{Im} d_{p-1, n-p+1}^{\prime \prime}
$$

which means the existence of the required element ξ_{p-1}.
(2) We set $\eta_{0}=0$. By the assumption, there exists $\eta_{1} \in C_{1, n}$ such that

$$
\xi_{0}=d_{1, n}^{\prime}\left(\eta_{1}\right)=d_{1, n}^{\prime}\left(\eta_{1}\right)+d_{0, n+1}^{\prime \prime}\left(\eta_{0}\right) .
$$

Here we assume $0 \leq p \leq n-1$ and two elements $\eta_{p} \in C_{p, n-p+1}, \eta_{p+1} \in C_{p+1, n-p}$ such that

$$
\xi_{p}=d_{p+1, n-p}^{\prime}\left(\eta_{p+1}\right)+(-1)^{p} \cdot d_{p, n-p+1}^{\prime \prime}\left(\eta_{p}\right)
$$

are fixed. We would like to find $\eta_{p+2} \in C_{p+2, n-p-1}$ such that

$$
\xi_{p+1}=d_{p+2, n-p-1}^{\prime}\left(\eta_{p+2}\right)+(-1)^{p+1} \cdot d_{p+1, n-p}^{\prime \prime}\left(\eta_{p+1}\right)
$$

Now $d_{p+1, n-p-1}^{\prime}\left(\xi_{p+1}\right)=(-1)^{p+1} \cdot d_{p, n-p}^{\prime \prime}\left(\xi_{p}\right)$ holds, since $\xi_{n}+\xi_{n-1}+\cdots+\xi_{1}+\xi_{0} \in \operatorname{Ker} d_{n}$.
Hence, we have

$$
\begin{aligned}
& d_{p+1, n-p-1}^{\prime}\left(\xi_{p+1}+(-1)^{p} \cdot d_{p+1, n-p}^{\prime \prime}\left(\eta_{p+1}\right)\right) \\
& \quad=d_{p+1, n-p-1}^{\prime}\left(\xi_{p+1}\right)+(-1)^{p} \cdot d_{p+1, n-p-1}^{\prime}\left(d_{p+1, n-p}^{\prime \prime}\left(\eta_{p+1}\right)\right) \\
& \quad=(-1)^{p+1} \cdot d_{p, n-p}^{\prime \prime}\left(\xi_{p}\right)+(-1)^{p} \cdot d_{p, n-p}^{\prime \prime}\left(d_{p+1, n-p}^{\prime}\left(\eta_{p+1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{p+1} \cdot d_{p, n-p}^{\prime \prime}\left(\xi_{p}-d_{p+1, n-p}^{\prime}\left(\eta_{p+1}\right)\right) \\
& =(-1)^{p+1} \cdot d_{p, n-p}^{\prime \prime}\left((-1)^{p} \cdot d_{p, n-p+1}^{\prime \prime}\left(\eta_{p}\right)\right) \\
& =0
\end{aligned}
$$

and it follows that

$$
\xi_{p+1}+(-1)^{p} \cdot d_{p+1, n-p}^{\prime \prime}\left(\eta_{p+1}\right) \in \operatorname{Ker} d_{p+1, n-p-1}^{\prime}=\operatorname{Im} d_{p+2, n-p-1}^{\prime}
$$

Thus we see the existence of the required element η_{p+2}.
Lemma 2.3. Suppose that

$$
0 \longrightarrow F \xrightarrow{\varphi} G \xrightarrow{\psi} H \xrightarrow{\rho} L
$$

is an exact sequence of R-modules. Then the following assertions hold.
(1) If there exists a homomorphism $\phi: G \longrightarrow F$ of R-modules such that $\phi \circ \varphi=\mathrm{id}_{F}$, then

$$
0 \longrightarrow{ }^{*} G \xrightarrow{* *} H \xrightarrow{\rho} L
$$

is exact, where ${ }^{*} G=\operatorname{Ker} \phi$ and ${ }^{*} \psi$ is the restriction of ψ to ${ }^{*} G$.
(2) If $F={ }^{\prime} F \oplus{ }^{*} F, G={ }^{\prime} G \oplus{ }^{*} G, \varphi\left(^{\prime} F\right)={ }^{\prime} G$ and $\varphi\left({ }^{*} F\right) \subseteq{ }^{*} G$, then

$$
0 \longrightarrow{ }^{*} F \xrightarrow{{ }^{*} \varphi}{ }^{*} G \xrightarrow{{ }^{*} \psi} H \xrightarrow{\rho} L
$$

is exact, where ${ }^{*} \varphi$ and ${ }^{*} \psi$ are the restrictions of φ and ψ to ${ }^{*} F$ and ${ }^{*} G$, respectively.
Proof. See [1, 2.3].

3. *-transform

Let $2 \leq n \in \mathbb{Z}$ and let R be an n-dimensional Cohen-Macaulay local ring with the maximal ideal \mathfrak{m}. Suppose that an acyclic complex

$$
0 \longrightarrow F_{n} \xrightarrow{\varphi_{n}} F_{n-1} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{\varphi_{1}} F_{0}
$$

of finitely generated free R-modules such that $\operatorname{Im} \varphi_{n} \subseteq Q F_{n-1}$ is given, where $Q=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right) R$ is a parameter ideal of R. We put $M=\operatorname{Im} \varphi_{1}$, which is an R-submodule of F_{0}. In this section, transforming F_{\bullet} suitably, we aim to construct an acyclic complex

$$
0 \longrightarrow{ }^{*} F_{n} \xrightarrow{{ }^{*} \varphi_{n}}{ }^{*} F_{n-1} \longrightarrow \cdots \longrightarrow{ }^{*} F_{1} \xrightarrow{{ }^{*} \varphi_{1}} * F_{0}=F_{0}
$$

of finitely generated free R-modules such that $\operatorname{Im}{ }^{*} \varphi_{n} \subseteq \mathfrak{m} \cdot{ }^{*} F_{n-1}$ and $\operatorname{Im}{ }^{*} \varphi_{1}=M: F_{0} Q$. Let us call ${ }^{*} F_{\bullet}$ the $*$-transform of F_{\bullet} with respect to $x_{1}, x_{2}, \ldots, x_{n}$.

In this operation, we use the Koszul complex $K_{\bullet}=K_{\bullet}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. We denote the boundary map of K_{\bullet} by ∂_{\bullet}. Let $e_{1}, e_{2}, \ldots, e_{n}$ be an R-free basis of K_{1} such that $\partial_{1}\left(e_{i}\right)=x_{i}$ for all $i=1,2, \ldots, n$. Moreover, we use the following notation:

- $N:=\{1,2, \ldots, n\}$.
- $N_{p}:=\{I \subseteq N \mid \sharp I=p\}$ for $1 \leq p \leq n$ and $N_{0}:=\{\emptyset\}$.
- If $1 \leq p \leq n$ and $I=\left\{i_{1}, i_{2}, \ldots, i_{p}\right\} \in N_{p}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq n$, we set

$$
e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{p}} \in K_{p}
$$

In particular, for $1 \leq i \leq n, \check{e}_{i}:=e_{N \backslash\{i\}}$. Furthermore, e_{\emptyset} denotes the identity element 1_{R} of $R=K_{0}$.

- If $1 \leq p \leq n, I \in N_{p}$ and $i \in I$, we set

$$
s(i, I)=\sharp\{j \in I \mid j<i\}
$$

We define $\sharp \emptyset=0$, so $s(i, I)=0$ if $i=\min I$.
Then, for any $p=0,1, \ldots, n,\left\{e_{I}\right\}_{I \in N_{p}}$ is an R-free basis of K_{p} and

$$
\partial_{p}\left(e_{I}\right)=\sum_{i \in I}(-1)^{s(i, I)} \cdot x_{i} \cdot e_{I \backslash\{i\}}
$$

THEOREM 3.1. ($\left.M: F_{0} Q\right) / M \cong F_{n} / Q F_{n}$.
Proof. We put $L_{0}=F_{0} / M$. Moreover, for $1 \leq p \leq n-1$, we put $L_{p}=\operatorname{Im} \varphi_{p} \subseteq$ F_{p-1} and consider the exact sequence

$$
0 \longrightarrow L_{p} \longrightarrow F_{p-1} \xrightarrow{\varphi_{p-1}} L_{p-1} \longrightarrow 0
$$

where $\varphi_{0}: F_{0} \longrightarrow L_{0}$ is the canonical surjection. Because

$$
\operatorname{Ext}_{R}^{p-1}\left(R / Q, F_{p-1}\right)=\operatorname{Ext}_{R}^{p}\left(R / Q, F_{p-1}\right)=0
$$

we get

$$
\operatorname{Ext}_{R}^{p}\left(R / Q, L_{p}\right) \cong \operatorname{Ext}_{R}^{p-1}\left(R / Q, L_{p-1}\right)
$$

Therefore $\operatorname{Ext}_{R}^{n-1}\left(R / Q, L_{n-1}\right) \cong \operatorname{Hom}_{R}\left(R / Q, F_{0} / M\right) \cong\left(M:_{F_{0}} Q\right) / M$. Now, we see that

$$
\operatorname{Ext}_{R}^{n}\left(R / Q, F_{n}\right) \cong \operatorname{Hom}_{R}\left(R / Q, F_{n} / Q F_{n}\right) \cong F_{n} / Q F_{n}
$$

and

$$
\operatorname{Ext}_{R}^{n}\left(R / Q, F_{n-1}\right) \cong \operatorname{Hom}_{R}\left(R / Q, F_{n-1} / Q F_{n-1}\right) \cong F_{n-1} / Q F_{n-1}
$$

hold, because $x_{1}, x_{2}, \ldots, x_{n}$ is an R-regular sequence. Furthermore, we look at the exact sequence

$$
0 \longrightarrow F_{n} \xrightarrow{\varphi_{n}} F_{n-1} \xrightarrow{\varphi_{n-1}} L_{n-1} \longrightarrow 0
$$

Then, we get the following commutative diagram

$$
\begin{align*}
& 0 \longrightarrow \operatorname{Ext}_{R}^{n-1}\left(R / Q, L_{n-1}\right) \longrightarrow \operatorname{Ext}_{R}^{n}\left(R / Q, F_{n}\right) \xrightarrow{\widetilde{\varphi_{n}}} \operatorname{Ext}_{R}^{n}\left(R / Q, F_{n-1}\right) \tag{ex}\\
& F_{n} / Q F_{n} \xrightarrow{\overline{\varphi_{n}}} \\
& F_{n-1} / Q F_{n-1}
\end{align*}
$$

where $\widetilde{\varphi_{n}}$ and $\overline{\varphi_{n}}$ denote the maps induced from φ_{n}. Let us notice $\overline{\varphi_{n}}=0$ as $\operatorname{Im} \varphi_{n} \subseteq Q F_{n-1}$. Hence

$$
\operatorname{Ext}_{R}^{n-1}\left(R / Q, L_{n-1}\right) \cong F_{n} / Q F_{n}
$$

and so the required isomorphism follows.
Let us fix an R-free basis of F_{n}, say $\left\{v_{\lambda}\right\}_{\lambda \in \Lambda}$. We set $\tilde{\Lambda}=\Lambda \times N$ and take a family $\left\{v_{(\lambda, i)}\right\}_{(\lambda, i) \in \tilde{\Lambda}}$ of elements in F_{n-1} so that

$$
\varphi_{n}\left(v_{\lambda}\right)=\sum_{i \in N} x_{i} \cdot v_{(\lambda, i)}
$$

for all $\lambda \in \Lambda$. This is possible as $\operatorname{Im} \varphi_{n} \subseteq Q F_{n-1}$. The next result is the essential part of the process to get ${ }^{*} F_{\bullet}$.

THEOREM 3.2. There exists a chain map $\sigma_{\bullet}: F_{n} \otimes_{R} K_{\bullet} \longrightarrow F_{\bullet}$

satisfying the following conditions.
(1) $\sigma_{0}^{-1}\left(\operatorname{Im} \varphi_{1}\right)=\operatorname{Im}\left(F_{n} \otimes \partial_{1}\right)$.
(2) $\operatorname{Im} \sigma_{0}+\operatorname{Im} \varphi_{1}=M:_{F_{0}} Q$.
(3) $\sigma_{n-1}\left(v_{\lambda} \otimes \check{e}_{i}\right)=(-1)^{n+i-1} \cdot v_{(\lambda, i)}$ for all $(\lambda, i) \in \tilde{\Lambda}$.
(4) $\sigma_{n}\left(v_{\lambda} \otimes e_{N}\right)=(-1)^{n} \cdot v_{\lambda}$ for all $\lambda \in \Lambda$.

Proof. Let us notice that, for any $p=0,1, \ldots, n,\left\{v_{\lambda} \otimes e_{I}\right\}_{(\lambda, I) \in \Lambda \times N_{p}}$ is an R-free basis of $F_{n} \otimes_{R} K_{p}$, so $\sigma_{p}: F_{n} \otimes_{R} K_{p} \longrightarrow F_{p}$ can be defined by choosing suitable element $w_{(\lambda, I)} \in F_{p}$ that corresponds to $v_{\lambda} \otimes e_{I}$ for $(\lambda, I) \in \Lambda \times N_{p}$. We set $w_{(\lambda, N)}=(-1)^{n} \cdot v_{\lambda}$ for $\lambda \in \Lambda$ and $w_{(\lambda, N \backslash\{i\})}=(-1)^{n+i-1} \cdot v_{(\lambda, i)}$ for $(\lambda, i) \in \widetilde{\Lambda}$. Then

$$
\begin{aligned}
\varphi_{n}\left(w_{(\lambda, N)}\right) & =(-1)^{n} \cdot \varphi_{n}\left(v_{\lambda}\right) \\
& =(-1)^{n} \cdot \sum_{i \in N} x_{i} \cdot v_{(\lambda, i)} \\
& =\sum_{i \in N}(-1)^{s(i, N)} \cdot x_{i} \cdot w_{(\lambda, N \backslash\{i\})} .
\end{aligned}
$$

Moreover, we can take families $\left\{w_{(\lambda, I)}\right\}_{(\lambda, I) \in \Lambda \times N_{p}}$ of elements in F_{p} for any $p=$ $0,1, \ldots, n-2$ so that

$$
\varphi_{p}\left(w_{(\lambda, I)}\right)=\sum_{i \in I}(-1)^{s(i, I)} \cdot x_{i} \cdot w_{(\lambda, I \backslash i j)}
$$

for all $p=1,2, \ldots, n$ and $(\lambda, I) \in \Lambda \times N_{p}$. If this is true, an R-linear map $\sigma_{p}: F_{n} \otimes_{R}$ $K_{p} \longrightarrow F_{p}$ is defined by setting $\sigma_{p}\left(v_{\lambda} \otimes e_{I}\right)=w_{(\lambda, I)}$ for $(\lambda, I) \in \Lambda \times N_{p}$ and σ_{\bullet} : $F_{n} \otimes_{R} K_{\bullet} \longrightarrow F_{\bullet}$ becomes a chain map satisfying (3) and (4).

In order to see the existence of $\left\{w_{(\lambda, I)}\right\}_{(\lambda, I) \in \Lambda \times N_{p}}$, let us consider the double complex $F_{\bullet} \otimes_{R} K_{\bullet}$.

We can take it as $C_{\bullet \bullet}$ of 2.2. Let T_{\bullet} be the total complex and d_{\bullet} be its boundary map. In particular, we have

$$
T_{n}=\left(F_{n} \otimes_{R} K_{0}\right) \oplus\left(F_{n-1} \otimes_{R} K_{1}\right) \oplus \cdots \oplus\left(F_{1} \otimes_{R} K_{n-1}\right) \oplus\left(F_{0} \otimes_{R} K_{n}\right)
$$

For $I \subseteq N$, we define

$$
t(I)= \begin{cases}\sum_{i \in I}(i-1) & \text { if } I \neq \emptyset \\ 0 & \text { if } I=\emptyset\end{cases}
$$

For a while, we fix $\lambda \in \Lambda$ and set

$$
\begin{aligned}
\xi_{n}(\lambda) & =(-1)^{\frac{n(n+1)}{2}} \cdot(-1)^{t(N)} \cdot w_{(\lambda, N)} \otimes e_{\emptyset} \in F_{n} \otimes_{R} K_{0}, \\
\xi_{n-1}(\lambda) & =(-1)^{\frac{(n-1) n}{2}} \cdot \sum_{i \in N}(-1)^{t(N \backslash\{i\})} \cdot w_{(\lambda, N \backslash\{i\})} \otimes e_{i} \in F_{n-1} \otimes_{R} K_{1} .
\end{aligned}
$$

It is easy to see that

$$
\xi_{n}(\lambda)=v_{\lambda} \otimes e_{\emptyset}
$$

since $t(N)=(n-1) n / 2$ and $n^{2}+n \equiv 0(\bmod 2)$. Moreover, we have

$$
\xi_{n-1}(\lambda)=(-1)^{n} \cdot \sum_{i \in N} v_{(\lambda, i)} \otimes e_{i}
$$

since $t(N \backslash\{i\})=(n-1) n / 2-(i-1)$. Then

$$
\begin{aligned}
\left(\varphi_{n} \otimes K_{0}\right)\left(\xi_{n}(\lambda)\right) & =\varphi_{n}\left(v_{\lambda}\right) \otimes e_{\emptyset} \\
& =\left(\sum_{i \in N} x_{i} \cdot v_{(\lambda, i)}\right) \otimes e_{\emptyset} \\
& =\sum_{i \in N} v_{(\lambda, i)} \otimes x_{i} \\
& =\left(F_{n-1} \otimes \partial_{1}\right)\left(\sum_{i \in N} v_{(\lambda, i)} \otimes e_{i}\right) \\
& =(-1)^{n} \cdot\left(F_{n-1} \otimes \partial_{1}\right)\left(\xi_{n-1}(\lambda)\right)
\end{aligned}
$$

Hence, by (1) of 2.2 there exist elements $\xi_{p}(\lambda) \in F_{p} \otimes K_{n-p}$ for all $p=0,1, \ldots, n-2$ such that

$$
\xi_{n}(\lambda)+\xi_{n-1}(\lambda)+\xi_{n-2}(\lambda)+\cdots+\xi_{0}(\lambda) \in \operatorname{Ker} d_{n} \subseteq T_{n}
$$

which means

$$
\left(\varphi_{p} \otimes K_{n-p}\right)\left(\xi_{p}(\lambda)\right)=(-1)^{p} \cdot\left(F_{p-1} \otimes \partial_{n-p+1}\right)\left(\xi_{p-1}(\lambda)\right)
$$

for any $p=1,2, \ldots, n$. Let us denote $N \backslash I$ by I^{c} for $I \subseteq N$. Because $\left\{e_{I^{\mathrm{c}}}\right\}_{I \in N_{p}}$ is an R-free basis of K_{n-p}, it is possible to write

$$
\xi_{p}(\lambda)=(-1)^{\frac{p(p+1)}{2}} \cdot \sum_{I \in N_{p}}(-1)^{t(I)} \cdot w_{(\lambda, I)} \otimes e_{I^{\mathrm{c}}}
$$

for any $p=0,1, \ldots, n-2$ (Notice that $\xi_{n}(\lambda)$ and $\xi_{n-1}(\lambda)$ are defined so that they satisfy the same equalities), where $w_{(\lambda, I)} \in F_{p}$. Then we have

$$
\left(\varphi_{p} \otimes K_{n-p}\right)\left(\xi_{p}(\lambda)\right)=(-1)^{\frac{p(p+1)}{2}} \cdot \sum_{I \in N_{p}}(-1)^{t(I)} \cdot \varphi_{p}\left(w_{(\lambda, I)}\right) \otimes e_{I^{\mathrm{c}}}
$$

On the other hand,

$$
\begin{aligned}
& (-1)^{p} \cdot\left(F_{p-1} \otimes \partial_{n-p+1}\right)\left(\xi_{p-1}(\lambda)\right) \\
& \quad=(-1)^{p} \cdot(-1)^{\frac{(p-1) p}{2}} \cdot \sum_{J \in N_{p-1}}\left\{(-1)^{t(J)} \cdot w_{(\lambda, J)} \otimes\left(\sum_{i \in J^{\mathrm{c}}}(-1)^{s\left(i, J^{\mathrm{c}}\right)} \cdot x_{i} \cdot e_{J^{\mathrm{c}} \backslash\{i\}}\right)\right\} .
\end{aligned}
$$

Here we notice that if $I \in N_{p}, J \in N_{p-1}$ and $i \in N$, then

$$
I^{\mathrm{c}}=J^{\mathrm{c}} \backslash\{i\} \Longleftrightarrow I=J \cup\{i\}
$$

Hence we get

$$
\begin{aligned}
& (-1)^{p} \cdot\left(F_{p-1} \otimes \partial_{n-p+1}\right)\left(\xi_{p-1}(\lambda)\right) \\
& \quad=(-1)^{\frac{p(p+1)}{2}} \cdot \sum_{I \in N_{p}}\left\{\left(\sum_{i \in I}(-1)^{t(I \backslash\{i\})+s\left(i, I^{\mathrm{c}} \cup\{i\}\right)} \cdot x_{i} \cdot w_{(\lambda, I \backslash\{i\})}\right) \otimes e_{I^{\mathrm{c}}}\right\} .
\end{aligned}
$$

For $I \in N_{p}$ and $i \in I$, we have

$$
\begin{gathered}
t(I \backslash\{i\})=t(I)-(i-1) \\
s(i, I)+s\left(i, I^{\mathrm{c}} \cup\{i\}\right)=s(i, N)=i-1
\end{gathered}
$$

and so

$$
\begin{aligned}
t(I \backslash\{i\})+s\left(i, I^{\mathrm{c}} \cup\{i\}\right) & =t(I)-s(i, I) \\
& \equiv t(I)+s(i, I) \quad(\bmod 2)
\end{aligned}
$$

Therefore we see that the required equality (\sharp) holds for all $I \in N_{p}$.
Let us prove (1). We have to show $\sigma_{0}^{-1}\left(\operatorname{Im} \varphi_{1}\right) \subseteq \operatorname{Im}\left(F_{n} \otimes \partial_{1}\right)$. Take any $\eta_{n} \in F_{n} \otimes_{R} K_{0}$ such that $\sigma_{0}\left(\eta_{n}\right) \in \operatorname{Im} \varphi_{1}$. As $\left\{\xi_{n}(\lambda)\right\}_{\lambda \in \Lambda}$ is an R-free basis of $F_{n} \otimes_{R} K_{0}$, we can express

$$
\eta_{n}=\sum_{\lambda \in \Lambda} a_{\lambda} \cdot \xi_{n}(\lambda)=\sum_{\lambda \in \Lambda} a_{\lambda} \cdot\left(v_{\lambda} \otimes e_{\emptyset}\right)
$$

where $a_{\lambda} \in R$ for $\lambda \in \Lambda$. Then we have

$$
\sum_{\lambda \in \Lambda} a_{\lambda} \cdot w_{(\lambda, \emptyset)}=\sum_{\lambda \in \Lambda} a_{\lambda} \cdot \sigma_{0}\left(v_{\lambda} \otimes e_{\emptyset}\right)=\sigma_{0}\left(\eta_{n}\right) \in \operatorname{Im} \varphi_{1}
$$

Now we set

$$
\eta_{p}=\sum_{\lambda \in \Lambda} a_{\lambda} \cdot \xi_{p}(\lambda) \in F_{p} \otimes_{R} K_{n-p}
$$

for $0 \leq p \leq n-1$. Then

$$
\begin{aligned}
\eta_{n}+\eta_{n-1}+\cdots+\eta_{1}+\eta_{0} & =\sum_{\lambda \in \Lambda} a_{\lambda} \cdot\left(\xi_{n}(\lambda)+\xi_{n-1}(\lambda)+\cdots+\xi_{1}(\lambda)+\xi_{0}(\lambda)\right) \\
& \in \operatorname{Ker} d_{n} \subseteq T_{n}
\end{aligned}
$$

Because

$$
\begin{aligned}
\eta_{0} & =\sum_{\lambda \in \Lambda} a_{\lambda} \cdot \xi_{0}(\lambda) \\
& =\sum_{\lambda \in \Lambda} a_{\lambda} \cdot\left(w_{(\lambda, \emptyset)} \otimes e_{N}\right) \\
& =\left(\sum_{\lambda \in \Lambda} a_{\lambda} \cdot w_{(\lambda, \emptyset)}\right) \otimes e_{N}
\end{aligned}
$$

$$
\in \operatorname{Im}\left(\varphi_{1} \otimes K_{n}\right),
$$

we get $\eta_{n} \in \operatorname{Im}\left(F_{n} \otimes \partial_{1}\right)$ by (2) of 2.2.
Finally we prove (2). Let us consider the following commutative diagram

where $\overline{\sigma_{0}}$ is the map induced from σ_{0}. For all $\lambda \in \Lambda$ and $i \in N$, we have

$$
x_{i} \cdot w_{(\lambda, \varnothing)}=\varphi_{1}\left(w_{(\lambda,(i j))}\right) \in M,
$$

which means $w_{(\lambda, \varnothing)} \in M:_{F_{0}} Q$. Hence $\operatorname{Im} \sigma_{0} \subseteq M: F_{F_{0}} Q$, and so $\operatorname{Im} \overline{\sigma_{0}} \subseteq\left(M:_{F_{0}} Q\right) / M$. On the other hand, as $\sigma_{0}^{-1}\left(\operatorname{Im} \varphi_{1}\right)=\operatorname{Im}\left(F_{n} \otimes \partial_{1}\right)$, we see that $\overline{\sigma_{0}}$ is injective. Therefore we get $\operatorname{Im} \overline{\sigma_{0}}=\left(M:_{F_{0}} Q\right) / M$ since $\left(M:_{F_{0}} Q\right) / M \cong F_{n} / Q F_{n}$ by 3.1 and $F_{n} / Q F_{n}$ has a finite length. Thus the assertion (2) follows and the proof is complete.

In the rest, $\sigma_{\bullet}: F_{n} \otimes_{R} K_{\bullet} \longrightarrow F_{\bullet}$ is the chain map constructed in 3.2. Then, by 2.1 the mapping cone Cone $\left(\sigma_{\bullet}\right)$ gives an R-free resolution of $F_{0} /\left(M:_{F_{0}} Q\right)$, that is,

$$
\begin{aligned}
& 0 \longrightarrow F_{n} \otimes_{R} K_{n} \xrightarrow{\psi_{n+1}}\left(F_{n} \otimes_{R} K_{n-1}\right) \oplus F_{n} \xrightarrow{\psi_{n}}\left(F_{n} \otimes_{R} K_{n-2}\right) \oplus F_{n-1} \\
& \stackrel{\varphi_{n-1}}{ }\left(F_{n} \otimes_{R} K_{n-3}\right) \oplus F_{n-2} \xrightarrow{{ }^{*} \varphi_{n-2}}\left(F_{n} \otimes_{R} K_{n-4}\right) \oplus F_{n-3} \longrightarrow \cdots \\
& \longrightarrow\left(F_{n} \otimes_{R} K_{1}\right) \oplus F_{2} \xrightarrow{{ }^{*} \varphi_{2}}\left(F_{n} \otimes_{R} K_{0}\right) \oplus F_{1} \xrightarrow{{ }^{*} \varphi_{1}} F_{0}
\end{aligned}
$$

is acyclic and $\operatorname{Im}^{*} \varphi_{1}=M:_{F_{0}} Q$, where

$$
\begin{gathered}
\psi_{n+1}=\left(\begin{array}{ll}
F_{n} \otimes \partial_{n} & (-1)^{n} \cdot \sigma_{n}
\end{array}\right), \quad \psi_{n}=\left(\begin{array}{cc}
F_{n} \otimes \partial_{n-1} & (-1)^{n-1} \cdot \sigma_{n-1} \\
0 & \varphi_{n}
\end{array}\right), \\
\varphi_{n-1}=\left(\begin{array}{cc}
F_{n} \otimes \partial_{n-2} & (-1)^{n-2} \cdot \sigma_{n-2} \\
0 & \varphi_{n-1}
\end{array}\right), \\
{ }^{*} \varphi_{p}=\left(\begin{array}{cc}
F_{n} \otimes \partial_{p-1} & (-1)^{p-1} \cdot \sigma_{p-1} \\
0 & \varphi_{p}
\end{array}\right) \quad \text { for } 2 \leq p \leq n-2 \text { and }{ }^{*} \varphi_{1}=\binom{\sigma_{0}}{\varphi_{1}} .
\end{gathered}
$$

Because $\sigma_{n}: F_{n} \otimes_{R} K_{n} \longrightarrow F_{n}$ is an isomorphism by (4) of 3.2, we can define

$$
\phi=\binom{0}{(-1)^{n} \cdot \sigma_{n}^{-1}} \quad: \quad\left(F_{n} \otimes_{R} K_{n-1}\right) \oplus F_{n} \longrightarrow F_{n} \otimes_{R} K_{n} .
$$

Then $\phi \circ \psi_{n+1}=\operatorname{id}_{F_{n} \otimes_{R} K_{n}}$ and $\operatorname{Ker} \phi=F_{n} \otimes_{R} K_{n-1}$. Hence, by (1) of 2.3, we get the acyclic complex

$$
0 \longrightarrow{ }^{\prime} F_{n} \xrightarrow{\text { ' }_{n}}{ }^{\prime} F_{n-1} \xrightarrow{\varphi_{n-1}}{ }^{*} F_{n-2} \xrightarrow{* \varphi_{n-2}}{ }^{*} F_{n-3} \longrightarrow \cdots \longrightarrow{ }^{*} F_{2} \xrightarrow{*} \varphi_{2}{ }^{*} F_{1} \xrightarrow{* \varphi_{1}}{ }^{*} F_{0}=F_{0},
$$

where

$$
\begin{gathered}
' F_{n}=F_{n} \otimes_{R} K_{n-1}, \quad \quad F_{n-1}=\left(F_{n} \otimes_{R} K_{n-2}\right) \oplus F_{n-1}, \\
* F_{p}=\left(F_{n} \otimes_{R} K_{p-1}\right) \oplus F_{p} \quad \text { for } 1 \leq p \leq n-2 \text { and } \varphi_{n}=\left(F_{n} \otimes \partial_{n-1}(-1)^{n-1} \cdot \sigma_{n-1}\right) .
\end{gathered}
$$

Although $\operatorname{Im}^{\prime} \varphi_{n}$ may not be contained in $\mathfrak{m} \cdot{ }^{\prime} F_{n-1}$, removing non-minimal components from ' F_{n} and ${ }^{\prime} F_{n-1}$, we get free R-modules ${ }^{*} F_{n}$ and ${ }^{*} F_{n-1}$ such that

$$
0 \longrightarrow{ }^{*} F_{n} \xrightarrow{* \varphi_{n}}{ }^{*} F_{n-1} \xrightarrow{* \varphi_{n-1}}{ }^{*} F_{n-2} \longrightarrow \cdots \longrightarrow{ }^{*} F_{1} \xrightarrow{* \varphi_{1}}{ }^{*} F_{0}=F_{0}
$$

is acyclic and $\operatorname{Im}^{*} \varphi_{n} \subseteq \mathfrak{m} \cdot{ }^{*} F_{n-1}$, where ${ }^{*} \varphi_{n}$ and ${ }^{*} \varphi_{n-1}$ are the restrictions of ${ }^{\prime} \varphi_{n}$ and ${ }^{\prime} \varphi_{n-1}$, respectively. In the rest of this section, we describe a concrete procedure to get ${ }^{*} F_{n}$ and ${ }^{*} F_{n-1}$. For that purpose, we use the following notation. As described in Introduction, for any $\xi \in F_{n} \otimes_{R} K_{n-2}$ and $\eta \in F_{n-1}$,

$$
[\xi]:=(\xi, 0) \in^{\prime} F_{n-1} \quad \text { and } \quad\langle\eta\rangle:=(0, \eta) \in^{\prime} F_{n-1}
$$

In particular, for any $(\lambda, I) \in \Lambda \times N_{n-2}$, we denote $\left[v_{\lambda} \otimes e_{I}\right]$ by $[\lambda, I]$. Moreover, for a subset U of $F_{n-1},\langle U\rangle:=\{\langle u\rangle\}_{u \in U}$.

Now, let us choose a subset Λ of $\tilde{\Lambda}$ and a subset U of F_{n-1} so that

$$
\left\{v_{(\lambda, i)}\right\}_{(\lambda, i) \in \Lambda} \cup U
$$

is an R-free basis of F_{n-1}. We would like to choose ' Λ as big as possible. The following almost obvious fact is useful to find Λ and U.

Lemma 3.3. Let V be an R-free basis of F_{n-1}. If a subset Λ of $\tilde{\Lambda}$ and a subset U of V satisfy
(i) $\sharp^{\prime} \Lambda+\sharp U \leq \sharp V$, and
(ii) $V \subseteq R \cdot\left\{v_{(\lambda, i)}\right\}_{(\lambda, i) \in \Lambda}^{\prime}+R \cdot U+\mathfrak{m} F_{n-1}$,
then $\left\{v_{(\lambda, i)}\right\}_{(\lambda, i) \in \Lambda} \cup U$ is an R-free basis of F_{n-1}.
Let us notice that

$$
\{[\lambda, I]\}_{(\lambda, I) \in \Lambda \times N_{n-2}} \cup\left\{\left\langle v_{(\lambda, i)}\right\rangle\right\}_{(\lambda, i) \in \Lambda} \cup\langle U\rangle
$$

is an R-free basis of ${ }^{\prime} F_{n-1}$. We define ${ }^{*} F_{n-1}$ to be the direct summand of ${ }^{\prime} F_{n-1}$ generated by

$$
\{[\lambda, I]\}_{(\lambda, I) \in \Lambda \times N_{n-2}} \cup\langle U\rangle
$$

Let ${ }^{*} \varphi_{n-1}$ be the restriction of ${ }^{\prime} \varphi_{n-1}$ to ${ }^{*} F_{n-1}$.
Theorem 3.4. If we can take $\tilde{\Lambda}$ itself as ' Λ, then

$$
0 \longrightarrow{ }^{*} F_{n-1} \xrightarrow{* \varphi_{n-1}}{ }^{*} F_{n-2} \longrightarrow \cdots \longrightarrow{ }^{*} F_{1} \xrightarrow{* \varphi_{1}}{ }^{*} F_{0}=F_{0}
$$

is acyclic. Hence we have $\operatorname{depth}_{R} F_{0} /\left(M:_{F_{0}} Q\right)>0$.

Proof. If $\Lambda=\tilde{\Lambda}$, there exists a homomorphism $\phi:^{\prime} F_{n-1} \longrightarrow{ }^{\prime} F_{n}$ such that

$$
\begin{gathered}
\phi([\lambda, I])=0 \quad \text { for any }(\lambda, I) \in \Lambda \times N_{n-2}, \\
\phi\left(\left\langle v_{(\lambda, i)}\right\rangle\right)=(-1)^{i} \cdot v_{\lambda} \otimes \check{e}_{i} \quad \text { for any }(\lambda, i) \in \widetilde{\Lambda}, \\
\phi(\langle u\rangle)=0 \quad \text { for any } u \in U .
\end{gathered}
$$

Then $\phi \circ^{\prime} \varphi_{n}=\operatorname{id}_{F_{n}}$ and $\operatorname{Ker} \phi={ }^{*} F_{n-1}$. Hence, by (1) of 2.3 we get the required assertion.
In the rest of this section, we assume $\Lambda \subsetneq \tilde{\Lambda}$ and put ${ }^{*} \Lambda=\tilde{\Lambda} \backslash ' \Lambda$. Then, for any $(\mu, j) \in{ }^{*} \Lambda$, it is possible to write

$$
v_{(\mu, j)}=\sum_{(\lambda, i) \in \Lambda} a_{(\lambda, i)}^{(\mu, j)} \cdot v_{(\lambda, i)}+\sum_{u \in U} b_{u}^{(\mu, j)} \cdot u,
$$

where $a_{(\lambda, i)}^{(\mu, j)}, b_{u}^{(\mu, j)} \in R$. Here, if Λ is big enough, we can choose every $b_{u}^{(\mu, j)}$ from \mathfrak{m}. In fact, if $b_{u}^{(\mu, j)} \notin \mathfrak{m}$ for some $u \in U$, then we can replace Λ and U by ' $\Lambda \cup\{(\mu, j)\}$ and $U \backslash\{u\}$, respectively. Furthermore, because of a practical reason, let us allow that some terms of $v_{(\lambda, i)}$ for $(\lambda, i) \in{ }^{*} \Lambda$ with non-unit coefficients appear in the right hand side, that is, for any $(\mu, j) \in{ }^{*} \Lambda$, we write

$$
v_{(\mu, j)}=\sum_{(\lambda, i) \in \widetilde{\Lambda}} a_{(\lambda, i)}^{(\mu, j)} \cdot v_{(\lambda, i)}+\sum_{u \in U} b_{u}^{(\mu, j)} \cdot u
$$

where

$$
a_{(\lambda, i)}^{(\mu, j)} \in\left\{\begin{array}{ll}
R & \text { if }(\lambda, i) \in \Lambda, \\
\mathfrak{m} & \text { if }(\lambda, i) \in{ }^{*} \Lambda
\end{array} \text { and } b_{u}^{(\mu, j)} \in \mathfrak{m}\right.
$$

Using this expression, for any $(\mu, j) \in{ }^{*} \Lambda$, the following element in ${ }^{\prime} F_{n}$ can be defined.

$$
{ }^{*} v_{(\mu, j)}:=(-1)^{j} \cdot v_{\mu} \otimes \check{e}_{j}+\sum_{(\lambda, i) \in \widetilde{\Lambda}}(-1)^{i-1} \cdot a_{(\lambda, i)}^{(\mu, j)} \cdot v_{\lambda} \otimes \check{e}_{i} .
$$

Lemma 3.5. For any $(\mu, j) \in{ }^{*} \Lambda$, we have

$$
\begin{aligned}
' \varphi_{n}\left({ }^{*} v_{(\mu, j)}\right)= & (-1)^{j} \cdot\left[v_{\mu} \otimes \partial_{n-1}\left(\check{e}_{j}\right)\right]+\sum_{(\lambda, i) \in \tilde{\Lambda}}(-1)^{i-1} \cdot a_{(\lambda, i)}^{(\mu, j)} \cdot\left[v_{\lambda} \otimes \partial_{n-1}\left(\check{e}_{i}\right)\right] \\
& +\sum_{u \in U} b_{u}^{(\mu, j)} \cdot\langle u\rangle .
\end{aligned}
$$

As a consequence, we have' $\varphi_{n}\left({ }^{*} v_{(\mu, j)}\right) \in \mathfrak{m} \cdot{ }^{*} F_{n-1}$ for any $(\mu, j) \in{ }^{*} \Lambda$.
Proof. By the definition of ${ }^{\prime} \varphi_{n}$, for any $(\mu, j) \in{ }^{*} \Lambda$, we have

$$
{ }^{\prime} \varphi_{n}\left({ }^{*} v_{(\mu, j)}\right)=\left[\left(F_{n} \otimes \partial_{n-1}\right)\left({ }^{*} v_{(\mu, j)}\right)\right]+\left\langle(-1)^{n-1} \cdot \sigma_{n-1}\left({ }^{*} v_{(\mu, j)}\right)\right\rangle .
$$

Because

$$
\left(F_{n} \otimes \partial_{n-1}\right)\left({ }^{*} v_{(\mu, j)}\right)=(-1)^{j} \cdot v_{\mu} \otimes \partial_{n-1}\left(\check{e}_{j}\right)+\sum_{(\lambda, i) \in \widetilde{\Lambda}}(-1)^{i-1} \cdot a_{(\lambda, i)}^{(\mu, j)} \cdot v_{\lambda} \otimes \partial_{n-1}\left(\check{e}_{i}\right)
$$

and

$$
\begin{aligned}
\sigma_{n-1}\left({ }^{*} v_{(\mu, j)}\right) & =(-1)^{j} \cdot \sigma_{n-1}\left(v_{\mu} \otimes \check{e}_{j}\right)+\sum_{(\lambda, i) \in \tilde{\Lambda}}(-1)^{i-1} \cdot a_{(\lambda, i)}^{(\mu, j)} \cdot \sigma_{n-1}\left(v_{\lambda} \otimes \check{e}_{i}\right) \\
& =(-1)^{n-1} \cdot v_{(\mu, j)}+(-1)^{n} \cdot \sum_{(\lambda, i) \in \tilde{\Lambda}} a_{(\lambda, i)}^{(\mu, j)} \cdot v_{(\lambda, i)} \\
& =(-1)^{n-1} \cdot\left(v_{(\mu, j)}-\sum_{(\lambda, i) \in \widetilde{\Lambda}} a_{(\lambda, i)}^{(\mu, j)} \cdot v_{(\lambda, i)}\right) \\
& =(-1)^{n-1} \cdot \sum_{u \in U} b_{u}^{(\mu, j)} \cdot u,
\end{aligned}
$$

we get the required equality.
Let ${ }^{*} F_{n}$ be the R-submodule of ' F_{n} generated by $\left\{{ }^{*} v_{(\mu, j)}\right\}_{(\mu, j) \in{ }^{*} \Lambda}$ and let ${ }^{*} \varphi_{n}$ be the restriction of ' φ_{n} to ${ }^{*} F_{n}$. By 3.5 we have $\operatorname{Im}^{*} \varphi_{n} \subseteq{ }^{*} F_{n-1}$. Thus we get a complex

$$
0 \longrightarrow{ }^{*} F_{n} \xrightarrow{* \varphi_{n}}{ }^{*} F_{n-1} \longrightarrow \cdots \longrightarrow{ }^{*} F_{1} \xrightarrow{* \varphi_{1}}{ }^{*} F_{0}=F_{0} .
$$

This is the complex we desire. In fact, the following result holds.
THEOREM 3.6. $\left({ }^{*} F_{\bullet},{ }^{*} \varphi_{\bullet}\right)$ is an acyclic complex of finitely generated free R-modules with the following properties.
(1) $\operatorname{Im}^{*} \varphi_{1}=M: F_{0} Q$ and $\operatorname{Im}{ }^{*} \varphi_{n} \subseteq \mathfrak{m} \cdot{ }^{*} F_{n-1}$.
(2) $\left\{{ }^{*} v_{(\mu, j)}\right\}_{(\mu, j) \in{ }^{*} \Lambda}$ is an R-free basis of ${ }^{*} F_{n}$.
(3) $\{[\lambda, I]\}_{(\lambda, I) \in \Lambda \times N_{n-2}} \cup\langle U\rangle$ is an R-free basis of ${ }^{*} F_{n-1}$.

Proof. First, let us notice that $\left\{v_{\lambda} \otimes \check{e}_{i}\right\}_{(\lambda, i) \in \tilde{\Lambda}}$ is an R-free basis of ${ }^{\prime} F_{n}$ and

$$
v_{\mu} \otimes \check{e}_{j} \in R \cdot{ }^{*} v_{(\mu, j)}+R \cdot\left\{v_{\lambda} \otimes \check{e}_{i}\right\}_{(\lambda, i) \in \Lambda}+\mathfrak{m} \cdot{ }^{\prime} F_{n}
$$

for any $(\mu, j) \in{ }^{*} \Lambda$. Hence, by Nakayama's lemma it follows that ${ }^{\prime} F_{n}$ is generated by

$$
\left\{v_{\lambda} \otimes \check{e}_{i}\right\}_{(\lambda, i) \in \Lambda} \cup\left\{{ }^{*} v_{(\mu, j)}\right\}_{(\mu, j) \in{ }^{*} \Lambda},
$$

which must be an R-free basis since $\operatorname{rank}_{R}{ }^{\prime} F_{n}=\sharp \tilde{\Lambda}=\sharp^{\prime} \Lambda+\sharp^{*} \Lambda$. Let " F_{n} be the R submodule of ${ }^{\prime} F_{n}$ generated by $\left\{v_{\lambda} \otimes \check{e}_{i}\right\}_{(\lambda, i) \in \Lambda}$. Then ${ }^{\prime} F_{n}={ }^{\prime \prime} F_{n} \oplus^{*} F_{n}$.

Next, let us recall that

$$
\{[\lambda, I]\}_{(\lambda, I) \in \Lambda \times N_{n-2}} \cup\left\{\left\langle v_{(\lambda, i)}\right\rangle\right\}_{(\lambda, i) \in \Lambda} \cup\langle U\rangle
$$

is an R-free basis of ${ }^{\prime} F_{n-1}$. Because

$$
' \varphi_{n}\left(v_{\lambda} \otimes \check{e}_{i}\right)=\left[v_{\lambda} \otimes \partial_{n-1}\left(\check{e}_{i}\right)\right]+(-1)^{i} \cdot\left\langle v_{(\lambda, i)}\right\rangle,
$$

we see that

$$
\{[\lambda, I]\}_{(\lambda, I) \in \Lambda \times N_{n-2}} \cup\left\{^{\prime} \varphi_{n}\left(v_{\lambda} \otimes \check{e}_{i}\right)\right\}_{(\lambda, i) \in \in^{\prime} \Lambda} \cup\langle U\rangle
$$

is also an R-free basis of ${ }^{\prime} F_{n-1}$. Let ${ }^{\prime \prime} F_{n-1}=R \cdot\left\{{ }^{\prime} \varphi_{n}\left(v_{\lambda} \otimes \check{e}_{i}\right)\right\}_{(\lambda, i) \in \prime}$. Then ${ }^{\prime} F_{n-1}=$ ${ }^{\prime \prime} F_{n-1} \oplus{ }^{*} F_{n-1}$.

It is obvious that ${ }^{\prime} \varphi_{n}\left({ }^{\prime \prime} F_{n}\right)={ }^{\prime \prime} F_{n-1}$. Moreover, by 3.5 we get ${ }^{\prime} \varphi_{n}\left({ }^{*} F_{n}\right) \subseteq{ }^{*} F_{n-1}$. Therefore, by (2) of 2.3 , it follows that ${ }^{*} F_{\bullet}$ is acyclic. We have already seen (3) and the first assertion of (1). The second assertion of (1) follows from 3.5. Moreover, the assertion (2) is now obvious.

References

[1] K. Fukumuro, T. Inagawa and K. Nishida, On a transform of an acyclic complex of length 3, J. Algebra 384 (2013), 84-109.
[2] K. Fukumuro, T. Inagawa and K. Nishida, Saturations of powers of certain determinantal ideals, to appear in J. Commutative Algebra.

Present Address:

Graduate School of Science,
Chiba University, 1-33 YAYOI-CHO, INAGE-KU, CHIBA-SHI 263-8522, JAPAN.
e-mail: kado@ta3.so-net.ne.jp

