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Abstract. Let R be an n-dimensional Cohen-Macaulay local ring and Q a parameter ideal of R. Suppose that
an acyclic complex (F•, ϕ•) of length n of finitely generated free R-modules is given. We put M = Imϕ1, which is
an R-submodule of F0. Then F• is an R-free resolution of F0/M. In this paper, we describe a concrete procedure to
get an acyclic complex ∗F• of length n that resolves F0/(M :F0 Q).

1. Introduction

Let I and J be ideals of a commutative ring R. The ideal quotient

I :R J = {a ∈ R | aJ ⊆ I }
is an important notion in the theory of commutative algebra. For example, if (R,m) is a
Noetherian local ring and I is an m-primary ideal of R, the Gorenstein property of R/I is
characterized by the socle Soc(R/I) = (I :R m)/I . The ∗-transform of an acyclic complex
of length 3 is introduced in [1] for the purpose of composing an R-free resolution of the ideal
quotient of a certain ideal I whose R-free resolution is given. Here, let us recall its outline.

Let (R,m) be a 3-dimensional Cohen-Macaulay local ring and Q a parameter ideal of
R. Suppose that an acyclic complex

F• : 0 −→ F3
ϕ3−→ F2

ϕ2−→ F1
ϕ1−→ F0 = R

of finitely generated free R-modules such that Imϕ3 ⊆ QF2 is given. Then, taking the ∗-
transform of F•, we get an acyclic complex

∗F• : 0 −→ ∗F3

∗ϕ3−→ ∗F2

∗ϕ2−→ ∗F1

∗ϕ1−→ ∗F0 = R

of finitely generated free R-modules such that Im ∗ϕ1 = Imϕ1 :R Q and Im ∗ϕ3 ⊆ m · ∗F2. If
R is regular, for any ideal I of R, we can take m and the minimal R-free resolution of R/I
as Q and F•, respectively, and then ∗F• gives an R-free resolution of R/(I :R m). Here, let
us notice that we can take the ∗-transform of ∗F• again since Im ∗ϕ3 ⊆ m · ∗F2, and an R-free

resolution of R/(I :R m2) is induced. Repeating this procedure, we get an R-free resolution
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of R/(I :R mk) for any k > 0, and it contains complete information about the 0-th local
cohomology module of R/I with respect to m. This method is very useful for computing the
symbolic powers of the ideal generated by the maximal minors of a certain 2 × 3 matrix as is
described in [1].

Thus, in [1], the theory of ∗-transform is developed for only acyclic complexes of length
3 on a 3-dimensional Cohen-Macaulay local ring. The purpose of this paper is to generalize
the machinery of ∗-transform so that we can apply it to acyclic complexes of length n as
follows. Let (R,m) be an n-dimensional Cohen-Macaulay local ring, where 2 ≤ n ∈ Z, and
let Q be a parameter ideal of R. Suppose that an acyclic complex

0 −→ Fn
ϕn−→ Fn−1 −→ · · · −→ F1

ϕ1−→ F0

of finitely generated free R-modules such that Im ϕn ⊆ QFn−1 is given. We aim to give a
concrete procedure to get an acyclic complex

0 −→ ∗Fn
∗ϕn−→ ∗Fn−1 −→ · · · −→ ∗F1

∗ϕ1−→ ∗F0 = F0

of finitely generated free R-modules such that Im ∗ϕ1 = Im ϕ1 :F0 Q and Im ∗ϕn ⊆ m · ∗Fn−1.
Let us notice that we do not need any restriction on the rank of F0, so there may be some
application to the study of M :F Q, where F is a finitely generated free R-module and M is
an R-submodule of F . Moreover, as the generalized ∗-transform works for acyclic complexes
of length n ≥ 2, we can apply it to the study of some ideal quotients in n-dimensional Cohen-
Macaulay local rings. In fact, in the subsequent paper [2], setting I to be the m-th power of
the ideal generated by the maximal minors of the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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...
...

...
...

...

x
αm,1
m x

αm,2
m+1 x

αm,3
1 · · · x

αm,m
m−2 x

αm,m+1
m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and setting Q = (x1, x2, x3, . . . , xm, xm+1)R, where x1, x2, x3, . . . , xm, xm+1 is an sop for
an (m+1)-dimensional Cohen-Macaulay local ringR and {αi,j }1≤i≤m,1≤j≤m+1 is a family of
positive integers, the ideal quotient I :R Q is computed, and it is proved that I :R Q coincides
with the saturation of I , that is, the depth of R/(I :R Q) is positive.

Throughout this paper, R is a commutative ring, and in the last section, we assume that
R is an n-dimensional Cohen-Macaulay local ring. For R-modulesG and H , the elements of
G⊕H are denoted by

(g, h) (g ∈ G, h ∈ H ) .
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In particular, the elements of the forms

(g, 0) and (0, h)

are denoted by [g] and 〈h〉, respectively. Moreover, if V is a subset of G, then the family
{[v]}v∈V is denoted by [V ]. Similarly 〈W 〉 is defined for a subset W of H . If T is a subset of
an R-module, we denote by R · T the R-submodule generated by T . If S is a finite set, � S
denotes the number of elements of S.

2. Preliminaries

In this section, we summarize preliminary results. Let R be a commutative ring.

LEMMA 2.1. Let G• and F• be acyclic complexes, whose boundary maps are de-
noted by ∂• and ϕ•, respectively. Suppose that a chain map σ• : G• −→ F• is given and

σ−1
0 (Imϕ1) = Im ∂1 holds. Then the mapping cone Cone(σ•) :

· · · −→ Gp−1 ⊕ Fp
ψp−→ Gp−2 ⊕ Fp−1 −→ · · · −→ G1 ⊕ F2

ψ2−→ G0 ⊕ F1
ψ1−→ F0 −→ 0

is acyclic, where

ψp =
(
∂p−1 (−1)p−1 · σp−1

0 ϕp

)
for all p ≥ 2 and ψ1 =

(
σ0

ϕ1

)
.

Hence, if G• and F• are complexes of finitely generated free R-modules, then Cone(σ•) gives
an R-free resolution of F0/(Imϕ1 + Im σ0).

PROOF. See [1, 2.1]. �

LEMMA 2.2. Let 2 ≤ n ∈ Z and C•• be a double complex such that Cp,q = 0 unless
0 ≤ p, q ≤ n. For any p, q ∈ Z, we denote the boundary maps Cp,q −→ Cp−1,q and
Cp,q −→ Cp,q−1 by d ′

p,q and d ′′
p,q , respectively. We assume that Cp• and C•q are acyclic for

0 ≤ p, q ≤ n. Let T• be the total complex of C•• and let d• be its boundary map, that is, if
ξ ∈ Cp,q ⊆ Tr (p + q = r), then

dr(ξ) = (−1)p · d ′′
p,q(ξ)+ d ′

p,q(ξ) ∈ Cp,q−1 ⊕ Cp−1,q ⊆ Tr−1 .

Then the following assertions hold.
(1) Suppose that ξn ∈ Cn,0 and ξn−1 ∈ Cn−1,1 such that d ′

n,0(ξn) = (−1)n ·
d ′′
n−1,1(ξn−1) are given. Then there exist elements ξp ∈ Cp,n−p for all p =

0, 1, . . . , n− 2 such that

ξn + ξn−1 + ξn−2 + · · · + ξ0 ∈ Ker dn

⊆ Tn = Cn,0 ⊕ Cn−1,1 ⊕ Cn−2,2 ⊕ · · · ⊕ C0,n .
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(2) Suppose that ξn + ξn−1 + · · · + ξ1 + ξ0 ∈ Ker dn ⊆ Tn = Cn,0 ⊕ Cn−1,1 ⊕ · · · ⊕
C1,n−1 ⊕ C0,n and ξ0 ∈ Im d ′

1,n. Then

ξn + ξn−1 + · · · + ξ1 + ξ0 ∈ Im dn+1 .

In particular, we have ξn ∈ Im d ′′
n,1.

PROOF. (1) It is enough to show that if 1 ≤ p ≤ n − 1 and two elements ξp+1 ∈
Cp+1,n−p−1, ξp ∈ Cp,n−p such that

d ′
p+1,n−p−1(ξp+1) = (−1)p+1 · d ′′

p,n−p(ξp)

are given, then we can take ξp−1 ∈ Cp−1,n−p+1 so that

d ′
p,n−p(ξp) = (−1)p · d ′′

p−1,n−p+1(ξp−1) .

In fact, if the assumption of the claim stated above is satisfied, we have

d ′′
p−1,n−p(d ′

p,n−p(ξp)) = d ′
p,n−p−1(d

′′
p,n−p(ξp))

= d ′
p,n−p−1((−1)p+1 · d ′

p+1,n−p−1(ξp+1))

= 0 ,

and so

d ′
p,n−p(ξp) ∈ Ker d ′′

p−1,n−p = Im d ′′
p−1,n−p+1 ,

which means the existence of the required element ξp−1.
(2) We set η0 = 0. By the assumption, there exists η1 ∈ C1,n such that

ξ0 = d ′
1,n(η1) = d ′

1,n(η1)+ d ′′
0,n+1(η0) .

Here we assume 0 ≤ p ≤ n − 1 and two elements ηp ∈ Cp,n−p+1, ηp+1 ∈ Cp+1,n−p such
that

ξp = d ′
p+1,n−p(ηp+1)+ (−1)p · d ′′

p,n−p+1(ηp)

are fixed. We would like to find ηp+2 ∈ Cp+2,n−p−1 such that

ξp+1 = d ′
p+2,n−p−1(ηp+2)+ (−1)p+1 · d ′′

p+1,n−p(ηp+1) .

Now d ′
p+1,n−p−1(ξp+1) = (−1)p+1·d ′′

p,n−p(ξp) holds, since ξn+ξn−1+· · ·+ξ1+ξ0 ∈ Ker dn.

Hence, we have

d ′
p+1,n−p−1(ξp+1 + (−1)p · d ′′

p+1,n−p(ηp+1))

= d ′
p+1,n−p−1(ξp+1)+ (−1)p · d ′

p+1,n−p−1(d
′′
p+1,n−p(ηp+1))

= (−1)p+1 · d ′′
p,n−p(ξp)+ (−1)p · d ′′

p,n−p(d ′
p+1,n−p(ηp+1))
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= (−1)p+1 · d ′′
p,n−p(ξp − d ′

p+1,n−p(ηp+1))

= (−1)p+1 · d ′′
p,n−p((−1)p · d ′′

p,n−p+1(ηp))

= 0 ,

and it follows that

ξp+1 + (−1)p · d ′′
p+1,n−p(ηp+1) ∈ Ker d ′

p+1,n−p−1 = Im d ′
p+2,n−p−1 .

Thus we see the existence of the required element ηp+2. �

LEMMA 2.3. Suppose that

0 −→ F
ϕ−→ G

ψ−→ H
ρ−→ L

is an exact sequence of R-modules. Then the following assertions hold.
(1) If there exists a homomorphism φ : G −→ F of R-modules such that φ ◦ ϕ = idF ,

then

0 −→ ∗G
∗ψ−→ H

ρ−→ L

is exact, where ∗G = Kerφ and ∗ψ is the restriction of ψ to ∗G.
(2) If F = ′F ⊕ ∗F , G = ′G⊕ ∗G, ϕ(′F) = ′G and ϕ(∗F) ⊆ ∗G, then

0 −→ ∗F
∗ϕ−→ ∗G

∗ψ−→ H
ρ−→ L

is exact, where ∗ϕ and ∗ψ are the restrictions of ϕ and ψ to ∗F and ∗G, respectively.

PROOF. See [1, 2.3]. �

3. ∗-transform

Let 2 ≤ n ∈ Z and let R be an n-dimensional Cohen-Macaulay local ring with the
maximal ideal m. Suppose that an acyclic complex

0 −→ Fn
ϕn−→ Fn−1 −→ · · · −→ F1

ϕ1−→ F0

of finitely generated free R-modules such that Imϕn ⊆ QFn−1 is given, where Q =
(x1, x2, . . . , xn)R is a parameter ideal of R. We putM = Imϕ1, which is an R-submodule of
F0. In this section, transforming F• suitably, we aim to construct an acyclic complex

0 −→ ∗Fn
∗ϕn−→ ∗Fn−1 −→ · · · −→ ∗F1

∗ϕ1−→ ∗F0 = F0

of finitely generated free R-modules such that Im ∗ϕn ⊆ m · ∗Fn−1 and Im ∗ϕ1 = M :F0 Q.
Let us call ∗F• the ∗-transform of F• with respect to x1, x2, . . . , xn.

In this operation, we use the Koszul complex K• = K•(x1, x2, . . . , xn). We denote the
boundary map of K• by ∂•. Let e1, e2, . . . , en be an R-free basis of K1 such that ∂1(ei) = xi

for all i = 1, 2, . . . , n. Moreover, we use the following notation:
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• N := {1, 2, . . . , n}.
• Np := {I ⊆ N | � I = p} for 1 ≤ p ≤ n and N0 := {∅}.
• If 1 ≤ p ≤ n and I = {i1, i2, . . . , ip} ∈ Np, where 1 ≤ i1 < i2 < · · · < ip ≤ n, we set

eI = ei1 ∧ ei2 ∧ · · · ∧ eip ∈ Kp .
In particular, for 1 ≤ i ≤ n, ěi := eN\{i}. Furthermore, e∅ denotes the identity element
1R of R = K0.

• If 1 ≤ p ≤ n, I ∈ Np and i ∈ I , we set

s(i, I ) = � {j ∈ I | j < i} .
We define � ∅ = 0, so s(i, I ) = 0 if i = min I .

Then, for any p = 0, 1, . . . , n, {eI }I∈Np is an R-free basis of Kp and

∂p(eI ) =
∑
i∈I
(−1)s(i,I ) · xi · eI\{i} .

THEOREM 3.1. (M :F0 Q)/M
∼= Fn/QFn.

PROOF. We put L0 = F0/M . Moreover, for 1 ≤ p ≤ n − 1, we put Lp = Im ϕp ⊆
Fp−1 and consider the exact sequence

0 −→ Lp −→ Fp−1
ϕp−1−→ Lp−1 −→ 0 ,

where ϕ0 : F0 −→ L0 is the canonical surjection. Because

Extp−1
R (R/Q,Fp−1) = ExtpR(R/Q,Fp−1) = 0 ,

we get

ExtpR(R/Q,Lp)
∼= Extp−1

R (R/Q,Lp−1) .

Therefore Extn−1
R (R/Q,Ln−1) ∼= HomR(R/Q,F0/M) ∼= (M :F0 Q)/M . Now, we see that

ExtnR(R/Q,Fn) ∼= HomR(R/Q,Fn/QFn) ∼= Fn/QFn

and

ExtnR(R/Q,Fn−1) ∼= HomR(R/Q,Fn−1/QFn−1) ∼= Fn−1/QFn−1

hold, because x1, x2, . . . , xn is an R-regular sequence. Furthermore, we look at the exact
sequence

0 −→ Fn
ϕn−→ Fn−1

ϕn−1−→ Ln−1 −→ 0 .



∗-TRANSFORMS OF ACYCLIC COMPLEXES 217

Then, we get the following commutative diagram

0 −→ Extn−1
R (R/Q,Ln−1) −→ ExtnR(R/Q,Fn)

ϕ̃n−→ ExtnR(R/Q,Fn−1) (ex)⏐∼=
⏐∼=

Fn/QFn
ϕn−→ Fn−1/QFn−1 ,

where ϕ̃n and ϕn denote the maps induced from ϕn. Let us notice ϕn = 0 as Imϕn ⊆ QFn−1.
Hence

Extn−1
R (R/Q,Ln−1) ∼= Fn/QFn ,

and so the required isomorphism follows. �

Let us fix an R-free basis of Fn, say {vλ}λ∈Λ. We set Λ̃ = Λ × N and take a family
{v(λ,i)}(λ,i)∈Λ̃ of elements in Fn−1 so that

ϕn(vλ) =
∑
i∈N

xi · v(λ,i)

for all λ ∈ Λ. This is possible as Imϕn ⊆ QFn−1. The next result is the essential part of the
process to get ∗F•.

THEOREM 3.2. There exists a chain map σ• : Fn ⊗R K• −→ F•

0 −→ Fn ⊗R Kn
Fn⊗∂n−→ Fn ⊗R Kn−1 −→ · · · −→ Fn ⊗R K1

Fn⊗∂1−→ Fn ⊗R K0⏐σn ⏐σn−1
⏐σ1

⏐σ0

0 −→ Fn
ϕn−→ Fn−1 −→ · · · −→ F1

ϕ1−→ F0

satisfying the following conditions.

(1) σ−1
0 (Imϕ1) = Im(Fn ⊗ ∂1).

(2) Im σ0 + Imϕ1 = M :F0 Q.

(3) σn−1(vλ ⊗ ěi ) = (−1)n+i−1 · v(λ,i) for all (λ, i) ∈ Λ̃.
(4) σn(vλ ⊗ eN) = (−1)n · vλ for all λ ∈ Λ.

PROOF. Let us notice that, for any p = 0, 1, . . . , n, {vλ ⊗ eI }(λ,I )∈Λ×Np is an R-free
basis of Fn ⊗R Kp, so σp : Fn ⊗R Kp −→ Fp can be defined by choosing suitable element
w(λ,I ) ∈ Fp that corresponds to vλ ⊗ eI for (λ, I) ∈ Λ×Np. We set w(λ,N) = (−1)n · vλ for

λ ∈ Λ and w(λ,N\{i}) = (−1)n+i−1 · v(λ,i) for (λ, i) ∈ Λ̃. Then

ϕn(w(λ,N)) = (−1)n · ϕn(vλ)
= (−1)n ·

∑
i∈N

xi · v(λ,i)

=
∑
i∈N

(−1)s(i,N) · xi ·w(λ,N\{i}) .
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Moreover, we can take families {w(λ,I )}(λ,I )∈Λ×Np of elements in Fp for any p =
0, 1, . . . , n− 2 so that

ϕp(w(λ,I )) =
∑
i∈I
(−1)s(i,I ) · xi · w(λ,I\{i}) (�)

for all p = 1, 2, . . . , n and (λ, I) ∈ Λ × Np. If this is true, an R-linear map σp : Fn ⊗R

Kp −→ Fp is defined by setting σp(vλ ⊗ eI ) = w(λ,I ) for (λ, I) ∈ Λ × Np and σ• :
Fn ⊗R K• −→ F• becomes a chain map satisfying (3) and (4).

In order to see the existence of {w(λ,I )}(λ,I )∈Λ×Np , let us consider the double complex
F• ⊗R K•.

...
...⏐ ⏐

· · · −→ Fp ⊗R Kq
ϕp⊗Kq−→ Fp−1 ⊗R Kq −→ · · ·⏐Fp⊗∂q

⏐Fp−1⊗∂q

· · · −→ Fp ⊗R Kq−1
ϕp⊗Kq−1−→ Fp−1 ⊗R Kq−1 −→ · · ·⏐ ⏐

...
...

We can take it as C•• of 2.2. Let T• be the total complex and d• be its boundary map. In
particular, we have

Tn = (Fn ⊗R K0)⊕ (Fn−1 ⊗R K1)⊕ · · · ⊕ (F1 ⊗R Kn−1)⊕ (F0 ⊗R Kn) .

For I ⊆ N , we define

t (I ) =

⎧⎪⎨
⎪⎩

∑
i∈I
(i − 1) if I �= ∅ ,

0 if I = ∅ .
For a while, we fix λ ∈ Λ and set

ξn(λ) = (−1)
n(n+1)

2 · (−1)t (N) ·w(λ,N) ⊗ e∅ ∈ Fn ⊗R K0 ,

ξn−1(λ) = (−1)
(n−1)n

2 ·
∑
i∈N

(−1)t (N\{i}) ·w(λ,N\{i}) ⊗ ei ∈ Fn−1 ⊗R K1 .

It is easy to see that

ξn(λ) = vλ ⊗ e∅

since t (N) = (n− 1)n/2 and n2 + n ≡ 0 (mod 2). Moreover, we have

ξn−1(λ) = (−1)n ·
∑
i∈N

v(λ,i) ⊗ ei
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since t (N \ {i}) = (n− 1)n/2 − (i − 1). Then

(ϕn ⊗K0)(ξn(λ)) = ϕn(vλ)⊗ e∅

=
( ∑
i∈N

xi · v(λ,i)
)

⊗ e∅

=
∑
i∈N

v(λ,i) ⊗ xi

= (Fn−1 ⊗ ∂1)

( ∑
i∈N

v(λ,i) ⊗ ei

)

= (−1)n · (Fn−1 ⊗ ∂1)(ξn−1(λ)) .

Hence, by (1) of 2.2 there exist elements ξp(λ) ∈ Fp ⊗Kn−p for all p = 0, 1, . . . , n− 2 such
that

ξn(λ)+ ξn−1(λ)+ ξn−2(λ)+ · · · + ξ0(λ) ∈ Ker dn ⊆ Tn ,

which means

(ϕp ⊗Kn−p)(ξp(λ)) = (−1)p · (Fp−1 ⊗ ∂n−p+1)(ξp−1(λ))

for any p = 1, 2, . . . , n. Let us denoteN \I by I c for I ⊆ N . Because {eI c}I∈Np is an R-free
basis of Kn−p , it is possible to write

ξp(λ) = (−1)
p(p+1)

2 ·
∑
I∈Np

(−1)t (I ) ·w(λ,I ) ⊗ eI c

for any p = 0, 1, . . . , n− 2 (Notice that ξn(λ) and ξn−1(λ) are defined so that they satisfy the
same equalities), where w(λ,I ) ∈ Fp. Then we have

(ϕp ⊗Kn−p)(ξp(λ)) = (−1)
p(p+1)

2 ·
∑
I∈Np

(−1)t (I ) · ϕp(w(λ,I ))⊗ eI c .

On the other hand,

(−1)p · (Fp−1 ⊗ ∂n−p+1)(ξp−1(λ))

= (−1)p · (−1)
(p−1)p

2 ·
∑

J∈Np−1

{
(−1)t (J ) ·w(λ,J ) ⊗

( ∑
i∈J c

(−1)s(i,J
c) · xi · eJ c\{i}

)}
.

Here we notice that if I ∈ Np, J ∈ Np−1 and i ∈ N , then

I c = J c \ {i} ⇐⇒ I = J ∪ {i} .
Hence we get
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(−1)p · (Fp−1 ⊗ ∂n−p+1)(ξp−1(λ))

= (−1)
p(p+1)

2 ·
∑
I∈Np

{( ∑
i∈I
(−1)t (I\{i})+s(i,I c∪{i}) · xi ·w(λ,I\{i})

)
⊗ eI c

}
.

For I ∈ Np and i ∈ I , we have

t (I \ {i}) = t (I )− (i − 1) ,

s(i, I )+ s(i, I c ∪ {i}) = s(i,N) = i − 1 ,

and so

t (I \ {i})+ s(i, I c ∪ {i}) = t (I )− s(i, I )

≡ t (I )+ s(i, I ) (mod 2) .

Therefore we see that the required equality (�) holds for all I ∈ Np.

Let us prove (1). We have to show σ−1
0 (Imϕ1) ⊆ Im(Fn⊗∂1). Take any ηn ∈ Fn⊗R K0

such that σ0(ηn) ∈ Imϕ1. As {ξn(λ)}λ∈Λ is an R-free basis of Fn ⊗R K0, we can express

ηn =
∑
λ∈Λ

aλ · ξn(λ) =
∑
λ∈Λ

aλ · (vλ ⊗ e∅) ,

where aλ ∈ R for λ ∈ Λ. Then we have
∑
λ∈Λ

aλ ·w(λ,∅) =
∑
λ∈Λ

aλ · σ0(vλ ⊗ e∅) = σ0(ηn) ∈ Imϕ1 .

Now we set

ηp =
∑
λ∈Λ

aλ · ξp(λ) ∈ Fp ⊗R Kn−p

for 0 ≤ p ≤ n− 1. Then

ηn + ηn−1 + · · · + η1 + η0 =
∑
λ∈Λ

aλ · (ξn(λ)+ ξn−1(λ)+ · · · + ξ1(λ)+ ξ0(λ))

∈ Ker dn ⊆ Tn .

Because

η0 =
∑
λ∈Λ

aλ · ξ0(λ)

=
∑
λ∈Λ

aλ · (w(λ,∅) ⊗ eN)

=
( ∑
λ∈Λ

aλ ·w(λ,∅)
)

⊗ eN
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∈ Im(ϕ1 ⊗Kn) ,

we get ηn ∈ Im(Fn ⊗ ∂1) by (2) of 2.2.
Finally we prove (2). Let us consider the following commutative diagram

Fn ⊗R K1
Fn⊗∂1−→ Fn ⊗R K0 −→ Fn/QFn −→ 0 (ex)⏐σ1

⏐σ0
⏐σ0

F1
ϕ1−→ F0 −→ F0/M −→ 0 (ex) ,

where σ0 is the map induced from σ0. For all λ ∈ Λ and i ∈ N , we have

xi ·w(λ,∅) = ϕ1(w(λ,{i})) ∈ M ,

which means w(λ,∅) ∈ M :F0 Q. Hence Im σ0 ⊆ M :F0 Q, and so Im σ0 ⊆ (M :F0 Q)/M .

On the other hand, as σ−1
0 (Imϕ1) = Im(Fn ⊗ ∂1), we see that σ0 is injective. Therefore we

get Im σ0 = (M :F0 Q)/M since (M :F0 Q)/M
∼= Fn/QFn by 3.1 and Fn/QFn has a finite

length. Thus the assertion (2) follows and the proof is complete. �

In the rest, σ• : Fn ⊗R K• −→ F• is the chain map constructed in 3.2. Then, by 2.1 the
mapping cone Cone(σ•) gives an R-free resolution of F0/(M :F0 Q), that is,

0 −→ Fn ⊗R Kn
ψn+1−→ (Fn ⊗R Kn−1)⊕ Fn

ψn−→ (Fn ⊗R Kn−2)⊕ Fn−1

′ϕn−1−→ (Fn ⊗R Kn−3)⊕ Fn−2

∗ϕn−2−→ (Fn ⊗R Kn−4)⊕ Fn−3 −→ · · ·

−→ (Fn ⊗R K1)⊕ F2

∗ϕ2−→ (Fn ⊗R K0)⊕ F1

∗ϕ1−→ F0

is acyclic and Im ∗ϕ1 = M :F0 Q, where

ψn+1 = (
Fn ⊗ ∂n (−1)n · σn

)
, ψn =

(
Fn ⊗ ∂n−1 (−1)n−1 · σn−1

0 ϕn

)
,

′ϕn−1 =
(
Fn ⊗ ∂n−2 (−1)n−2 · σn−2

0 ϕn−1

)
,

∗ϕp =
(
Fn ⊗ ∂p−1 (−1)p−1 · σp−1

0 ϕp

)
for 2 ≤ p ≤ n− 2 and ∗ϕ1 =

(
σ0

ϕ1

)
.

Because σn : Fn ⊗R Kn −→ Fn is an isomorphism by (4) of 3.2, we can define

φ =
(

0
(−1)n · σ−1

n

)
: (Fn ⊗R Kn−1)⊕ Fn −→ Fn ⊗R Kn .

Then φ ◦ ψn+1 = idFn⊗RKn and Ker φ = Fn ⊗R Kn−1. Hence, by (1) of 2.3, we get the
acyclic complex

0 −→ ′Fn
′ϕn−→ ′Fn−1

′ϕn−1−→ ∗Fn−2

∗ϕn−2−→ ∗Fn−3 −→ · · · −→ ∗F2

∗ϕ2−→ ∗F1

∗ϕ1−→ ∗F0 = F0 ,



222 TARO INAGAWA

where
′Fn = Fn ⊗R Kn−1 ,

′Fn−1 = (Fn ⊗R Kn−2)⊕ Fn−1 ,

∗Fp = (Fn ⊗R Kp−1)⊕ Fp for 1 ≤ p ≤ n− 2 and ′ϕn = (
Fn ⊗ ∂n−1 (−1)n−1 · σn−1

)
.

Although Im ′ϕn may not be contained in m · ′Fn−1, removing non-minimal components
from ′Fn and ′Fn−1, we get free R-modules ∗Fn and ∗Fn−1 such that

0 −→ ∗Fn
∗ϕn−→ ∗Fn−1

∗ϕn−1−→ ∗Fn−2 −→ · · · −→ ∗F1

∗ϕ1−→ ∗F0 = F0

is acyclic and Im ∗ϕn ⊆ m · ∗Fn−1, where ∗ϕn and ∗ϕn−1 are the restrictions of ′ϕn and ′ϕn−1,
respectively. In the rest of this section, we describe a concrete procedure to get ∗Fn and
∗Fn−1. For that purpose, we use the following notation. As described in Introduction, for any
ξ ∈ Fn ⊗R Kn−2 and η ∈ Fn−1,

[ξ ] := (ξ, 0) ∈ ′Fn−1 and 〈η〉 := (0, η) ∈ ′Fn−1 .

In particular, for any (λ, I) ∈ Λ × Nn−2, we denote [vλ ⊗ eI ] by [λ, I ]. Moreover, for a
subset U of Fn−1, 〈U〉 := {〈u〉}u∈U .

Now, let us choose a subset ′Λ of Λ̃ and a subset U of Fn−1 so that

{v(λ,i)}(λ,i)∈′Λ ∪ U
is an R-free basis of Fn−1. We would like to choose ′Λ as big as possible. The following
almost obvious fact is useful to find ′Λ and U .

LEMMA 3.3. Let V be an R-free basis of Fn−1. If a subset ′Λ of Λ̃ and a subset U of
V satisfy

(i) � ′Λ+ �U ≤ � V , and
(ii) V ⊆ R · {v(λ,i)}(λ,i)∈′Λ + R · U + mFn−1,

then {v(λ,i)}(λ,i)∈′Λ ∪ U is an R-free basis of Fn−1.

Let us notice that

{[λ, I ]}(λ,I )∈Λ×Nn−2 ∪ {〈v(λ,i)〉}(λ,i)∈′Λ ∪ 〈U〉
is an R-free basis of ′Fn−1. We define ∗Fn−1 to be the direct summand of ′Fn−1 generated by

{[λ, I ]}(λ,I )∈Λ×Nn−2 ∪ 〈U〉 .
Let ∗ϕn−1 be the restriction of ′ϕn−1 to ∗Fn−1.

THEOREM 3.4. If we can take Λ̃ itself as ′Λ, then

0 −→ ∗Fn−1

∗ϕn−1−→ ∗Fn−2 −→ · · · −→ ∗F1

∗ϕ1−→ ∗F0 = F0

is acyclic. Hence we have depthR F0/(M :F0 Q) > 0.
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PROOF. If ′Λ = Λ̃, there exists a homomorphism φ : ′Fn−1 −→ ′Fn such that

φ([λ, I ]) = 0 for any (λ, I) ∈ Λ×Nn−2 ,

φ(〈v(λ,i)〉) = (−1)i · vλ ⊗ ěi for any (λ, i) ∈ Λ̃ ,
φ(〈u〉) = 0 for any u ∈ U .

Then φ◦′ϕn = id′Fn and Ker φ = ∗Fn−1. Hence, by (1) of 2.3 we get the required assertion. �

In the rest of this section, we assume ′Λ � Λ̃ and put ∗Λ = Λ̃ \ ′Λ. Then, for any
(μ, j) ∈ ∗Λ, it is possible to write

v(μ,j) =
∑

(λ,i)∈′Λ
a
(μ,j)

(λ,i) · v(λ,i) +
∑
u∈U

b
(μ,j)
u · u ,

where a(μ,j)(λ,i) , b
(μ,j)
u ∈ R. Here, if ′Λ is big enough, we can choose every b(μ,j)u from m.

In fact, if b(μ,j)u /∈ m for some u ∈ U , then we can replace ′Λ and U by ′Λ ∪ {(μ, j)} and
U \ {u}, respectively. Furthermore, because of a practical reason, let us allow that some terms
of v(λ,i) for (λ, i) ∈ ∗Λ with non-unit coefficients appear in the right hand side, that is, for
any (μ, j) ∈ ∗Λ, we write

v(μ,j) =
∑

(λ,i)∈Λ̃
a
(μ,j)

(λ,i) · v(λ,i) +
∑
u∈U

b
(μ,j)
u · u ,

where

a
(μ,j)

(λ,i) ∈
{
R if (λ, i) ∈ ′Λ,
m if (λ, i) ∈ ∗Λ

and b
(μ,j)
u ∈ m .

Using this expression, for any (μ, j) ∈ ∗Λ, the following element in ′Fn can be defined.

∗v(μ,j) := (−1)j · vμ ⊗ ěj +
∑

(λ,i)∈Λ̃
(−1)i−1 · a(μ,j)(λ,i) · vλ ⊗ ěi .

LEMMA 3.5. For any (μ, j) ∈ ∗Λ, we have

′ϕn(∗v(μ,j))= (−1)j · [vμ ⊗ ∂n−1(ěj )] +
∑

(λ,i)∈Λ̃
(−1)i−1 · a(μ,j)(λ,i) · [vλ ⊗ ∂n−1(ěi)]

+
∑
u∈U

b
(μ,j)
u · 〈u〉 .

As a consequence, we have ′ϕn(∗v(μ,j)) ∈ m · ∗Fn−1 for any (μ, j) ∈ ∗Λ.

PROOF. By the definition of ′ϕn, for any (μ, j) ∈ ∗Λ, we have

′ϕn(∗v(μ,j)) = [(Fn ⊗ ∂n−1)(
∗v(μ,j))] + 〈(−1)n−1 · σn−1(

∗v(μ,j))〉 .
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Because

(Fn ⊗ ∂n−1)(
∗v(μ,j)) = (−1)j · vμ ⊗ ∂n−1(ěj )+

∑

(λ,i)∈Λ̃
(−1)i−1 · a(μ,j)(λ,i) · vλ ⊗ ∂n−1(ěi)

and

σn−1(
∗v(μ,j)) = (−1)j · σn−1(vμ ⊗ ěj )+

∑

(λ,i)∈Λ̃
(−1)i−1 · a(μ,j)(λ,i) · σn−1(vλ ⊗ ěi )

= (−1)n−1 · v(μ,j) + (−1)n ·
∑

(λ,i)∈Λ̃
a
(μ,j)

(λ,i) · v(λ,i)

= (−1)n−1 · (v(μ,j) −
∑

(λ,i)∈Λ̃
a
(μ,j)

(λ,i)
· v(λ,i))

= (−1)n−1 ·
∑
u∈U

b
(μ,j)
u · u ,

we get the required equality. �

Let ∗Fn be the R-submodule of ′Fn generated by {∗v(μ,j)}(μ,j)∈∗Λ and let ∗ϕn be the
restriction of ′ϕn to ∗Fn. By 3.5 we have Im ∗ϕn ⊆ ∗Fn−1. Thus we get a complex

0 −→ ∗Fn
∗ϕn−→ ∗Fn−1 −→ · · · −→ ∗F1

∗ϕ1−→ ∗F0 = F0 .

This is the complex we desire. In fact, the following result holds.

THEOREM 3.6. (∗F•, ∗ϕ•) is an acyclic complex of finitely generated free R-modules
with the following properties.

(1) Im ∗ϕ1 = M :F0 Q and Im ∗ϕn ⊆ m · ∗Fn−1.
(2) {∗v(μ,j)}(μ,j)∈∗Λ is an R-free basis of ∗Fn.
(3) {[λ, I ]}(λ,I )∈Λ×Nn−2 ∪ 〈U〉 is an R-free basis of ∗Fn−1.

PROOF. First, let us notice that {vλ ⊗ ěi}(λ,i)∈Λ̃ is an R-free basis of ′Fn and

vμ ⊗ ěj ∈ R · ∗v(μ,j) + R · {vλ ⊗ ěi}(λ,i)∈′Λ + m · ′Fn

for any (μ, j) ∈ ∗Λ. Hence, by Nakayama’s lemma it follows that ′Fn is generated by

{vλ ⊗ ěi}(λ,i)∈′Λ ∪ {∗v(μ,j)}(μ,j)∈∗Λ ,

which must be an R-free basis since rankR ′Fn = � Λ̃ = � ′Λ + � ∗Λ. Let ′′Fn be the R-
submodule of ′Fn generated by {vλ ⊗ ěi}(λ,i)∈′Λ. Then ′Fn = ′′Fn ⊕ ∗Fn.

Next, let us recall that

{[λ, I ]}(λ,I )∈Λ×Nn−2 ∪ {〈v(λ,i)〉}(λ,i)∈′Λ ∪ 〈U〉
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is an R-free basis of ′Fn−1. Because

′ϕn(vλ ⊗ ěi ) = [vλ ⊗ ∂n−1(ěi )] + (−1)i · 〈v(λ,i)〉 ,
we see that

{[λ, I ]}(λ,I )∈Λ×Nn−2 ∪ {′ϕn(vλ ⊗ ěi )}(λ,i)∈′Λ ∪ 〈U〉
is also an R-free basis of ′Fn−1. Let ′′Fn−1 = R · {′ϕn(vλ ⊗ ěi )}(λ,i)∈′Λ. Then ′Fn−1 =
′′Fn−1 ⊕ ∗Fn−1.

It is obvious that ′ϕn(′′Fn) = ′′Fn−1. Moreover, by 3.5 we get ′ϕn(∗Fn) ⊆ ∗Fn−1. There-
fore, by (2) of 2.3, it follows that ∗F• is acyclic. We have already seen (3) and the first
assertion of (1). The second assertion of (1) follows from 3.5. Moreover, the assertion (2) is
now obvious. �
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