
TOKYO J. MATH.
VOL. 38, NO. 1, 2015

Central Limit Theorem for Leafwise Brownian Motions on
Mapping Tori

Takehiko MORITA∗ and Kiyotaka SUZAKI

Osaka University

(Communicated by M. Kurihara)

Abstract. We consider the leafwise Brownian motion on a mapping torus of a homeomorphism on a compact
metric space. We prove a central limit theorem for a class of additive functionals of the leafwise Brownian motion
starting at any quasi-regular point and apply it to the leafwise Brownian motions on generalized Kronecker foliations.
As an auxiliary result, we also give an elementary proof of the characterization of harmonic measures for the leafwise
Brownian motion on the mapping torus.

1. Introduction

The notion of harmonic measures for leafwise Brownian motions on a compact foliated
manifold was introduced by L. Garnett [8]. She showed that (1) such a measure always
exists on any compact foliated Riemannian manifold, (2) any bounded Borel function on the
manifold being harmonic along each leaf is constant on almost every leaf with respect to
any finite harmonic measure, and (3) a Borel measure on the manifold is harmonic if and
only if it is locally (in a given foliated chart) decomposed into a measure on the transversal
and measures on the plaques each of which is expressed as a product of a positive harmonic
function and the Riemannian volume of the plaque. After Garnett [8] and [9], characterization
and statistical properties of harmonic measures are well studied by many authors in the case
of Anosov foliations of negatively curved manifolds (e.g. [1], [10], [14], [16], [17], [21] etc.).
A. Candel [2] improves Garnett’s approach and extends it to the general theory of harmonic
measures for foliated spaces. Candel considered a leafwise diffusion operator on a foliated
space and defined the notion of harmonic measures with respect to it. We note that harmonic
measures are characterized as invariant measures for the diffusion process generated by the
operator. The basic results for foliated spaces and harmonic measures are available in [3] and
[4].
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In this paper we consider a mapping torus MF of a homeomorphism F on a compact
metric spaceM . It is one of the simplest foliated spaces, which is a topological space obtained
by considering the product space R ×M and identifying (u, x) with (u − 1, Fx) for u ∈ R
and x ∈ M . By the construction each leaf of MF inherits the usual flat structure from the
real line. Therefore the leafwise Brownian motion X = {Xz}z∈MF on MF is defined to be

the diffusion process satisfying XπF (u,x)(t) = πF (u + B(t), x) for t ≥ 0, where {B(t)}t≥0

denotes a one-dimensional standard Brownian motion and πF : R×M → MF is the natural
projection. For a continuous real valued, non constant function f and z ∈ MF , we consider
the following stochastic process Azλ = {Azλ(t)} with parameter λ > 0 defined by

Azλ(t) =
∫ λt

0
f (Xz(s)) ds .

We are interested in the central limit problem of the occupation time process Azλ as λ → ∞
under some appropriate conditions. We consider a point z ∈ MF for which there exists a

harmonic probability measuremz such that limt→∞(1/t)
∫ t

0 g(Xz(s)) ds = ∫
MF

g dmz holds

almost surely for any continuous function g on MF . Such a point is called quasi-regular for
X. The totality of quasi-regular points is denoted by QX . Note that it is not hard to see that
each point in a closed leaf is quasi-regular. In addition, we show later that an arbitrary point
of a leaf containing a quasi-regular point z turns out to be quasi-regular and the corresponding
harmonic measures are identical with mz (Proposition 2.4). The main purpose of this paper is
to show the following.

THEOREM (Theorem 2.2 and Remark 2.4). Let z be a quasi-regular point and f a real-

valued function which is not constant along each leaf. If there exists a leafwise C2 function g

such that f = ΔLg , then the process (1/
√
λ)Azλ converges in law to the Brownian motion with

variance 4t
∫
MF
(∇Lg)2 dmz as λ → ∞, whereΔL and ∇L denote the leafwise Laplacian and

the leafwise gradient.

Next we make the following observation so as to explain about the significance of the
limit theorem above. A leaf L ofMF is isometric to the one-dimensional torus R/nZ with an
integral perimeter n or the real line R according as it is closed or not. In the former case, the
leafwise Brownian motion restricted to L behaves as the Brownian motion on R/nZ and the
normalized arc length measurem on L is a unique invariant measure for the restricted process
to the leaf L. Thus it is not hard to verify that if f satisfies

∫
MF

f dm = 0, then for any z ∈ L
the process (1/

√
λ)Azλ converges in law to a Brownian motion (not necessarily standard but

with non-degenerate variance) as λ → ∞. The invariant measurem for the restricted process
can be considered as an invariant measure for the original leafwise Brownian motion, that is, a
harmonic measure supported on L. In the latter case, the leafwise Brownian motion restricted
to the leaf L behaves as the Brownian motion on R. Since it is well-known that the Brownian
motion on R is null recurrent and it does not have a finite invariant measure, it is not so easy

to find an appropriate condition for the convergence in law of the process (1/
√
λ)Azλ starting
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at z ∈ L. For example, if f is compactly supported on L, then for z ∈ L either (1/λ)1/4Azλ
or (1/

√
λ)Azλ converges in law to a nontrivial process according as the integral of f with

respect to the Lebesgue measure on L vanishes or not (see Theorem 4.4 in Section III-4.4 in
[13]). But it often happens that a non closed leaf L of MF is locally dense, that is, dense
in a neighborhood of L in MF . In such a case, the restriction of f to the leaf L is neither
compactly supported on L nor integrable with respect to the Lebesgue measure on L. On the
other hand, it is easy to see that if the leaf L passes through a point which belongs to the
πF -image of the support of a non-atomic invariant measure for F , then L is locally dense
in MF . Thus it turns out that we can not apply the above mentioned result on the Brownian
motion on R to L in many interesting cases.

Summing up the above argument, in the case when the starting point z belongs to a closed
leaf L, we have that there exists a natural harmonic probability measure and we can show the
central limit theorem for Azλ by the standard technique. On the other hand, in the case when
the leafL containing the starting point z is not closed, the leafwise Brownian motion restricted
to L does not have a finite invariant measure. In particular, if the underlying dynamical system
F has non-atomic invariant measures, the global continuity of the observable f prevents us
from applying the known limit theorem for one-dimensional Brownian motion to the restricted
process. Therefore, the existence of non-atomic invariant probability measure of F seems to
make the problem complicated at the first glance. But our result illustrates that it is not so as it
seems. In fact, there is a one-to-one correspondence between the set of harmonic probability
measures for the leafwise Brownian motionX on the mapping torusMF and that of invariant
probability measures for the underlying dynamical system F . The correspondence is natural
and explicit in the sense that if a harmonic measure m for X is corresponding to an invariant
measure μ of F , we have

∫
MF

f (z) dm =
∫

[0,1)×M
(f ◦ πF )(u, x) d(l × μ)

for any continuous function f on MF , where l is the Lebesgue measure on the unit interval
[0, 1). We can investigate the asymptotic behavior of the leafwise Brownian motion with
respect to harmonic measures by using the ergodic properties of the invariant measures for
underlying dynamical system. Thus the correspondence and its auxiliary results play impor-
tant roles in this paper. Noting that there are no non-constant nonnegative harmonic functions
on R, we see that the correspondence above is deduced from the local characterization of har-
monic measures in the general theory (e.g. see [4] and [14]). But we shall treat it as Theorem
2.1 and give it an elementary proof in the sake of self-containedness.

The paper is organized as follows. In Section 2, we give the statement of our results after
reviewing some fundamental facts. Section 3 is devoted to the proof of Theorem 2.1. We
prove the main theorem (Theorem 2.2) in Section 4. Finally we apply our results to the case
when the underlying homeomorphism is uniquely ergodic in Section 5. We note that we try
to make our arguments as self-contained as possible except for the use of the basic facts in
stochastic analysis and the infinitesimal generator for contraction semi-group. We note that
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the basic notions and results that we need can be found in Chapter I, II, and III in [13] and
Chapter VIII in [6]. So we do not need the general theory of foliated space and harmonic
measures established in [2] and [4].

2. Preliminaries and the results

First of all we recall some notions. Let M be a compact metric space and let F be a
homeomorphism ofM onto itself. Obviously, the product space R×M is a foliated space with
leaves R×{x} for each x ∈ M . The continuous Z-action defined on R×M by Z×(R×M) 

(k, u, x) �→ (u − k, F kx) ∈ R ×M is properly discontinuous and it maps leaves to leaves.
The quotient space (R × M)/Z is a compact foliated space called the mapping torus of F
and we denote it by MF . For (u, x) ∈ R × M , we often write as [u, x] = πF (u, x) to
denote the equivalence class containing (u, x), where πF : R × M → MF is the natural
projection. Clearly πF restricted to (u − 1/2, u + 1/2) × M is a homeomorphism onto its
image Uu = πF ((u − 1/2, u + 1/2) × M) for each u ∈ R. In particular, (Uu, ϕu) gives a
foliated chart forMF , where ϕu is the inverse branch of πF on Uu. Let C(MF ) be the Banach
space of continuous functions on MF endowed with the supremum norm ‖ · ‖∞. One can
easily see that a function f on MF belongs to C(MF ) if and only if f ◦ πF is a continuous
function on R × M . Furthermore, f ∈ C(MF ) implies that the family {f ◦ πF (u, x)}x∈M
of functions in u ∈ R is equicontinuous and each element of which is uniformly continuous
since bothM andMF are compact. Namely we have

lim
δ↓0

sup
v:|v−u|<δ

sup
x∈M

|f ◦ πF (v, x)− f ◦ πF (u, x)| = 0 for each u ∈ R and

lim
δ↓0

sup
u,v∈R : |u−v|<δ

|f ◦ πF (u, x)− f ◦ πF (v, x)| = 0 for each x ∈ M .
(1)

The leaf of MF passing through z ∈ MF is denoted by Lz. It is easy to see that L[u,x] is
identified with a one-dimensional flat torus with perimeter n if x is a periodic point of F with
the least period n and L[u,x] is identified with R if x is not periodic point of F . In any case
leaves are one-dimensional smooth manifold with the usual flat metric and we can consider
differentiation along the leaf. Therefore the gradient ∇Lf along the leaf can be defined so
that the formula

∇Lf ([u, x]) = ∂(f ◦ πF )
∂u

(u, x) (2)

holds if f is of class C1 along each leaf. For nonnegative integer r let CrL(MF ) be the

totality of functions f of class Cr along each leaf satisfying (∇L)kf ∈ C(MF ) for any k with
0 ≤ k ≤ r . Since it is easy to construct a function in C∞

L (MF ) separating given two points in
MF , the Stone-Weierstrass theorem yields that C∞

L (MF ) is dense in C(MF ). One can easily
see that a function f on MF belongs to CrL(MF ) if and only if f ◦ πF is CrL(R × M) i.e.
f ◦ πF is r times partially differentiable function on R × M in the first coordinate and its
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partial derivative (∇L)kf ◦πF = ∂k(f ◦πF )/∂uk is a continuous function on R×M for each
k with 0 ≤ k ≤ r . Clearly the leafwise LaplacianΔL is given by the formula

ΔLf ([u, x]) = (∇L)2f ([u, x]) = ∂2(f ◦ πF )
∂u2 (u, x) (3)

for f ∈ C2
L(MF ).

The following is an easy consequence of the fundamental theorem of calculus.

PROPOSITION 2.1. Consider a function f ∈ C(MF ). For the existence of a solution

g ∈ C1
L(MF ) of the equation ∇Lg = f , it is necessary and sufficient that there exists a

function ϕ ∈ C(M) satisfying
∫ 1

0
f ([u, x]) du = ϕ(Fx)− ϕ(x) (4)

for any x ∈ M . Moreover, for the existence of the solution h ∈ C2
L(MF ) of the equation

ΔLh = f , it is necessary and sufficient that there exist ϕ and ψ ∈ C(M) satisfying the
equations (4) and

∫ 1

0
uf ([u, x]) du = ϕ(Fx)− (ψ(Fx)− ψ(x)) (5)

for any x ∈ M .

PROOF. First assume that g ∈ C1
L(MF ) satisfies ∇Lg = f . By virtue of the funda-

mental theorem of calculus, we have

g([t, x]) = g([0, x])+
∫ t

0
f ([u, x]) du

holds for (t, x) ∈ R ×M . Since f ([u− 1, Fx]) = f ([u, x]) and g([u− 1, Fx]) = g([u, x])
hold for (u, x) ∈ R ×M , we have

g([t − 1, Fx]) = g([0, Fx)] +
∫ t−1

0
f ([u, Fx]) du

= g([0, Fx])+
∫ t−1

0
f ([u+ 1, x]) du

= g([0, Fx])+
∫ t

1
f ([u, x]) du

= g([0, Fx])− g([0, x])−
∫ 1

0
f ([u, x]) du+ g([t, x]) = g([t, x]) .

Thus we reach the equation (4) with ϕ(x) = g([0, x]).
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Conversely, assume that there exists ϕ ∈ C(M) satisfying the equation (4) for any x ∈
M . Define g̃ : R ×M → C by

g̃(t, x) = ϕ(x)+
∫ t

0
f ([u, x]) du .

Then by using the identity f ([u− 1, Fx]) = f ([u, x]) again, we have

g̃(t − 1, Fx) = ϕ(Fx)+
∫ t−1

0
f ([u, Fx]) du

= ϕ(Fx)+
∫ t−1

0
f ([u+ 1, x]) du

= ϕ(Fx)+
∫ t

1
f ([u, x]) du .

It is easy to see from the equation (4) that the function in the last line equals g̃(t, x). Thus g̃

determines the function g ∈ C1
L(MF ). Now the proof of the first assertion is complete.

In order to prove the second assertion, we may assume that there exists g ∈ C1
L(MF )

such that it satisfies ∇Lg = f and the equation (4) holds for x ∈ M with ϕ(x) = g([0, x]).
It suffices to show that the equation ∇Lh = g have a solution in C1

L(MF ) if and only if there
exists ψ ∈ C(M) satisfying the equation (5) for any x ∈ M . On the other hand we see from
the first assertion that the former is equivalent to the existence of ψ ∈ C(M) such that

∫ 1

0
g([t, x]) dt = ψ(Fx)− ψ(x)

for any x ∈ M . Since we know that g([t, x]) = ∫ t
0f ([u, x]) du+ ϕ(x) for (t, x) ∈ R ×M ,

the left hand side of the above equation is calculated as
∫ 1

0
g([t, x]) dt =

∫ 1

0

(∫ t

0
f ([u, x]) du

)
dt + ϕ(x)

=
∫ 1

0
(1 − u)f ([u, x]) du+ ϕ(x)

= ϕ(Fx)−
∫ 1

0
uf [(u, x]) du

by the Fubini theorem and the equation (4). Thus we arrive at the desired result.
�

Next we introduce leafwise Brownian motions on the mapping torus. Let B = {B(t)}t≥0

be a one-dimensional Brownian motion starting at 0 defined on a probability space (Ω,F , P ).
Given (u, x) ∈ R×M the leafwise Brownian motion onMF starting at [u, x] is anMF -valued
stochastic process X[u,x] = {X[u,x](t)}t≥0 defined by X[u,x](t) = [u + B(t), x] for t ≥ 0.
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X[u,x] = {X[u,x](t)}t≥0 is a diffusion process on the mapping torusMF as well as a diffusion

process on the leaf L[u,x]. In fact, we can show that X[u,x] = {X[u,x](t)}t≥0 gives a Feller
semi-group on C(MF ). To this end and for later use for t ≥ 0 and a bounded Borel function
f on MF , we define

T (t)f ([u, x]) = E
[
f (X[u,x](t))

]
= E

[
f ([u+ B(t), x])] . (6)

We note that we can rewrite it as

T (t)f ([u, x]) =
∑
k∈Z

E
[
f ([u+ B(t), x]) ; k ≤ u+ B(t) < k + 1

]

=
∑
k∈Z

∫
[k,k+1)

f ([v, x])p(t, v − u) dv

=
∑
k∈Z

∫
[0,1)

f ([v, F kx])p(t, v + k − u) dv ,

(7)

where p(t, v) = (1/
√

2πt) exp(−v2/2t). In the case of the mapping torus it is not hard to
prove the following. We give a proof for our convenience.

PROPOSITION 2.2. The family of positive operators {T (t)}t≥0 restricted to C(MF )

turns out to be a Feller semi-group. Precisely we have the following.
(1) For any t ≥ 0 we have T (t)C(MF ) ⊂ C(MF ).
(2) For s, t ≥ 0 and f ∈ C(MF ), we have T (s + t)f = T (t)T (s)f .
(3) For any t ≥ 0 and f ∈ C(MF ), ‖T (t)f ‖∞ ≤ ‖f ‖∞.
(4) For any f ∈ C(MF ), limt↓0 ‖T (t)f − f ‖∞ = 0.
(5) The domain D(A) of the infinitesimal generator A of the semi-group contains the

space C2
L(MF ) and f ∈ C2

L(MF ) yields Af = (1/2)ΔLf .

PROOF. First we recall that f ∈ C(MF ) if and only if f ◦ πF ∈ C(R ×M). By the
definition (6), the assertion (1) follows from the bounded convergence theorem. The assertion
(2) follows immediately from the Markov property of the Brownian motion B = {B(t)}t≥0,
since we see that for fixed x ∈ M f ([u, x]) = f ◦πF (u, x) is a bounded continuous function
in u ∈ R. The assertion (3) is obvious from the definition (6). The assertion (4) is verified as
follows. Take any f ∈ C(MF ). Recall that the family {f ◦ πF (u, x)}x∈M of functions in u is
equicontinuous and the first equation in (1) holds. Therefore we see that for any ε > 0, there
exists δ > 0 such that supx∈M,u,v∈R:|u−v|<δ |f ([u, x]) − f ([v, x])| < ε. Thus we have for
any (u, x) ∈ R ×M

|T (t)f ([u, x])− f ([u, x])| = |E[f ([u+ B(t), x])− f ([u, x])]|
≤ E[|f ([u+ B(t), x])− f ([u, x])| ; |B(t)| < δ]

+ E[|f ([u+ B(t), x])− f ([u, x])| ; |B(t)| ≥ δ]
< ε + 2‖f ‖∞P(|B(t)| ≥ δ) → 0 (t → 0) .
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This implies that the assertion (4) is valid.

It remains to prove the assertion (5). For f ∈ C2
L(MF ) we have only to show that

lim
t→0

∥∥∥∥T (t)f − f

t
− 1

2
ΔLf

∥∥∥∥∞
= 0 .

Since for fixed x ∈ M f ◦ πF (u, x) is C2 function in u, we can apply the Itô formula to
f ◦ πF . Thus we have

f ([u+B(t), x])−f ([u, x]) =
∫ t

0
∇Lf ([u+B(s), x])dB(s)+ 1

2

∫ t

0
ΔLf ([u+B(s), x]) ds .

Since the first term in the right hand side is a martingale with mean zero, by taking expectation
we have

T (t)f ([u, x])− f ([u, x]) =
∫ t

0

1

2
T (s)ΔLf ([u, x]) ds .

Therefore we have

T (t)f ([u, x])− f ([u, x])
t

− 1

2
ΔLf ([u, x]) = 1

2t

∫ t

0
(T (s)ΔLf ([u, x])−ΔLf ([u, x])) ds .

Applying the assertion (4) to ΔLf , we obtain the desired result. �

REMARK 2.1. The corresponding result to Proposition 2.2 plays a crucial role in the
general theory of leafwise diffusions on foliated spaces in [2] but it is not so easy as in the
present case.

In what follows we call the stochastic processXz = {Xz}t≥0 defined in the above the leafwise
Brownian motion on MF starting at z. The family X = {Xz}z∈MF of the leafwise Brownian
motions is simply called the leafwise Brownian motion on MF .

Now we consider harmonic measures. A Borel measure m on MF is called a harmonic
measure for the leafwise Brownian motion if∫

MF

ΔLf (z) dm = 0 (8)

holds for any f ∈ C2
L(MF ). Combining Proposition 2.2 with the fact that C2

L(MF ) is dense
in C(MF ), we easily show that the harmonic measure is characterized as an invariant measure
for the leafwise Brownian motion.

PROPOSITION 2.3. A Borel probability measure m on MF is a harmonic measure for
leafwise Brownian motion if and only if

∫
MF

T (t)f (z) dm =
∫
MF

f (z) dm (9)

holds for any f ∈ C(MF ) and for any t ≥ 0.
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PROOF. Assume that a Borel probability measure m satisfies (9) for any f ∈ C(MF )

and for any t ≥ 0. Consider the case when f ∈ C2
L(MF ). The assertion (5) in Proposition 2.2

guarantees us to differentiate the constant function t �→ ∫
MF

T (t)f (z) dm by differentiating

the integrand. Thus we obtain the equation (8). Conversely, assume that a Borel probability

measurem is harmonic. Since C2
L(MF ) is dense in C(MF ), it suffice to show the equation (9)

for any f ∈ C2
L(MF ). If we notice the fact that T (t)f ∈ C2

L(MF ) for t ≥ 0 and the assertion
(5) in Proposition 2.2 yields

lim
h→0

∥∥∥∥T (t + h)f − T (t)f

h
− 1

2
ΔLT (t)f

∥∥∥∥∞
= 0 ,

we easily see that the function t �→ ∫
MF

T (t)f (z) dm is differentiable with derivative∫
MF
(1/2)ΔLT (t)f (z) dm = 0. Thus we reach the equality (9). �

REMARK 2.2. By virtue of Proposition 2.3, we see that the strongly continuous con-
traction semi-group {T (t)}t≥0 on C(MF ) extends to a strongly continuous contraction semi-
group on Lp(m) with 1 ≤ p < ∞ for any harmonic probability measure m. We also denote
it by {T (t)}t≥0.

Now we state the structure theorem of harmonic measures for leafwise Brownian motion.
Since it plays an important role in this paper, we give an elementary proof and some auxiliary
results in the next section.

THEOREM 2.1. Let μ be an invariant measure for a homeomorphism F from a com-
pact metric space M onto itself. Consider the measure mμ defined by

∫
MF

f (z) dmμ =
∫

[0,1)×M
f ([u, x]) d(l × μ) (10)

for each continuous function f on MF , where l is the one-dimensional Lebesgue measure.
Then mμ is a harmonic measure for the leafwise Brownian motion on MF . Conversely, if
m is any harmonic measure for the leafwise Brownian motion on MF , there exists a unique
invariant measure μ for F such that m is given as mμ defined by the equality (10).

REMARK 2.3. By virtue of Theorem 2.1, there exists a natural one to one correspon-
dence between the set of invariant probability measures IM(F ) for the homeomorphism
F and that of harmonic probability measures HM(X) for the leafwise Brownian motion.
Therefore we can say that the study of the members of HM(X) is equivalent to that of the
members of IM(F ). At least in this sense, the ergodic theory of a dynamical system via
invariant measures is regarded as a special case of the ergodic theory of a foliated space via
harmonic measures.

In order to state the main results we need the notion of quasi-regular point for the leafwise
Brownian motion. To this end we first recall the notion of quasi-regular point of a dynamical
system (e.g. see [5]). For a homeomorphism F on a compact metric space, a point x ∈ M is
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called a quasi-regular point for F if for any f ∈ C(M) the limit limn→∞(1/n)
∑n−1
k=0 f (F

kx)

exists. The totality of quasi-regular points for F is denoted byQF . Following the definition of
quasi-regular points for a homeomorphism, we call a point z ∈ MF a quasi-regular point for

the leafwise Brownian motionX if for any f ∈ C(MF ) the limit limt→∞(1/t)
∫ t

0 f (X
z(s)) ds

exists P -a.s. The totality of quasi-regular points for X is denoted by QX. Note that the
set QX is depending only on the law of the Brownian motion B by definition. Indeed, if
we choose another Brownian motion B ′ and consider the corresponding leafwise Brownian
motion X′, we see that the laws of X and X′ coincide and consequently we have QX = QX′ .
We summarize the basic facts concerned with the quasi-regular points for X in the following
proposition.

PROPOSITION 2.4. (1) Consider the set

QX(MF ×Ω) =
{
(z, ω) ∈ MF ×Ω

: lim
t→∞(1/t)

∫ t

0
f (Xz(s, ω)) ds exists for any f ∈ C(MF )

}
,

then QX = {z ∈ MF : P(QX(MF × Ω)z) = 1}. Consequently, QX is Borel measurable
subset of MF .

(2) m(QX) = 1 for any harmonic probability measure m for X.
(3) For any z ∈ QX , we have Lz ⊂ QX. In particular, there exist a harmonic probabil-

ity measure mz for X and a measurable set Λ with P(Λ) = 1 such that ω ∈ Λ yields

lim
t→∞

1

t

∫ t

0
f (Xw(s, ω)) ds =

∫
MF

f dmz (11)

for any w ∈ Lz and f ∈ C(MF ).
(4) For any z ∈ QX ,mz is a unique measure such that the equality (11) holds for w = z

and for any f ∈ C(MF ). Consequently, we have mw = mz for all w ∈ Lz(⊂ QX).

PROOF.
　 (1) Obviously the set QX(f ) = {(z, ω) ∈ MF × Ω : limt→∞(1/t)

∫ t
0f (X

z(s, ω)) ds

exists} is B(MF )×F -measurable for each f ∈ C(MF ). Since C(MF ) is a separable Banach
space, we can choose a countable subset {fn} which is dense in C(MF ). It is easy to see
that QX(MF × Ω) = ⋂∞

n=1QX(fn). Therefore QX(MF × Ω) is B(MF ) × F -measurable.
Thus the Fubini theorem for measurable sets yields that the z-section QX(MF × Ω)z is
F -measurable for each z ∈ MF and the function ϕ(z) = P(QX(MF × Ω)z) is B(MF )-
measurable. Hence QX = ϕ−1({1}) is B(MF )-measurable.

(2) Since the setQX depends only on the law of the Brownian motion, we may assume
that (Ω,F , P ) is the canonical one-dimensional Wiener space. i.e. Ω = C([0,∞) → R)
is the totality of continuous real-valued functions ω on [0,∞) endowed with the metric
ρ(ω1, ω2) = ∑∞

n=1 2−n((max0≤t≤n |ω1(t)−ω2(t)|)∧1) for ω1, ω2 ∈ Ω , F is the topological
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Borel field ofΩ , and P = P0 is the one-dimensional Wiener measure with the initial distribu-
tion δ0 (see Section I-4 and Section I-7 in [13]). Note that the Brownian motion B = {B(t)}
starting at 0 is given by B(ω, t) = ω(t) in this case. Therefore the leafwise Brownian motion
X[u,x] starting at [u, x] with (u, x) ∈ R ×M is given by X[u,x](t, ω) = [u + ω(t), x]. We
consider the semi-flow of translations {θt}t≥0 on Ω defined by

(θtω)(s) = ω(t + s)− ω(t) for s ≥ 0 .

The translation invariance of the Wiener measure implies that ({θt }, P ) is a continuous param-
eter measure-preserving dynamical system. We define a semi-flow {Θt }t≥0 of skew product
transformations on MF ×Ω by

Θt(z, ω) = (Xz(t, ω), θtω) (12)

for (z, ω) ∈ MF × Ω . The semi-group property of {Θt }t≥0 is verified as follows. Write as
z = [u, x] with (u, x) ∈ R ×M . Then we have

Θt+s([u, x], ω) = ([u+ ω(t + s), x], θt+sω) = ([u+ ω(s)+ (θsω)(t), x], θt (θsω))
= Θt([u+ ω(s), x], θsω) = Θt(Θs([u, x], ω)) .

For a Borel probability measure m on MF , it is easy to show that m is a harmonic
measure for X if and only if m × P is an invariant measure for {Θt }. Therefore if m is
a harmonic probability measure for X, we can apply the ergodic theorem to the continuous
parameter measure-preserving dynamical system ({Θt },m×P) and the function g onMF×Ω
expressed as g(z, ω) = f (z) for (z, ω) ∈ MF × Ω , where f ∈ C(MF ). Noticing the

equation g(Θt (z, ω)) = f (Xz(t, ω)), we see that limt→∞(1/t)
∫ t

0f (X
z(s, ω)) ds exists m×

P -a.e.(z, ω). Therefore we have (m × P)(QX(f )) = 1 and consequently, we have (m ×
P)(QX(MF×Ω)) = 1. ThusP(QX(MF ×Ω)z) = 1 holdsm-a.e.z. This yieldsm(QX) = 1.

(3) We may assume that (Ω,F , P ) is the canonical one-dimensional Wiener space
again. We first recall the well-known fact that if T is a tail event, then we have Pu(T ) = 1 for
all u ∈ R or Pu(T ) = 0 for all u ∈ R, where Pu is the probability measure on (Ω,F) so that
ω = {ω(t)}t≥0 is observed as the Brownian sample path starting at u Pu-a.s. i.e. the measure
defined by Pu(A) = P({ω : ω + u ∈ A}) for A ∈ F in our case. We note that a detailed
proof of the fact can be found in p.17 of [7] for example.

For f ∈ C(MF ), c ∈ R, v ∈ R, and x ∈ M , the set Λ(f, c, v, x) = {ω ∈ Ω :
limt→∞(1/t)

∫ t
0 f ([v+ω(s), x]) ds = c} is obviously a tail event. By the definition of quasi-

regular point we see that if z = [u, x] is a quasi-regular point, there exists a constant c(f, x)
depending only on x and f ∈ C(MF ) such that

P(Λ(f, c(f, x), v, x)) = Pv(Λ(f, c(f, x), 0, x)) = Pu(Λ(f, c(f, x), 0, x))

= P(Λ(f, c(f, x), u, x)) = 1 .

Choose a countable dense set {fn} in C(MF ) and putΛ = ⋂∞
n=1

⋂
v∈QΛ(fn, c(fn, x), v, x).

Then obviously we have P(Λ) = 1 and we can show that Λ is the desired set in the assertion
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(3) as follows. For any f ∈ C(MF ) and ε > 0, there exists n such that ‖f − fn‖∞ < ε.
Clearly we see that |c(f, x)− c(fn, x)| < ε. Therefore we have for any v ∈ Q and ω ∈ Λ

lim sup
t→∞

∣∣∣∣1

t

∫ t

0
f (X[v,x](s, ω)) ds − c(f, x)

∣∣∣∣
≤ lim sup

t→∞

∣∣∣∣1

t

∫ t

0
f (X[v,x](s, ω)) ds − 1

t

∫ t

0
fn(X

[v,x](s, ω)) ds
∣∣∣∣

+ lim
t→∞

∣∣∣∣1

t

∫ t

0
fn(X

[v,x](s, ω)) ds − c(fn, x)

∣∣∣∣ + |c(fn, x)− c(f, x)| < 2ε .

Next choose any u ∈ R and ε > 0. Then the second assertion in (1) yields that there exists

δ > 0 such that |f (X[u,x](t, ω))−f (X[v,x](t, ω))| = |f ([u+ω(t), x])−f ([v+ω(t), x])| < ε

for any v ∈ R with |u− v| < δ. Therefore if we choose v ∈ Q with |u− v| < δ, we have

lim sup
t→∞

∣∣∣∣1

t

∫ t

0
f (X[u,x](s, ω)) ds − c(f, x)

∣∣∣∣
≤ lim sup

t→∞

∣∣∣∣1

t

∫ t

0
f (X[u,x](s, ω)) ds − 1

t

∫ t

0
f (X[v,x](s, ω)) ds

∣∣∣∣
+ lim
t→∞

∣∣∣∣1

t

∫ t

0
f (X[v,x](s, ω)) ds − c(f, x)

∣∣∣∣ ≤ ε .

Hence we have limt→∞(1/t)
∫ t

0f (X
[v,x](s, ω)) ds = c(f, x) holds for any f ∈ C(MF ),

v ∈ R, and ω ∈ Λ. Finally, since c(·, x) : C(MF ) → C is bounded positive linear functional
with c(1, x) = 1, there exists a probability measure mz satisfying c(f, x) = ∫

MF
f dmz by

the Riesz representation theorem. Obviously,mz is a harmonic measure for X.
(4) It follows immediately from the assertion (3). �

For z ∈ MF and f ∈ C(MF ) we define a new process Y zλ = {Y zλ (t)}t≥0 with positive
parameter λ by

Y zλ (t) = 1√
λ

∫ λt

0
f (Xz(s)) ds . (13)

Now we are in a position to state the main theorem.

THEOREM 2.2. Let f be a real-valued function in C(MF ) such that there exists g ∈
C2
L(MF ) satisfying f = ΔLg . Consider the process Y zλ defined by (13). Then for any quasi-

regular point z in QX , the processes Y zλ converge in law to the Brownian motionW〈f 〉(z) with
variance 〈f 〉(z)t as λ → ∞, wheremz is the harmonic probability measure associated to the
point z and 〈f 〉(z) is given by

〈f 〉(z) = 4
∫
MF

(∇Lg)2 dmz . (14)
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The proof of Theorem 2.2 will be given in Section 4. We finish this section with the following.

REMARK 2.4. (1) For a stationary reversible Markov process, Kipnis and Varadhan
[15] proved the same kind of central limit theorem as above under extremely general setting.
If we choose a harmonic probability measure m as the initial distribution of the leafwise
Brownian motion and consider the process Ymλ = {Ymλ (t)}t≥0 instead of Y zλ , then we can
apply their result. But as noted by themselves in Remark 1.7 of [15], their idea is not directly
applicable to the limit problem concerned withm-almost everywhere initial point z. Although
there are other papers which prove the central limit theorem with following their approach for
a stationary ergodic Markov process (e.g. see [12]), we can not directly apply them by the
reason above and the assumption of the ergodicity.

(2) For the sake of convenience we regard the process which is constantly 0 as a Brown-
ian motion with variance 0 in Theorem 2.2 because 〈f 〉(z) possibly vanishes and the Brown-
ian motion W〈f 〉(z) is degenerate. We just give a sufficient condition for non-degeneracy. Let
z ∈ MF be a quasi-regular point. If f satisfies the following conditions (a) and (b), we have
〈f 〉(z) > 0, as a consequence the Brownian motionW〈f 〉(z) is non-degenerate.

(a) There exists a real-valued element g ∈ C2
L(MF ) such that f = ΔLg . Equivalently,

there exist real valued continuous functions ϕ and ψ on M satisfying the equations (4) and
(5) for any x ∈ M .

(b) f is not constant on supp mz.

Indeed, from the conditions (b), we can find a point w ∈ supp mz such that f (w) �= 0.
Therefore from the condition (a) we can find a point w′ ∈ Lw satisfying ∇Lg(w′) �= 0. Thus

(∇Lg)2 > 0 holds in a neighborhood U of w′. On the other hand, from Theorem 2.1, mz
can be expressed as mμ for some invariant measure μ for F . Therefore by making use of the
Fubini theorem we can conclude that Lw ⊂ supp mz. Hence

(1/4)〈f 〉(z) =
∫
MF

(∇Lg)2 dmz ≥
∫
U

(∇Lg)2 dmz > 0 .

Note that the condition (c) below yields the condition (b).

(c) f is not constant along each leaf ofMF .

It is obvious that if (a) and (c) are satisfied, the variance 〈f 〉(z) is non-degenerate for any
quasi-regular point z for X.

(3) Let a harmonic probability measure m for X be given. We give a rather artificial
method of constructing a function f ∈ C(MF ) which satisfies the assumption in Theorem 2.2
and 〈f 〉(z) > 0 holds on a set of m-measure positive. To this end, we assume that we have
real-valued functions ρ ∈ C[0, 1] and ξ ∈ C(M) such that

(i) The support of ρ is a compact subset of (0, 1) and
∫ 1

0 uρ(u) du �= 0.

(ii) Put η = ξ ◦ F − ξ . Then we have
∫
M |η(x)| dμ �= 0 for an invariant probability

measure μ for F with m = mμ.
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Define a function f̃ : R ×M → R by f̃ (u, x) = ρ(u− k)η(F kx) for k ≤ u ≤ k + 1

and x ∈ M . Then it is obvious that f̃ determines a function f ∈ C(MF ) with f̃ (u, x) =
f ([u, x]) for (u, x) ∈ R × M . We can show that there exists functions ϕ and ψ in C(M)
satisfying the equations (4) and (5) in Proposition 2.1. Indeed, if we choose as ϕ = 0 and

ψ = −(∫ 1
0 uρ(u) du)ξ , then it is easy to see that they satisfies the equations (4) and (5) on

M . Thus we have verified the condition (a). Next, the condition (ii) yields that μ(η �= 0) > 0.
Therefore by virtue of Theorem 2.1, we see that mμ(QX ∩ πF ([0, 1)× (η �= 0))) > 0. Thus
we obtain that QX ∩ πF ([0, 1)× (η �= 0)) is not empty. By virtue of the conditions (i) and
(ii), z ∈ QX ∩πF ([0, 1)× (η �= 0)) yields that f is not constantly zero on the leaf Lz ⊂ QX.
Hence 〈f 〉(z) > 0 holds.

(4) In the case of a non-degenerate diffusion with generator A on a compact smooth
manifold M , it is well-known that for any continuous function f satisfying

∫
M
f dm = 0,

we can find g ∈ C2(M) such that Ag = f , where m denotes the unique diffusion invariant
probability measure. We shall illustrate later with Example 5.3 that we can not expect this
sort of result in the case of the leafwise Brownian motion on a mapping torus in general.

3. Structure of harmonic measures

In this section we prove Theorem 2.1. The following elementary inequalities are useful
in our arguments.

LEMMA 3.1. Consider the Gaussian kernel p(t, v) = (1/
√

2πt) exp(−v2/2t) (t >
0, and v ∈ R). Then we have the following inequalities.

(1) There exists a constant C1 > 0 such that for any t ≥ 1, a ∈ R and h ∈ R
∫

R
|p(t, v + a + h)− p(t, v + a)| dv ≤ C1|h|√

t
. (15)

(2) There exists a constant C2 > 0 such that for any t ≥ 1

∑
k∈Z

sup
v∈[k−1,k+1]

p(t, v) ≤ 1 + C2√
t
. (16)

PROOF. First of all we note that as a function in v |(d/dv)p(t, v)| is increasing
on (−∞,−√

t) ∪ (0,
√
t) and decreasing on (−√

t, 0) ∪ (
√
t ,∞). It takes maximum

(2π)−1/2t−1 exp(−1/2) at v = ±√
t .
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(1) We may assume h ≥ 0. By the fact we noted above we have

sup
v′∈[v+a,v+a+h]

∣∣∣∣dpdv (t, v
′)
∣∣∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2πt

−(v + a + h)

t
exp

(−(v + a + h)2

2t

)
if v ≤ −(√t + a + h) ,

1√
2πe

1

t
if − (

√
t + a + h) < v ≤ √

t − a ,

1√
2πt

(v + a)

t
exp

(−(v + a)2

2t

)
if v >

√
t − a .

Thus we obtain∫
R

|p(t, v + a + h)− p(t, v + a)| dv

≤ h

∫ −(√t+a+h)

−∞
1√
2πt

−(v + a + h)

t
exp

(−(v + a + h)2

2t

)
dv

+ h

∫ √
t−a

−(√t+a+h)
1√
2πe

1

t
dv

+ h

∫ ∞
√
t−a

1√
2πt

(v + a)

t
exp

(−(v + a)2

2t

)
dv

= 1√
2πe

h√
t

+ 2
1√
2πe

h√
t

+ 1√
2πe

h2

t
+ 1√

2πe

h√
t
.

Therefore if we further assume 0 ≤ h ≤ 1, we obtain the desired inequality with C1 =
5/(

√
2πe). For general h ≥ 0, we write h = ∑k

j=1 hj with 0 ≤ hj ≤ 1. Then we have

∫
R

|p(t, v + a + h)− p(t, v + a)| dv

≤
k∑
j=1

∫
R

|p
(
t, v + a +

j∑
i=1

hi

)
− p

(
t, v + a +

j−1∑
i=1

hi

)
| dv

≤ C1√
t

k∑
j=1

hj = C1|h|√
t
.
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(2) For each k, we have

sup
v∈[k−1,k+1]

p(t, v)

≤ inf
v∈[k−1,k+1]p(t, v) + sup

u,v∈[k−1,k+1]
|p(t, u)− p(t, v)|

≤ inf
v∈[k,k+1]p(t, v) + sup

u,v∈[k−1,k]
|p(t, u)− p(t, v)| + sup

u,v∈[k,k+1]
|p(t, u)− p(t, v)|

≤
∫ k+1

k

p(t, v) dv +
∫ k

k−1
sup

v∈[k−1,k]

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv +

∫ k+1

k

sup
v∈[k,k+1]

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv.

Therefore we have

∑
k∈Z

sup
v∈[k−1,k+1]

p(t, v) ≤
∑
k∈Z

inf
v∈[k,k+1]p(t, v) + 2

∑
k∈Z

∫ k+1

k

sup
v∈[k,k+1]

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv . (17)

The first term in the right side of (17) is bounded by
∫

R p(t, v) dv = 1. Thus it remains to
estimate the second term of the right hand side of (17). Using the fact noted at the beginning
of the proof again, it is not hard to see that if k0 ≤ √

t < k0 + 1, we have

∫ k+1

k

sup
v∈[k,k+1]

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ k+2

k+1

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv if 0 ≤ k ≤ k0 − 2 ,

∫ k

k−1

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv if k ≥ k0 + 2 .

(18)

In addition, we easily see that

k0+1∑
k=k0−1

∫ k+1

k

sup
v∈[k,k+1]

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv ≤ 2√

2π

1

t
e−1/2 +

∫ k0+1

k0

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv (19)

holds. Combining (18) with (19), we obtain

∑
k∈Z

∫ k+1

k

sup
v∈[k,k+1]

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv = 2

∞∑
k=0

∫ k+1

k

sup
v∈[k,k+1]

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv

≤ 2
∫ ∞

1

∣∣∣∣ ddvp(t, v)
∣∣∣∣ dv + 4√

2π

1

t
e−1/2

= 2√
2πt

e−1/2t + 4√
2π

1

t
e−1/2 .

Now we have obtained the desired estimate of the second term of the right hand side of
(17). �

From Lemma 3.1 we have the following.
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LEMMA 3.2. Given any bounded Borel function f on MF ,

|T (t)f ([a, x])− T (t)f ([b, x])| ≤ C1‖f ‖∞√
t

|a − b|

holds for any a, b ∈ R, x ∈ M , and t ≥ 1, where C1 is the constant appearing in Lemma

3.1. In particular, if (1/t)
∫ t

0 T (s)f (z) ds converges for some z ∈ MF as t → ∞, then

(1/t)
∫ t

0 T (s)f (w) ds converges to the same limit for any w ∈ Lz as t → ∞.

PROOF. Assume that f is a bounded Borel function on MF . By virtue of the formula
(7) and the inequality (15), we have

|T (t)f ([a, x])− T (t)f ([b, x])| ≤
∑
k∈Z

∫
[k,k+1)

|f ([v, x])||p(t, v − a)− p(t, v − b)| dv

≤ ‖f ‖∞
∫

R
|p(t, v − a)− p(t, v − b)| dv

≤ C1‖f ‖∞√
t

|a − b| .

Next assume that (1/t)
∫ t

0 T (s)f (z) ds converges for some z = [a, x] ∈ MF . Choose any
w = [b, x] ∈ Lz. Then the inequality just shown in the above implies that

∣∣∣∣1

t

∫ t

0
T (s)f (z) ds − 1

t

∫ t

0
T (s)f (w) ds

∣∣∣∣
≤ 2

t
‖f ‖∞ + 1

t

∫ t

1
|T (s)f ([a, x])− T (s)f ([b, x]) ds|

≤ 2

t
‖f ‖∞ + C1‖f ‖∞|a − b|

t

∫ t

1

1√
s
ds

≤ 2

t
‖f ‖∞ + 2C1‖f ‖∞|a − b|(√t − 1)

t
→ 0 as t → ∞ .

Now the proof of the lemma is complete. �

Next we give an ergodic theorem for the semi-group.

THEOREM 3.1. Let m be a harmonic probability measure for the leafwise Brownian

motion. Then for any f ∈ Lp(m) with 1 ≤ p < ∞, (1/t)
∫ t

0 T (s)f (z) ds converges m-
almost everywhere and in Lp(m). The limit function f ∗ is an element of Lp(m) satisfying
T (t)f ∗ = f ∗ in Lp(m) and has a version such that for m-almost every z, f ∗ is constant on
the leaf Lz.

PROOF. By definition as an operator on L∞(m), T (t) satisfies ‖T (t)‖∞ ≤ 1 for t ≥
0. On the other hand, as noted in Remark 2.3, we know that ‖T (t)‖1 ≤ 1. Therefore the
first assertion follows from the pointwise ergodic theorem Theorem VIII.7.1 and the mean
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ergodic theorem Theorem VIII.7.5 in [6]. It remains to prove the second assertion. For f ∈
Lp(m) with (1 ≤ p < ∞), we can find a sequence fn of bounded Borel functions such that
limn→∞ ‖fn − f ‖p = 0. Since T (t) is a contraction on Lp(m) for each t ≥ 0, we have

∥∥∥∥1

t

∫ t

0
T (s)fn ds − 1

t

∫ t

0
T (s)f ds

∥∥∥∥
p

≤ 1

t

∫ t

0
‖T (s)(fn − f )‖p ds ≤ ‖fn − f ‖p .

Letting t → ∞ in the above, we conclude that ‖f ∗
n − f ∗‖p ≤ ‖fn − f ‖p. Thus we have

limn→∞ ‖f ∗
n − f ∗‖p = 0. Taking subsequence if necessary, we may assume f ∗

n converges
to f ∗ m-a.e. Namely, there exists a Borel measurable set S0 with m(S0) = 1 such that if
z ∈ S0, f ∗

n (z) converges to f ∗(z). By virtue of Lemma 3.2 there exists a Borel measurable
set Sn with m(Sn) = 1 such that if z ∈ Sn, the limit f ∗

n (w) exists for anyw ∈ Lz and its value

coincides with f ∗
n (z). Put S = ⋂∞

n=0 Sn. By definition z ∈ S it is obvious that for anyw ∈ Lz
f ∗
n (w) = f ∗

n (z) converges to f ∗(z). This implies that the second assertion is true. �

For a while let μ be an invariant probability measure for the homeomorphism F and
mμ is the measure on MF given by (10). The following corresponds to the fact that the
one-dimensional Brownian motion is symmetric with respect to the Lebesgue measure.

LEMMA 3.3. Let f and g be bounded Borel measurable functions on MF . Then we
have ∫

MF

T (t)f (z)g(z) dmμ =
∫
MF

f (z)T (t)g(z) dmμ

for each t ≥ 0. In particular, the same identity as above holds for f ∈ Lp(mμ) and g ∈
Lq(mμ), where 1 ≤ p, q ≤ ∞ satisfy 1/p + 1/q = 1 and we regard 1/q as 0 if q = ∞.

PROOF. By virtue of (7) we can write the left hand side of the identity of the first
assertion as∫

MF

T (t)f (z)g(z) dmμ =
∫

[0,1)×M
T (t)f ([u, x])g([u, x])d(l × μ)

=
∫

[0,1)×M

( ∑
k∈Z

∫
[0,1)

f ([v, F kx])p(t, v + k − u) dv

)
g([u, x])dudμ .

We note that the boundedness of f, g and the estimate (16) enable us to apply the Fubini
theorem repeatedly. The last integral above becomes

∫
[0,1)

∑
k∈Z

{∫
M

(∫
[0,1)

f ([v, F kx])p(t, v + k − u) dv

)
g([u, x])dμ

}
du .
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Using F -invariance of μ and substituting −k for k, we obtain
∫

[0,1)

∑
k∈Z

{∫
M

(∫
[0,1)

f ([v, F kx])p(t, v + k − u) dv

)
g([u, x])dμ

}
du

=
∫

[0,1)

∑
k∈Z

{∫
M

(∫
[0,1)

f ([v, x])p(t, v + k − u) dv

)
g([u, F−kx])dμ

}
du

=
∫

[0,1)

∑
k∈Z

{∫
M

(∫
[0,1)

f ([v, x])p(t, v − k − u) dv

)
g([u, F kx])dμ

}
du

=
∫

[0,1)

{∫
M

( ∑
k∈Z

∫
[0,1)

f ([v, x])p(t, u+ k − v) dv g([u, F kx])
)
dμ

}
du

=
∫

[0,1)×M

( ∑
k∈Z

∫
[0,1)

g([u, F kx])p(t, u+ k − v) du

)
f ([v, x])dμdv

=
∫

[0,1)×M
f ([v, x])T (t)g([v, x])d(l × μ)

=
∫
MF

f (z)T (t)g(z) dmμ .

Note that we have used the equation p(t, x) = p(t,−x) in the above. Thus the first assertion
is verified. The second assertion follows immediately from the fact T (t) is extended to a
bounded operator on Lp(mμ) with ‖T (t)‖p ≤ 1 for each t ≥ 0. �

We summarize the immediate consequences of Lemma 3.3 in Corollary 3.1 below in
which the first assertion of Theorem 2.1 is included.

COROLLARY 3.1. Let mμ be the probability measure introduced in the above. Then
we have the following.

(1) mμ is a harmonic measure for the leafwise Brownian motion.

(2) If a nonnegative valued function h ∈ L1(mμ) satisfies T (t)h = h in L1(mμ) for
any t ≥ 0, then the measure hmμ with density h is also a harmonic measure for the leafwise
Brownian motion.

PROOF. We note that T (t)1 = 1. Putting g = 1 in Lemma 3.3, we see that the
assertion (1) is valid from Proposition 2.3. Putting f = h in Lemma 3.3, we see that the
assertion (2) is valid by the same reason as above. �

The rest of this section is devoted to the proof of the second assertion of Theorem 2.1.
We take any harmonic probability measure m for the leafwise Brownian motion and fix it.
Consider the Borel probability measure μm satisfying

∫
M

ϕ(x) dμm =
∫
MF

fϕ(z) dm (20)
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for any ϕ ∈ C(M), where fϕ is a function on MF defined so that fϕ([u, x]) = ϕ(x) for each
(u, x) ∈ [0, 1)×M . By the Riesz representation theorem such a measure μm exists uniquely.
We have only to prove the following proposition.

PROPOSITION 3.1. Let μm be the probability measure satisfying the identity (20) for
any ϕ ∈ C(M). Then we have m = mμm .

PROOF. We divide the proof into two steps.
(Step 1) μm is an invariant measure for F .
Let ν be any Borel measure onMF . Since the projection πF restricted to [0, 1)×M is a

bimeasurable map ontoMF , we define a Borel measure ν̃ on [0, 1)×M such that
∫

[0,1)×M
f ([u, x]) dν̃ =

∫
MF

f (z) dν

for any Borel measurable function f on MF . For ϕ ∈ C(M), we have
∫
M

ϕ(x) dμm =
∫
MF

fϕ(z) dm =
∫
MF

T (t)fϕ(z) dm

=
∫

[0,1)×M
T (t)fϕ([u, x]) dm̃

=
∫

[0,1)×M

( ∑
k∈Z

∫
[0,1)

ϕ(F kx)p(t, v + k − u) dv

)
dm̃

by virtue of (7). Therefore we have
∣∣∣∣
∫
M

ϕ(Fx) dμm −
∫
M

ϕ(x) dμm

∣∣∣∣

=
∣∣∣∣∣
∫

[0,1)×M

( ∑
k∈Z

∫
[0,1)

ϕ(F kx)(p(t, v + k − 1 − u)− p(t, v + k − u) dv

)
dm̃

∣∣∣∣∣

≤
∫

[0,1)×M

( ∑
k∈Z

∫
[0,1)

|ϕ(F kx)||p(t, v + k − 1 − u)− p(t, v + k − u)| dv
)
dm̃

≤ ‖ϕ‖∞
∫

R
|p(t, v − 1)− p(t, v)| dv

≤ C1‖ϕ‖∞√
t

→ 0 (t → ∞)

from the inequality (15). Hence we reach the desired result.
(Step 2) m is absolutely continuous with respect to mμm . In fact the density function

h satisfies h ≤ 1 mμm-a.e. Since m and mμm are probability measures, we conclude that
m = mμm .
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Since l×μm = m̃μm , we have only to show that m̃ is absolutely continuous with respect
to l × μm. To this end it suffices to show that for any bounded nonnegative valued Borel
functions ϕ onM and ψ on [0, 1)∫

[0,1)×M
ϕ(x)ψ(u) dm̃ ≤

∫
[0,1)×M

ϕ(x)ψ(u) d(l × μm) . (21)

Let fϕ,ψ be the function onMF satisfying fϕ,ψ ([u, x]) = ϕ(F kx)ψ(u− k) if u ∈ [k, k+ 1).
Since m is a harmonic measure, we see from (7) that∫

[0,1)×M
ϕ(x)ψ(u) dm̃ =

∫
MF

fϕ,ψ (z) dm =
∫
MF

T (t)fϕ,ψ (z) dm

=
∫

[0,1)×M

(∑
k∈Z

∫
[0,1)

ϕ(F kx)ψ(v)p(t, v + k − u) dv

)
dm̃

≤
∫

[0,1)
ϕ(v) dv

∫
[0,1)×M

ϕ(F kx) dm̃
∑
k∈Z

sup
u∈[k−1,k+1]

‖p(t, u)‖∞

holds for each t > 0. On the other hand from (20) and Step.1, we obtain∫
[0,1)×M

ϕ(F kx) dm̃ =
∫
M

ϕ(F kx) dμm =
∫
M

ϕ(x) dμm .

Thus the estimate (16) implies that
∫

[0,1)×M
ϕ(x)ψ(u) dm̃ ≤

(
1 + C2√

t

) ∫
[0,1)×M

ϕ(x)ψ(u) d(l × μm)

for each t ≥ 1. This yields the inequality (21). �

4. Central limit theorem for additive functionals

The aim of this section is to prove Theorem 2.2. We make use of the standard arguments
which can be found in the proof of the central limit theorem (e.g. Theorem III-4.4 in [13]).
Let z be any point in MF . We consider the process Y zλ = {Y zλ (t)}t≥0 defined by (13), where

f is an element in C(MF ) given by f = ΔLg for a real-valued element g in C2
L(MF ). Then

we can apply the Itô formula along leaves. Thus we have

g(Xz(t))− g(z) =
∫ t

0
∇Lg(Xz(s)) dB(s) + 1

2

∫ t

0
f (Xz(s)) ds . (22)

We denote byMz(t) the martingale term of the right hand side of (22) for the sake of simplic-
ity. Note that the quadratic variation process 〈Mz〉 = {〈Mz〉(t)} of Mz = {Mz(t)} is given
by

〈Mz〉(t) =
∫ t

0
(∇Lg(Xz(s)))2 ds . (23)
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Then Y zλ(t) is given by

Y zλ (t) = 2(g(Xz(λt))− g(z)−Mz(λt))√
λ

. (24)

In addition we define a family {Mz
λ}λ>0 of continuous martingales by

Mz
λ(t) = 1√

λ
Mz(λt) for t ≥ 0 . (25)

We can easily see that their quadratic variations are given by

〈Mz
λ〉(t) = 1

λ

∫ λt

0
(∇Lg(Xz(s)))2 ds for t ≥ 0 . (26)

We have the following.

LEMMA 4.1. For any z ∈ MF , λ > 0, and t, s ∈ R, we have

E
[ (
Mz
λ(t)−Mz

λ(s)
)4 ] ≤ C3‖∇Lg‖4∞|t − s|2 (27)

and

|〈Mz
λ〉(t)− 〈Mz

λ〉(s)| ≤ ‖∇Lg‖2∞|t − s| , (28)

where C3 is a positive constant independent of g , z, λ, s and t .

PROOF. From a well-known moment inequality Theorem III-3.1 in [13],we have

E
[
(Mz

λ(t)−Mz
λ(s))

4] ≤ C3E
[
(〈Mz

λ〉(t)− 〈Mz
λ〉(s))2

]
,

where C3 is a universal positive constant. Therefore the first inequality (27) follows easily
from the fact the quadratic variation 〈Mz

λ〉 is given by (26). The second inequality (28) is also
an easy consequence of the equation (26). �

We need the following.

LEMMA 4.2. For any z ∈ MF , the family of laws of C([0,∞) → R2)-valued random
variables {(Mz

λ, 〈Mz
λ〉)}λ>0 is tight. Moreover, ifMn = Mz

λn
is any sequence such that the law

of (Mn, 〈Mn〉) converges weakly as n → ∞, then there exist a probability space (Ω̃, F̃ , P̃ )
and C([0,∞) → R)-valued random variables M̃n, M̃ , and Ã satisfying the following.

(a) The laws of (Mn, 〈Mn〉) and (M̃n, 〈M̃n〉) coincide for each n.

(b) limn→∞ρ(M̃n, M̃) = 0 and limn→∞ρ(〈M̃n〉, Ã) = 0 hold P̃ -a.s.
where ρ is the metric on C([0,∞) → R) given in the proof of Proposition 2.4.

(c) M̃ is a martingale with 〈M̃〉 = Ã.

PROOF. By the inequality (27) in Lemma 4.1, the family of laws of {Mz
λ}λ>0 is tight

(see Theorem I-4.3 in [13] for example). Since for C > 0 the subset {w ∈ C([0,∞) → R) :
w(0) = 0, |w(t) − w(s)| ≤ C|t − s| for any t, s ∈ [0,∞)} is compact in C([0,∞) → R)
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endowed with the metric ρ, the inequality (28) in Lemma 4.1 yields the tightness of the family

of laws of {〈Mz
λ〉}λ>0. Therefore the family of laws of C([0,∞) → R2)-valued random

variables {(Mz
λ, 〈Mz

λ〉)}λ>0 is tight. Thus by virtue of the Skorohod theorem (Theorem I-

2.7 in [13]), there exist a probability space (Ω̃, F̃ , P̃ ) and C([0,∞) → R)-valued random

variables M̃n, M̃ , and Ã satisfying the conditions (a) and (b). It remains to show that M̃, and

Ã satisfy the condition (c). To prove the martingale property of M̃, it suffices to show that for
any 0 ≤ s1 < s2 < · · · < sk = s < t and bounded continuous function ϕ : Rk → R, we
have

Ẽ[M̃(t)ϕ(M̃(s1), . . . , M̃(sk))] = Ẽ[M̃(s)ϕ(M̃(s1), . . . , M̃(sk))] . (29)

Since M̃n is a martingale, we have

Ẽ[M̃n(t)ϕ(M̃n(s1), . . . , M̃n(sk))] = Ẽ[M̃n(s)ϕ(M̃n(s1), . . . , M̃n(sk))] . (30)

Clearly, we have M̃n(t)ϕ(M̃n(s1), . . . , M̃n(sk)) → M̃(t)ϕ(M̃(s1), . . . , M̃(sk)) and

M̃n(s)ϕ(M̃n(s1), . . . , M̃n(sk)) → M̃(s)ϕ(M̃(s1), . . . , M̃(sk)) P̃ -a.s. as n → ∞. In addi-
tion, from the inequality (27) in Lemma 4.1, we see that L2-norm of integrands in the both
side of the equation (30) are uniformly bounded in n. Therefore they form sequences of uni-

formly integrable functions with respect to P̃ . Thus each side of the equation (30) converges
to each side of the equation (29). Hence the equation (29) is valid.

Since it is obvious that Ã is an increasing process, it suffices to show that M̃2 − Ã is a

martingale in order to prove 〈M̃〉 = Ã. We see that it can be proved in the same way as above

once we notice that the inequality (27) yields that L2-norm of M̃n(t)
2 − 〈M̃n〉(t) is bounded

uniformly in n for each t . Consequently, M̃n(t)
2 − 〈M̃n〉(t) is uniformly integrable sequence

for each t . �

Now we prove Theorem 2.2.

PROOF OF THEOREM 2.2. Let f and g satisfy the assumptions of the theorem. Obvi-
ously we have

sup
t≥0

|g(Xz(λt)) − g(z)|
λ

≤ 2‖g‖∞
λ

→ 0 (λ → ∞) . (31)

Therefore we have only to prove that {Mz
λ}λ>0 converges in law to the the Brownian motion

(1/2)W〈f 〉(z). The tightness of {Mz
λ}λ>0 is already established in Lemma 4.2. Thus it remains

to identify the limit law under the condition that z is a quasi-regular point for X. So in the

rest of the proof, we assume that z is a quasi-regular point for X. Consider the process M̃

and Ã obtained in Lemma 4.2. If we can prove that Ã(t) = (1/4)〈f 〉(z)t for t ≥ 0, then we

conclude that the law of M̃ coincides with that of (1/2)W〈f 〉(z) by Theorem II-7.2 in [13].
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By Proposition 2.4 we see that for each t > 0

lim
λ→∞〈Mz

λ〉(t) = t lim
λ→∞

1

λt

∫ λt

0
(∇Lg)2(Xz(s)) ds = t

∫
MF

(∇Lg)2 dmz = 1

4
〈f 〉(z)t (32)

holds P -a.s. Combining (28) with (32), it is easy to see that 〈Mz
λ〉(t) converges uniformly to

(1/4)〈f 〉(z)t on any compact subset in [0,∞) P -a.s. as λ → ∞. This yields that Ã(t) =
(1/4)〈f 〉(z)t for t ≥ 0. �

REMARK 4.1. The proof of Theorem 2.2 above is elementary but slightly long-
winded. In fact, for a sequence of continuous martingales, its tightness is equivalent to that
of the sequence of their quadratic variations. Therefore, the fact that 〈Mz

λ〉(t) converges uni-
formly to (1/4)〈f 〉(z)t on any compact subset in [0,∞) P -a.s. as λ → ∞ is sufficient
enough to guarantee the validity of the theorem (see [19] and Corollary 1 in [18] for details).

5. Uniquely ergodic case

In this section we consider the special case when the underlying homeomorphism F is
uniquely ergodic i.e. �IM(F ) = 1. The following is an analogue of Theorem 6.19 in [20].

THEOREM 5.1. The following are equivalent.
(1) F is uniquely ergodic.
(2) �HM(X) = 1.
(3) There exists an element m in HM(X) such that for any f ∈ C(MF ),

(1/t)
∫ t

0 T (s)f ds converges to
∫
MF

f dm uniformly as t → ∞.

(4) For any f ∈ C(MF ), there exists a number C(f ) depending only on f such that for

any z ∈ MF , (1/t)
∫ t

0 f (X
z(s)) ds converges to C(f ) in L2(P ) as t → ∞.

(5) For any f ∈ C(MF ), there exists a number C(f ) depending only on f such that for

any z ∈ MF , (1/t)
∫ t

0 f (X
z(s)) ds converges to C(f ) in P as t → ∞.

(6) For any f ∈ C(MF ), there exists a number C(f ) depending only on f such that for

any z ∈ MF , (1/t)
∫ t

0 T (s)f (z) ds converges to C(f ) as t → ∞.

PROOF. In virtue of Theorem 2.1 the equivalence of the assertions (1) and (2) is obvi-
ous.

Next assuming the validity of the assertion (2), we show that of the assertion (3). Suppose
that it were not true. Then we could find an element f0 in C(MF ), a positive number ε0 > 0, a
sequence {zj } of points inMF , and a sequence of positive numbers {tj } such that limj→∞ tj =
∞ and ∣∣∣∣ 1

tj

∫ tj

0
T (s)f0(zj ) ds −

∫
MF

f0 dm

∣∣∣∣ ≥ ε0 . (33)

Taking a subsequence we may assume that the limit J (f ) = limj→∞ (1/tj )
∫ tj

0 T (s)f (zj ) ds

exists for any f ∈ C(MF ). By the Riesz representation theorem, there exists a Borel proba-
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bility measure m′ such that J (f ) = ∫
MF

f dm′ for each f ∈ C(MF ). By substituting T (t)f

for f , It is easy to see that m′ ∈ HM(X). The inequality (33) implies that m �= m′. This
contradicts the fact that �HM(X) = 1.

Assume assertion (3) is valid. We show (4) with C(f ) = ∫
MF
f dm. We may assume

that f is real-valued. By considering f − C(f ), we have only to prove

lim
t→∞E

[(
1

t

∫ t

0
f (Xz(s)) ds

)2 ]
= 0 (34)

provided that (1/t)
∫ t

0
T (s)f ds converges to 0 uniformly in z as t → ∞. For t > 0 we have

I (t) = E

[(
1

t

∫ t

0
f (Xz(s)) ds

)2 ]

= 2

t2

∫ t

0
dr

∫ t

r

E[f (Xz(r))f (Xz(s))] ds

= 2

t2

∫ t

0
dr

∫ t

r

E[f (Xz(r))(T (s − r)f )(Xz(r))] ds

= 2

t2

∫ t

0
dr

∫ t−r

0
E[f (Xz(r))(T (s)f )(Xz(r))] ds

= 2

t2

∫ t

0
E

[
f (Xz(r))

∫ t−r

0
(T (s)f )(Xz(r)) ds

]
dr

= 2

t2

∫ t

0
(t − r)E

[
f (Xz(r))

1

t − r

∫ t−r

0
(T (s)f )(Xz(r)) ds

]
dr

= 2
∫ 1

0
(1 − r)E

[
f (Xz(tr))

1

t (1 − r)

∫ t (1−r)

0
(T (s)f )(Xz(tr)) ds

]
dr .

Here the third equality follows from the Markov property ofX, the fourth equality is obtained
by the change of variable s−r �→ s, the fifth equality is a consequence of the Fubini theorem,
and the last equality is obtained by the change of variable r �→ tr . Thus we have

|I (t)| ≤ 2‖f ‖∞
∫ 1

0
(1 − r)

∥∥∥∥ 1

t (1 − r)

∫ t (1−r)

0
T (s)f ds

∥∥∥∥
∞
dr → 0 (t → ∞)

by the bounded convergence theorem. Hence we have (34) and the assertion (4) is verified.
The assertion (5) follows immediately from the assertion (4) and the assertion (6) is easily

verified from the assertion (5). It remains to show that the assertion (6) yields the assertion
(2). By Theorem 3.1, we can easily see that C(f ) = ∫

MF
f dm holds for any m ∈ HM(X).

Thus we have �HM(X) = 1. �
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We consider a version of Theorem 2.2 for a uniquely ergodic homeomorphism F with
IM(F ) = {μ}. Theorem 2.1 implies that mμ is the unique element in HM(X), where mμ
is the measure defined by (10).

THEOREM 5.2. Assume thatMF is a mapping torus of a uniquely ergodic homeomor-
phism F . Let f be a real-valued function in C(MF ) which is not constantly 0 on the support

ofmμ. If there exists a function g ∈ C2
L(MF ) such that f = ΔLg , then we have the following.

(1) The limiting variance is non-degenerate, i.e.

〈f 〉 = 4
∫
MF

(∇Lg)2 dmμ > 0 . (35)

(2) Consider the process Y zλ defined by (13). Then for any point z ∈ MF , the processes

Y zλ converge in law to the Brownian motionW〈f 〉 with variance 〈f 〉t as λ → ∞.

PROOF. The assertion (1) follows immediately from Remark 2.4 (1).
Now we prove the assertion (2). We use the notation in Theorem 2.2, Lemma 4.1, and

Lemma 4.2 in the below. Recall that Lemma 4.1 and Lemma 4.2 are valid whether z ∈ MF

is a quasi-regular point for X or not. Choose any sequence Mn = Mz
λn

which converges in

law and let M̃n, and Ã be the processes given in Lemma 4.2. We have only to show that Ã

satisfies Ã(t) = (1/4)〈f 〉t P̃ -a.s. for each t ≥ 0. From (4) of Theorem 5.1, we have

E

[(
〈Mz

λ〉(t) − 1

4
〈f 〉t

)2]

= E

[(
t

1

λt

∫ λt

0
(∇Lg)2(Xz(s)) ds −

∫
MF

(∇Lg)2 dmμ · t
)2]

→ 0 (λ → ∞)

for any z ∈ MF and t > 0. Since 〈Mn〉 and 〈M̃n〉 have the same law, we have Ẽ[(〈M̃n〉(t) −
(1/4)〈f 〉t)2] = E[(〈Mn〉(t) − (1/4)〈f 〉t)2] → 0 as (n → ∞). Thus we arrive at the desired
result. �

REMARK 5.1. (1) It is well-known that a uniquely ergodic homeomorphism F with
IM(F ) = {μ} is minimal if and only if μ is fully-supported (Theorem 6.17 in [20]). In such

a case for any real-valued g ∈ C2
L(MF ) if f = ΔLg is not constantly 0, then the limiting

variance 〈f 〉 is non-degenerate.
(2) From the proof of Theorem 5.2, we see that the assertion of Theorem 2.2 is valid

for the point z such that (1/t)
∫ t

0 (∇Lg)2(Xz(s)) ds converges in probability to some constant
as t → ∞. Note that we do not assume the unique ergodicity here. Taking this fact into
consideration we introduce another notion of quasi-regularity. We call z ∈ MF a weakly

quasi-regular point for X if for any f ∈ C(MF ) the limit limt→∞(1/t)
∫ t

0 f (X
z(s)) ds exists

in probability. We denote by Q(w)X the totality of weakly quasi-regular points for X. By
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definition we have QX ⊂ Q
(w)
X . It is natural to ask whether they coincide or not. We do not

know the answer at present.

We finish with examples.

EXAMPLE 5.1 (generalized Kronecker foliation). Consider the case when M is a
compact metrizable group which admits an element a such that the rotation F : M →
M, ; x �→ ax is minimal. As is well-known that the normalized Haar measure μ is the only

invariant probability measure for F . When M is the one-dimensional torus and a = e2π
√−1α

with α being irrational, the corresponding mapping torus is thought of as the so-called Kro-
necker foliation. So we call the mapping torus MF of F a generalized Kronecker foliation in
the sequel.

Let M̂ be the character group of M . For n ∈ Z and γ ∈ M̂ we define a function eγ,n

on R × M by en,γ (u, x) = e2π
√−1(α(γ )+n)uγ (x), where α(γ ) ∈ [0, 1) satisfies γ (a) =

e2π
√−1α(γ ). Clearly en,γ (u + 1, x) = en,γ (u, ax) for any (u, x) ∈ R × M . Therefore we

regard en,γ as an element in C∞
L (MF ) and write often as en,γ ([u, x]) = en,γ (u, x). Moreover,

it is not hard to verify that the family {en,γ : γ ∈ M̂, n ∈ Z} is a complete orthonormal

system of L2(mμ), where mμ is the only element in HM(X) defined by the equation (10).

For f ∈ L2(mμ) its Fourier series expansion is given by

f ([u, x]) =
∑
n,γ

f̂n,γ en,γ ([u, x]) , (36)

where the summation is taken over all (n, γ ) ∈ Z × M̂ and the Fourier coefficients f̂n,γ are
given by

∫
MF

f en,γ dmμ =
∫

[0,1)×M
f ([u, x])en,γ (u, x) dudμ

and satisfy
∑
n,γ |f̂n,γ |2 < ∞.

We calculate the limiting variance in Theorem 5.2 in terms of the Fourier series. Let

g be a real-valued function in C2
L(MF ) such that f = ΔLg is not constantly 0. Using the

expansion (36) we have

g([u, x]) =
∑
n,γ

ĝn,γ en,γ ([u, x]) ,

∇Lg([u, x]) =
∑

n,γ : (n,γ ) �=(0,1)
(2π

√−1(α(γ )+ n))ĝn,γ en,γ ([u, x]) ,

f ([u, x]) = ΔLg([u, x]) =
∑

n,γ : (n,γ ) �=(0,1)
−4π2(α(γ )+ n)2ĝn,γ en,γ ([u, x]) .
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Thus we have

〈f 〉 = 4
∫
MF

(∇Lg)2 dmμ = 4
∫
MF

|∇Lg|2 dmμ

= 16
∑

n,γ : (n,γ ) �=(0,1)
π2(α(γ )+ n)2|ĝn,γ |2 > 0

since f is not constantly 0.

EXAMPLE 5.2. We consider a special case in Example 5.1 where M = S1 = {x ∈
C : |x| = 1} and Fx = ax is an irrational rotation, i.e. a = e2π

√−1α with α ∈ (0, 1)
irrational. In this case the mapping torus MF is a foliated manifold which is identified with

the so-called Kronecker foliation. The character group M̂ is identified with Z so that if γ ∈ Z,
γ (x) = xγ holds for x ∈ M . Therefore each member en,γ of the above mentioned complete

orthonormal system of L2(mμ) is given by en,γ (u, x) = e2π
√−1(αγ+n)uxγ and it is not only

leafwise smooth but also smooth in the usual sense as a function on the manifold MF . Note
that we have

T (t)en,γ = e−2π2(αγ+n)2t en,γ

for t ≥ 0. Thus there is no Banach space (L, ‖ · ‖) satisfying conditions (1) and (2) below.

(1) {en,γ : n ∈ Z, γ ∈ Z} ⊂ L ⊂ L1(mμ).
(2) T (t) is a continuous semi-group on L such that there exists C > 0 and ζ ∈ (0, 1)

such that ∥∥∥∥T (t)f −
∫
MF

f dmμ

∥∥∥∥ ≤ Cζ t‖f ‖

holds for each f ∈ L. Indeed, for any ε > 0 we can choose a pair (n, γ ) ∈ Z × Z with |αγ +
n| < ε since α is irrational. Thus we are in a different situation from the leafwise Brownian
motion on the stable foliation associated with the geodesic flow on the unit tangent bundle
over a compact negatively curved manifold. One finds in [17] a Banach space consisting of
a class of Hörder continuous functions on which the semi-group of the leafwise Brownian
motion satisfies the condition (2).

EXAMPLE 5.3. Let MF be the same mapping torus as in Example 5.2. It is conve-

nient to introduce a real parameter v and denote as x = e2π
√−1v in the sequel. Under this

convention, en,γ is written as en,γ (u, v) = e2π
√−1((αγ+n)u+γ v).

We give an example of a function f ∈ C∞
L (MF )∩C1(MF )which satisfies

∫
MF
f dmμ =

0 but does not have a function g ∈ C2
L(MF ) such that ΔLg = f . To this end, we recall a

well-known result in continued fraction (e.g. Theorem 171 in [11]). There exist sequence
of positive integers pk and qk such that pk and qk are coprime,

∑∞
k=1(1/qk) < ∞, and
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|αqk − pk| < 1/qk. Define f by

f (u, v) =
∞∑
k=1

1

q2
k

e−pk,qk (u, v) =
∞∑
k=1

1

q2
k

e2π
√−1((αqk−pk)u+qkv) .

Clearly, the right hand side of the above is uniformly convergent in (u, v) ∈ R2 and f (u +
1, v) = f (u, v + α) holds. Therefore f determines a continuous function on MF . Since we
have (1/qk)2|αqk − pk |r ≤ (1/qk)r+2 for any positive integer r , we see that f is of leafwise
Cr and

(∇L)rf =
∞∑
k=1

(2π
√−1(αqk − pk))

r

q2
k

e−pk,qk .

On the other hand, (∂f/∂v)(u, v) exists and

∂f

∂v
(u, v) =

∞∑
k=1

2π
√−1

qk
e−pk,qk (u, v)

holds by
∑∞
k=1(1/qk) < ∞. Therefore, we conclude that f ∈ C∞

L (MF ) ∩ C1(MF ). Finally,

we show that there is no function g ∈ C2
L(MF ) satisfying ΔLg = f . If such a function

g exists, then its Fourier coefficients ĝn,γ with respect to the complete orthonormal system
{en,γ } must be given by

ĝn,γ =

⎧⎪⎨
⎪⎩

− 1

4π2q2
k (αqk − pk)2

, if (n, γ ) = (−pk, qk) for some k) ,

0 , otherwise.

Since we have

∞∑
k=1

1

q4
k |αqk − pk|4

≥
∞∑
k=1

1 = ∞ ,

the norm ‖g‖L2(mμ)
diverges. Hence we arrive at a contradiction.

This example shows that a function f ∈ C(MF ) with
∫
MF
f dmμ = 0 does not always

have a leafwise C2 solution g of the equation ΔLg = f even if f has C1-regularity in the
usual sense.
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