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Abstract. Let L be a nonnegative self-adjoint operator on L2(Rn) satisfying the full off-diagonal estimates

Lq0 − L2 for some q0 ∈ [1, 2). In this paper, we study the sharp weighted Lp estimates for the spectral multipliers
of the operator L and their commutators with BMO functions b. As an application, we study the weighted norm
inequalities for spectral multipliers of Schrödinger operators with negative potentials.

1. Introduction

Suppose that L is a nonnegative self-adjoint operator on L2(Rn). Let E(λ) be
the spectral resolution of L. By the spectral theorem, for any bounded Borel function
F : [0,∞) → C, one can define the operator

F(L) =
ˆ ∞

0
F(λ)dE(λ) ,

which is bounded on L2(Rn).

The problem concerning the boundedness of F(L) has attracted a lot of attention and has
been studied by many authors, see for example [1, 7, 8, 21, 19, 18, 13, 14] and the references
therein. In most of these papers, the Gaussian upper bound condition plays an essential role,
see for example [1, 13, 14]. Recall that the semigroup {e−tL}t>0 generated by L has the
kernels pt (x, y) satisfying the Gaussian upper bounds if there exist c, C > 0 so that

(1) |pt(x, y)| ≤ C

tn/2 exp

(
− c

|x − y|2
t

)

for all t > 0 and x, y ∈ Rn. It was proved in [14] that if the bounded Borel function
F : [0,∞) → C satisfies the following condition for some s > n/2
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sup
t>0

‖ηδtF‖W∞
s

< ∞

where δtF (λ) = F(tλ), ‖F‖W
p
s

= ‖(I −d2/dx2)s/2F‖Lp and η is an auxiliary non-zero cut-

off function such that η ∈ C∞
c (R+), then the spectral multiplier F(L) is of weak type (1, 1)

and hence by duality arguments, F(L) is bounded on Lp for all p ∈ (1,∞). However, there
are many important operators L which do not satisfy (1). It is natural to raise a question of the
boundedness of the spectral multipliers F(L) without the Gaussian upper bound condition
(1). In [7], S. Blunck replaced the pointwise kernel bounds (1) by the Lp − Lq estimates
and obtained the boundedness of F(L) on Lp for an appropriate range of p whenever the
bounded Borel function F satisfies supt>0 ‖ηδtF‖W 2

s
< ∞ with s > n/2 + 1/2. Under the

similar condition supt>0 ‖ηδtF‖W∞
s

<∞ with s >n/2, it was proved in [15] that the spectral

multiplier F(L) is bounded on H
p
L which is the Hardy space associated to the operator L.

Moreover, it was also proved that if the semigroup e−tL satisfies the Lq0 − L2 off-diagonal
estimates for some q0 ∈ [1, 2), then F(L) is bounded on Lp(w) for 2 < p < q ′

0 and w ∈
Ap/2 ∩RH(q ′

0/p)′ and hence by duality, F(L) is bounded on Lp(w) for q0 < p < 2 and

w ∈ Ap/q0 ∩ RH(2/p)′ .
The main aim of this paper is to study the sharp weighted estimates for spectral multipli-

ers F(L) and the commutators [b, F (L)] of F(L) with BMO functions b under the condition
that L generates the semigroup e−tL satisfying the Lq0 − L2 full off-diagonal estimates (see
Section 2 for precise definition). It is important to note that the pointwise Gaussian estimates
are not assumed in this paper. Precisely, we prove the following result.

THEOREM 1.1. Let L be a nonnegative self-adjoint operator on L2 satisfying the

Lq0 − L2 full off-diagonal estimates for some q0 ∈ [1, 2). Set r0 = max(q0,
n
s
). If a bounded

Borel function F : [0,∞) → C satisfies the following condition for some s > n/2

sup
t>0

‖ηδtF‖W∞
s

< ∞

where δtF (λ) = F(tλ), ‖F‖W
p
s

= ‖(I −d2/dx2)s/2F‖Lp and η is an auxiliary non-zero cut-

off function such that η ∈ C∞
c (R+), then (a) F(L) is bounded on Lp(w) for all r0 < p < q ′

0
and w ∈ Ap/r0 ∩ RH(q ′

0/r0)
′ ; (b) moreover, for b ∈ BMO(Rn), the commutator [b, F (L)]

is also bounded on Lp(w) for all r0 < p < q ′
0 and w ∈ Ap/r0 ∩ RH(q ′

0/r0)
′ . Hence by

duality F(L) and the commutators [b, F (L)] are bounded on Lp(w) for q0 < p ≤ r0 and
w ∈ Ap/q0 ∩ RH(r ′

0/p)′ .

Note that since Ap/2 ∩ RH(q0/p)′ ⊂ Ap/r0 ∩ RH(q ′
0/p)′ for p > 2, Ap/q0 ∩ RH(2/p)′ ⊂

Ap/r0 ∩RH(q ′
0/p)′ for r0 < p < 2, and Ap/q0 ∩RH(2/p)′ ⊂ Ap/q0 ∩RH(r ′

0/p)′ for r0 < p < 2

and q0 < p ≤ r0, the results in Theorem 1.1 are better than those in [15]. Moreover, since
r0 < 2, we also obtain the weighted estimates for the spectral multipliers F(L) and their
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commutators [b, F (L)] with BMO functions b on the weighted Lp spaces when p = 2. It
seems that the obtained results in [15] did not tell us the weighted estimate of F(L) on the

weighted L2 spaces.
Moreover, under the Gaussian upper bound conditions (1) and the weaker condition on

F , Theorem 1.1 gives the same conclusion as [6, Theorem 1.3]. In comparison with the
results in [16], it is important to note that in the Euclidian setting, if the condition (1) holds,
the obtained results in Theorem 1.1 are in line with those in [16, Theorem 3.1]. Therefore,
Theorem 1.1 can be considered to be an extension to [16, Theorem 3.1] and [6, Theorem
1.3] in some sense. More importantly, the results on the commutators [b, F (L)] with BMO
functions b are new (even for the unweighted case).

The outline of this paper is as follows. In section 2, we recall some basic properties of
Muckenhoupt weights and a criterion on weighted estimates for singular integrals in [4]. The
proof of Theorem 1.1 will be given in Section 3. Finally, we give an application to study
the weighted norm inequalities for spectral multipliers of Schrödinger operators with negative
potentials.

2. Muckenhoupt weights and weighted estimates for singular integrals

2.1. Muckenhoupt weights. We now recall the definition of Muckenhoupt weights
and their basic properties. For details, we refer to [12].

Throughout this article, we will often just use B for B(xB, rB) := {x : |x − xB | ≤ rB}.
Also given λ > 0, we will write λB for the λ-dilated ball, which is the ball with the same
center as B and with radius rλB = λrB . For each ball B ⊂ Rn we set

S0(B) = B and Sj (B) = 2jB\2j−1B for j ∈ N .

We shall denote w(E) := ´
E w(x)dx for any measurable set E ⊂ Rn. For 1 ≤ p ≤ ∞

let p′ be the conjugate exponent of p, i.e. 1/p + 1/p′ = 1.
We first introduce some notation. We use the notation 

B

h(x)dx = 1

|B|
ˆ

B

h(x)dx .

A weight w is a non-negative locally integrable function on Rn. We say that w ∈ Ap, 1 <

p < ∞, if there exists a constant C such that for every ball B ⊂ Rn,

(  
B

w(x)dx

)(  
B

w−1/(p−1)(x)dx

)p−1

≤ C .

For p = 1, we say that w ∈ A1 if there is a constant C such that for every ball B ⊂ Rn,
 

B

w(y)dy ≤ Cw(x) for a.e. x ∈ B .

We set A∞ = ∪p≥1Ap.
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The reverse Hölder classes are defined in the following way: w ∈ RHq, 1 < q < ∞, if
there is a constant C such that for any ball B ⊂ Rn,

( 
B

wq(x)dx

)1/q

≤ C

 
B

w(x)dx .

The endpoint q = ∞ is given by the condition: w ∈ RH∞ whenever, there is a constant C

such that for any ball B ⊂ Rn,

w(x) ≤ C

 
B

w(y)dy for a.e. x ∈ B .

Let w ∈ A∞. For 1 ≤ p < ∞, the weighted spaces Lp(w) can be defined by
{
f :

ˆ
Rn

|f (x)|pw(x)dx < ∞
}

with the norm

‖f ‖Lp(w) =
( ˆ

Rn

|f (x)|pw(x)dx

)1/p

.

We sum up some of the properties of Ap classes in the following results, see [12].

LEMMA 2.1. The following properties hold:

(i) A1 ⊂ Ap ⊂ Aq for 1 < p ≤ q < ∞.
(ii) RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q < ∞.

(iii) If w ∈ Ap, 1 < p < ∞, then there exists 1 < q < p such that w ∈ Aq .
(iv) If w ∈ RHq, 1 < q < ∞, then there exists q < p < ∞ such that w ∈ RHp.
(v) A∞ = ∪1≤p<∞Ap = ∪1<q≤∞RHq .

2.2. Weighted norm inequalities for singular integrals.

THEOREM 2.2. Let 1 < p0 < q0 ≤ ∞. Let T be a bounded sublinear operator on
Lp0(Rn), Let {Ar}r>0 be a family of operators acting on Lp0(Rn). Assume that

(  
B

∣∣T (I − ArB )f
∣∣p0dx

)1/p0

≤ C
∑
j

αj

( 
2jB

|f |p0dx

)1/p0

(2)

and
(  

B

∣∣T ArBf
∣∣q0dx

)1/q0 ≤ C
∑
j

αj

( 
2j B

|Tf |p0dx
)1/p0

(3)

for all f ∈ L∞
c (Rn), and all balls B with radius rB .
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If
∑

j jαj < ∞, then for all p0 < p < q0 and w ∈ Ap/p0 ∩ RH(q0/p)′ , there exists a

constant C such that

‖Tf ‖Lp(w) ≤ C‖f ‖Lp(w) .(4)

and

‖[b, T ]f ‖Lp(w) ≤ C‖b‖BMO‖f ‖Lp(w)(5)

for all b ∈ BMO.

PROOF. The proof of this theorem is just a combination of the arguments in Theorems
3.7 and 3.16 in [4] and we omit details here. �

3. Proof of Theorem 1.1

We recall the definition and some basic properties of Lp −Lq full off-diagonal estimates.

DEFINITION 3.1 ([5]). Let 1 ≤ p ≤ q ≤ ∞. We say that the family {Tt }t>0 of
sublinear operators satisfies Lp − Lq full off-diagonal estimates, in short Tt ∈ F(Lp − Lq),
if there exists some c > 0, for all closed sets E and F , all f with supp f ⊂ E and all t > 0
so that

(6) ‖Ttf ‖Lq(F ) ≤ ct
− n

2 ( 1
p
− 1

q
) exp

(
− c

d2(E, F )

t

)
‖f ‖Lp(E) .

Let us summarize some basic properties concerning the classes F(Lp − Lq), see [5].
(i) For p ≤ p1 ≤ q1 ≤ q , F(Lp1 − Lq1) ⊂ F(Lp − Lq).

(ii) Tt ∈ F(L1 − L∞) if and only if the associated kernel pt(x, y) of Tt satisfies the
Gaussian upper bound, that is, there exist positive constants c and C so that

|pt(x, y)| ≤ C

tn/2
exp

(
− c

|x − y|2
t

)

for all x, y ∈ Rn and t > 0.
(iii) If {Tt }t>0 is a family of linear operators, then

Tt ∈ F(Lp − Lq) ⇐⇒ T ∗
t ∈ F(Lq ′ − Lp′

) .

(iv) If St ∈ F(Lp − Lr) and Tt ∈ F(Lr − Lq) for p ≤ r ≤ q , then Tt ◦ St ∈
F(Lp − Lq).

Full off-diagonal estimates appear when dealing with semigroups of second order elliptic
operators (see for example [20, 3]) or semigroups of Shrödinger operators with real potentials
[2]. The most studied case is when p = 1 and q = ∞ which means that the kernel of Tt has
pointwise Gaussian upper bounds (1).

Let L be a nonnegative self-adjoint operator. Assume that the semigroup e−tL satisfies

Lq0 − L2 full off-diagonal estimates for some q0 ∈ [1, 2). By (iii), e−tL ∈ F(L2 − Lq ′
0).
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Since e−tL = e− t
2 L ◦ e− t

2 L, by (iv) we have e−tL ∈ F(Lq0 − Lq ′
0). In this paper, we will

work with operators whose associated semigroup e−tL ∈ F(Lq0 − Lq ′
0) for some q0 ∈ [1, 2).

To prove Theorem 1.1, we need some auxiliary lemmas.

LEMMA 3.2. Let p ∈ (q0, 2) and F be a bounded Borel function with supp F ⊂
[0, R]. There exists a constant C > 0 such that

‖F(
√

L)f ‖L2(B) ≤ CRn(1/p−1/2)‖f ‖Lp(Sj (B))‖F‖L∞

for all balls B, j ≥ 3 and all f ∈ Lp(Sj (B)).

PROOF. Setting G(λ) = eλ2/R2
F(λ), then ‖G‖L∞ ≈ ‖F‖L∞ . Moreover, we have

F(
√

L)f = G(L)e
− 1

R2 L
f . Therefore,

‖F(
√

L)f ‖L2(B) = ‖G(L)e
− 1

R2 L
f ‖L2(B) ≤ ‖G(L)e

− 1
R2 L‖Lp(Sj (B))→L2(B)‖f ‖Lp(Sj (B))

≤ ‖G(L)‖L2(Rn)→L2(Rn) × ‖e− 1
R2 L‖Lp(Rn)→L2(Rn) × ‖f ‖Lp(Sj (B))

≤ CRn(1/p−1/2)‖G‖L∞‖f ‖Lp(Sj (B)) ≈ CRn(1/p−1/2)‖f ‖Lp(Sj (B))‖F‖L∞ .

�

LEMMA 3.3. For any p ∈ (q0, 2), there exist two constants C > 0 and c > 0 so that
for all closed sets E and F , all f with supp f ⊂ E and all z ∈ C+ = {z ∈ C : �z > 0},
there holds

‖e−zLf ‖L2(F ) ≤ C(|z| cos θ)
− n

2 ( 1
p
− 1

2 ) exp

(
− c

d2(E, F )

|z| cos θ

)
‖f ‖Lp(E)

where θ = arg z.

To prove Lemma 3.3, we need the following version of Phragmen-Lindelöf Theorem,
see for example [10, Lemma 9].

LEMMA 3.4. Suppose that function G is analytic in {z ∈ C : �z > 0} and that

|G(|z|eiθ )| ≤ a1(|z| cos θ)−β1 ,

|G(|z|)| ≤ a1|z|−β1 exp(−a2|z|−β2)

for some a1, a2 > 0, β1 ≥ 0, β2 ∈ (0, 1], all |z| > 0 and all θ ∈ (−π/2, π/2). Then

|G(|z|eiθ )| ≤ 2β1a1(|z| cos θ)−β1 exp

(
− a2β2

2
|z|−β2 cos θ

)

for all |z| > 0 and all θ ∈ (−π/2, π/2).
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PROOF OF LEMMA 3.3. Let g ∈ L2(Rn) so that ‖g‖L2 = 1 and supp f ⊂ F . We define
the holomorphic function Gf : C+ → C by setting

Gf (z) =
ˆ

e−zLf (x)g(x)dx .

For any z ∈ C+, we have

G(z) ≤ ‖e−zLf ‖L2(F ) = ‖e−i�zL ◦ e−�zLf ‖L2(F )

≤ C‖e−i�zL‖L2(Rn)→L2(Rn)‖e−�zL‖Lp(Rn)→L2(Rn)‖f ‖
Lp(E)

≤ C(|z| cos θ)
− n

2 ( 1
p
− 1

2 )‖f ‖
Lp(E)

.

In particular when θ = 0, we have

Gf (|z|) ≤ C(|z|)− n
2 ( 1

p − 1
2 ) exp

(
− c

d2(E, F )

|z|
)

‖f ‖
L2(E)

.

At this stage, applying Lemma 3.4 with a1 = C‖f ‖Lp(E), a2 = −cd2(E, F ), β1 = n
2 (1/p −

1/2) and β2 = 1, we obtain the desired estimate. �

LEMMA 3.5. Let p ∈ (q0, 2) and R > 0, s > 0. For any ε > 0, there exists a constant
C = C(ε, s) > 0 so that

(7) ‖F(
√

L)f ‖L2(B) ≤ C
Rn(1/p−1/2)

(2j rBR)s
‖δRF‖W∞

s+ε
‖f ‖Lp(Sj (B))

for all balls B, all j ≥ 3, all f ∈ Lp(Sj (B)) and all bounded Borel functions F supported in
[R/4, R].

PROOF. Using the Fourier inversion formula, we write

G(L/R2)e
− 1

R2 L = c

ˆ
R

e
− 1−iτ

R2 L
Ĝ(τ )dτ .

Hence,

F(
√

L)f = c

ˆ
R

Ĝ(τ )e
− 1−iτ

R2 L
f dτ

where G(λ) = [δRF ](√λ)eλ.
Applying Lemma 3.3, we have, for any f supported in Sj (B),
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‖F(
√

L)f ‖L2(B) ≤ c

ˆ
R

Ĝ(τ )‖e− 1−iτ

R2 L
f ‖L2(B)dτ

≤ cRn(1/p−1/2)

ˆ
R

Ĝ(τ ) exp

(
− c

(2j rBR)2

(1 + τ 2)

)
dτ × ‖f ‖Lp(Sj (B))

≤ cRn(1/p−1/2)‖f ‖Lp(Sj (B))

ˆ
R

Ĝ(τ )
(1 + τ 2)s/2

(2j rBR)s
dτ

≤ c
Rn(1/p−1/2)

(2j rBR)s
‖f ‖Lp(Sj (B))

( ˆ
R

|Ĝ(τ )|2(1 + τ 2)s+ε+1/2dτ

)1/2

×
( ˆ

R
(1 + τ 2)−ε−1/2dτ

)1/2

≤ c
Rn(1/p−1/2)

(2j rBR)s
‖G‖W 2

s+ε+1/2
‖f ‖Lp(Sj (B)) .

Note that since supp F ⊂[R
4 , R],we have‖G‖W 2

s+ε+1/2
≤C‖δRF‖W 2

s+ε+1/2
≤ C‖δRF‖W∞

s+ε+1/2
,

and so

(8) ‖F(
√

L)f ‖L2(B) ≤ c
Rn(1/p−1/2)

(2j rBR)s
‖δRF‖W∞

s+ε+1/2
‖f ‖Lp(Sj (B)) .

To get rid of 1/2 on the RHS of (8), we use the interpolation arguments as in [21, 14]. We
first note that (7) is equivalent to the following estimate

‖δ1/RH(
√

L)f ‖L2(B) × (2j rBR)s ≤ CRn(1/p−1/2)‖f ‖Lp(Sj (B))‖H‖W∞
s+ε

for all bounded Borel functions H with supp H ⊂ [1/4, 1].
Now we define the linear operator AR,f : L∞([1/4, 1]) → L2(B, dx) by setting

AR,f (H) = δ1/RH(
√

L)f .

By Lemma 3.2,

‖AR,f ‖L∞([1/4,1])→L2(B,dx) ≤ CRn(1/2−1/p)‖f ‖Lp(Sj (B)) .

Setting dμs,R = (R2j rB)sdx, then (8) tells us that

‖AR,f ‖W∞
s+1/2+ε([1/4,1])→L2(B,μs,R) ≤ CRn(1/p−1/2)‖f ‖Lp(Sj (B)) .

By interpolation, for each θ ∈ (0, 1) there exists a constant C such that

‖AR,f (H)‖L2(B,μsθ,R) ≤ CRn(1/p−1/2)‖f ‖Lp(Sj (B))‖H‖[L∞,W∞
s+1/2+ε

][θ ] .

Therefore, for all s > 0, ε′ > 0 and θ ∈ (0, 1),

‖AR,f (H)‖L2(B,μsθ,R) ≤ CRn(1/p−1/2)‖f ‖Lp(Sj (B))‖H‖W∞
sθ+ε′+θ/2

.
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By choosing s′ = s/θ and taking θ small enough we obtain

‖AR,f (H)‖L2(B,μs′θ,R) ≤ CRn(1/p−1/2)‖f ‖Lp(Sj (B))‖H‖W∞
s′+ε′′ .

This completes our proof. �

We are now in position to prove Theorem 1.1.
PROOF OF THEOREM 1.1. Take p0 ∈ (r0, 2). Let M ∈ N such that M > s/2. We will

show that (2) and (3) hold for T = F(
√

L) and ArB = I − (I − e−r2
BL)M . To verify (2), we

will show that for all balls B,

(9)

(  
B

∣∣∣∣F(L)(I − ArB )f (x)

∣∣∣∣
p0

dx

)1/p0

≤ C
∑
j

αj

(  
2j B

|f (x)|p0dx

)1/p0

for all f ∈ L∞
c (X), where αj = 2

−j (s− n
p0

)
.

Let us prove (9). Since supt>0 ‖φ(·)F (t·)‖W∞
s

≈ supt>0 ‖φ(·)F̃ (t ·)‖W∞
s

where F̃ (λ) =
F(

√
λ), instead of proving (9) for F(L), we will prove (9) for F(

√
L).

Let φ� denote the function φ(2−�·). Following the standard arguments, we write

F(λ) =
∞∑

�=−∞
φ(2−�λ)F (λ) =

∞∑
�=−∞

F�(λ) , ∀ λ > 0 .

For every � ∈ Z and r > 0, we set for λ > 0,

Fr,M(λ) = F(λ)(1 − e−(rλ)2
)M ,

F �
r,M(λ) = F�(λ)(1 − e−(rλ)2

)M .

Given a ball B ⊂ Rn, we write f =
∞∑

j=0
fj in which fj = f χSj (B). Hence,

F(
√

L)(1 − e−r2
BL)Mf = FrB,M(

√
L)f

=
2∑

j=0

FrB,M(
√

L)fj +
∞∑

j=3

∞∑
l=−∞

F l
rB,M(

√
L)fj .

Since e−tL ∈ F(Lq0 − Lq ′
0), we have that for any t > 0, ‖e−tLf ‖Lp ≤ C‖f ‖Lp for

all p ∈ (q0, q
′
0). This, in combination with Lp-boundedness of the operator F(

√
L) (see

Theorem 5.2, [15]), gives that for all balls B � x,

(  
B

∣∣FrB,M(
√

L)fj

∣∣p0dx

)1/p0

≤ |B|−1/p0
∥∥FrB,M(

√
L)fj

∥∥
Lp0 (X)
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≤ C|B|−1/p0
∥∥fj

∥∥
Lp0 (X)

(10)

≤ C

(  
2jB

|f |p0dx

)1/p0

for j = 0, 1, 2.

Fix j ≥ 3. Let p1 ≥ 2. Since p0 < 2, using Hölder’s inequality, we have

(11)
(  

B

∣∣F�
rB,M(

√
L)fj

∣∣p0dx

)1/p0

≤ |B|− 1
2
∥∥F�

rB,M(
√

L)fj

∥∥
L2(B)

.

Note that supp F�
rB,M ⊂ [2�−2, 2�]. So, using Lemma 3.5 we obtain, for s > s′ > n/p0,

∥∥F�
rB,M(

√
L)fj

∥∥
L2(B)

≤ 2�n(1/p0−1/2)(2�rB)−s ′
2−js ′‖δ2�F �

rB ,M‖W∞
s

‖fj‖Lp0 .

Let k be an integer so that k > s. Then we have

‖δ2�F �
rB,M‖W∞

s
≤ C‖φδ2�F‖W∞

s
‖(1 − e(2�rB ·)2

)M‖Ck[1/4,1]
≤ C sup

t>0
‖φδtF‖W∞

s
min{1, (2�rB)2M} .

Therefore,

∥∥F�
rB,M(

√
L)fj

∥∥
L2(B)

≤ C2−s ′j min{1, (2�rB)2M}(2�rB)−s ′
2
�n( 1

p0
− 1

2 )
sup
t>0

‖φδtF‖W∞
s

‖fj‖Lp0

for all � ∈ Z.
This together with (11) gives

(  
B

∣∣F�
rB,M(

√
L)fj

∣∣p0dx

)1/p0

≤ 2−j (s ′−n/p0)|B| 1
p0

− 1
2 min{1, (2�rB)2M}(2�rB)−s ′

2
�n( 1

p0
− 1

2 )

× sup
t>0

‖φδtF‖W∞
s

(  
2j B

|f |p0dx

)1/p0

≤ c2
−j (s ′− n

p0
)
min{1, (2�rB)2M}(2�rB)

−(s ′− n
p0

+ n
2 )

sup
t>0

‖φδtF‖W∞
s

(  
2j B

|f |p0dx

) 1
p0

.

This gives (9).

Since e−tL ∈ F(Lq0 − Lq ′
0), ArB ∈ F(Lq0 − Lq ′

0). This together with the fact that ArB

and F(
√

L) are commutative gives

(  
B

∣∣F(
√

L)ArBf
∣∣q ′

0dx

)1/q ′
0

≤ C
∑
j

αj

(  
2jB

|F(
√

L)f |p0

)1/p0

.(12)
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Therefore, Theorem 2.2 tells us that F(
√

L) and the commutator [b, F (
√

L)] are bounded on
Lp(w) for all p0 < p < q ′

0 and w ∈ Ap/p0 ∩ RH(q ′
0/p0)

′ . Since Ap/r0 = ∪p0>r0Ap/p0 and

RH(q ′
0/r0)

′ = ∪p0>r0RH(q ′
0/p0)

′ , letting p0 → r0 we obtain the desired results.

This competes our proof. �

4. Applications

In this section, we consider Schrödinger operators with real potential as in [2].
Let A be the Schrödinger operator with a negative potential on Rn, n ≥ 3 defined by

A := −Δ − V, V ≥ 0 .

We assume that the potential V is strongly subcritical, i.e, there exists some ε > 0 so

that for all u ∈ W 1,2(Rn)

(13)
ˆ

Rn

V u2 ≤ 1

1 + ε

ˆ
Rn

|∇u|2 .

Putting

p0 =
⎡
⎢⎣ 2n

(n − 2)
(

1 −
√

1 − 1
1+ε

)
⎤
⎥⎦

′

,

we then have e−tA ∈ F(Lp0 − Lp′
0), see [2, Theorem 2.1]. Hence, as a direct consequence of

Theorem 1.1, we have:

THEOREM 4.1. Let A = −Δ − V where V is a negative potential satisfying (13). Set
r0 = max(p0,

n
s
). If F : [0,∞) → C is a bounded Borel function satisfying the following

condition for some s > n/2

sup
t>0

‖ηδtF‖W∞
s

< ∞

then
(a) F(A) is bounded on Lp(w) for all r0 < p < p′

0 and w ∈ Ap/r0 ∩ RH(p′
0/r0)

′ ;

(b) moreover, for b ∈ BMO(Rn), the commutator [b, F (A)] is also bounded on Lp(w)

for all r0 < p < p′
0 and w ∈ Ap/r0 ∩ RH(p′

0/r0)
′ .

Hence by duality F(A) and the commutators [b, F (A)] are bounded on Lp(w) for p0 <

p ≤ r0 and w ∈ Ap/p0 ∩ RH(r ′
0/p)′ .
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