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Abstract. Let X be a complex n-dimensional Fano manifold. Let s(X) be the sum of l(R) − 1 for all the
extremal rays R of X, the edges of the cone NE(X) of curves of X, where l(R) denotes the minimum of (−KX · C)
for all rational curves C whose classes [C] belong to R. We show that s(X) ≤ n if n ≤ 4. And for n ≤ 4, we
completely classify the case the equality holds. This is a refinement of the Mukai conjecture on Fano fourfolds.

1. Introduction

LetX be an arbitrary n-dimensional Fano manifold with the Picard number ρX. In 1988,
Mukai [16] made the following conjecture.

CONJECTURE 1.1. One has

ρX(rX − 1) ≤ n ,

and the equality holds if and only if X � (PrX−1)ρX , where

rX := max{m ∈ Z>0 | −KX ∼ mL for some Cartier divisor L} .
There are several approaches and refinements of Conjecture 1.1. See for example [1, 4,

6, 17, 23]. Nowadays, the following conjecture due to Tsukioka [22] (cf. [21]) is the most
generalized version of Conjecture 1.1.

CONJECTURE 1.2. One has

ρX(lX − 1) ≤ n ,

and the equality holds if and only if X � (PlX−1)ρX , where lX denotes the minimum of the
length l(R) of all the extremal rays R of X, and

l(R) := min{(−KX · C) | C ⊂ X is a rational curve with [C] ∈ R} .
We think that it is more natural to consider all the extremal rays to study a Fano manifold

since each extremal ray has various geometric information. We set up the following question.
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QUESTION 1.3. Give a bound of

s(X) :=
∑

R⊂NE(X) extremal ray

(l(R) − 1)

for arbitrary n-dimensional Fano manifoldsX.

This question is a refinement of Conjectures 1.1 and 1.2 since the invariant s(X) satisfies
the inequality ρX(rX − 1) ≤ ρX(lX − 1) ≤ s(X). We note that the invariant s(X) is a natural

invariant. For example, let X := ∏m
i=1 Pdi with

∑m
i=1 di = n. Then s(X) = n holds despite

ρX(lX − 1) = m · min{di} is less than n unless d1 = · · · = dm.
In this paper, we identify the bound of s(X) when n ≤ 4.

THEOREM 1.4 (Main Theorem). Let X be an n-dimensional Fano manifold.
(i) If n ≤ 3, then s(X) ≤ n holds. Moreover, the equality holds if and only if

X �
∏

R⊂NE(X) extremal ray

Pl(R)−1 .

(ii) If n = 4, then s(X) ≤ n holds. Moreover, the equality holds if and only if

X �
∏

R⊂NE(X) extremal ray

Pl(R)−1

or

X � Blp,q(Q4) ,

the blowing up of Q4 along p and q , where Q4 ⊂ P5 is a smooth hyperquadric and

p, q are distinct points in Q4 with pq �⊂ Q4, where pq ⊂ P5 is the line through p
and q .

REMARK 1.5. If n ≥ 5, then there exists an n-dimensional Fano manifoldX such that
s(X) is strictly larger than n (see Remark 3.5 (iii)). However, such X is very special as far as
we know. We think that all such X should be classified.

As an immediate consequence of Theorem 1.4, we can give the affirmative answer to
Conjecture 1.2 in the case n ≤ 4. (Tsukioka [22] proved the inequality in the case n = 4 but
did not settle the assertion on the equality case.)

COROLLARY 1.6 (cf. [22]). Conjecture 1.2 is true if n ≤ 4.
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NOTATION AND TERMINOLOGY. We always work over the complex number field
C. For a proper variety X, let N1(X)Q (rep. N1(X)Q) be the vector space of one-cycles
(resp. Cartier divisors) on X, with rational coefficients, modulo numerical equivalence. Let

N1(X) := N1(X)Q ⊗Q R and N1(X) := N1(X)Q ⊗Q R. The Picard number of X, denoted
by ρX, is defined to be the dimension of the vector space N1(X).

For an n-dimensional normal projective variety X, we denote the normalization of the
parameterizing space of irreducible and reduced rational curves on X by RatCurvesn(X) (see
[13, Definition II.2.11]). For the theory of extremal contraction, we refer the readers to [12].
A projective surjective morphism f : X → Z is called a contraction morphism if Z is normal

projective and any fiber of f is connected. For an extremal ray R ⊂ NE(X), we say that
R defines the contraction morphism contR : X → Y if contR is a contraction morphism and
the kernel of the surjection N1(X) → N1(Y ) is equal to RR(= R + (−R)). The morphism
contR is called the associated contraction morphism. For example, if X is smooth and R is

KX-negative, then R defines the contraction morphism. For an extremal ray R ⊂ NE(X),
we say that R is of fiber type (resp. divisorial, small) if R defines the contraction morphism
contR : X → Y and the morphism is of fiber type (resp. divisorial, small). We define

Exc(R) := {x ∈ X| contR : X → Y is not isomorphism at x} .
For example, if R is of fiber type, then Exc(R) = X. We say that R is of type (a, b) if
dim(Exc(R)) = a and dim(contR(Exc(R))) = b, and we say that R is of type (n− 1, b)sm

if the associated contraction morphism is the blowing up morphism of a smooth projective
variety along a smooth subvariety of dimension b (in particular, X must be smooth). For an

extremal ray R ⊂ NE(X) and a Cartier divisor E on X, the notation (E · R) > 0 (resp.
(E ·R) < 0, (E ·R) = 0) means that the property (E ·C) > 0 (resp. (E ·C) < 0, (E ·C) = 0)
holds for a curve C ⊂ X with [C] ∈ R.

For an algebraic variety X and a closed subscheme Y ⊂ X, the morphism BlY (X) → X

denotes the blowing up of X along Y . The symbol Qn denotes a smooth hyperquadric in

Pn+1. We say that X is a Fano manifold if X is a smooth projective variety such that the
anticanonical divisor −KX is ample.

2. Preliminaries

2.1. A family of rational curves. We observe the definition and a property of a fam-
ily of rational curves for a fixed normal projective variety.

DEFINITION 2.1 (see for example [1]). Let X be a normal projective variety. We de-
fine a family of rational curves to be an irreducible component H ⊂ RatCurvesn(X). For
any x ∈ X, let Hx be the subvariety of H parameterizing rational curves passing through
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x, and H̃x the normalization of the image of Hx in the Chow variety Chow(X). We define
Locus(H) (resp. Locus(Hx)) to be the union of rational curves parameterized by H (resp.
Hx). For a family H of rational curves on X, the familyH is said to be dominating if the clo-

sure Locus(H) is equal to X, unsplit if H is projective, and locally unsplit if Hx is projective
for general x ∈ Locus(H).

The following proposition may be familiar.

PROPOSITION 2.2 ([17, Proposition 2.5(b)]). Let X be a smooth projective variety,
H be a family of rational curves on X, and x ∈ Locus(H) be a point such that Hx is projec-
tive. Then one has

dim Locus(H)+ dim Locus(Hx) ≥ dimX + (−KX · FamH)− 1 ,

where FamH is the numerical class of the curves in X parametrized by H .

2.2. Properties of extremal contractions. We show some properties of extremal
contractions associate to extremal rays that we need to prove Theorem 1.4.

PROPOSITION 2.3. LetX be an n-dimensional smooth projective variety. Assume that

there exist distinct KX-negative extremal rays R1, R2 ⊂ NE(X) such that R1 is of type (n −
1, 0), l(R2) ≥ 2 and Exc(R1) ∩ Exc(R2) �= ∅. Then R2 is of fiber type and ρX = 2.

PROOF. Let Ei := Exc(Ri) for i = 1, 2 and fix x ∈ E1 ∩E2. Let C ⊂ X be a rational
curve such that

(1) x ∈ C and [C] ∈ R2,
(2) (−KX · C) is minimal among satisfying (1)

Let H be a family of rational curves containing [C] ∈ RatCurvesn(X). Then Hx is projective
by construction. If there exists an irreducible curve l ⊂ E1 ∩Locus(Hx) then [l] ∈ R1 ∩R2 =
{0}, which leads to a contradiction. Hence dim(E1∩Locus(Hx)) = 0. Thus dim Locus(Hx) ≤
1 since dimE1 = n− 1. Therefore,

1 ≥ dim Locus(Hx) ≥ (n− dim Locus(H))+ (−KX · FamH)− 1

≥ l(R2)− 1 ≥ 1

by Proposition 2.2. Thus dim Locus(H) = n and l(R2) = (−KX · FamH) = 2. In particular,
H is dominating and unsplit. Hence R2 is of fiber type. Let ϕ2 : X → Y2 be the contraction
morphism associated to R2. Since the restriction ϕ2|E1 : E1 → Y2 is a finite morphism,
dimY2 = n − 1. We note that all curves in E1 are numerically proportional. Thus ρY2 = 1.
This implies that ρX = 2. �

PROPOSITION 2.4. Let X be an n-dimensional normal projective variety which satis-
fies that Pic(X)⊗ Q = N1(X)Q.

(1) Assume that ρX ≥ 3. Pick any extremal ray R ⊂ NE(X) which defines the con-
traction morphism ϕ : X → Y . Then the ray R is neither of type (n, 0) nor of type
(n, 1).
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(2) Set m ≥ 2. Let Ri ⊂ NE(X) be an extremal ray which defines the contraction
morphism ϕi : X → Yi , Ci ⊂ X be an irreducible curve with [Ci ] ∈ Ri , and
Ei := Exc(Ri) for any 1 ≤ i ≤ m. We assume that Ei ∩ Ej = ∅ for any
1 ≤ i < j ≤ m. Then we can construct the morphism ϕ : X → Y contracting
all of E1, . . . , Em. (Glue ϕ1, . . . , ϕm together. We note that Y is a normal proper
variety but not necessary projective.) Then there is an exact sequence

0 −−−−→ ∑m
i=1 Q[Ci] −−−−→ N1(X)Q

ϕ∗−−−−→ N1(Y )Q −−−−→ 0 .

Furthermore, if X is Q-factorial and Ri is divisorial for any 1 ≤ i ≤ m, then Y is
also Q-factorial and hence ρY ≥ 1.

PROOF. (1) is obvious. We prove (2). For 1 ≤ i ≤ m, let ψi : X → Zi be the
morphism contracting E1, . . . , Ei obtained by gluing ϕ1, . . . , ϕi together (for construction,
see [10, Exercise 2.12]). We note that Zi is a normal proper variety, Y = Zm and ϕ = ψm.
Set Z0 := X and ψ0 := idX (the identity morphism). For 1 ≤ i ≤ m, let πi : Zi−1 → Zi

be the morphism contracting (the image of) Ei such that πi ◦ ψi−1 = ψi . We remark that
ϕ1 = ψ1 = π1. Note that Pic(Zi) ⊗ Q = N1(Zi)Q by Remark 2.5. It is enough to show the
exactness of

0 −−−−→ N1(Zi)Q
πi

∗
−−−−→ N1(Zi−1)Q

(•·Ci)−−−−→ Q

for any 1 ≤ i ≤ m to prove the exactness of the sequence in (2). We can assume that
2 ≤ i ≤ m since the case i = 1 follows from the definition of the contraction morphism. The
injectivity of πi∗ : N1(Zi)Q → N1(Zi−1)Q is obvious. Let τi : Yi → Zi be the morphism
contracting E1, . . . , Ei−1 which satisfies that the diagram commutes:

X
ψi−1−−−−→ Zi−1

ϕi

⏐⏐�
⏐⏐�πi

Yi −−−−→
τi

Zi .

Let Vi := Zi \ (τi ◦ ϕi(E1 � . . . � Ei−1)) and Ui := Zi \ (τi ◦ ϕi(Ei)). Pick any invertible
sheaf M ∈ Pic(Zi−1) satisfying (M · Ci) = 0. Then 0 = (M · Ci) = (ψi−1

∗M · Ci). There
exists an invertible sheaf L1 ∈ Pic(Yi) and a positive integer t such that ϕi∗L1 � ψi−1

∗M⊗t
by the property of the ray Ri and the fact Pic(X)⊗ Q = N1(X)Q. Thus

M⊗t � ψi−1∗ψi−1
∗M⊗t � ψi−1∗ϕi∗L1 � πi

∗τi∗L1 .

Indeed, ϕi and πi are isomorphisms over Ui , and ψi−1 and τi are isomorphisms over Vi ,
respectively. We note that τi∗L1 is an invertible sheaf since τi∗L1|Ui � M⊗t |πi−1(Ui)

and

τi∗L1|Vi � L1|τi−1(Vi)
. Therefore we have M⊗t ∈ πi∗(Pic(Zi)). For the remaining part, see

[12, Corollary 3.18] for example. �
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REMARK 2.5. For a surjective morphism ϕ : X → Y between normal proper varieties

with connected fibers, if Pic(X) ⊗ Q = N1(X)Q then Pic(Y ) ⊗ Q = N1(Y )Q. Indeed, for a
numerically trivial invertible sheaf L ∈ Pic(Y ), since ϕ∗L is numerically trivial, there exists
a positive integer t such that ϕ∗L⊗t � OX. Thus L⊗t � OY .

COROLLARY 2.6. Let X be an n-dimensional normal Q-factorial projective variety

such that Pic(X) ⊗ Q = N1(X)Q. Assume that there exist distinct divisorial extremal rays

R1, . . . , Rm ⊂ NE(X) which define the contraction morphisms ϕi : X → Yi for all 1 ≤ i ≤ m

and Exc(Ri) ∩ Exc(Rj ) = ∅ for any 1 ≤ i < j ≤ m.
(1) If m ≥ 3, then ρX ≥ 4.
(2) If X is smooth and Ri is of type (n− 1, bi)sm (for some bi ∈ Z≥0) for any 1 ≤ i ≤

m, then ρX ≥ m+ 1.

PROOF. Let ϕ : X → Y be the morphism which is the gluing morphism of ϕ1, . . . , ϕm

contracting Exc(R1), . . . ,Exc(Rm) as in Proposition 2.4 (2). Let Ci ⊂ X be an irreducible
and reduced curve with [Ci] ∈ Ri for 1 ≤ i ≤ m.

(1) We can assume that the classes [C1], [C2], [C3] are linearly independent in N1(X).
By Proposition 2.4 (2), Y is Q-factorial and 1 ≤ ρY ≤ ρX − 3.

(2) In this case, Y is a smooth proper variety and ρX = m+ ρY ≥ m+ 1. �

We recall Wiśniewski’s theorem on the bounds of the length of extremal rays.

THEOREM 2.7 ([24, Theorem 1.1]). Let X be a smooth projective variety, R ∈
NE(X) be a KX-negative extremal ray and contR : X → Y be the associated contraction
morphism. Then for every irreducible componentE ⊂ Exc(R), we have

l(R) ≤ dimX + 1 − 2codimXE − dim(contR(E)) .

2.3. Characterizations of the products of projective spaces. We give several crite-
ria so that a given smooth projective variety is isomorphic to the products of projective spaces.

THEOREM 2.8 ([11, Theorem 2.16]). Let X be a normal projective variety and H be
a dominating and locally unsplit family of rational curves on X. For general x ∈ X, consider
the rational map

τx : H̃x ��� P(TX|∨x )
defined by

[l] �→ P(Tl |∨x ) .
Then the rational map τx is a finite morphism.

DEFINITION 2.9 (Variety of Minimal Rational Tangents). Under the assumption in
Theorem 2.8, the finite morphism τx is called the tangent morphism; its image Cx :=
τx(H̃x) ⊂ P(TX|∨x ) is called the variety of minimal rational tangents, or shortly VMRT, of
H at x.
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Araujo [3] showed a criterion for varieties being isomorphic to the products of projective
spaces in terms of VMRT.

THEOREM 2.10 ([3, Theorem 1.3]). Let X be an n-dimensional smooth projective
variety with k distinct dominating and unsplit family of rational curves H1, . . . , Hk on X.
Suppose that, for a general x ∈ X, the associated VMRT of Hi at x are linear subspaces of

dimension di − 1 in P(TX|∨x ) such that
∑k
i=1 di = n. Then X � ∏k

i=1 Pdi .

We give another criterion for varieties being isomorphic to the products of projective
spaces in terms of length of extremal rays.

THEOREM 2.11. Let X be an n-dimensional smooth projective variety with n =
∑k
i=1 di , where d1, . . . , dk ∈ Z>0. Assume that there exist distinct KX-negative extremal

rays R1, . . . , Rk ⊂ NE(X) such that Ri are of fiber type and l(Ri) ≥ di + 1 for all 1 ≤ i ≤ k.

Then X � ∏k
i=1 Pdi .

PROOF. Let ϕi : X → Yi be the contraction morphism associated to Ri and ei :=
dimX − dimYi for 1 ≤ i ≤ k. We have

∑k
i=1 ei ≤ n and ei ≥ l(Ri) − 1 for any i by [24,

Theorem 2.2] and Theorem 2.7. Hence we obtain the inequality

n ≥
k∑

i=1

ei ≥
k∑

i=1

(l(Ri)− 1) ≥
k∑

i=1

di = n .

Therefore ei = l(Ri) − 1 = di for any i. Let Fi be a general fiber of ϕi . Then Fi is a
di-dimensional Fano manifold such that any rational curve li in Fi satisfies that (−KFi · li) ≥
di + 1. Hence Fi � Pdi by [9]. Let Hi be the family of rational curves on X containing

points parameterizing lines in Fi � Pdi . Then Hi is a dominating and unsplit family since
(−KX · FamHi) = di + 1 = l(Ri). We consider Cix ⊂ P(TX|∨x ) for x ∈ Fi , which is a VMRT

of Hi at x. We have Cix = P(TFi |∨x ) ⊂ P(TX|∨x ); a linear subspace of dimension di − 1. By

Theorem 2.10, X � ∏k
i=1 Pdi . �

We also give a criterion for varieties being isomorphic to the product of two projective
spaces in terms of extremal rays.

PROPOSITION 2.12. LetX be an n-dimensional smooth projective variety. If there ex-

ist distinct KX-negative extremal rays R1, R2 ⊂ NE(X) such that the intersection Exc(R1) ∩
Exc(R2) is not empty. Then we have

(l(R1)− 1)+ (l(R2)− 1) ≤ n ,

and the equality holds if and only if X � Pl(R1)−1 × Pl(R2)−1.

PROOF. We fix an arbitrary point x ∈ Exc(R1)∩Exc(R2). For i = 1, 2, let ϕi : X → Yi

be the contraction morphism associated to Ri and set yi := ϕi(x) ∈ Yi . Let Ci ⊂ X be a
rational curve which satisfies that
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(1) x ∈ Ci and [Ci] ∈ Ri ,
(2) (−KX · Ci) is minimal among satisfying (1).

Let Hi be a family of rational curves on X containing [Ci ] ∈ RatCurvesn(X). Then (Hi)x is
projective by construction. Hence we have

dimϕ−1
i (yi)≥ dim Locus((Hi)x)

≥ (n− dim Locus(Hi))+ (−KX · FamHi)− 1

≥ (−KX · FamHi)− 1 ≥ l(Ri)− 1

by Proposition 2.2. We note that the intersection ϕ−1
1 (y1) ∩ ϕ−1

2 (y2) does not contain curves

since the rays R1 and R2 are distinct. Hence dim(ϕ−1
1 (y1) ∩ ϕ−1

2 (y2)) = 0. Thus n ≥
dimϕ−1

1 (y1)+dimϕ−1
2 (y2). Hence n ≥ (l(R1)−1)+(l(R2)−1). If n = (l(R1)−1)+(l(R2)−

1), then Hi is dominating and unsplit for each i = 1, 2 since (−KX · FamHi) = l(Ri) and

dim Locus(Hi) = n. Therefore one has X � Pl(R1)−1 × Pl(R2)−1 by [18, Theorem 1.1]. �

COROLLARY 2.13. Let X be an n-dimensional Fano manifold with ρX = 2. Then
NE(X) is spanned by two extremal rays, say R1 and R2. If, at least, one of R1 and R2 is not
small, then we have

(l(R1)− 1)+ (l(R2)− 1) ≤ n ,

and the equality holds if and only if X � Pl(R1)−1 × Pl(R2)−1.

PROOF. For i = 1, 2, let ϕi : X → Yi be the contraction morphism associated to Ri
and Ei := Exc(Ri). It is enough to show that E1 ∩ E2 �= ∅ by Proposition 2.12. We can
assume that R1 is divisorial. Then we have (E1 ·R1) < 0. Thus (E1 ·R2) > 0 holds since E1

is a prime divisor and since R1 and R2 span the cone NE(X). Hence E1 ∩ E2 �= ∅. �

3. Fano manifolds having special extremal rays

In this section, we see several classification results of Fano manifolds having special
extremal rays and calculate s(X) for such Fano manifoldsX.

THEOREM 3.1 ([8, Proposition 3.1, Theorem 1.1]). Let X be an n-dimensional Fano
manifold and R ⊂ NE(X) be an extremal ray.

(1) If n ≥ 3 and R is of type (n− 1, 0), then ρX ≤ 3.
(2) If n ≥ 4 and R is of type (n− 1, 1), then ρX ≤ 5.

THEOREM 3.2 ([2, Theorem 5.1]). Let X be an n-dimensional smooth projective va-

riety and R ⊂ NE(X) be a KX-negative extremal ray of type (n − 1,m) which satisfies that
l(R) = n − 1 − m and all nontrivial fibers of the associated contraction morphism of R are
of equi-dimensional. Then R is of type (n− 1,m)sm.
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PROPOSITION 3.3 ([20, Proposition 5] (and [2, Theorem 5.1])). Let X be an n-
dimensional Fano manifold with n ≥ 4. Assume that there exist distinct extremal rays
R1, R2 ⊂ NE(X) such that Ri is of type (n − 1, 1) and l(Ri) = n − 2 for each i = 1,
2. Then Exc(R1) ∩ Exc(R2) = ∅.

THEOREM 3.4 ([5, Theorem 1.1]). Let Y be an n-dimensional smooth projective va-
riety with n ≥ 3 and a ∈ Y be a (closed) point. Then X := Bla(Y ) is a Fano manifold if and
only if one of the following holds:

(i) Y � Pn and a ∈ Y is an arbitrary point.
(ii) Y � Qn and a ∈ Y is an arbitrary point.

(iii) Y � Vd with 1 ≤ d ≤ n and a /∈ H ′ (the strict transform of H) with Vd :=
BlZ(Pn), where H ⊂ Pn is a hyperplane and Z ⊂ H is a smooth subvariety of
dimension n− 2 and degree d .

REMARK 3.5. We have the following properties by easy calculations.
(i) If X = Bla(Y ) is in Theorem 3.4 (i), then

NE(X)= R≥0[f ] + R≥0[g],
(−KX · f )= 2,

(−KX · g)= n− 1

hold, where f is the strict transform of a line on Y = Pn passing through a and g

is a line in the exceptional divisor (� Pn−1) of X → Y . Thus s(X) = n− 1.
(ii) If X = Bla(Y ) is in Theorem 3.4 (ii), then

NE(X)= R≥0[f ] + R≥0[g],
(−KX · f )= 1,

(−KX · g)= n− 1

hold, where f is the strict transform of a line on Y = Qn passing through a and g

is a line in the exceptional divisor (� Pn−1) of X → Y . Thus s(X) = n− 2.
(iii) If X = Bla(Y ) is in Theorem 3.4 (iii), then

NE(X)= R≥0[f ] + R≥0[g] + R≥0[l] + R≥0[m] ,
l ≡m+ g + (1 − d)f in N1(X) ,

(−KX · f )= 1, (−KX · g) = 1 ,

(−KX · l)= n+ 1 − d, (−KX ·m) = 1

hold, where f ⊂ X is a fiber over Z, g ⊂ X is a line in a fiber over a, l ⊂ X is a
line in H ′, and m ⊂ X is a strict transform of a line passing through a and a point
in Z. Thus if d = 1 then s(X) = n− 2, but if d > 1 then s(X) = 2n− 2 − d . We
note that if d = 2, then X is isomorphic to Blp,q(Qn) with pq �⊂ Qn(⊂ Pn+1)

(see [5, Corollaire 1.2]) and s(X) = 2n− 4.
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THEOREM 3.6 ([7, 19, 22]). Let Y be an n-dimensional smooth projective variety
with n ≥ 4, C ⊂ Y be a smooth curve, X := BlC(Y ), and E be the exceptional divisor
of the morphism X → Y . We assume that X is a Fano manifold.

(1) If ρX = 5, then one of the following holds:

(i) Y � Bl{p}∪{q}∪Pn−2(Pn) with Pn−2 ∩ pq = ∅ and C is the strict transform

of pq .

(ii) Y � Bl{p}∪{q}∪Qn−2(Pn) with Qn−2 ∩ pq = ∅ and C is the strict transform

of pq .

(2) Assume that there exists an extremal ray R ⊂ NE(X) of fiber type with l(R) ≥ 2
and (E · R) > 0.

• If R is of type (n, n− 2), then ρX = 2.
• If R is of type (n, n− 1), then the pair of (Y,C) is one of the following:

(i) Y � Qn and C is a line in Qn ⊂ Pn+1.

(ii) Y � P1 × Pn−1 and C is a fiber of the second projection.

(iii) Y � BlPn−2(Pn) and C is the strict transform of a line in Pn disjoint from

Pn−2.

(iv) Y � BlPn−2(Pn) and C is a fiber of the blowing up.

(v) Y � PP1(OP1 ⊕ OP1(1)⊕n−1) and C is the section of Pn−1-bundle over P1

whose normal bundle NC/Y is isomorphic to OP1(−1)⊕n−1.

(3) Assume that there exists an extremal ray R ⊂ NE(X) of fiber type with (E ·R) =
0. Let ϕ : X → Z be the contraction morphism associated to R. Then R is

of type (n, n − 1), C � P1, E � P1 × Pn−2, E = ϕ∗D and Z is factorial,
where D := ϕ(E) with the reduced structure. Furthermore, if n = 4, then there
exists an extremal ray RZ ⊂ NE(Z) with the associated contraction morphism
ϕZ : Z → W such that ϕZ mapsD to a point.

PROOF. (1) and (2) follow from [19, Theorem 1] and [22, Propositions 3, 4]. We prove
(3). The ray R is of type (n, n − 1), E = ϕ∗D and Z is factorial by the fact dimD ≥ n − 2

and by [7, Lemmas 3.9 (i), 3.10 (i)]. Moreover, C � P1 since a one-dimensional fiber of
ϕ in E maps X → Y onto C. We know that E � P1 × Pn−2 since E � PC(N∨

C/Y ) and

dimE > dimD, where NC/Y is the normal bundle of C in Y . The cone NE(Z) is closed
since NE(X) is so. Assume that n = 4. Then the existence of the ray RZ ⊂ NE(Z) follows
from [7, Theorem 4.1 (ii)]. �

REMARK 3.7. We have the following properties by easy calculations.
(1) (i) If X = BlC(Y ) is in Theorem 3.6 (1) (i), then

NE(X)= R≥0[e] + R≥0[f ] + R≥0[g] + R≥0[h]
+R≥0[k] + R≥0[l] + R≥0[m] ,
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(−KX · e)= n− 2, (−KX · f ) = 1, (−KX · g) = 1 ,

(−KX · h)= 1, (−KX · k) = 1, (−KX · l) = 1, (−KX ·m) = 1 ,

and NE(X) is exactly spanned by the above seven rays, where

• e is a nontrivial fiber of the morphism X → Y ,

• f is the strict transform of a line in the exceptional divisor over p,

• g is the strict transform of a line in the exceptional divisor over q ,

• h is a fiber over Pn−2,

• k is a fiber of E � C × Pn−2 → Pn−2, where E is the exceptional divisor of
X → Y ,

• l is the strict transform of a line in Pn passing through p and Pn−2,

• m is the strict transform of a line in Pn passing through q and Pn−2.

Thus s(X) = n− 3.

(ii) If X = BlC(Y ) is in Theorem 3.6 (1) (ii), then

NE(X)= R≥0[e] + R≥0[f ] + R≥0[g] + R≥0[h]
+R≥0[j ] + R≥0[k] + R≥0[l] + R≥0[m] ,

(−KX · e)= n− 2, (−KX · f ) = 1, (−KX · g) = 1, (−KX · h) = 1 ,

(−KX · j)= 1, (−KX · k) = 1, (−KX · l) = 1, (−KX ·m) = 1 ,

and NE(X) is exactly spanned by the above eight rays, where

• e is a nontrivial fiber of the morphism X → Y ,

• f is the strict transform of a line in the exceptional divisor over p,

• g is the strict transform of a line in the exceptional divisor over q ,

• h is a fiber over Qn−2,

• j is the strict transform of a line in Pn intersects pq with each other and is
contained in a unique hyperplane in Pn which contains Qn−2,

• k is a fiber of E � C × Pn−2 → Pn−2, where E is the exceptional divisor of
X → Y ,

• l is the strict transform of a line in Pn passing through p and Qn−2,

• m is the strict transform of a line in Pn passing through q and Qn−2.

Thus s(X) = n− 3.

(2) (i) If X = BlC(Y ) is in Theorem 3.6 (2) (i), then ρX = 2. Thus s(X) < n by
Corollary 2.13.
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(ii) If X = BlC(Y ) is in Theorem 3.6 (2) (ii), then

NE(X)= R≥0[f ] + R≥0[g] + R≥0[h],
(−KX · f )= n− 2, (−KX · g) = 2, (−KX · h) = 2

hold, where f is a nontrivial fiber ofX → Y , g is the strict transform of a general

fiber of the first projection Y = P1 × Pn−1 → Pn−1 and h is the strict transform
of a line in the second projection Y = P1 ×Pn−1 → P1 passing throughC. Thus
s(X) = n− 1.

(iii) If X = BlC(Y ) is in Theorem 3.6 (2) (iii), then

NE(X)= R≥0[f ] + R≥0[g] + R≥0[h],
(−KX · f )= n− 2, (−KX · g) = 1, (−KX · h) = 2

hold, where f is a nontrivial fiber of X → Y , g is a fiber over Pn−2 and h is the
strict transform of a line in Pn passing through C and Pn−2. Thus s(X) = n− 2.

(iv) If X = BlC(Y ) is in Theorem 3.6 (2) (iv), then

NE(X)= R≥0[f ] + R≥0[g] + R≥0[h],
(−KX · f )= n− 2, (−KX · g) = 1, (−KX · h) = 2

hold, where f is a nontrivial fiber of X → Y , g is a general fiber over Pn−2 and

h is the strict transform of a line in Pn passing through Pn−2 and the image of C
in Pn. Thus s(X) = n− 2.

(v) If X = BlC(Y ) is in Theorem 3.6 (2) (v), then

NE(X)= R≥0[f ] + R≥0[g] + R≥0[h],
(−KX · f )= n− 2, (−KX · g) = 1, (−KX · h) = 2

hold, where f is a nontrivial fiber of X → Y , g is a fiber of E � C × Pn−2 →
Pn−2, where E is the exceptional divisor of X → Y , and h is the strict transform

of a line in a fiber of Y → P1 passing through C. Thus s(X) = n− 2.

4. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. If an n-dimensional Fano manifold X satisfies
that s(X) ≥ n and ρX = 1, then s(X) = n and X � Pn by [9]. Hence we can consider only
the Fano manifoldsX with ρX ≥ 2.

4.1. Proof of Theorem 1.4 (i). We can assume that n = 3 since the case n ≤ 2
is trivial. We prove the assertion without using the result [14] of complete classification of
3-dimensional Fano manifoldsX with ρX ≥ 2. LetX be a 3-dimensional Fano manifold with
s(X) ≥ 3. We can assume that ρX ≥ 3 by Corollary 2.13. By Theorem 2.7, Proposition
2.4 (1) and Theorem 3.2, any extremal ray R ⊂ NE(X) with l(R) ≥ 2 satisfies one of the
following:
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(A) R is of type (2, 0)sm and l(R) = 2.
(B) R is of type (3, 2) and l(R) = 2.

(We note that this result directly follows from [15, Theorems 3.3, 3.5].) If there exists an
extremal ray R ⊂ NE(X) of type (A), then X � Bla(Vd) with 1 ≤ d ≤ 3 by Theorem
3.4, thus s(X) < 3 by Remark 3.5 (iii). If there exist distinct extremal rays R1, R2 and

R3 ⊂ NE(X) such that all of them are of type (B), then X � P1 × P1 × P1 by Theorem 2.11.
Therefore we have completed the proof of Theorem 1.4 (i).

4.2. Proof of Theorem 1.4 (ii). Let X be a 4-dimensional Fano manifold with
s(X) ≥ 4. We can assume that ρX ≥ 3 by Corollary 2.13. (We note that if ρX = 2 and
both extremal rays are small, then s(X) = 0.) By Theorem 2.7, Proposition 2.4 (1) and
Theorem 3.2, any extremal ray R ⊂ NE(X) with l(R) ≥ 2 satisfies one of the following:

(A) R is of type (3, 0)sm and l(R) = 3.
(B) R is of type (3, 0) and l(R) = 2.
(C) R is of type (3, 1)sm and l(R) = 2.
(D) R is of type (4, 3) and l(R) = 2.
(E) R is of type (4, 2) and l(R) = 3.
(F) R is of type (4, 2) and l(R) = 2.

We note that all two distinct divisorial extremal rays R1, R2 with l(R1), l(R2) ≥ 2 satisfy that
Exc(R1) ∩ Exc(R2) = ∅ by Propositions 2.3 and 3.3.

Assume that there exists an extremal ray R of type (A). ThenX � Bla(V2) � Blp,q(Q4)

and s(X) = 4 by Theorem 3.4 and Remark 3.5 (iii). Assume that there exists an extremal ray
R of type (B) and there is no extremal ray of type (A). Then ρX = 3 and any other extremal
ray R′ with l(R′) ≥ 2 is of type (B) or (C) by Proposition 2.3 and Theorem 3.1 (1). Since
s(X) ≥ 4, there exist distinct extremal rays R1, R2, R3 apart from R such that each of them
is of type (B) or (C). This contradicts to Corollary 2.6 (1). Hence we can assume that any
extremal ray R with l(R) ≥ 2 is of type (C), (D), (E), or (F).

Assume that there exists an extremal ray R1 of type (C). We have ρX ≤ 4 by Theorems
3.1 (2), 3.6 (1) and Remark 3.7 (1). By Corollary 2.6 (1), the number of extremal rays of
type (C) is at most three. Since s(X) ≥ 4, there exists an extremal ray R0 of fiber type and
l(R0) ≥ 2. Then (Exc(R1) · R0) = 0 and R0 is of type (D) by Theorem 3.6 (2), (3) and
Remark 3.7 (2). Moreover, any extremal ray R′ of fiber type apart from R0 satisfies that
(Exc(R1) · R′) > 0. Indeed, by Theorem 3.6 (3), if (Exc(R1) · R′) = 0 then R′ contains the
class of a fiber of the morphism Exc(R1) � P1 × P2 → P2. This implies that R′ = R0,
which leads to a contradiction. Thus l(R′) = 1 by Theorem 3.6 (2) and Remark 3.7 (2).
Since s(X) ≥ 4, there exist distinct extremal rays R2, R3 apart from R1 such that R2, R3

are of type (C). We note that ρX = 4 by Corollary 2.6. Let ϕ : X → Y be the contraction
morphism associated to R0 and setDi := ϕ(Exc(Ri)) for 1 ≤ i ≤ 3. Since Exc(Ri) = ϕ∗Di ,
Di ∩ Dj = ∅ for 1 ≤ i < j ≤ 3. By Theorem 3.6 (3), for any 1 ≤ i ≤ 3, there exists

a contraction morphism ψi : Y → Zi associated to an extremal ray RiZ ⊂ NE(Y ) such that

ψi(Di) is a point. Since ρY = 3, each ray RiZ is divisorial by Proposition 2.4 (1). However,
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this contradicts to Corollary 2.6 (1).
Therefore, we can assume that any extremal ray R with l(R) ≥ 2 is of fiber type. Since

s(X) ≥ 4, there exist distinct extremal rays R1, . . . , Rm of fiber type such that
∑m
i=1(l(Ri)−

1) ≥ 4. By Theorem 2.11,
∑m
i=1(l(Ri)− 1) = 4 and X � ∏m

i=1 Pl(Ri)−1.
As a consequence, we have completed the proof of Theorem 1.4 (ii).
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