Токуо J. Матн. Vol. 37, No. 1, 2014

On the Symmetric and Rees Algebras of Certain Determinantal Ideals

Kosuke FUKUMURO

Chiba University

(Communicated by K. Ahara)

Abstract. The purpose of this paper is to give elementary proofs to the theorems due to Avramov on certain determinantal ideals of linear type.

1. Introduction

Let *R* be a Noetherian ring and let *m*, *n* be integers such that $1 \le m \le n$. We denote by M(m, n; R) the set of $m \times n$ matrices with entries in *R*. Let $M = (x_{ij}) \in M(m, n; R)$ and *S* a polynomial ring over *R* with variables T_1, T_2, \ldots, T_n . We regard *S* as a graded ring by setting deg $T_j = 1$ for all $j = 1, \ldots, n$. For each $i = 1, \ldots, m$, we set

$$f_i = x_{i1}T_1 + x_{i2}T_2 + \dots + x_{in}T_n$$

and let $I_k(M)$ be the ideal of *R* generated by the *k*-minors of *M* for k = 1, ..., m. The purpose of this paper is to give elementary proofs to the following theorems due to Avramov [1].

THEOREM 1.1. (c.f. Proposition 1 in [1]). The following conditions are equivalent: (1) grade $I_k(M) \ge m - k + 1$ for k = 1, ..., m.

(2) grade $(f_1, f_2, ..., f_m)S = m$.

THEOREM 1.2. (c.f. Proposition 4 and 9 in [1]). Suppose n = m + 1. We set $I = I_m(M)$. Let S(I) and R(I) be the symmetric algebra and the Rees algebra of I, respectively. Then the following conditions are equivalent:

- (1) grade $I_k(M) \ge m k + 2$ for k = 1, ..., m.
- (2) (i) The natural map $S(I) \to R(I)$ is isomorphic, (ii) $S(I) \cong S/(f_1, f_2, ..., f_m)S$ as graded *R*-algebras and (iii) grade $(f_1, f_2, ..., f_m)S = m$.

The Rees algebra of *I* is the subalgebra of the polynomial ring R[t] generated by *It* over R. If the conditions (i) and (ii) of Theorem 1.2 are satisfied, there exists a surjection $S \rightarrow R(I)$

Mathematics Subject Classification: 13A30, 13C40

Key words and phrases: symmetric algebra, Rees algebra, free resolution

Received June 5, 2013; revised November 20, 2013

KOSUKE FUKUMURO

of graded *R*-algebras whose kernel coincides with $(f_1, f_2, \ldots, f_m)S$. Moreover, if the condition (iii) of Theorem Theorem 1.2 is satisfied, the Koszul complex of f_1, f_2, \ldots, f_m is an acyclic complex of graded free *S*-modules by [2, 1.6.17]. Therefore, under the condition (2) of 1.2, we get a graded *S*-free resolution of R(I), and taking its homogeneous part of degree $r \in \mathbb{Z}$, we get an *R*-free resolution of I^r , from which we can deduce some homological properties of powers of *I*. In the subsequent paper [3], using the *R*-free resolution of I^r constructed in this way, we study the associated prime ideals of R/I^m and compute the saturation of I^m . So, the author thinks that Theorem 1.2 is very convenient and it may have more application. Although we may lose sight of some important meaning of the original proof, however, the existence of an elementary proof is quite helpful for users.

2. Preliminaries

In this section we summarize preliminary results. Although these facts might be wellknown, we give the proofs for completeness.

LEMMA 2.1. Ass $S = \{ \mathfrak{p}S \mid \mathfrak{p} \in Ass R \}$.

PROOF. It is enough to show in the case where n = 1. We put $T = T_1$.

Let us take any $\mathfrak{p} \in Ass R$. Then there exists $x \in R$ such that $\mathfrak{p} = 0 :_R x$. It is easy to see $\mathfrak{p}S = 0 :_S x$. On the other hand, $S/\mathfrak{p}S \cong (R/\mathfrak{p})[T]$, which is an integral domain. Hence $\mathfrak{p}S \in Ass S$.

Conversely, we take any $Q \in Ass S$. Then Q is homogeneous, and so Q = 0: $_S yT^n$ for some $y \in R$ and $0 \le n \in \mathbb{Z}$. We put $q = Q \cap R$. Then $q \in Spec R$ and q = 0: $_R y$, which means $q \in Ass R$. Moreover, we have qS = 0: $_S yT^n = Q$. Thus the proof is complete.

LEMMA 2.2. f_1 is a non-zerodivisor on S if and only if grade $(x_{11}, x_{12}, \ldots, x_{1n})R > 0$.

PROOF. Suppose grade $(x_{11}, x_{12}, ..., x_{1n})R = 0$. Then there exists $\mathfrak{p} \in Ass R$ such that $(x_{11}, x_{12}, ..., x_{1n})R \subseteq \mathfrak{p}$. In this case, we have $f_1 \in \mathfrak{p}S \in Ass S$ by Lemma 2.1, and so f_1 is a zerodivisor on S.

Conversely, suppose that f_1 is a zerodivisor on S. Then there exists $Q \in Ass S$ such that $f_1 \in Q$, and $Q = \mathfrak{q}S$ for some $\mathfrak{q} \in Ass R$. In this case, we have $x_{1j} \in \mathfrak{q}$ for all j, which means grade $(x_{11}, x_{12}, \ldots, x_{1n})R = 0$. Thus the proof is complete.

LEMMA 2.3. Let $N = (y_{ij}) \in M(m, n; R)$ be the matrix induced from M by some elementary operation. For each i = 1, ..., m, we set

$$g_i = y_{i1}T_1 + y_{i2}T_2 + \dots + y_{in}T_n$$
.

Then there exists an isomorphism $\varphi : S \xrightarrow{\sim} S$ of *R*-algebras such that $\varphi((f_1, f_2, \dots, f_m)S) = (g_1, g_2, \dots, g_m)S$. In particular, we have grade $(f_1, f_2, \dots, f_m)S = \text{grade}(g_1, g_2, \dots, g_m)S$.

PROOF. The elementary operation is one of the followings:

- (i) Fixing a unit $c \in R$ and $1 \le i \le m$, replace x_{ij} with cx_{ij} for all j.
- (ii) Fixing an element $c \in R$ and $1 \le i, k \le m$ $(i \ne k)$, replace x_{ij} with $x_{ij} + cx_{kj}$ for all *j*.
- (iii) Fixing $1 \le i < k \le m$, exchange x_{ij} with x_{kj} for all j.
- (iv) Fixing a unit $c \in R$ and $1 \le j \le n$, replace x_{ij} with cx_{ij} for all *i*.
- (v) Fixing an element $c \in R$ and $1 \le j, \ell \le n$ $(j \ne \ell)$, replace x_{ij} with $x_{ij} + cx_{i\ell}$ for all i.
- (vi) Fixing $1 \le j < \ell \le n$, exchange x_{ij} with $x_{i\ell}$ for all *i*.

In each case stated above the following relations between f'_i 's and g'_i 's hold:

- (i) $g_i = cf_i$ and $g_p = f_p$ for any $p \neq i$.
- (ii) $g_i = f_i + cf_k$ and $g_p = f_p$ for any $p \neq i, k$.
- (iii) $g_i = f_k$, $g_k = f_i$ and $g_p = f_p$ for any $p \neq i, k$.
- (iv) $g_i = f_i(T_1, ..., T_{j-1}, cT_j, T_{j+1}, ..., T_n)$ for any *i*.
- (v) $g_i = f_i(T_1, \ldots, T_{j-1}, T_j + cT_\ell, T_{j+1}, \ldots, T_n)$ for any *i*. (vi) $g_i = f_i(T_1, \ldots, \overset{j}{T_\ell}, \ldots, \overset{\ell}{T_j}, \ldots, T_n)$, for any *i*.

In the cases of (i), (ii) and (iii), we set $\varphi = id_S$. In the other cases we define φ by

- (iv) $\varphi(T_i) = cT_i$ and $\varphi(T_q) = T_q$ for any $q \neq j$,
- (v) $\varphi(T_i) = T_i + cT_\ell$ and $\varphi(T_q) = T_q$ for any $q \neq j$,
- (vi) $\varphi(T_j) = T_\ell, \varphi(T_\ell) = T_j$ and $\varphi(T_q) = T_q$ for any $q \neq j, \ell$.

Then, φ becomes an isomorphism and the required equality holds.

LEMMA 2.4. Let $m \ge 2$ and $\mathfrak{p} \in \operatorname{Spec} R$. We assume $I_1(M) \notin \mathfrak{p}$. Then there exists a matrix $N = (y_{ij}) \in M(m-1, n-1; R_p)$ satisfying the following conditions:

- (a) $I_k(N) = I_{k+1}(M)R_{\mathfrak{p}}$ for k = 1, ..., m 1.
- (b) Let $g_i = y_{i1}T_1 + y_{i2}T_2 + \dots + y_{i,n-1}T_{n-1}$ for $i = 1, \dots, m-1$. Then, there exists an isomorphism $\varphi : S_{\mathfrak{p}} \xrightarrow{\sim} S_{\mathfrak{p}}$ of $R_{\mathfrak{p}}$ -algebras such that $\varphi((f_1, f_2, \dots, f_m)S_{\mathfrak{p}}) =$ $(g_1, g_2, \ldots, g_{m-1}, T_n)S_{\mathfrak{p}}$. In particular, we have

grade
$$(g_1, g_2, \ldots, g_{m-1})S'$$
 = grade $(f_1, f_2, \ldots, f_m)S_p - 1$,

where $S' = R_{\mathfrak{p}}[T_1, T_2, \dots, T_{n-1}].$

PROOF. As one of the entries of M is a unit of $R_{\mathfrak{p}}$, applying elementary operations to *M* in M(*m*, *n*; R_{p}), we get a matrix of the form

$$\begin{pmatrix} & 0\\ N & \vdots\\ & 0\\ \hline 0 & \cdots & 0 & 1 \end{pmatrix},$$

where $N = (y_{ij}) \in M(m - 1, n - 1; R_p)$. It is easy to see that the condition (a) is satisfied. Furthermore, by Lemma 2.3 we see that the condition (b) is satisfied. We get the equality on

KOSUKE FUKUMURO

the grades since $S_{\mathfrak{p}} = S'[T_n]$. Thus the proof is complete.

Let K_{\bullet} be the graded Koszul complex with respect to f_1, f_2, \ldots, f_m . By ∂_{\bullet} we denote its boundary map. Let e_1, e_2, \ldots, e_m be an S-free basis of K_1 consisting of homogeneous elements of degree 1 such that $\partial_1(e_i) = f_i$ for $i = 1, \ldots, m$. Then, for $r = 1, \ldots, m$,

 $\{e_{i_1} \wedge \cdots \wedge e_{i_r} | 1 \leq i_1 < \cdots < i_r \leq m\}$

is an S-free basis of K_r consisting of homogeneous elements of degree r, and we have

$$\partial_r(e_{i_1}\wedge\cdots\wedge e_{i_r})=\sum_{p=1}^r(-1)^{p-1}f_{i_p}\cdot e_{i_1}\wedge\cdots\wedge \widehat{e_{i_p}}\wedge\cdots\wedge e_{i_r}$$

Let $\ell \in \mathbb{Z}$. Taking the homogeneous part of degree ℓ of K_{\bullet} , we get a complex

$$[K_{\bullet}]_{\ell}: 0 \longrightarrow [K_m]_{\ell} \xrightarrow{[\partial_m]_{\ell}} [K_{m-1}]_{\ell} \longrightarrow \cdots \longrightarrow [K_1]_{\ell} \xrightarrow{[\partial_1]_{\ell}} [K_0]_{\ell} \longrightarrow 0$$

of finitely generated free *R*-modules, where $[\partial_r]_{\ell}$ denotes the restriction of ∂_r to $[K_r]_{\ell}$ for any *r*. It is obvious that $[K_r]_{\ell} = 0$ if $\ell < r$. On the other hand, if $\ell \ge r$, then

$$\{T_1^{\alpha_1}T_2^{\alpha_2}\cdots T_n^{\alpha_n}e_{i_1}\wedge\cdots\wedge e_{i_r} \mid 0 \le \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{Z},$$
$$\sum_{k=1}^n \alpha_k = \ell - r, 1 \le i_1 < i_2 < \dots < i_r \le m\}$$

is an *R*-free basis of $[K_r]_{\ell}$.

LEMMA 2.5. $\operatorname{rank}_{R}[K_{m}]_{m} = 1$, $\operatorname{rank}_{R}[K_{m-1}]_{m} = mn$ and $\operatorname{I}_{1}([\partial_{m}]_{m}) = \operatorname{I}_{1}(M)$.

PROOF. We get rank_{*R*}[K_m]_{*m*} = 1 as [K_m]_{*m*} is generated by $e_1 \wedge e_2 \wedge \cdots \wedge e_m$. Moreover, we get rank_{*R*}[K_{m-1}]_{*m*} = mn as { $T_j \check{e}_i | 1 \le i \le m, 1 \le j \le n$ } is an *R*-free basis of [K_{m-1}]_{*m*}, where $\check{e}_i = e_1 \wedge \cdots \wedge \hat{e}_i \wedge \cdots \wedge e_m$ for all *i*. The last assertion holds since

$$\partial_m (e_1 \wedge e_2 \wedge \dots \wedge e_m) = \sum_{i=1}^m (-1)^{i-1} f_i \check{e}_i$$

= $\sum_{i=1}^m (-1)^{i-1} (\sum_{j=1}^n x_{ij} T_j) \check{e}_i$
= $\sum_{i=1}^m \sum_{j=1}^n (-1)^{i-1} x_{ij} T_j \check{e}_i$.

LEMMA 2.6. $\operatorname{rank}_{R}[K_{1}]_{1} = m$, $\operatorname{rank}_{R}[K_{0}]_{1} = n$ and $\operatorname{I}_{m}([\partial_{1}]_{1}) = \operatorname{I}_{m}(M)$.

PROOF. We get rank_R[K_1]₁ = m as $e_1, e_2, ..., e_m$ is an R-free basis of [K_1]₁. Moreover, we get rank_R[K_0]₁ = n as $T_1, T_2, ..., T_n$ is an R-free basis of [K_0]₁. The last assertion

260

holds since

$$\partial_1(e_i) = f_i = x_{i1}T_1 + x_{i2}T_2 + \dots + x_{in}T_n$$

for all i = 1, ..., m.

3. Proofs of Theorem 1.1 and Theorem 1.2

Let us prove Theorem 1.1.

PROOF OF THEOREM 1.1. We prove by induction on *m*. If m = 1, then the assertion holds by Lemma 2.2. So, we may assume $m \ge 2$.

(1) \Rightarrow (2) (The proof of this implication is same as that of [1, Proposition 1]). Put $t = \text{grade}(f_1, f_2, \ldots, f_m)S$ and suppose t < m. Take a maximal S-regular sequence g_1, g_2, \ldots, g_t contained in $(f_1, f_2, \ldots, f_m)S$. Then, as any element in $(f_1, f_2, \ldots, f_m)S$ is a zerodivisor on $S/(g_1, g_2, \ldots, g_t)S$, there exists $P \in \text{Ass}_S S/(g_1, g_2, \ldots, g_t)S$ such that $(f_1, f_2, \ldots, f_m)S \subseteq P$. When this is the case, we have depth $S_P = \text{grade} P = t < m$. Here we put $\mathfrak{p} = P \cap R$. Then grade $\mathfrak{p} \leq \text{grade} P < m$, and so $I_1(M) \notin \mathfrak{p}$ as grade $I_1(M) \geq m$. Hence, there exists a matrix $N = (y_{ij}) \in M(m - 1, n - 1; R_{\mathfrak{p}})$ satisfying the conditions (a) and (b) of Lemma 2.4. By (a), we have

grade
$$I_k(N) \ge$$
 grade $I_{k+1}(M) \ge m - (k+1) + 1 = (m-1) - k + 1$

for k = 1, ..., m - 1. As is defined in (b), we put $S' = R_{p}[T_{1}, T_{2}, ..., T_{n-1}]$ and

$$g_i = y_{i1}T_1 + y_{i2}T_2 + \dots + y_{i,n-1}T_{n-1}$$

for i = 1, ..., m-1. The hypothesis of induction implies grade $(g_1, g_2, ..., g_{m-1})S' = m-1$. Hence we get grade $(f_1, f_2, ..., f_m)S_p = m$ by (b) of Lemma 2.4, and so

grade
$$(f_1, f_2, ..., f_m) S_P \ge m$$
,

which contradicts to depth $S_P < m$. Thus we see t = m.

$$(2) \Rightarrow (1) \text{ By}[2, 1.6.17], K_{\bullet} = K_{\bullet}(f_1, \dots, f_m) \text{ is acyclic, and so}$$
$$0 \longrightarrow [K_m]_m \xrightarrow{[\partial_m]_m} [K_{m-1}]_m \longrightarrow \dots \longrightarrow [K_1]_m \xrightarrow{[\partial_1]_m} [K_0]_m \longrightarrow 0$$

is acyclic, too. Then, as $[K_m]_m \cong R$ and $I_1([\partial_m]_m) = I_1(M)$ by Lemma 2.5, we get grade $I_1(M) \ge m$ by [2, 1.4.13]. Suppose that $\ell := \text{grade } I_k(M) \le m - k$ for some k with $2 \le k \le m$. We take a maximal R-regular sequence c_1, c_2, \ldots, c_ℓ contained in $I_k(M)$. Then, as any element in $I_k(M)$ is a zerodivisor on $R/(c_1, c_2, \ldots, c_\ell)R$, we have $I_k(M) \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \text{Ass}_R R/(c_1, c_2, \ldots, c_\ell)R$. When this is the case, we have depth $R_\mathfrak{p} = \text{grade } \mathfrak{p} = \ell \le m - k$, which means $I_1(M) \nsubseteq \mathfrak{p}$. Then, we get a matrix $N = (y_{ij}) \in M(m - 1, n - 1; R_\mathfrak{p})$ satisfying the conditions (a) and (b) of Lemma 2.4.

As is defined in (b), we put $S' = R_{\mathfrak{p}}[T_1, T_2, \dots, T_{n-1}]$ and

$$g_i = y_{i1}T_1 + y_{i2}T_2 + \dots + y_{i,n-1}T_{n-1}$$

for each i = 1, ..., m-1. By (b) of Lemma 2.4, we have grade $(g_1, g_2, ..., g_{m-1})S' = m-1$. Then, the hypothesis of induction implies

grade
$$I_{k-1}(N) \ge (m-1) - (k-1) + 1 = m - k + 1$$
,

which contradicts to depth $R_{\mathfrak{p}} \leq m - k$ as $I_{k-1}(N) = I_k(M)R_{\mathfrak{p}} \subseteq \mathfrak{p}R_{\mathfrak{p}}$. Thus we get

grade $I_k(M) \ge m - k + 1$

for all k = 1, ..., m and the proof is complete.

Next, we prove Theorem 1.2.

PROOF OF THEOREM 1.2. (1) \Rightarrow (2) By the hypothesis we have grade $I \ge 2$ as $I = I_m(M)$, and so

$$0 \longrightarrow R^m \xrightarrow{{}^{t}M} R^{m+1} \xrightarrow{\phi} I \longrightarrow 0$$

is a free resolution of *I* by [2, 1.4.17]. We can regard *S* as the symmetric algebra of \mathbb{R}^{m+1} , where $T_1, T_2, \ldots, T_{m+1}$ corresponds to the standard free basis of \mathbb{R}^{m+1} . Then the homomorphism ϕ induces a surjection $S(\phi) : S \to S(I)$. It is well known that the kernel of $S(\phi)$ is generated by linear forms, so we get

$$\operatorname{Ker} \mathbf{S}(\phi) = (f_1, f_2, \dots, f_m) S$$

from the short exact sequence stated above. Hence the condition (ii) is satisfied. Moreover, we see the condition (iii) is satisfied by $(1) \Rightarrow (2)$ of Theorem 1.1. So, we have to show the assertion (i). Let *L* be the kernel of the natural map $S(I) \rightarrow R(I)$, and consider the exact sequence

$$0 \longrightarrow L \longrightarrow S(I) \longrightarrow R(I) \longrightarrow 0$$

of S-modules. Let us prove L = 0 by induction on m.

First, we consider the case where m = 1. Suppose $L \neq 0$. Then there exists $P \in Ass_S L$. Because $L \subseteq S(I) \cong S/f_1 S$ by (ii), we have $P \in Ass_S S/f_1 S$, and so grade P = 1 by (iii). We put $\mathfrak{p} = P \cap R$. Then grade $\mathfrak{p} \leq 1$. Because $I = I_1(M)$ and grade $I_1(M) \geq 2$, we have $I \not\subseteq \mathfrak{p}$. This means $I_\mathfrak{p} = R_\mathfrak{p}$, and so the natural map $S(I_\mathfrak{p}) \to R(I_\mathfrak{p})$ is an isomorphism. Then, looking at the commutative diagram

$$0 \longrightarrow L_{\mathfrak{p}} \longrightarrow S(I)_{\mathfrak{p}} \longrightarrow R(I)_{\mathfrak{p}} \longrightarrow 0 \text{ (ex)}$$
$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$
$$S(I_{\mathfrak{p}}) \xrightarrow{\sim} R(I_{\mathfrak{p}}),$$

we get $L_p = 0$, and so $L_P = 0$, which contradicts to $P \in Ass_R L$. Therefore we see L = 0.

262

Next, we consider the case where $m \ge 2$. Suppose $L \ne 0$. Then there exists $P \in Ass_S L$. Because $L \subseteq S(I) \cong S/(f_1, \ldots, f_m)S$ by (ii), we have $P \in Ass_S S/(f_1, \ldots, f_m)S$, and so grade P = m by (iii). We put $\mathfrak{p} = P \cap R$. Then grade $\mathfrak{p} \le m$, and so $I_1(M) \not\subseteq \mathfrak{p}$ as grade $I_1(M) \ge m + 1$. Hence, there exists a matrix $N = (y_{ij}) \in M(m - 1, m; R_{\mathfrak{p}})$ satisfying the conditions of Lemma 2.4. When this is the case, for all $k = 1, \ldots, m - 1$, we have

grade
$$I_k(N)$$
 = grade $I_{k+1}(M)R_p$
 $\ge m - (k+1) + 2$
 $= (m-1) - k + 2$.

We notice that $I_{m-1}(N) = I_m(M)R_p = I_p$, and so the hypothesis of induction implies that the natural map $S(I_p) \rightarrow R(I_p)$ is isomorphic. Now we look at the commutative diagram above again, and get $L_p = 0$. Hence $L_P = 0$, which contradicts to $P \in Ass_S L$.

(2) \Rightarrow (1) By (i) and (ii), there exists a surjection $\pi : S \rightarrow \mathbb{R}(I)$ of graded *R*-algebras such that Ker $\pi = (f_1, f_2, \dots, f_m)S$. On the other hand, $K_{\bullet} = K_{\bullet}(f_1, f_2, \dots, f_m)$ is acyclic. Then,

$$0 \longrightarrow K_m \xrightarrow{\partial_m} K_{m-1} \longrightarrow \cdots \longrightarrow K_1 \xrightarrow{\partial_1} K_0 \xrightarrow{\pi'} R[t]$$
(a)

is also acyclic, where π' is the composition of π and $R(I) \hookrightarrow R[t]$. Now we take the homogeneous part of (\natural) of degree *m*. Then we get an acyclic complex

$$0 \longrightarrow [K_m]_m \xrightarrow{[\partial_m]_m} [K_{m-1}]_m \longrightarrow \cdots \longrightarrow [K_1]_m \xrightarrow{[\partial_1]_m} [K_0]_m \xrightarrow{\varepsilon_m} R$$

of finitely generated free *R*-modules, where ε_m is the composition of

$$[\pi']_m: S_m = [K_0]_m \to I^m t^m \text{ and } I^m t^m \ni at^m \mapsto a \in R.$$

As a consequence, it follows that grade $I_1(M) \ge m + 1$ by 2.5 and [2, 1.4.13]. On the other hand, by taking the homogeneous part of (\natural) of degree 1, we get an acyclic complex

$$0 \longrightarrow [K_1]_1 \xrightarrow{[\partial_1]_1} [K_0]_1 \longrightarrow R$$

of finitely generated free *R*-modules, and so it follows that grade $I_m(M) \ge 2$ by 2.6.

In the rest, by induction on m, we prove grade $I_k(M) \ge m - k + 2$ for all k = 1, ..., m. This is certainly true if m = 1 or 2 by our observation stated above. So we may assume $m \ge 3$. Suppose that we have $\ell := \text{grade } I_k(M) \le m - k + 1$ for some k with 1 < k < m. We take a maximal R-regular sequence $c_1, c_2, ..., c_\ell$ contained in $I_k(M)$. Then, there exists $\mathfrak{p} \in \operatorname{Ass}_R R/(c_1, c_2, ..., c_\ell)R$ such that $I_k(M) \subseteq \mathfrak{p}$. When this is the case, we have grade $\mathfrak{p} = \text{depth } R_{\mathfrak{p}} = \ell \le m - k + 1$. Hence $I_1(M) \nsubseteq \mathfrak{p}$ as grade $I_1(M) \ge m + 1 > m - k + 1$. Then, we get a matrix $N = (y_{ij}) \in M(m - 1, m; R_{\mathfrak{p}})$ satisfying the conditions of Lemma 2.4. Let us notice that $I_{m-1}(N) = I_m(M)R_{\mathfrak{p}} = I_{\mathfrak{p}}$. As $S(I)_{\mathfrak{p}} \xrightarrow{\sim} R(I)_{\mathfrak{p}}$ by (i), we have

$$S(I_p) \xrightarrow{\sim} R(I_p)$$
. We set $S' = R_p[T_1, T_2, \dots, T_m]$ and

 $g_i = y_{i1}T_1 + y_{i2}T_2 + \cdots + y_{im}T_m$

for each i = 1, ..., m - 1. Then, there exists an isomorphism $\varphi : S_{\mathfrak{p}} \xrightarrow{\sim} S_{\mathfrak{p}}$ of $R_{\mathfrak{p}}$ -algebras such that $\varphi((f_1, f_2, ..., f_m)S_{\mathfrak{p}}) = (g_1, g_2, ..., g_{m-1}, T_m)S_{\mathfrak{p}}$, and we have

$$S(I_{\mathfrak{p}}) \cong S(I)_{\mathfrak{p}}$$

$$\cong S_{\mathfrak{p}}/(f_1, f_2, \dots, f_m)S_{\mathfrak{p}} \text{ (by (ii))}$$

$$\cong S_{\mathfrak{p}}/(g_1, g_2, \dots, g_{m-1}, T_m)S_{\mathfrak{p}} \text{ (isomorphism induced from } \varphi)$$

$$\cong S'/(g_1, \dots, g_{m-1})S'.$$

Moreover, we get grade $(g_2, \ldots, g_m)S' = m - 1$. Therefore the hypothesis of induction implies that

grade
$$I_{k-1}(N) \ge (m-1) - (k-1) + 2 = m - k + 2$$
,

which contradicts to depth $R_{\mathfrak{p}} \leq m - k + 1$ as $I_{k-1}(N) = I_k(M)R_{\mathfrak{p}} \subseteq \mathfrak{p}R_{\mathfrak{p}}$. Thus we see grade $I_k(M) \geq m - k + 2$ for all k = 1, ..., m and the proof is complete.

References

- [1] L. AVRAMOV, Complete intersections and symmetric algebras, J. Algebra. 73 (1981), 248-263.
- [2] W. BRUNS and J. HERZOG, Cohen-Macaulay rings (revised edition), Cambridge Stud. Adv. Math. 39. Cambridge University Press, 1997.
- [3] K. FUKUMURO, T. INAGAWA and K. NISHIDA, Saturations of powers of certain determinantal ideals, Preprint, 2013.

Present Address: GRADUATE SCHOOL OF SCIENCE, CHIBA UNIVERSITY, 1–33 YAYOI-CHO, INAGE-KU, CHIBA-SHI, 263–8522 JAPAN. *e-mail*: fukumuro@chiba-u.jp

264