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Abstract. For topological spaces X and Y , the multiplicity m(X : Y) of X over Y is defined by M. Gromov

and K. Taniyama independently. We show that the multiplicity m(G : R1) of a finite graph G over the real line R1

is equal to the cutwidth of G. We give a lower bound of m(G : R1) and determine m(G : R1) for an n-constructed
graph G.

1. Introduction

First, we introduce the multiplicity m(X : Y ) of a topological space X over a topological
space Y . Then, we explain the main purpose of this paper. We denote the cardinality of a set
A by #A.

DEFINITION 1.1. Let X and Y be sets and let f : X → Y be a map. For each point

y ∈ Y , we define the multiplicity of f at y, to be #f −1(y). When #f −1(y) is not finite, we
denote #f −1(y) = ∞. The multiplicity m(f ) of f : X → Y is defined by

m(f ) = sup
{
#f −1(y)

∣∣ y ∈ Y
}
.

DEFINITION 1.2 (Taniyama [8]). Let X and Y be topological spaces. The multiplicity
m(X : Y ) of X over Y is defined by

m(X : Y ) = inf
{
m(f )

∣∣ f : X → Y is a continuous map.
}
.

For topological spaces X1, X2, Y1 and Y2, if X1 is homeomorphic to X2 and Y1 is homeomor-
phic to Y2, then m(X1 : Y1) = m(X2 : Y2).

We note that the identical concept cardinality of X over Y was defined by M. Gromov
[5].

In this paper we consider a graph as a topological space in the usual way.

PROBLEM A. Given two graphs X and Y , determine m(X : Y ).
We restrict our attention to the case where X is a finite graph and Y is an infinite graph

homeomorphic to the real line R1. The vertex set of a finite graph G is denoted by V (G)
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FIGURE 2.1. Examples of critical points

and the edge set of G is denoted by E(G). In this paper we denote m(G : R1) by m(G) for
simplicity. We consider the following problem.

PROBLEM A′. Given a finite graph G, determine m(G).

REMARK 1.3.

(1) For any finite graph G, m(G) < ∞.
(2) For any subspace H of a finite graph G, m(H) ≤ m(G).
(3) For any subdivision H of a finite graph G, m(H) = m(G).

By Remark 1.3 (3) we may suppose without loss of generality that all graphs in this paper
are finite and loopless. In section 2, we show that if G is not edgeless, then m(G) coincides
with the cutwidth c(G) of G which is defined combinatorially in Graph theory. Then the result
in [2] that the cyclic cutwidth ccw(T ) of a finite tree T coincides with the cutwidth c(T ) of
T follows immediately by using the argument of covering space, see Note 2.3. In section 3,
we give a lower bound of m(G) for a certain graph G.

2. Cutwidth and multiplicity over R1

In this section, we introduce a special class of continuous maps that is easier to deal with
than general continuous maps and then we prove that for a graph G with E(G) �= ∅, m(G) is
equal to the cutwidth c(G) of G, a number combinatorially defined in Graph theory. This fact
seems obvious but the proof requires careful consideration.

DEFINITION 2.1. Let G be a graph. A continuous map f : G → R1 is canonical if

(a) the restriction f |V (G) : V (G) → R1 is injective and

(b) for every edge e ∈ E(G), the restriction f |e : e → R1 is injective.

Given a graph G and a continuous map f : G → R1 and a point x in G, x is a critical
point of G for f if there is a neighborhood U ⊂ G of x such that f (U) is not a neighborhood
of f (x) (see Figure 2.1). We denote the set of critical points of G for f which are not in V (G)

by Cp(f ). If x is a critical point of G for f and x is in V (G), we call x a critical vertex of G

for f . The following fact is a main proposition in this section.

PROPOSITION 2.2. Let G be a graph and let f : G → R1 be a continuous map. Then,
there is a canonical map g : G → R1 such that m(g) ≤ m(f ).
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FIGURE 2.2. Step 1

PROOF. Let G be a graph and let f : G → R1 be a continuous map. It is sufficient

to consider the case where G is connected, and for any point y ∈ R1, #f −1(y) < ∞. Let
V = V (G) and E = E(V ).

STEP 1. We define a new continuous map f1 : G → R1 such that
(1) the restriction f1|V = f |V ,
(2) for every edge uv ∈ E with f (u) �= f (v),

the restriction f1|uv is injective,
(3) for every edge uv ∈ E with f (u) = f (v),

both restrictions f1|ux and f1|xv are injective and f1(x) = f (x)

where x ∈ G − V is a point in the edge uv such that f (x) �∈ Im(f |V )

(see Figure 2.2), and
(4) f1|Cp(f1) is injective.

By the construction above we have that m(f1) ≤ m(f ).
For a vertex v ∈ V , let Ev be the set of edges that are incident to v.
We note here that a local perturbation may increase the multiplicity (see Figure 2.3).
Therefore we need the following Step 2-1 and Step 2-2.

STEP 2-1. Suppose that there is a critical vertex z ∈ V for f1 which satisfies the
following condition:
(*) there exists a vertex z′ such that z′ �= z and f1(z

′) = f1(z),
then we define a new continuous map f1

′ : G → R1 such that
(1) for every edge e ∈ E − Ez, f1

′|e = f1|e,
for every vertex v ∈ V − z, f1

′|v = f1|v ,
(2) Case A: Im(f |Ez) ⊂ ( − ∞, f1(z)

]
,

f ′
1(z) = f1(z) − ε, where ε > 0 is a (sufficiently small) real number

such that Im
(
f1|Cp(f1)∪V

) ∩ [
f1

′(z), f1(z)
) = ∅,
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FIGURE 2.3. A local perturbation may increase the multiplicity.

Case B: Im(f |Ez) ⊂ [
f1(z),+∞)

,

f ′
1(z) = f1(z) + ε, where ε > 0 is a (sufficiently small) real number

such that Im
(
f1|Cp(f1)∪V

) ∩ (
f1(z), f1

′(z)
] = ∅, and

(3) for every edge e ∈ Ez, f1
′|e is injective.

In Case A, we know the following facts by the construction above (see Figure 2.4).
• If y is a point in

( − ∞, f1
′(z)

) ∪ (
f1(z),+∞)

,

#f1
′−1

(y) = #f1
−1(y) ≤ m(f1).

• If y is a point in
(
f1

′(z), f1(z)
)
,

#f1
′−1

(y) = #f1
−1(y) − #Ez < #f1

−1(y) ≤ m(f1).
• If y is a point equal to f1(z),

#f1
′−1

(y) = #f1
−1(y) − 1 < #f1

−1(y) ≤ m(f1).
• If y is a point equal to f1

′(z),
#f1

′−1
(y) = #f1

−1(y) − #Ez + 1 ≤ #f1
−1(y) ≤ m(f1).

Then we have that m(f ′
1) ≤ m(f1). In Case B we have the same inequality in the same

way. We continue Step 2-1 until critical vertices satisfying the condition (*) disappear. A
continuous map which we finally have is denoted by f2, m(f2) ≤ m(f1). For a non-critical
vertex w ∈ V for f2, we denote the set

{
e ∈Ew

∣∣Im(f2|e) ⊂ ( − ∞, f2(w)]} by E−
w and the

set
{
e ∈ Ew

∣∣Im(f2|e) ⊂ [
f2(w),+∞)}

by E+
w .

STEP 2-2. Suppose that there is a non-critical vertex w ∈ V of f2 which satisfies the
following condition:
(**) there exists a vertex w′ such that w �= w′ and f2(w) = f2(w

′),
then we define a new continuous map f2

′ : G → R1 such that
(1) for every edge e ∈ E − Ew, f2

′|e = f2|e,
for every vertex v ∈ V − w, f2

′|v = f2|v ,
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FIGURE 2.4. A local perturbation of Step 2-1

(2) Case A: #E+
w ≤ #E−

w ,
f2

′(w) = f2(w) − ε, where ε > 0 is a (sufficiently small) real number
such that Im(f2|Cp(f2)∪V ) ∩ [

f ′
2(w), f2(w)

) = ∅,

Case B: #E+
w > #E−

w ,
f2

′(w) = f2(w) + ε, where ε > 0 is a (sufficiently small) real number
such that Im(f2|Cp(f2)∪V ) ∩ (

f2(w), f ′
2(w)

] = ∅, and

(3) for every edge e ∈ Ew, f2
′|e is injective.

In Case A, we know the following facts by the construction above (see Figure 2.5).
• If y is a point in

( − ∞, f2
′(w)

) ∪ (
f2(w),+∞)

,

#f2
′−1

(y) = #f2
−1(y) ≤ m(f2).

• If y is a point in
(
f2

′(w), f2(w)
)
,

#f2
′−1

(y) = #f2
−1(y) − #E−

w + #E+
w ≤ #f2

−1(y) ≤ m(f2).
• If y is a point equal to f2

′(w),

#f2
′−1

(y) = #f2
−1(y) − #E−

w + 1 ≤ #f2
−1(y) ≤ m(f2).

• If y is a point equal to f2(w),

#f2
′−1

(y) = #f2
−1(y) − 1 + #E+

w .

The right side of the last equation may be larger than #f2
−1(y). Consider the last case and

let y be the point equal to f2(w). Let A ⊂ R1 be an open neighborhood of f2(w) with

A ∩ Im
(
f2

′|Cp(f2
′)∪V

) = {
f2(w)

}
. Note that f2

′−1(A) contains no critical vertices of G for

f2
′ by Step 2-1. Therefore for any point a ∈ A we have that #f2

′−1
(y) ≤ #f2

′−1
(a). For a

point a′ ∈ R1 in
(
f2

′(w), f2(w)
) ∩ A, #f2

′−1
(a′) ≤ #f2

−1(a′) ≤ m(f2). Thus we have that

#f2
′−1

(y) ≤ #f2
′−1

(a′) ≤ m(f2). Then we have that m(f ′
2) ≤ m(f2). In the case B we have

the same inequality in the same way. We repeat Step 2-2 until non-critical vertices satisfying
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FIGURE 2.5. A local perturbation of Step 2-2. We note that there is no critical point
p ∈ G for f2 such that f2(p) = f2(w) at Step 2-2.

the condition (∗∗) disappear. A continuous map which we finally have is denoted by g . Then
g is canonical and m(g) ≤ m(f2) ≤ m(f1) ≤ m(f ) as desired. �

This proposition shows that for determining the multiplicity of a graph over R1, it suffices
to consider canonical continuous maps only. This assertion suggests the multiplicity of a graph
G with at least one edge over R1 is equal to the cutwidth of G. The cutwidth of a graph G

is defined in a combinatorial way. For a graph G, an injection f : V (G) → Z is called a
numbering of G. The cutwidth of a numbering f is defined by c(f ) = maxi∈Z

{
#{vv′ ∈

E(G)|f (v) < i + 1/2 < f (v′) or f (v′) < i + 1/2 < f (v)}}. The cutwidth c(G) of
a graph G is defined by min{c(f )|f is a numbering of G} (see for example [1]). To see
m(G) = c(G), it is sufficient to consider the case that G is a connected graph with at least

one edge. For a canonical map f : G → R1 with m(f ) = m(G), we may suppose that
f

(
V (G)

)
is a subset of Z. Then it is easy to see that m(f ) = c

(
f |V (G)

)
. Thus we have that

m(G) = m(f ) = c
(
f |V (G)

) ≥ c(G). The converse m(G) ≤ c(G) is obtained in a similar
way. Thus we have that m(G) = c(G). Generally, determining the cutwidth of a graph is
known as one of NP-hard problems (see for example [4]).

NOTE 2.3. For a graph G, the cyclic cutwidth ccw(G) is defined analogously in a

combinatorial way, which corresponds to m(G : S1). See [1]. Let T be a finite tree. Let S1

be a unit circle and let f : T → S1 be a continuous map such that m(f ) = ccw(T ). Let

φ : R1 → S1 be a universal covering projection. Since T is simply connected, there is a

continuous map f̃ : T → R1 such that f = φ ◦ f̃ . Then we have that c(T ) = m(T ) ≤
m(f̃ ) ≤ m(f ) = ccw(T ). Since ccw(G) ≤ c(G) for any G, we have that ccw(T ) = c(T ).
Thus we have the main result in [2]. B. Kloeckner also points out this fact in [6].
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3. Edge connectivity and multiplicity over R1

For a family P of paths of a graph G, P is said to be k-edge-disjoint if #P = k and for
every pair of distinct paths p, p′ ∈ P , p∩p′ ⊂ V (G). The edge-connectivity λ(G) of a graph
G is k if for every pair of distinct vertices v, v′ ∈ V (G), there is a k-edge-disjoint family of
v-v′ paths and there are distinct vertices w, w′ ∈ V (G) such that there are no (k + 1)-
edge-disjoint families of w-w′ paths. The multiplicity of a graph over R1 is related to the
edge-connectivity of the graph. The following proposition claims that the edge-connectivity

of a graph is a lower bound of the multiplicity of the graph over R1.

PROPOSITION 3.1. Let G be a graph and let f : G → R1 be a canonical map. Then,
for any point y ∈ f (G) − f

(
V (G)

)
, #f −1(y) ≥ λ(G), therefore m(G) ≥ λ(G).

The main purpose of this paper is to give a lower bound of multiplicity for the following

graphs over R1.

DEFINITION 3.2. A connected graph G is said to be n-constructed from graphs
H1, . . . , Hn if
(a) H1, . . . , Hn are connected subgraphs of G,
(b) G = ⋃n

i=1 Hi and
(c) for any distinct positive integers i, j , the intersection Hi ∩ Hj is exactly one vertex of G.

We denote the largest integer that is not greater than x by �x�.
There are several known lower bounds for cutwidths. See [1], [3], [6] and [7].

THEOREM 3.3. Let G be a graph n-constructed from H1, H2, . . . , Hn. Then,

m(G) ≥ min
{
m(Hi)

∣∣1 ≤ i ≤ n
} + min

{
λ(Hi)

∣∣1 ≤ i ≤ n
} ·

⌊
n − 1

2

⌋
.

For the proof of Theorem 3.3, we need the following lemma, whose proof is obvious.

FIGURE 3.1. The left is a 5-constructed graph from the five mutually homeomorphic
graphs on the right.
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LEMMA 3.4. Let G be a graph with #E(G) ≥ 1 and let f : G → R1 be a canonical

map. Then, there is an open interval I ⊂ Im(f ) ⊂ R1 such that for any point y ∈ I ,
#f −1(y) ≥ m(G).

PROOF OF THEOREM 3.3. The prototype of the following proof can be seen in [5].
The proof is given by an induction on n. When n is equal to 1, the claim is true. We assume
that the claim is true for odd positive integer k ≥ 1. Let G be a graph (k + 2)-constructed
from H1, . . . , Hk+2, and let f : G → R1 be a canonical map. Since G is connected, there

are distinct vertices x, y ∈ V (G) such that Im(f ) = [
f (x), f (y)

] ⊆ R1. We may suppose

without loss of generality that x and y are contained in the union Hk+1∪Hk+2. Now,
⋃k

i=1 Hi

is denoted by G′ and Hk+1 ∪ Hk+2 is denoted by G′′.
Since λ(G′′) = min

{
λ(Hk+1), λ(Hk+2)

}
, by Proposition 3.1, for any point z ∈

Im
(
f |G′′

) − Im(f |V (G′′)),

#f
∣∣
G′′

−1
(z) ≥ λ(G′′) = min

{
λ(Hk+1), λ(Hk+2)

}
.

By Lemma 3.4 and the assumption of the induction, there exists an open interval I ⊂
Im(f |G′) such that for any point w ∈ I , #f |G′−1(w) ≥ m(G′) ≥ min

{
m(Hi)

∣∣1 ≤ i ≤
k
} + min

{
λ(Hi)

∣∣1 ≤ i ≤ k
} · ⌊

k−1
2

⌋
.

Therefore we have that for any point w′ ∈ I − f
(
V (G′′)

)
,

m(G) ≥ #f −1(w′) ≥ m(G′) + λ(G′′)
≥ min

{
m(Hi)|1 ≤ i ≤ k

} + min
{
λ(Hi)

∣∣1 ≤ i ≤ k
} · � k−1

2 � +
min

{
λ(Hk+1), λ(Hk+2)

}
≥ min

{
m(Hi)|1 ≤ i ≤ k + 2

} +
min

{
λ(Hi)

∣∣1 ≤ i ≤ k + 2
} · � (k+1)−1

2 �.

Therefore for positive odd integer n, the claim is true.

Next we prove the case that n > 0 is even. For a positive even integer n, let G be
an n-constructed graph from H1, . . . , Hn. Since G contains an (n − 1)-constructed graph⋃n−1

i=1 Hi as a subgraph and �n−1
2 � = �n−2

2 �, we have the following from the assumption of
the induction:

m(G) ≥ m
(⋃n−1

i=1 Hi

)
≥ min

{
m(Hi)

∣∣1 ≤ i ≤ n − 1
} + min

{
λ(Hi)

∣∣1 ≤ i ≤ n − 1
} · � (n−1)−1

2 �
≥ min

{
m(Hi)|1 ≤ i ≤ n

} + min
{
λ(Hi)

∣∣1 ≤ i ≤ n
} · �n−1

2 �.

Thus, for any positive integer n, the claim is true. �

By using Theorem 3.3, lower bounds of the multiplicity of the following graphs in Figure
3.2, Figure 3.3, and Figure 3.4 are obtained. Since we can easily make continuous maps which
realizes the lower bounds of the multiplicities of those graphs, we know that these bounds are
equal to the multiplicities of these graphs. Moreover, we can prove that every graph in Figure
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FIGURE 3.2. m(Tn) = n + 1. Ti+1 is a 3-constructed graph from three copies of Ti .
λ(Ti ) = 1.

FIGURE 3.3. m(Tn) = n + 1, Ti+1 is a 3-constructed graph from three copies of Ti .
λ(Ti ) = 1.

FIGURE 3.4. m(Tn) = 2n. Ti+1 is a 3-constructed graph from three copies of Ti .
λ(Ti ) = 2.

3.2 is critical with respect to the multiplicity. Namely, the multiplicity of any proper subgraph
is strictly less than the multiplicity of the graph. We also note here that a lower bound of the
multiplicity of the graph in Figure 3.1 is 7. In fact, It is known that the multiplicity of the
graph is just 7.
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