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Abstract. LetQ be a quiver, andw a weight function on the set of arrows ofQ. In this paper, we will introduce
an R-algebra UD(Q,w;R) over a ring R in which the information how vertices of Q are joined by its arrows with
weights should be reflected well. This algebra is obtained by using ZQ-modules where ZQ is the path algebra of
Q over Z. We will particularly focus on quivers and weight functions defined by the subgroup lattice of a finite
group G, and defined by irreducible characters of subgroups of G. The structure of the corresponding Z-algebras
UD(Q,w;Z) and relations with the group G will be studied.

1. Introduction

Let G be a finite group, and Sgp(G) the totality of subgroups of G. One of the motiva-
tions of this paper is the following. For a family D ⊆ Sgp(G) of subgroups of G, denote by
Δ(D) the totality of chains (H0 < H1 < · · · < H�) of subgroups in D with respect to the
inclusion-relation ≤. Then a pair (D,Δ(D)) forms a simplicial complex (ordered complex)
which is called a subgroup complex of G. There are a lot of works on subgroup complexes
such as their homotopy property, Lefschetz modules, classifying spaces, and so on (see [6] and
various references in it for this research area). Those complexes can be thought of objects in
the intersection of finite group theory, combinatorics, and algebraic topology. In order to pur-
sue the nature of subgroup complexes further, we like to consider their representations. Since
a partially ordered set (D,≤) can be regarded as a quiver, representations of path algebras
of quivers are studied here. Although we do not still reach a direct application to subgroup
complexes, we hope that this paper will give us another approach to such complexes in the
future.

The paper is organized as follows: In Section 2, we recall the concept of quivers
Q = (Q0,Q1, s, r) and path algebras RQ where R is a coefficient ring. Our standing situa-
tion is established here, and in particular a weight functionw on the set of arrows ofQ is con-
sidered. In Section 3, we define a right, and also a left ZQ-modules RQ0. Then using those
actions of ZQ, an R-algebra UD(Q,w;R) is introduced as an R-subalgebra of End(RQ0).
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This is one of the main objects in this paper. We examine the structure of UD(Q,w;R), and
in particular UD(Q,w;Z) over Z is completely determined by some integers which we call
the generating constants. In Section 4, we consider a quiver QG and a weight function wG
associated to the subgroup lattice (Sgp(G),≤) of G, and investigate the generating constants
of UD(QG,wG;Z). We especially show that a generating constant corresponding to sub-
groups A,B ≤ G is equal to the order of G if and only if A and B furnish a factorization

of G. In Section 5, we consider a quiver Qch
G and a weight function wch

G associated to irre-

ducible characters of subgroups of G. Some elements of UD(Qch
G ,w

ch
G ;Z) corresponding to

Bratteli diagrams are discussed. Furthermore we see that abelian groups are characterized by

a weight function wch
G which behaves in a special way. Finally we study the case where all of

the generating constants are equal to 1.

2. Preliminaries

In this section, we recall the definitions of quivers and path algebras (cf. [1, Section III-1]
for example), and establish our notation. One of the important things in this paper is that we
equip each arrow of a quiver with a “weigh”. Throughout the paper, let R be a commutative
ring with the identity element.

DEFINITION 2.1. A quiverQ is a quadruple

Q = (
Q0, Q1, (s : Q1 → Q0), (r : Q1 → Q0)

)

where Q0 ( �= ∅) and Q1 are sets, s and r are maps from Q1 to Q0. Elements of Q0 and
Q1 are called vertices and arrows of Q respectively. For an arrow α ∈ Q1, when s(α) = a
and r(α) = b denote by a

α→ b or α = (a → b). The start and range of α are respectively
elements s(α) and r(α) in Q0.

DEFINITION 2.2. Let Q = (Q0,Q1, s, r) be a quiver.
(1) Q is said to be finite if Q0 and Q1 are both finite sets.
(2) A path Δ in Q is either a sequence (α1α2 · · ·αk) (k ≥ 1) of arrows αi ∈ Q1 with

r(αi) = s(αi+1) for all i = 1, . . . , k − 1, or the symbol ea for a ∈ Q0 which is
called the trivial path. We usually identify a vertex a with ea . Denote by P(Q) the
totality of paths in Q.

(3) For a non-trivial pathΔ = (α1α2 · · ·αk) inQ, we define s(Δ) := s(α1) and r(Δ) :=
r(αk) which are called the start and range of Δ. Furthermore, define s(ea) := a and
r(ea) := a for a ∈ Q0.

(4) The path algebra RQ ofQ overR is the R-free module generated by all paths inQ,
and a multiplication on RQ is defined by extending bilinearly the composition

Δ1Δ2 :=
{
(α1 · · ·αkβ1 · · ·βm) if r(αk) = s(β1)

0 otherwise
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of paths Δ1 = (α1 · · ·αk) and Δ2 = (β1 · · ·βm). Then RQ is an associative R-
algebra.

Here we establish the notation which will be used in this paper. Let Q = (Q0,Q1, s, r)

be a quiver. For a non-trivial path Δ = (α1α2 · · ·αk) ∈ P(Q) (αi ∈ Q1), denote by �(Δ) the
length k of Δ. The notation P(Q)i (i ≥ 1) stands for the totality of paths of length i, namely
P(Q)i := {Δ ∈ P(Q) | �(Δ) = i} (i ≥ 1). Set P(Q)0 := {ea | a ∈ Q0} the totality of trivial
paths in Q. As mentioned in Definition 2.2, we identify a vertex a with ea . For a, b ∈ Q0,
denote by P(Q)a⇒b the totality of paths Δ with s(Δ) = a and r(Δ) = b.

Let w : Q1 −→ R be a map, and we call it a weight function of Q. Then w can be

extended on non-trivial paths by setting w(Δ) := ∏k
i=1 w(αi) for Δ = (α1 · · ·αk) ∈ P(Q).

In particular, for Δ1,Δ2 ∈ P(Q) with Δ1Δ2 �= 0, we have that w(Δ1Δ2) = w(Δ1)w(Δ2).
It is a convention that w(a) := 1 for a ∈ Q0.

Let Z be the ring of rational integers, and let ZQ := ⊕
Δ∈P(Q) ΔZ be the path algebra

of Q over Z. If Q is finite then ZQ possesses the identity element
∑
a∈Q0

a. Note that

ZQ contains a Z-subalgebra ZQ0 := ⊕
a∈Q0

aZ generated by all trivial paths in Q. Put

RQ0 := R⊗Z ZQ0. In this paper, we will investigate certain ZQ-modules RQ0, and also an
R-subalgebra of End(RQ0) (see Section 3).

3. Representations of ZQ

Keep the notation in Section 2. In this section, we define a right, and also a left
ZQ-modules RQ0. Then using those two ZQ-actions, we introduce an R-subalgebra
UD(Q,w;R) of End(RQ0) which is one of the main objects in this paper. Furthermore
we investigate the structure of UD(Q,w;R), and in particular UD(Q,w;Z) over Z is com-
pletely determined by some integers which we call the generating constants. These constants
play an important role in applications to subgroup lattices and group characters in Sections
4 and 5 respectively. Throughout this section, let Q = (Q0,Q1, s, r) be a quiver, and w a
weight function of Q.

3.1. The UD-algebra. First of all, we give the following two actions of a path Δ ∈
P(Q) on RQ0.

DEFINITION 3.1. For Δ ∈ P(Q) and a ∈ Q0, define elementsΔa and aΔ in RQ0 as
follows:

aΔ := w(Δ)(δa,s(Δ)r(Δ)
) ∈ RQ0;

i.e. a
(
s(Δ)→ · · · → r(Δ)

) := w(Δ)r(Δ) if s(Δ) = a, and 0 otherwise.

Δa := w(Δ)(δr(Δ),as(Δ)
) ∈ RQ0;

i.e.
(
s(Δ)→ · · · → r(Δ)

)
a := w(Δ)s(Δ) if r(Δ) = a, and 0 otherwise.
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Then, by extending bilinearly, we have the following two maps Φw and Ψw:

Φw : RQ0 × ZQ −→ RQ0 by

( ∑

a∈Q0

daa,
∑

Δ∈P(Q)

cΔΔ

)
�→

∑

Δ∈P(Q)

∑

a∈Q0

(cΔda)aΔ

Ψw : ZQ× RQ0 −→ RQ0 by

( ∑

Δ∈P(Q)

cΔΔ,
∑

a∈Q0

daa

)
�→

∑

Δ∈P(Q)

∑

a∈Q0

(cΔda)Δa

PROPOSITION 3.2. Φw and Ψw induce RQ0 to the structures of right and left ZQ-
modules respectively.

PROOF. For a ∈ Q0 andΔ1,Δ2 ∈ P(Q), suppose that r(Δ1) = s(Δ2). Then we have
that

(aΔ1)Δ2 =
(
w(Δ1)δa,s(Δ1)r(Δ1)

)
Δ2

= w(Δ1)δa,s(Δ1)

(
w(Δ2)δr(Δ1),s(Δ2)r(Δ2)

)

= w(Δ1Δ2)δa,s(Δ1)r(Δ2) = a(Δ1Δ2).

If r(Δ1) �= s(Δ2), that is Δ1Δ2 = 0, then it is clear that (aΔ1)Δ2 = 0 = a(Δ1Δ2). The
other conditions of right ZQ-module are straightforward. By the same way, Ψw makes RQ0

a left ZQ-module. �

Using ZQ-modules RQ0 described in Proposition 3.2, we introduce an R-subalgebra
UD(Q,w;R) of End(RQ0).

DEFINITION 3.3. Let Q = (Q0,Q1, s, r) be a quiver, and let w : Q1 −→ R be a
weight function of Q.

(1) For each Δ ∈ P(Q), define two endomorphisms of an R-module RQ0 as follows:

ρw(Δ) : RQ0 −→ RQ0 by s �→ Φw(s,Δ)

λw(Δ) : RQ0 −→ RQ0 by s �→ Ψw(Δ, s)

Note that, for f, g ∈ End(RQ0), the composition map f ◦ g is read from left to
right. So we use the notation that af ◦g = (af )g for a ∈ RQ0.

(2) Let UD(Q,w;R) be anR-subalgebra of End(RQ0) generated by ρw(Δ) and λw(Δ)
for all pathsΔ ∈ P(Q), namely

UD(Q,w;R) := 〈
ρw(Δ), λw(Δ) | Δ ∈ P(Q)

〉 ≤ End(RQ0) .

We call UD(Q,w;R) the UD-algebra (Up-Down algebra) of Q with respect to w
over R.

REMARK 3.4. Let Δ = (a→ · · · → b) ∈ P(Q) be a path. Then we have that

aρw(Δ) = aΔ = w(Δ)b , bλw(Δ) = Δb = w(Δ)a
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by the definition. This can be thought that ρw(Δ) moves a “down” to b along Δ, and λw(Δ)
moves b “up” to a along Δ. So we regard UD(Q,w;R) as an R-algebra generated by “up-
down operators”, and the information how vertices ofQ are joined by its arrows with weights
should be reflected well in UD(Q,w;R).

The next Lemma is immediate from Proposition 3.2.

LEMMA 3.5. ForΔ1,Δ2 ∈ P(Q), we have that

ρw(Δ1Δ2) = ρw(Δ1) ◦ ρw(Δ2) and λw(Δ2Δ1) = λw(Δ1) ◦ λw(Δ2) .

REMARK 3.6 (Transposed relation). Fix a sequence B := (b1, . . . , bm) of the ele-
ments in Q0. For Δ = (bj1 → · · · → bjk ) ∈ P(Q), let Mρw(Δ) and Mλw(Δ) be respec-
tively representation R-matrices of ρw(Δ) and λw(Δ) with respect to B. Then we have that
tMρw(Δ) = Mλw(Δ). Indeed since

b
ρw(Δ)
i = biΔ = w(Δ)

(
δbi,s(Δ)r(Δ)

) = w(Δ)(δbi,bj1 bjk
)
,

we have an (i, j)-entry (Mρw(Δ))i,j = w(Δ) if (i, j) = (j1, jk), and 0 otherwise. In
other words, Mρw(Δ) is a matrix with the unique non-zero entry w(Δ) in the position of
(s(Δ), r(Δ)). Similarly since (Mλw(Δ))i,j = w(Δ) if (i, j) = (jk, j1), and 0 otherwise, we

get tMρw(Δ) = Mλw(Δ).

Using Lemma 3.5 and the description of Mρw(Δ) in Remark 3.6, we have the following.

LEMMA 3.7. For a, b ∈ Q0, let ea,b ∈ End(RQ0) be an endomorphism defined by
xea,b := δx,ab for x ∈ Q0. Then an R-subalgebra 〈 ρw(Δ) | Δ ∈ P(Q) 〉 of UD(Q,w;R) is
described as follows:

〈
ρw(Δ) | Δ ∈ P(Q)

〉 =
∑

a,b∈Q0

( ∑

Δ∈P(Q)a⇒b

w(Δ) · R
)
ea,b (finite sum)

This is identified with a matrix algebra of the form
( ∑

Δ∈P(Q)a⇒b
w(Δ) · R

)

a,b∈Q0

EXAMPLE 3.8. Let Q be a quiver with Q0 = {a, b}, P(Q) = {
a, b, (a → b)

}
, and

k := w(a → b) ∈ R. Recall that RQ0 = aR ⊕ bR is a ZQ-module. Then endomorphisms
ρw(Δ) ∈ End(RQ0) for Δ ∈ P(Q) are represented as follows:

Mρw(a) =
(
a b

a 1 0
b 0 0

)
, Mρw(b) =

(
a b

a 0 0
b 0 1

)
, Mρw(a→b) =

(
a b

a 0 k

b 0 0

)
.
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Then, by Remark 3.6,Mλw(Δ) = tMρw(Δ) for Δ ∈ P(Q). As R-algebras, we have that

〈
ρw(Δ) | Δ ∈ P(Q)

〉 ∼=
(
R kR

0 R

)
.

3.2. Opposite paths and UD(Q,w;R). In order to examine the structure of
UD(Q,w;R), we introduce the opposite path tΔ of Δ ∈ P(Q). But before doing this, we
extend a quiverQ by adding arrows further.

DEFINITION 3.9. Let Q = (Q0,Q1, s, r) be a quiver.

(1) For each arrow α = (a→ b) ∈ Q1, we define the symbol t α. SetQopp
1 := {tα | α ∈

Q1} andQud
1 := Q1 ∪Qopp

1 . Then

Qud :=
(
Q0, Q

ud
1 ,

(
s : Qud

1 → Q0
)
,
(
r : Qud

1 → Q0
))

forms a quiver where s and r are extended on Qud
1 as s(tα) := r(α) = b and

r(tα) := s(α) = a for α = (a → b) ∈ Q1. Thus tα = (b → a). We call tα the
opposite arrow of α. Note that P(Q) ⊆ P(Qud).

(2) For a path Δ = (a0
α1→ a1

α2→ · · · αk−1→ ak−1
αk→ ak) ∈ P(Q) ⊆ P(Qud) (αi ∈ Q1),

define

tΔ := (
ak

t αk−→ ak−1

t αk−1−→ · · ·
t α2−→ a1

t α1−→ a0
) ∈ P(Qud)

which is called the opposite path of Δ. Then we have that �(tΔ) = �(Δ) = k.

REMARK 3.10. Let Σ be a finite connected graph with no loops. Then associating to
each arrow an opposite as in Definition 3.9 is standard in the construction of the preprojective

algebra Π(Σ) of Σ (cf. [4, page 553]). Indeed, associate with Σ the quiver Σ having the
same vertices asΣ and where each edge inΣ is replaced by a pair of arrows .

Thus for each arrow α in Σ , there is an opposite of α. The preprojective algebra Π(Σ) is a

certain quotient algebra of RΣ .

Let P(Q)opp := {tΔ | Δ ∈ P(Q)}. Then any path Γ ∈ P(Qud) can be expressed as
Γ = Γ1Γ2 · · ·Γm for some Γi ∈ P(Q) ∪ P(Q)opp and m ≥ 1. Here we may assume that,
for each i = 1, . . . ,m − 1, if Γi ∈ P(Q) then Γi+1 ∈ P(Q)opp, or if Γi ∈ P(Q)opp then

Γi+1 ∈ P(Q). A weight function w : Q1 −→ R of Q can be extended on Qopp
1 by setting

w(tα) := w(α) for α ∈ Q1. For Γ = Γ1 · · ·Γm ∈ P(Qud), define

s(Γ ) := s(Γ1), r(Γ ) := r(Γm), w(Γ ) :=
m∏

i=1

w(Γi), �(Γ ) :=
m∑

i=1

�(Γi) .
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Now consider the path algebraRQud ofQud, which contains an R-subalgebraRQ0 ⊆ RQud.

As in Section 3.1, for Γ ∈ P(Qud) and a ∈ Q0, define

aΓ := w(Γ )(δa,s(Γ )r(Γ )
) ∈ RQ0 .

Then we obtain an endomorphism ρw(Γ ) : RQ0 −→ RQ0 defined by a �→ aΓ , which has

the property ρw(Γ Γ ′) = ρw(Γ ) ◦ ρw(Γ ′) for Γ,Γ ′ ∈ P(Qud). Note that ρw(tΔ) coincides
with λw(Δ) forΔ ∈ P(Q) (see Remark 3.6). Therefore UD(Q,w;R) is rewritten as follows:

UD(Q,w;R) = 〈
ρw(Γ ) | Γ ∈ P(Qud)

〉
.

NOTATION 3.11 (Up-Down paths). For arrows α, β ∈ Q1 such that r(α) = r(β),

we just write Δ = (αβ) for a path Δ = (
α (tβ)

)
in Qud where s(tβ) = r(β) = r(α).

Similarly, for arrows α, β ∈ Q1 such that s(α) = s(β), the notationΔ = (αβ) indicates a path
Δ = (

(tα) β
)

in Qud where r(tα) = s(α) = s(β). For example, for arrows α1 = (a → b),
α2 = (c→ b), α3 = (d → c), α4 = (d → e) in Q1, the notation

Δ = (
a
α1→ b

α2← c
α3← d

α4→ e
)

implies a path in Qud as follows:

Δ = (
a
α1→ b

tα2→ c
tα3→ d

α4→ e
)
.

So any pathΔ ∈ P(Qud) can be expressed asΔ = (
a0

α1− a1
α2− a2− · · ·− ak−1

αk− ak
)

for some
αi ∈ Q1 (i = 1, . . . , k) where − means→ or←. Throughout this paper, we frequently use
this way of writing for paths without using opposite arrows.

3.3. The generating constants. We see that the algebra UD(Q,w;R) is realized as
an R-matrix algebra in the next. From this result, the generating constants can be introduced.

PROPOSITION 3.12. For a, b ∈ Q0, let ea,b ∈ End(RQ0) be an endomorphism de-
fined by xea,b := δx,ab for x ∈ Q0. Then the UD-algebra UD(Q,w;R) is described as
follows:

UD(Q,w;R) =
∑

a,b∈Q0

( ∑

Γ ∈P(Qud)a⇒b

w(Γ ) · R
)
ea,b ( finite sum)

This is identified with a matrix algebra of the form
( ∑

Γ ∈P(Qud)a⇒b

w(Γ ) · R
)

a,b∈Q0

PROOF. As in Remark 3.6, ρw(Γ ) for Γ ∈ P(Qud)a⇒b has a representation matrix
with the unique non-zero entry w(Γ ) in the position of (s(Γ ), r(Γ )). Furthermore we had

ρw(Γ Γ
′) = ρw(Γ ) ◦ ρw(Γ ′) for Γ,Γ ′ ∈ P(Qud). Thus the assertion clearly holds. �
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COROLLARY 3.13. Suppose that Q is finite. Suppose further that P(Qud)a⇒b �= ∅
for any a, b ∈ Q0, and that w = 1 namely w(α) = 1 for any α ∈ Q1. Then UD(Q,w;R) is
isomorphic to a matrix algebraM|Q0|(R).

DEFINITION 3.14 (Generating constants). Suppose that a coefficient ring is the ring
Z of rational integers. For a, b ∈ Q0, suppose that

P(Qud)a⇒b �= ∅ and S :=
∑

Γ ∈P(Qud)a⇒b

w(Γ ) · Z �= {0} .

Then there exists a positive integer sa,b such that sa,b · Z = S. In other words, sa,b is the

greatest common divisor of {w(Γ ) | Γ ∈ P(Qud)a⇒b}. On the other hand, if P(Qud)a⇒b = ∅
or S = {0} then we define sa,b := 0. Then by Proposition 3.12, UD(Q,w;Z) is completely
determined as

UD(Q,w;Z) =
∑

a,b∈Q0

(sa,b · Z)ea,b (finite sum)

We call the integers sa,b (a, b ∈ Q0) the generating constants of UD(Q,w;Z). Note that
sa,b = sb,a for any a, b ∈ Q0. Furthermore denote by just UD(Q,w) the UD-algebra
UD(Q,w;Z) over Z for short.

4. Subgroup lattices

In this section, we apply the results in Section 3 on path algebras to subgroup lattices.
Suppose that a coefficient ring is the ring Z of rational integers. Let G be a finite group,
and let Sgp(G) be the totality of subgroups of G including the whole groupG and the trivial
subgroup {e}. We first define a quiver associated to a partially ordered set (poset for short).
Then the subgroup lattice (Sgp(G),≤) with an ordering ≤ defined by the inclusion-relation
gives us a quiver QG, and we are able to deal with the UD-algebra UD(QG,wG) where a
weight functionwG is defined by indices of subgroups. After studying some properties of the
generating constants of UD(QG,wG), we characterize those constants which are equal to the
order of G. In this case, a factorization of G is related. For a subgroup H ≤ G and g ∈ G,

we write H g := g−1H g .

4.1. Quivers arising from posets. In order to apply the results in Section 3 to the
lattice (Sgp(G),≤), we prepare a quiver defined by a poset in general.

DEFINITION 4.1. Let (X,≤) be a poset. For elements a, b ∈ X, we define an arrow
(a → b) precisely when a > b. Put (QX)0 := X and (QX)1 := {(a→ b) | a, b ∈ X, a > b}.
Then denote by QX or Q(X,≤) a quiver

(
(QX)0, (QX)1, s, r

)
where maps s, r : (QX)1 −→

(QX)0 are defined by s(α) := a and r(α) := b for α = (a→ b) ∈ (QX)1.
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DEFINITION 4.2. Sgp(G) can be viewed as a poset together with the inclusion-relation
≤. Denote by

QG := Q(Sgp(G),≤)

a quiver associated to a poset (Sgp(G),≤) (see Definition 4.1). In this case, a weight function
wG of QG is defined by indices of subgroups, that is, wG(H → K) := |H : K| ∈ Z. The
notation UD(G) or UD(G,wG) stands for the UD-algebra UD(QG,wG) over Z. Also the

notationQud
G implies (QG)ud.

Before going to an application to (Sgp(G),≤), we consider the structure of the UD-
algebra obtained from the direct product of posets.

DEFINITION 4.3. Let (X,≤X) and (Y,≤Y) be posets. For distinct (x1, y1),
(x2, y2) ∈ X × Y, define an ordering (x1, y1) ≥ (x2, y2) precisely when x1 ≥X x2 and
y1 ≥Y y2. Then (X × Y,≤) becomes a poset. In this case, if wX and wY are weight func-
tions of associated quivers QX and QY respectively, then we adopt a weight function w of

QX×Y defined by w
(
(x1, y1) → (x2, y2)

) := wX(x1 → x2) × wY(y1 → y2). Note that if
x1 = x2 then we set wX(x1→ x2) := 1, and similarly for wY.

PROPOSITION 4.4. Under the above notation, we have a Z-algebra isomorphism as
follows:

UD(QX×Y, w) ∼= UD(QX, wX)⊗Z UD(QY, wY).

PROOF. We consider the generating constants of UD(QX×Y, w). For elements

(x1, y1), (x2, y2) ∈ X × Y, set P := P
(
Qud

X×Y

)
(x1,y1)⇒(x2,y2)

. Note that we have poset

isomorphisms X ∼= X×{y1} ⊆ X×Y and Y ∼= {x2}×Y ⊆ X×Y, and then we can identify
QX andQX×{y1}, and alsoQY andQ{x2}×Y. Now for any path Γ ∈ P, there exist projections
Γ1 and Γ2 of Γ onto P(QX) and P(QY) respectively such that w(Γ ) = wX(Γ1)×wY(Γ2).
Indeed we can take certain paths

Γ1 ∈ P
(
Qud

X×{y1}
)
(x1,y1)⇒(x2,y1)

= P
(
Qud

X

)
x1⇒x2

,

Γ2 ∈ P
(
Qud
{x2}×Y

)
(x2,y1)⇒(x2,y2)

= P
(
Qud

Y

)
y1⇒y2

.

Then by the definition of the generating constants, we have that

s(x1,y1),(x2,y2) · Z =
∑

Γ ∈P

w(Γ ) · Z

=
( ∑

Γ1∈P(Qud
X )x1⇒x2

w(Γ1) · Z
)( ∑

Γ2∈P(Qud
Y)y1⇒y2

w(Γ2) · Z
)

= (
sx1,x2 · Z

)(
sy1,y2 · Z

) = sx1,x2sy1,y2 · Z .
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Then the tensor product
(
sx1,x2

)
x1,x2∈X ⊗

(
sy1,y2

)
y1,y2∈Y of two matrices of the generating

constants of UD(QX, wX) and UD(QY, wY) gives a matrix of those of UD(QX×Y, w). This
leads us to the required isomorphism. �

4.2. Some properties of the generating constants. In this section, we investigate
some fundamental properties of the generating constants of UD(G) = UD(QG,wG) which
will be used later in Section 4.3.

PROPOSITION 4.5. For A,B ∈ Sgp(G), let sA,B be the generating constant of
UD(G).

(1) sA,B divides |A : A ∩ B| × |B : A ∩ B|.
(2) sA,B divides the order of G.

PROOF. (1) For a path Δ = (A→ A ∩ B ← B) in Qud
G , wG(Δ) is divisible by sA,B

from Definition 3.14 where wG(Δ) = |A : A ∩ B| × |B : A ∩ B|.
(2) Take pathsΔ = (A← G→ B) andΔ′ = (A→ {e} ← B) inQud

G . ThenwG(Δ) =
|G : A||G : B| and wG(Δ′) = |A||B|. By the definition of sA,B , the greatest common divisor

(wG(Δ),wG(Δ
′)) is divisible by sA,B . Now since (|G|p)2 = |A|p|B|p|G : A|p|G : B|p

for a prime number p, we have that c := |A|p|B|p or d := |G : A|p|G : B|p divides |G|p.
Note that, for a positive integer n, np is the highest power of p that divides n. It follows that
(wG(Δ),wG(Δ

′))p = min{c, d} divides |G|p. This completes the proof. �

EXAMPLE 4.6 (The generating constants of UD(S3)). Let S3 be the symmetric group
on a set {1, 2, 3}. There are six subgroups of S3, and we name a1 = S3, a2 = 〈(1, 2)〉,
a3 = 〈(1, 3)〉, a4 = 〈(2, 3)〉, a5 = 〈(1, 2, 3)〉, and a6 = {e}. Then a quiver QS3 with weights
is drawn as follows:

a1

a3 a4 a5a2

a6

3
3

3 2

6

32

2
2
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Furthermore the generating constants of UD(S3) can be calculated as follows:

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

a1 a2 a3 a4 a5 a6

a1 1 3 3 3 2 6
a2 3 1 1 1 6 2
a3 3 1 1 1 6 2
a4 3 1 1 1 6 2
a5 2 6 6 6 1 3
a6 6 2 2 2 3 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

Note that (ai, aj )-entry is the generating constant sai ,aj ∈ Z.

LEMMA 4.7. Let H be a subgroup of G. For A,B ∈ Sgp(H), let sGA,B and sHA,B be

respectively the generating constants of UD(G) and UD(H). Then the following holds.

(1) sGA,B divides sHA,B .

(2) If H is a normal subgroup of G, then sGA,B = sHA,B

PROOF. (1) Straightforward from Definition 3.14.

(2) LetΔ = (A =: L0−L1−· · ·−Lk := B) be a path fromA toB inQud
G . Then we have

a pathΔ∩H fromA toB inQud
H of the formΔ∩H :=

(
(L0∩H)−(L1∩H)−· · ·−(Lk∩H)

)
by

reducing loops. Suppose that Li > Li+1 for some i. Then since H � G by our assumption,
we get

|Li ∩H : Li+1 ∩H | = |Li : Li+1|
|LiH : Li+1H | .

It follows that wH(Δ∩H ) divides wG(Δ), and thus sHA,B divides sGA,B as desired. �

LEMMA 4.8. Let N be a normal subgroup of G, and set G := G/N . For subgroups
N ≤ A,B ≤ G, we have sA,B = sA,B where sA,B and sA,B are the generating constants of

UD(G) and UD(G) respectively.

PROOF. Let Δ = (A =: L0 − L1 − · · · − Lk := B) be a path from A to B in Qud
G .

Then we obtain a path ΔN from A to B in Qud
G of the form

ΔN := (L0N − L1N − · · · − LkN)
by reducing loops. Furthermore we obtain a path ΔN/N from A to B in Qud

G
of the form

ΔN/N := (L0N/N − L1N/N − · · · − LkN/N)
by reducing loops. Since wG(ΔN/N) = wG(ΔN), and since wG(ΔN) divides wG(Δ) by the
same way as in the proof of Lemma 4.7, we see that sA,B divides sA,B .
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On the other hand, since the set of paths in Qud
G

from A to B can be thought of a subset

of paths in Qud
G from A to B whose vertices contain N , sA,B divides sA,B . The proof is

complete. �

The following is a consequence of Proposition 4.4 on the direct product of posets.

PROPOSITION 4.9. Let A and B be finite groups. Then UD(A × B,wA×B) ∼=
UD(A,wA)⊗Z UD(B,wB) if and only if (|A|, |B|) = 1.

PROOF. Note that if (|A|, |B|) = 1 then we have a poset isomorphism (Sgp(A ×
B),≤A×B) ∼= (Sgp(A),≤A) × (Sgp(B),≤B), and that the converse is also true. Thus the
assertion follows from Proposition 4.4. �

4.3. A characterization of the generating constants. In this section, we focus our
attention on the generating constants sA,B of UD(G) which are equal to the order |G| of G.
Indeed we show that sA,B = |G| if and only if G = AB and A ∩ B = {e}.

LEMMA 4.10. Let Δ = (L0 −L1 − · · · −Lk) (k ≥ 2) be a path in Qud
G such that, for

any 1 ≤ i ≤ k − 1, Li−1 < Li > Li+1 or Li−1 > Li < Li+1. Then a weight wG(Δ) of Δ is
as follows:

(1) If L0 > L1 < L2 and Lk−2 > Lk−1 < Lk

L1

L0 L2

L3

· · ·
Lk−3

Lk−2

Lk−1

Lk

,

wG(Δ) = |L0||Lk| ×
( |L2| · · · |Lk−2|
|L1| · · · |Lk−3||Lk−1|

)2

= |L0|
|Lk| ×

( |L2| · · · |Lk−2||Lk|
|L1| · · · |Lk−3||Lk−1|

)2

.

(2) If L0 < L1 > L2 and Lk−2 < Lk−1 > Lk

L0

L1

L2

· · ·
Lk−2

Lk−1

Lk

,

wG(Δ) = |L0||Lk| ×
( |L1| · · · |Lk−1|
|L0| · · · |Lk−2||Lk|

)2

= |L0|
|Lk| ×

( |L1| · · · |Lk−1|
|L0| · · · |Lk−2|

)2

.

(3) If L0 > L1 < L2 and Lk−2 < Lk−1 > Lk

L1

L0 L2

L3

· · ·
Lk−2

Lk−1

Lk

,
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wG(Δ) = |L0||Lk| ×
( |L2| · · · |Lk−1|
|L1| · · · |Lk−2||Lk|

)2

= |L0|
|Lk| ×

( |L2| · · · |Lk−1|
|L1| · · · |Lk−2|

)2

.

(4) If L0 < L1 > L2 and Lk−2 > Lk−1 < Lk

L0

L1

L2

· · ·
Lk−3

Lk−2

Lk−1

Lk

,

wG(Δ) = |L0||Lk| ×
( |L1| · · · |Lk−2|
|L0| · · · |Lk−3||Lk−1|

)2

= |L0|
|Lk| ×

( |L1| · · · |Lk−2||Lk|
|L0| · · · |Lk−3||Lk−1|

)2

.

PROOF. Straightforward. �

LEMMA 4.11. Let Δ = (L0 − L1 − · · · − Lk) (k ≥ 2) be a path in Qud
G such that

G = L0Lk . Suppose that, for any 1 ≤ i ≤ k − 1, Li−1 < Li > Li+1 or Li−1 > Li < Li+1.
Let G = G/L0 × · · · ×G/Lk be the direct product of families G/Li (0 ≤ i ≤ k) of the left
cosets of Li in G. Set

F =
{
(g0L0, . . . , gkLk) ∈ G

∣
∣
∣
∣

giLi ⊂ gi+1Li+1 or
giLi ⊃ gi+1Li+1 (0 ≤ ∀i ≤ k − 1)

}

Then we have that
√
wG(Δ)/|G : L0 ∩ Lk| = |F |/|G : L0 ∩ Lk|, and this is an integer. In

particular, wG(Δ) is divisible by |G : L0 ∩ Lk |.
PROOF. Given a coset giLi ∈ G/Li (0 ≤ i ≤ k − 1). We will determine

the next gi+1Li+1 ∈ G/Li+1 satisfying the condition of elements in F . Suppose that
giLi ⊂ gi+1Li+1. Then since gi ∈ gi+1Li+1, we have that gi+1Li+1 is uniquely deter-

mined as giLi+1. Suppose next that giLi ⊃ gi+1Li+1. Then since g−1
i gi+1Li+1 lies in

Li/Li+1 := {y1Li+1, . . . , ymLi+1}, gi+1Li+1 must be one of m = |Li : Li+1| cosets
giyjLi+1 (1 ≤ j ≤ m). Using these facts, we find the value |F |. On the other hand, wG(Δ)
is obtained in Lemma 4.10. Furthermore since G = L0Lk by our assumption, we have that

|G : L0 ∩ Lk| = |L0||Lk|
|L0 ∩ Lk|2 and |G/L0| = |Lk|

|L0 ∩ Lk| .

Then by direct calculation, we can see that
√
wG(Δ)/|G : L0 ∩ Lk| = |F |/|G : L0 ∩ Lk| as

desired.
Now, G acts on F via aF := (ag0L0, . . . , agkLk) for F = (g0L0, . . . , gkLk) ∈ F and

a ∈ G. Let S be the stabilizer in G of F = (g0L0, . . . , gkLk) ∈ F , that is,

S = {a ∈ G | aF = F } =
k⋂

i=0

(Li)
g−1
i ≤ (L0)

g−1
0 ∩ (Lk)g−1

k ∼= L0 ∩ (Lk)g−1
k g0 .
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Since g := g−1
k g0 ∈ G = LkL0 by our assumption, we have that g = xy for some x ∈ Lk

and y ∈ L0, and thus L0 ∩ (Lk)g = (L0 ∩ Lk)y . It follows that |S| divides |L0 ∩ Lk|, and
thus the length |G : S| of the G-orbit of F is divisible by |G : L0 ∩ Lk|. Therefore |F | ≡ 0
(mod |G : L0 ∩ Lk|). The proof is complete. �

PROPOSITION 4.12. (1) For A,B ∈ Sgp(G) with A > B, we have that sA,B = |A :
B|.

(2) For any path Δ = (H0→ H1→ · · · → Hk) in QG, we have that

k−1∏

i=0

sHi,Hi+1 = |H0 : Hk| .

PROOF. (1) Let Δ = (A =: L0 −L1 − · · · −Lk := B) be a path from A to B inQud
G .

It suffices to show that wG(Δ) is divisible by |A : B|. We proceed by induction on the length
k = �(Δ) of Δ.

The first case where Δ = (A − B) is trivial. So we may assume that k ≥ 2. Suppose
that Li−1 > Li > Li+1 or Li−1 < Li < Li+1 for some 1 ≤ i ≤ k − 1. Put Δ′ :=
(L0 − · · ·−Li−1 −Li+1 − · · · −Lk) just deleting Li fromΔ. Then since wG(Δ) = wG(Δ′)
and �(Δ′) = �(Δ) − 1, we have that |A : B| divides wG(Δ) by induction. Thus for any
1 ≤ i ≤ k − 1, we may assume that Li−1 < Li > Li+1 or Li−1 > Li < Li+1. Then by
Lemma 4.10, wG(Δ) is divisible by |A : B|.

(2) Straightforward from (1). �

PROPOSITION 4.13. For A,B ∈ Sgp(G), the followings are equivalent.
(1) sA,B = |G : A ∩ B|.
(2) G = AB.

PROOF. (1)⇒ (2): By Proposition 4.5 (1), sA,B = |G : A∩B| divides |AB|/|A∩B|.
Since |AB| ≤ |G|, we have that |AB| = |G|.

(2)⇒ (1): The proof is similar to that of Proposition 4.12. Let Δ = (A =: L0 − L1 −
· · · − Lk := B) be a path from A to B in Qud

G . It suffices to show that wG(Δ) is divisible by
|G : A ∩ B|. We proceed by induction on the length k = �(Δ) of Δ.

If k = 1 then Δ = (A − B), and we may assume that A > B. By our assumption,
G = AB = A, so that wG(Δ) = |A : B| = |G : A ∩ B| as desired. Hence we may
assume that k ≥ 2. Suppose that Li−1 > Li > Li+1 or Li−1 < Li < Li+1 for some
1 ≤ i ≤ k − 1. Put Δ′ := (L0 − · · · − Li−1 − Li+1 − · · · − Lk) just deleting Li from
Δ. Then since wG(Δ) = wG(Δ′) and �(Δ′) = �(Δ) − 1, we have that |G : A ∩ B| divides
wG(Δ) by induction. Thus for any 1 ≤ i ≤ k− 1, we may assume that Li−1 < Li > Li+1 or
Li−1 > Li < Li+1. Then by Lemma 4.11, wG(Δ) is divisible by |G : A ∩ B|. The proof is
complete. �

THEOREM 4.14. For A,B ∈ Sgp(G), the followings are equivalent.
(1) sA,B = |G|.
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(2) G = AB and A ∩ B = {e}.
PROOF. (1)⇒ (2): By Proposition 4.5 (1), sA,B = |G| divides |AB|/|A ∩ B|. Since

|AB| ≤ |G|, we have that |AB| = |G| and |A ∩ B| = 1, and thus the assertion holds.
(2)⇒ (1): This is clear from Proposition 4.13. �

Recall that a finite group which is the product of two nilpotent subgroups is solvable (see
[5, 13.2.9]). So applying this fact, the following is a consequence of Theorem 4.14.

COROLLARY 4.15. If sA,B = |G| for some nilpotent subgroups A,B ≤ G then G is
solvable.

5. Group characters

In this section, we apply the results in Section 3 on path algebras to group characters. Let
G be a finite group. For a subgroupH ofG, denote by Irr(H) the totality of irreducible com-
plex characters ofH . The set of all pairs of subgroupsH ≤ G and irreducible characters χ of
H forms a poset with an ordering defined by the multiplicity of characters (see Definition 5.1).

Then, by Definition 4.1, we have an associated quiverQch
G . So the UD-algebra UD(Qch

G ,w
ch
G )

over Z can be considered where a weight function wch
G is defined by the multiplicity of char-

acters. We first define some elements in UD(Qch
G ,w

ch
G ) corresponding to Bratteli diagrams

(see [2]), and examine their properties. Next we see that the group G is characterized by a

weight functionwch
G which behaves in a special way. Finally we investigate the case where all

of the generating constants of UD(Qch
G ,w

ch
G ) are trivial. For character theory of finite groups,

we refer to [3].

5.1. Our setting and Bratteli operators. In this section, we define a quiver Qch
G

and a weight function wch
G associated to group characters. And then we consider elements

B↓(K,H) and B↑(K,H) in UD(Qch
G ,w

ch
G ) corresponding to the Bratteli diagram of sub-

groupsK and H of G.

DEFINITION 5.1. (1) Let CG be the set of all pairs of subgroups H ≤ G and charac-
ters χ ∈ Irr(H), namely

CG :=
⋃

H∈Sgp(G)

{(H, χ) | χ ∈ Irr(H)}.

Then CG is a poset under an ordering� defined by (H, χ) � (K, θ) precisely when
H ≤ K and (χ, θ |H )H �= 0. Denote by

Qch
G := Q(CG,�)
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a quiver associated to a poset (CG,�) (see Definition 4.1). In this case, a weight

function wch
G of Qch

G is defined by

wch
G

(
(K, θ)→ (H, χ)

) := (χ, θ |H )H ∈ Z .

(2) For a generalized character ξ =∑
χ∈Irr(H) mχχ ∈ Z[Irr(H)] ofH , we write (H, ξ)

for an element
∑
χ∈Irr(H) mχ(H, χ) in a Z-subalgebra Z(Qch

G )0 ⊆ ZQch
G (see Sec-

tion 2).

REMARK 5.2. An arrow α = (
(K, θ) → (H, χ)

)
of weight m := (χ, θ |H)H �= 0 is

defined by the restriction θ |H of θ . Then, by Frobenious reciprocity (cf. [3, page 62]), we

think that the opposite arrow tα = (
(K, θ) ← (H, χ)

)
of weight m = (

θ, χK
)
K

is defined

by the induction χK of χ .

DEFINITION 5.3. For subgroupsH < K ≤ G, put

(Pch
G )K,H :=

{(
(K, θ)→ (H, χ)

) ∈ P
(
Qch
G

) | θ ∈ Irr(K), χ ∈ Irr(H)
}
.

Define an element β(K,H) in the path algebra ZQch
G as follows:

β(K,H) :=
∑

Δ∈(Pch
G )K,H

Δ ∈ ZQch
G .

Furthermore, define an element β(H,H) := ∑
χ∈Irr(H)(H, χ) ∈ Z(Qch

G )0 to be the sum of

all trivial paths corresponding to vertices (H, χ) for all χ ∈ Irr(H).

REMARK 5.4. It is worth mentioning that the above β(K,H) (H < K) together with

weights wch
G can be thought of the “Bratteli diagram” ofK and H (see [2] for example). This

is a graph whose vertex set is Irr(K) ∪ Irr(H), and two distinct θ, χ ∈ Irr(K) ∪ Irr(H) are
joined by m edges if and only if (χ, θH )H = m for θ ∈ Irr(K) and χ ∈ Irr(H).

DEFINITION 5.5 (Bratteli operators). For subgroups H ≤ K ≤ G, define two ele-

ments of UD(Qch
G ,w

ch
G ) ⊆ End(Z(Qch

G )0) corresponding to β(K,H) as follows:

B↓(K,H) := ρwch
G

(
β(K,H)

) =
∑

Δ∈(Pch
G )K,H

ρwch
G
(Δ) : Z(Qch

G )0 −→ Z(Qch
G )0

B↑(K,H) := λwch
G

(
β(K,H)

) =
∑

Δ∈(Pch
G )K,H

λwch
G
(Δ) : Z(Qch

G )0 −→ Z(Qch
G )0

In particular, we have that B↓(H,H) = B↑(H,H), and that for (L, η) ∈ (Qch
G )0 = CG,

(L, η)B↓(K,H) =
∑

Δ∈(Pch
G )K,H

(L, η)Δ =
∑

Δ∈(Pch
G )K,H

wch
G (Δ)

(
δ(L,η),s(Δ)r(Δ)

) ∈ Z(Qch
G )0
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(L, η)B↑(K,H) =
∑

Δ∈(Pch
G )K,H

Δ(L, η) =
∑

Δ∈(Pch
G )K,H

wch
G (Δ)

(
δr(Δ),(L,η)s(Δ)

) ∈ Z(Qch
G )0

EXAMPLE 5.6. For subgroupsH < K ≤ G, suppose that Irr(K) = {θ1, θ2, θ3, θ4, θ5}
and Irr(H) = {χ1, χ2, χ3}, and that β(K,H) ∈ ZQch

G with weights mi is given as follows:

θ1 θ2 θ3
Irr(K)

Irr(H)

θ4 θ5

χ1 χ2 χ3

m1
m2

m3

m4 m5

m6

m7

In this case, for example, (K, θ2)
B↓(K,H) and (H, χ2)

B↑(K,H) are calculated as follows:

(K, θ2)
B↓(K,H) = m2(H, χ1)+m3(H, χ2) = (H,m2χ1 +m3χ2) = (H, θ2|H )

(H, χ2)
B↑(K,H) = m3(K, θ2)+m4(K, θ3)+m5(K, θ4)

= (K,m3θ2 +m4θ3 +m5θ4) =
(
K, (χ2)

K
)

In general, we get the next.

PROPOSITION 5.7. For subgroups H,K ≤ G, and (L, η) ∈ (Qch
G )0 = CG, we have

that
(1) (L, η)B↓(K,H) = δK,L(H, η|H) and (L, η)B↑(K,H) = δH,L

(
K, ηK

)
for H ≤ K .

(2) (Mackey Decomposition) For a set {x1, . . . , xr } of (K,H)-double coset representa-
tives in G,

(L, η)B↑(G,H)◦B↓(G,K) = δH,L
r∑

i=1

(Hi, η
xi )B↓(Hi,Hi∩K)◦B↑(Hi∩K,K)

where Hi := xiHx−1
i .

PROPOSITION 5.8. As in the following, let B be a Z-subalgebra of ZQch
G , and let B↓

and B↑ be Z-subalgebras of UD(Qch
G ,w

ch
G ) ≤ End

(
Z(Qch

G )0
)
.

B := 〈
β(K,H) | H ≤ K ≤ G 〉 ≤ ZQch

G

B↓ :=
〈
B↓(K,H) | H ≤ K ≤ G

〉 ≤ UD(Qch
G ,w

ch
G )

B↑ :=
〈
B↑(K,H) | H ≤ K ≤ G

〉 ≤ UD(Qch
G ,w

ch
G )

(1) The Z-algebra B is isomorphic to the path algebra ZQG defined by the lattice
(Sgp(G),≤).

(2) For a Z-submoduleM of Z(Qch
G )0,M is a right (resp. left) ZQG-module if and only

if M is invariant under B↓ (resp. B↑).
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PROOF. (1) It is clear from the fact that generators β(K,H) and β(H,H) (H < K ≤
G) of B correspond to a path (K → H) of length 1 and the trivial path H in the quiver QG
(see Definition 4.2).

(2) From the definition, M is invariant under B↓ (resp. B↑) if and only if M is a right
(resp. left) B-module. So the assertion follows from (1). �

EXAMPLE 5.9. Let Mtri and Mreg be Z-submodules of Z(Qch
G )0 as follows:

Mtri :=
∑

K∈Sgp(G)

(K, 1K)Z, Mreg :=
∑

H∈Sgp(G)

(H, ρH )Z

where 1H and ρH are the trivial and regular characters of H . Since, for H ≤ K ≤ G,

(K, 1K)B↓(K,H) = (H, 1H), (H, ρH )B↑(K,H) = (K, ρK) ,
(K, ρK)

B↓(K,H) = |K : H |(H, ρH) ,

we have from Proposition 5.8 (2) and Proposition 3.2 that

Mtri ∼=
(
Φw,Z(QG)0

)
as right ZQG-modules where w = 1

Mreg ∼=
(
Ψw,Z(QG)0

)
as left ZQG-modules where w = 1

Mreg ∼=
(
Φw,Z(QG)0

)
as right ZQG-modules where w = wG

where wG is defined by indices of subgroups of G (see Definition 4.2).

5.2. A characterization of G by weights. In this section, we see that the group G

is characterized by a weight function wch
G which behaves in a special way. For any element

x := (H, χ) ∈ CG, define χx := χ .

LEMMA 5.10. For any pathΔ in Qch
G , we have that wch

G (Δ) ≤
[
χs(Δ)(1)
χr(Δ)(1)

]
.

PROOF. For any path Δ := (
(H0, χ0) → (H1, χ1) → · · · → (Hk, χk)

)
in Qch

G , we

set mi := (χi |Hi+1, χi+1)Hi+1 (0 ≤ i ≤ k − 1). Then wch
G (Δ) =

∏k−1
i=0 mi . Furthermore set

m := (χ0|Hk , χk)Hk . Then we have that

k−1∏

i=0

mi ≤ m ≤
[
χ0(1)

χk(1)

]
=
[
χs(Δ)(1)

χr(Δ)(1)

]

as desired. �

PROPOSITION 5.11. The followings are equivalent.

(1) For any path Δ in Qch
G , we have that wch

G (Δ) =
[
χs(Δ)(1)
χr(Δ)(1)

]
.

(2) G is abelian.

PROOF. (2) ⇒ (1): Since every irreducible character of a (finite) abelian group has
degree 1, the assertion clearly holds.
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(1) ⇒ (2): First of all, we will show that any abelian subgroup C ≤ G is normal in

G. Take any ψ ∈ Irr(C), and express ψG = ∑t
i=1miθi for some mi ≥ 1 and θi ∈ Irr(G).

Then Δ := (
(G, θi) → (C,ψ)

)
forms a path in Qch

G , and by our assumption wch
G (Δ) =[

χs(Δ)(1)
χr(Δ)(1)

]
=
[
θi(1)
ψ(1)

]
= θi(1). This implies that

θi |C = θi(1)ψ, (ψG)|C =
( t∑

i=1

miθi(1)

)
ψ . (∗)

In particular, in the case of the trivial character ψ := 1C of C, we have, by (∗), that

(1C)G(y) = (1C)G(1) = |G : C| for any y ∈ C. On the other hand, the definition of in-

duced characters tells us that (1C)G(y) = 1
|C|

∑
g∈G 1◦C(g−1yg), and hence g−1yg ∈ C for

any g ∈ G. It follows that C is a normal subgroup of G.
Now, we will show that G is abelian by induction on the order |G| of G. Before doing

this, it is worth mentioning that, for any proper subgroup H < G and a non-trivial normal
subgroup {1} �= N � G, H and G/N clearly satisfy the condition (1), so that by induction
both H andG/N are abelian.

Suppose that |π(G)| ≥ 2 where π(G) is the set of primes dividing the order of G. Take
any elements x, y ∈ G whose orders are relatively prime. As shown in the above, abelian
subgroups 〈x〉 and 〈y〉 are normal in G, so that 〈x〉〈y〉 = 〈x〉 × 〈y〉 and [x, y] = 1. This
yields that G is the direct product of Sylow subgroups of G, namely it is nilpotent. Since
|π(G)| ≥ 2, each Sylow subgroup is abelian by induction, and thus G is abelian. So we may
assume that G is a p-group for some prime p.

Suppose that there exist elements x, y ∈ G such that [x, y] �= 1. If 〈x, y〉 < G then
by induction [x, y] = 1, a contradiction. So we get G = 〈x, y〉. Let Cp ∼= 〈a〉 ≤ Z(G),
and then by induction G/〈a〉 is abelian, so that [x, y] ∈ [G,G] ≤ 〈a〉. Suppose further that
there exists an element b ∈ G of order p such that 〈a〉 �= 〈b〉. Since 〈b〉 ∩ 〈x〉, 〈b〉 ∩ 〈y〉 ≤
〈b〉 ∼= Cp, we obtain that [b, x] = 1 = [b, y]. This means that b ∈ Z(G), and by induction
G/〈b〉 is abelian, so that [x, y] ∈ [G,G] ≤ 〈b〉. It follows that [x, y] ∈ 〈a〉 ∩ 〈b〉 = {1}, a
contradiction. Thus the p-group G possesses the unique subgroup of order p, which implies
that G is isomorphic to a cyclic group or a generalized quaternion group (cf. [7, page 59]).
But since [x, y] �= 1, and since any proper subgroup of G is abelian by induction, we have

that G ∼= Q8 = 〈A,B | A4 = 1, A2 = B2, B−1AB = A−1〉 the quaternion group. Then
there exists the unique irreducible character θ ∈ Irr(G) of degree 2. Let C := 〈A〉 ∼= C4

be an abelian subgroup of G, and then θ |C = ψ1 + ψ2 for certain distinct ψ1, ψ2 ∈ Irr(C).
However, this contradicts (∗). The proof is complete. �

5.3. Trivial generating constants. In this section, we investigate the case where all

of the generating constants of UD(Qch
G ,w

ch
G ) are equal to 1. And indeed we finally show that

every finite group has this property. For a subgroupH ≤ G, set

PH := P
((
Qch
H

)ud
)

and P := P
((
Qch
G

)ud
)
.
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For elements u, v ∈ CH ⊆ CG, we denote by sHu,v the generating constant of UD(Qch
H ,w

ch
H ).

Furthermore an element ({e}, 1{e}) of CG for the trivial subgroup {e} of G is denoted by just
1.

DEFINITION 5.12. We say that a finite group G is a TGC-group (Trivial Generating
Constant) if sx,y = 1 for any x, y ∈ CG.

LEMMA 5.13. (1) If sx,1 = 1 for any x ∈ CG thenG is a TGC-group.

(2) Let H be a subgroup of G. If sHx,y = 1 for some x, y ∈ CH then sx,y = 1.

PROOF. (1) For any x, y ∈ CG, we have that sx,1 = 1 and s1,y = sy,1 = 1 by our
assumption. So there exist integersmΔ and nΓ such that

∑

Δ∈Px⇒1

mΔw
ch
G (Δ) = 1 ,

∑

Γ ∈P1⇒y

nΓ w
ch
G (Γ ) = 1 .

It follows that

sx,y · Z :=
∑

Υ ∈Px⇒y
wch
G (Υ ) · Z �

∑

Δ∈Px⇒1

∑

Γ ∈P1⇒y

mΔnΓ w
ch
G (ΔΓ )

=
∑

Δ∈Px⇒1

∑

Γ ∈P1⇒y

mΔnΓ w
ch
G (Δ)w

ch
G (Γ )

=
( ∑

Δ∈Px⇒1

mΔw
ch
G (Δ)

)
×
( ∑

Γ ∈P1⇒y

nΓ w
ch
G (Γ )

)
= 1 .

(2) By our assumption sHx,y = 1, there exist integers mΔ such that

∑

Δ∈(PH )x⇒y
mΔw

ch
H (Δ) = 1.

But since (PH )x⇒y ⊆ Px⇒y , we have that 1 ∈ sx,y · Z. �

LEMMA 5.14. Let H and K be TGC-groups. Set G := H × K . Then for any x :=
(G, χ) ∈ CG, we have that sx,1 = 1.

PROOF. The irreducible characters of G can be obtained as Irr(G) = {θ × ψ | θ ∈
Irr(H), ψ ∈ Irr(K)} where (θ × ψ)(hk) := θ(h)ψ(k) for hk ∈ G = H × K (cf. [3,
page 59]). So we may assume that χ = θ × ψ for some θ ∈ Irr(H) and ψ ∈ Irr(K). Let
y := (H, θ) ∈ CH and z := (K,ψ) ∈ CK . Then sH

y,1 = sK
z,1 = 1 by our assumption, so there

exist integersmΔ and nΓ such that
∑

Δ∈(PH )y⇒1

mΔw
ch
H (Δ) = 1 ,

∑

Γ ∈(PK)z⇒1

nΓ w
ch
K (Γ ) = 1 .
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Now for paths

Δ = (
y =: (H1, θ1)− (H2, θ2)− · · · − (Hs, θs) := 1

) ∈ (PH)y⇒1 ,

Γ = (
z =: (K1, ψ1)− (K2, ψ2)− · · · − (Kt , ψt ) := 1

) ∈ (PK)z⇒1 ,

define pi,j := (Hi ×Kj , θi × ψj) ∈ CG (1 ≤ i ≤ s, 1 ≤ j ≤ t). Then it is straightforward
to check that

Δ�Γ := (
p1,1 − p2,1 − · · · − ps−1,1 − ps,1 − ps,2 − · · · − ps,t−1 − ps,t

)

forms a path in Px⇒1 with the property that

wch
G (pi,1 − pi+1,1) = wch

H

(
(Hi, θi)− (Hi+1, θi+1)

)
(1 ≤ i ≤ s − 1) ,

wch
G (ps,j − ps,j+1) = wch

K

(
(Kj ,ψj )− (Kj+1, ψj+1)

)
(1 ≤ j ≤ t − 1) .

This tells us that wch
G (Δ�Γ ) = wch

H (Δ)× wch
K (Γ ). It follows that

sx,1 · Z :=
∑

Υ ∈Px⇒1

wch
G (Υ ) · Z �

∑

Δ∈(PH )y⇒1

∑

Γ ∈(PK)z⇒1

mΔnΓ w
ch
G (Δ�Γ )

=
( ∑

Δ∈(PH )y⇒1

mΔw
ch
H (Δ)

)
×
( ∑

Γ ∈(PK)z⇒1

nΓ w
ch
K (Γ )

)
= 1 .

The proof is complete. �

DEFINITION 5.15 (cf. page 127 in [3]). A finite group E is said to be elementary or
p-elementary (where p is a prime) if E is the direct product of a cyclic group and a p-group.

THEOREM 5.16. If any elementary subgroups of G are TGC-groups then G is a
TGC-group.

PROOF. By Lemma 5.13, it suffices to show that sx,1 = 1 for any x := (K, χ) ∈ CG.
Now using Brauer’s characterization of characters (cf. [3, Theorem 8.4]), χ ∈ Irr(K) can be
expressed as

χ =
∑

λ∈Λ
mλ(ψλ)

K

where Λ is an index set, mλ is an integer, and ψλ is a linear character of an elementary
subgroup Eλ of K . Let {λ1, . . . , λs} := {λ ∈ Λ | 0 �= αλ :=

(
χ, (ψλ)

K
)
K
}. Then we

have that 1 =∑s
i=1mλiαλi . By our assumption, Eλ is a TGC-group, and thus s

Eλi
xi ,1
= 1 for

xi := (Eλi , ψλi ). This implies that
∑

Δ∈(PEλi )xi⇒1

nΔw
ch
Eλi
(Δ) = 1
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for some integers nΔ. On the other hand, set Γi :=
(
x → xi) (1 ≤ i ≤ s) an arrow of weight

αλi . Then ΓiΔ is a member of Px⇒1 for any Δ ∈ (PEλi )xi⇒1. Hence we have that

sx,1 · Z :=
∑

Υ ∈Px⇒1

wch
G (Υ ) · Z �

s∑

i=1

( ∑

Δ∈(PEλi )xi⇒1

mλinΔw
ch
G (ΓiΔ)

)

=
s∑

i=1

mλiαλi

( ∑

Δ∈(PEλi )xi⇒1

nΔw
ch
G (Δ)

)
=

s∑

i=1

mλiαλi = 1 .

The proof is complete. �

LEMMA 5.17 (cf. Corollary 6.19 in [3]). Let P be a p-group and let H its subgroup
whose index in P is p. Suppose χ ∈ Irr(P ). Then one of the following holds:

(1) χ |H is irreducible.
(2) χ |H is a sum of distinct irreducible characters of H .

LEMMA 5.18. (1) An abelian group A is a TGC-group.
(2) A p-group P is a TGC-group.

PROOF. (1) Let Δ = (x → y) be an arrow in Qch
A where x := (H, χ) and y :=

(K,ψ) ∈ CA. Put 0 �= m := wch
A (Δ) = (χ |K,ψ)K . Then since χ(1) ≥ mψ(1), and since

every irreducible character of a (finite) abelian group has degree 1, we have that m = 1. This
implies that A is a TGC-group.

(2) We proceed by induction on the order |P | of P . By Lemma 5.13, it suffices to show
that sx,1 = 1 for any x := (K, χ) ∈ CP . Suppose thatK < P . Then sinceK is a TGC-group

by induction, we have that sKx,1 = 1, and thus sx,1 = 1 by Lemma 5.13.

Suppose next that K = P . Let H be a maximal subgroup of P , then |P : H | = p.
By Lemma 5.17, for χ ∈ Irr(P ), there exists θ ∈ Irr(H) such that (χ |H , θ)H = 1. Let
y := (H, θ) ∈ CH ⊆ CP , and set Γ := (

x → y) an arrow of weight 1. Then ΓΔ is in Px⇒1

for any Δ ∈ (PH )y⇒1. Furthermore, since H is a TGC-group by induction, we have that

sHy,1 = 1. So there exist integers nΔ such that
∑

Δ∈(PH )y⇒1

nΔw
ch
H (Δ) = 1 .

Therefore

sx,1 · Z :=
∑

Υ ∈Px⇒1

wch
P (Υ ) · Z �

∑

Δ∈(PH )y⇒1

nΔw
ch
H (Γ Δ)

=
∑

Δ∈(PH)y⇒1

nΔw
ch
H (Δ) = 1 .

The proof is complete. �
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LEMMA 5.19. Every p-elementary group E = P ×C where P is a p-group and C is
a p′-cyclic is a TGC-group.

PROOF. We proceed by induction on the order |E| of E. By Lemma 5.13, it suffices
to show that sx,1 = 1 for any x := (S, χ) ∈ CE . Suppose that S < E. Then since S =
(S∩P)× (S∩C) is a p-elementary group whose order |S| is less than |E|, S is a TGC-group

by induction. It follows that sSx,1 = 1, and thus sx,1 = 1 by Lemma 5.13. So we may assume

that S = E = P × C. Note that, by Lemma 5.18, P and C are both TGC-groups. Therefore
Lemma 5.14 tells us that sx,1 = 1. The proof is complete. �

THEOREM 5.20. Every finite group is a TGC-group.

PROOF. Straightforward from Theorem 5.16 and Lemma 5.19. �

ACKNOWLEDGMENTS. The authors would like to thank the anonymous referee for
helpful comments and suggestions.

References

[ 1 ] M. AUSLANDER, I. REITEN and S.O. SMALØ, Representation theory of Artin algebras, Corrected reprint of
the 1995 original, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, 1997.

[ 2 ] N. CHIGIRA and N. IIYORI, Bratteli diagrams of finite groups, Comm. Algebra 23 (1995), 5315–5327.
[ 3 ] I. M. ISAACS, Character theory of finite groups, Corrected reprint of the 1976 original, Dover Publications,

New York, (1994).
[ 4 ] I. REITEN, Dynkin diagrams and the representation theory of algebras, Notices Amer. Math. Soc. 44 (1997),

no. 5, 546–556.
[ 5 ] W. R. SCOTT, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
[ 6 ] S. D. SMITH, Subgroup complexes, Mathematical Surveys and Monographs, 179, American Mathematical

Society, Providence, RI, 2011.
[ 7 ] M. SUZUKI, Group theory II, Grundlehren der Mathematischen Wissenschaften, 248, Springer-Verlag, New

York, 1986.

Present Addresses:
NOBUO IIYORI

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION,
YAMAGUCHI UNIVERSITY,
YAMAGUCHI, 753–8511 JAPAN.
e-mail: iiyori@yamaguchi-u.ac.jp

MASATO SAWABE

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION,
CHIBA UNIVERSITY,
INAGE-KU YAYOI-CHO 1–33, CHIBA,
263–8522 JAPAN.
e-mail: sawabe@faculty.chiba-u.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ARA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /BGR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHT (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CZE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DAN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ENU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ESP (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ETI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /FRA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /GRE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HEB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HRV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HUN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ITA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFFff08682aff0956fd969b6587732e53705237793e306e51fa529b6a5f306b90693057305f002000410064006f0062006500200050004400460020658766f830924f5c62103057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LTH (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LVI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NLD (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /POL (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /PTB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUM (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SKY (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SLV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SUO (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /TUR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /UKR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


