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Abstract. We define and study the Bessel potential and inhomogeneous Besov spaces associated with the

Dunkl operators on Rd . As applications on these spaces we construct the Sobolev type embedding theorem and the
paraproduct operators associated with the Dunkl operators, as similar to those defined by Bony. We also establish
Strichartz type estimates for the Dunkl-Schrödinger equation and finally we study the problem of well posedness of
the generalized heat equation.

1. Introduction

The Dunkl operators, which are differential-difference operators introduced by Dunkl in
[3], are very important in pure mathematics and in physics. Especially, they provide a useful
tool in the study of special functions related with root systems (cf. [4]). In the previous paper
[7], we study some function spaces associated with Dunkl operators. We have begun a general
theory on Littlewood-Paley decompositions associated with Dunkl operators and introduced
generalized Sobolev spaces, generalized Hölder spaces and BMO associated with the Dunkl
operators.

In this second paper of a series of our study we continue our investigation of func-
tion spaces; generalized Bessel potential spaces, inhomogeneous Besov spaces and Triebel-
Lizorkin spaces associated with Dunkl operators. We obtain their basic properties and apply
them to estimate the solutions of the Dunkl-Schrödinger and the Dunkl heat equations. In
their recent paper [1], Abdelkefi, Anker, Sassi and Sifi also obtain some basic properties of
the Besov spaces and integrability for the Dunkl transform.

The contents of the paper are as follows. In §2 we recall some basic results about the har-
monic analysis associated with the Dunkl operators. In §3 we introduce the Littlewood-Paley
decomposition associated with the Dunkl operators. We shall obtain Bernstein’s inequalities.
§4 is devoted to study the Dunkl-Bessel potential spaces, the inhomogeneous Dunkl-Besov
spaces and the Dunkl-Triebel-Lizorkin spaces. According to a standard process in the Eu-
clidean case (cf. [15]), we shall consider equivalent norms, lifting properties, interpolations
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and dualities of these spaces. In §5 we summarize some results on embeddings and para-
product operators, which depend on the index γ associated to the multiplicity function of
the root system. In the last §6 we consider some applications of the Dunkl-Besov spaces to
differential-difference equations. We shall obtain Strichartz type estimates of the solutions
of the Dunkl-Schrödinger equation and finally a space-time estimate of the solutions of the
Dunkl heat equation.

Throughout this paper by c, C we always represent positive constants not necessarily the
same in each occurrence.

2. Preliminaries

In order to confirm the basic and standard notations we briefly overview the theory of
Dunkl operators and related harmonic analysis. Main references are [3, 4, 5, 6, 7, 11, 12, 14,
17, 18].

2.1. Root system, reflection group and multiplicity function. Let Rd be the Eu-
clidean space equipped with a scalar product 〈, 〉 and let ‖x‖ = √〈x, x〉. For α in Rd\{0},
σα denotes the reflection in the hyperplane Hα ⊂ Rd perpendicular to α, i.e., for x ∈ Rd ,

σα(x) = x−2‖α‖−2〈α, x〉α. A finite setR ⊂ Rd\{0} is called a root system ifR∩Rα = {±α}
and σαR = R for all α ∈ R. We normalize each α ∈ R as 〈α, α〉 = 2. We fix a
β ∈ Rd\∪α∈RHα and define a positive root system R+ of R as R+ = {α ∈ R | 〈α, β〉 > 0}.
The reflections σα, α ∈ R, generate a finite group W ⊂ O(d), called the reflection group. A
function k : R → C on R is called a multiplicity function if it is invariant under the action of
W . We introduce the index γ as

γ = γ (k) =
∑
α∈R+

k(α) .

Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ R. We denote by ωk the
weight function on Rd given by

ωk(x) =
∏
α∈R+

|〈α, x〉|2k(α) ,

which is invariant and homogeneous of degree 2γ . In the case that the reflection group W

is the group Zd2 of sign changes, the weight function ωk is a product function of the form∏d
j=1 |xj |2kj , kj ≥ 0. We denote by ck the Mehta-type constant defined by

ck =
∫

Rd
e

−‖x‖2

2 ωk(x)dx .

In the following we denote by
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C(Rd ) the space of continuous functions on Rd .
C0(Rd) the space of continuous functions on Rd vanishing at infinity.
Cp(Rd) the space of functions of class Cp on Rd .
C
p
b (R

d) the space of bounded functions of class Cp.
E(Rd ) the space of C∞-functions on Rd .
S(Rd ) the Schwartz space of rapidly decreasing functions on Rd .
D(Rd ) the space of C∞-functions on Rd which are of compact support.
S ′(Rd) the space of temperate distributions on Rd .

2.2. The Dunkl operators. Let k : R → C be a multiplicity function on R and R+
a fixed positive root system of R. Then the Dunkl operators Tj , 1 ≤ j ≤ d , are defined on

C1(Rd) by

Tjf (x) = ∂

∂xj
f (x)+

∑
α∈R+

k(α)αj
f (x)− f (σα(x))

〈α, x〉 ,

where α = (α1, α2, . . . , αd ). Similarly as ordinary derivatives, each Tj satisfies for all f , g
in C1(Rd ) and at least one of them is W -invariant,

Tj (f g) = (Tjf )g + f (Tjg)

and for all f in C1
b (R

d) and g in S(Rd ),∫
Rd
Tjf (x)g(x)ωk(x)dx = −

∫
Rd
f (x)Tjg(x)ωk(x)dx .

Furthermore, according to [3, 4], the Dunkl operators Tj , 1 ≤ j ≤ d , commute and there
exists the so-called Dunkl’s intertwining operator Vk such that TjVk = Vk(∂/∂xj ) for 1 ≤
j ≤ d and Vk(1) = 1. We define the Dunkl-Laplace operator �k on Rd by

�kf (x) =
d∑
j=1

T 2
j f (x) = �f (x)+ 2

∑
α∈R+

k(α)

( 〈∇f (x), α〉
〈α, x〉 − f (x)− f (σα(x))

〈α, x〉2

)
,

where � and ∇ are the usual Euclidean Laplacian and nabla operators on Rd respectively.
Since the Dunkl operators commute, their joint eigenvalue problem is significant, and for

each y ∈ Rd , the system

Tju(x, y) = yju(x, y), j = 1, . . . , d, and u(0, y) = 1

admits a unique analytic solution K(x, y), x ∈ Rd , called the Dunkl kernel, which has a
holomorphic extension to Cd × Cd . For x, y ∈ Cd , the kernel satisfies

(a) K(x, y) = K(y, x),
(b) K(λx, y) = K(x, λy) for λ ∈ C,
(c) K(wx,wy) = K(x, y) for w ∈ W .
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2.3. The Dunkl transform. For functions f on Rd we define Lp-norms of f with
respect to ωk(x)dx as

‖f ‖Lpk (Rd) =
( ∫

Rd
|f (x)|pωk(x)dx

) 1
p

,

if 1 ≤ p < ∞ and ‖f ‖L∞
k (R

d) = ess supx∈Rd |f (x)|. We denote by Lpk (R
d ) the space of all

measurable functions f on Rd with finite Lpk -norm.

The Dunkl transform FD on L1
k(R

d ) is given by

FD(f )(y) = 1

ck

∫
Rd
f (x)K(x,−iy)ωk(x)dx .

Some basic properties are the following (cf. [5] and [6]): For all f ∈ L1
k(R

d),

(a) ‖FD(f )‖L∞
k (R

d) ≤ c−1
k ‖f ‖L1

k(R
d),

(b) FD(f (·/λ)))(y) = λ2γ+dFD(f )(λy) for λ > 0,
(c) if FD(f ) belongs to L1

k(R
d), then

f (y) = 1

ck

∫
Rd

FD(f )(x)K(ix, y)ωk(x)dx ,

and moreover, for all f ∈ S(Rd ),
(d) FD(Tjf )(y) = iyjFD(f )(y),
(e) if we define FD(f )(y) = FD(f )(−y), then

FDFD = FDFD = Id .

PROPOSITION 2.1. The Dunkl transform FD is a topological isomorphism from
S(Rd ) onto itself and for all f in S(Rd ),∫

Rd
|f (x)|2ωk(x)dx =

∫
Rd

|FD(f )(ξ)|2ωk(ξ)dξ .

In particular, the Dunkl transform f → FD(f ) can be uniquely extended to an isometric

isomorphism on L2
k(R

d).

We define the tempered distribution Tf associated with f ∈ Lpk (Rd ) by

(2.1) 〈Tf , φ〉 =
∫

Rd
f (x)φ(x)ωk(x)dx

for φ ∈ S(Rd ) and denote by 〈f, φ〉k the integral in the righthand side.

DEFINITION 2.1. The Dunkl transform FD(τ) of a distribution τ ∈ S ′(Rd ) is defined
by

〈FD(τ), φ〉 = 〈τ,FD(φ)〉
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for φ ∈ S(Rd ).

In particular, for f ∈ Lpk (Rd), it follows that for φ ∈ S(Rd ),

〈FD(f ), φ〉 = 〈FD(Tf ), φ〉 = 〈Tf ,FD(φ)〉 = 〈f,FD(φ)〉k .
THEOREM 2.2. The Dunkl transform FD is a topological isomorphism from S ′(Rd )

onto itself.

2.4. The Dunkl convolution. By using the Dunkl kernel in 2.2, we introduce a gener-
alized translation and a convolution structure in our Dunkl setting. For a function f ∈ S(Rd )
and y ∈ Rd the Dunkl translation τyf is defined by

τyf (x) = 1

ck

∫
Rd

FD(f )(z)K(ix, z)K(iy, z)ωk(z)dz .

Clearly τyf (x) = τxf (y) and by using the Dunkl’s intertwining operator Vk , τyf is related

to the usual translation as τyf (x) = (Vk)x(Vk)y((Vk)
−1(f )(x + y)) (cf. [11, 18]), where the

subscript x of (Vk)x means that Vk is applied to the x variable. Hence, τy can also be defined

for f ∈ E(Rd ). We define the Dunkl convolution product f ∗D g of functions f, g ∈ S(Rd )
as follows.

f ∗D g(x) =
∫

Rd
τxf (−y)g(y)ωk(y)dy .

This convolution is commutative and associative (cf. [18]). Since FD(τyf )(x) = K(ix, y)

FD(f )(x) by the above definition of τyf , it follows that

(a) For all f, g ∈ D(Rd ) (resp. S(Rd)), f ∗D g belongs to D(Rd ) (resp. S(Rd )) and

(2.2) FD(f ∗D g)(y) = FD(f )(y)FD(g)(y) .

Moreover, as pointed in [14], §4 and §7, the operator f → f ∗D g is bounded on Lpk (R
d ),

1 ≤ p ≤ ∞, provided that g is a radial function in L1
k(R

d) or an arbitrary function in L1
k(R

d )

for W = Zd2 . Hence the standard argument yields the following Young’s inequality.

(b) Let 1 ≤ p, q, r ≤ ∞ such that 1
p

+ 1
q

− 1
r

= 1. If f ∈ Lpk (Rd) and g ∈ Lqk (Rd) is

radial or arbitrary for W = Zd2 , then f ∗D g ∈ Lrk(Rd) and

(2.3) ‖f ∗D g‖Lrk(Rd) ≤ 2
d
2 ‖f ‖Lpk (Rd) ‖g‖Lqk (Rd) .

DEFINITION 2.2. The Dunkl convolution product of a distribution S in S ′(Rd) and a
function φ in S(Rd ) is the function S ∗D φ defined by

S ∗D φ(x) = 〈Sy, τ−yφ(x)〉 .
PROPOSITION 2.3. Let f be in Lpk (R

d ), 1 ≤ p ≤ ∞, and φ in S(Rd). Then the
distribution Tf ∗D φ is given by the function f ∗D φ. If we assume that φ is arbitrary for
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d = 1 and radial for d ≥ 2, then Tf ∗D φ belongs to Lpk (R
d ). Moreover, for all ψ ∈ S(Rd ),

(2.4) 〈Tf ∗D φ,ψ〉 = 〈f̌ , φ ∗D ψ̌〉k ,
where ψ̌(x) = ψ(−x), and

(2.5) FD(Tf ∗D φ) = FD(Tf )FD(φ) .

PROOF. It follows that

Tf ∗D φ(x) = 〈(Tf )y, τxφ(−y)〉
= 〈f, τxφ(−y)〉k = f ∗D φ(x) .

Let us suppose that φ is arbitrary for d = 1 and radial for d ≥ 2. Then by (2.3), Tf ∗D φ
belongs to Lpk (R

d). By Fubini-Tonelli’s theorem the function (x, y) �→ f (−y)τxφ(y)ψ(x)
is integrable on Rd × Rd with respect to ωk(y)dy ωk(x)dx. Then for any ψ ∈ S(Rd ),

〈Tf ∗D φ,ψ〉 =
∫

Rd

∫
Rd
f (−y)τxφ(y)ψ(x)ωk(y)dyωk(x)dx

=
∫

Rd
f (−y)

(∫
Rd
τyφ(x)ψ(x)ωk(x)dx

)
ωk(y)dy

=
∫

Rd
f (−y)φ ∗D ψ̌(y)ωk(y)dy = 〈f̌ , φ ∗D ψ̌〉k .

Moreover, from (1), (2.2) and (2.4) it follows that

〈FD(Tf ∗D φ),ψ〉 = 〈Tf ∗D φ,FD(ψ)〉
= 〈f̌ , φ ∗D ˇFD(ψ)〉k
= 〈f,FD(FD(φ)ψ)〉k = 〈FD(Tf )FD(φ),ψ〉 .

�

For each u ∈ S ′(Rd), we define the distributions Tju, 1 ≤ j ≤ d , by

〈Tju,ψ〉 = −〈u, Tjψ〉
for all ψ ∈ S(Rd ). Then 〈�ku,ψ〉 = 〈u,�kψ〉 and these distributions satisfy the following
properties (see 2.3 (d)):

FD(Tju) = iyjFD(u) ,(2.6)

FD(�ku) = −‖y‖2FD(u) .

In the following we denote Tf given by (2.1) by f for simplicity.
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3. Dunkl-Littlewood-Paley decomposition

One of the main tools in this paper is the Dunkl-Littlewood-Paley decompositions of

distributions on Rd into dyadic blocks of frequencies. Let ψ be a non-negative function in

D(Rd ), which is radial for d ≥ 2, satisfying ψ(ξ) ≡ 1 for ‖ξ‖ ≤ 1
2 and ψ(ξ) ≡ 0 for

‖ξ‖ ≥ 1. We define a function ϕ on Rd by

ϕ(ξ) = ψ

(
ξ

2

)
− ψ(ξ) .

Then we see that ψ(ξ) + ∑∞
j=0 ϕ(2

−j ξ) = 1.

DEFINITION 3.1. For j = 0, 1, 2, . . . , the operators Sj andΔj on S ′(Rd ) are defined
by

FD(Sjf ) = ψ(2−j ξ)FD(f ) ,

FD(Δjf ) = ϕ(2−j ξ)FD(f ) ,

and put Δ−1 = S0.

We see that f = ∑∞
j=−1Δjf in the sense of S ′(Rd). We call Δjf the j-th dyadic

block of the Dunkl-Littlewood-Paley decomposition of f . Similarly, the operators S̃j and Δ̃j

on S ′(Rd) are defined by replacing ψ and ϕ by ψ̃(ξ) = ψ(
ξ
2 ) and ϕ̃(ξ) = ψ(

ξ
4 ) − ψ(4ξ)

respectively. Throughout this paper we define the functions χ , χ̃ , φ and φ̃ on Rd respectively
by

χ = F−1
D (ψ), χ̃ = F−1

D (ψ̃), φ = F−1
D (ϕ), φ̃ = F−1

D (ϕ̃) .

PROPOSITION 3.1 (Bernstein’s inequalities). For all μ ∈ Nd , σ ∈ R, j ∈ N, 1 ≤
p, q ≤ ∞, 1

q
= 1

p
+ 1

r
− 1, and f ∈ S ′(Rd), we have

(1) ‖Δjf ‖Lqk (Rd) ≤ 2j (d+2γ )( 1
p− 1

q )‖φ̃‖Lrk(Rd)‖Δjf ‖Lpk (Rd),
(2) ‖Sjf ‖Lqk (Rd) ≤ 2j (d+2γ )( 1

p− 1
q )‖χ̃‖Lrk(Rd)‖Sjf ‖Lpk (Rd),

(3) ‖(√−�k)
σΔjf ‖Lpk (Rd) ≤ 2jσ‖F−1

D (‖ξ‖σ ϕ̃)‖L1
k(R

d)‖Δjf ‖Lpk (Rd).
Moreover, if W = Zd2 , then each T μ = T

μ1
1 ◦ · · · ◦ T μdd satisfies

(4) ‖T μΔjf ‖Lpk (Rd) ≤ c2j |μ|‖T μφ̃‖L1
k(R

d)‖Δjf ‖Lpk (Rd),
(5) ‖T μSjf ‖Lpk (Rd) ≤ c2j |μ|‖T μχ̃‖L1

k(R
d)‖Sjf ‖Lpk (Rd).

PROOF. Proposition 2.3 implies that

(3.1) Sjf = 2j (d+2γ )χ̃(2j ·) ∗D Sjf , Δjf = 2j (d+2γ )φ̃(2j ·) ∗D Δjf .
Therefore, (1), (2), (3) follow from (2.3) and (4), (5) follow from (2.3) and (2.6). �
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LEMMA 3.2. Assume that N is an integer such that N > γ + d
2 and that ρ ∈ L2

k(R
d )

satisfies T μρ ∈ L2
k(R

d) for |μ| = N . Then F−1
D (ρ) ∈ L1

k(R
d ) and

‖F−1
D (ρ)‖L1

k(R
d) ≤ C‖ρ‖1−θ

L2
k(R

d)
sup

|μ|=N
‖T μρ‖θ

L2
k(R

d)
,

where θ = d+2γ
2N .

PROOF. The proof is similar to the classical case (cf. [16]). �

DEFINITION 3.2. For s ∈ R, the operator J s
k from S ′(Rd) to S ′(Rd) is defined by

J s
k (f ) = F−1

D ((1 + ‖ · ‖2)
s
2 FDf ) .

We call J −s
k the Dunkl-Bessel potential operator.

PROPOSITION 3.3. Let s ∈ R and 1 ≤ p ≤ ∞. If f ∈ S ′(Rd) satisfies Δjf ∈
L
p
k (R

d ) for j = −1, 0, 1, 2, . . . , then

‖J s
k (Δjf )‖Lpk (Rd) ≤C2sj‖Δjf ‖Lpk (Rd) ,(3.2)

where C is independent of p and j .

PROOF. We note that for all j = 0, 1, 2, . . . ,

Δjf =
1∑

l=−1

Δj+lΔjf =
1∑

l=−1

φj+l ∗D Δjf ,

where φ = F−1
D (ϕ) and φj+l (ξ) = 2(j+l)(d+2γ )φ(2j+lξ ). This gives that

J s
k (Δjf ) =

1∑
l=−1

J s
k (φj+l ) ∗D Δjf .

Since the L2
k(R

d)-norms of FD(J s
k (φj+l ))(ξ) = (1+‖ξ‖2)

s
2φj+l (ξ) and 2(j+l)s (2−2(j+l)+

‖ξ‖2)
s
2 ϕ(ξ) are same, it follows from Lemma 3.2 that

‖J s
k (φj+l )‖L1

k(R
d) ≤ C2js , l = 0,±1 .(3.3)

Hence (3.2) follows from (2.3). The case of j = −1 is proved by the similar way. �

4. B
s,k
p,q , Fs,kp,q , Hs

p,k spaces and basic properties

In this section we define analogues of the Besov, Tribel-Lizorkin and Bessel potential

spaces associated with the Dunkl operators on Rd and obtain their basic properties. In par-
ticular, we use the Dunkl-Littlewood-Paley decomposition of f in S ′(Rd), obtained in the
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previous section, and apply the standard process used in the Euclidean case. Hence, we ex-
pect that, according to routine, we obtain analogous results in our Dunkl setting. However,
we have some obstacles to carry out the Euclidean process, which are stated in Remarks 4.1
and 4.2 below.

4.1. Definitions. From now, we make the convention that for all non-negative se-

quence {aq}q∈Z, the notation
(∑

q a
r
q

) 1
r stands for supq aq in the case r = ∞. Let s ∈ R and

1 ≤ p ≤ ∞. For a sequence {uj }j=0,1,2,..., of functions on Rd , we define

‖{uj }‖lsq (Lpk ) = ‖u0‖Lpk (Rd) +
( ∑
j>0

(2js‖uj‖Lpk (Rd))
q

) 1
q

,

‖{uj }‖Lpk (lsq) = ‖u0‖Lpk (Rd) +
∥∥∥∥∑
j>0

(2js |uj (x)|)q)
1
q

∥∥∥∥
L
p
k (R

d)

.

Let Δj , j = −1, 0, 1, 2, . . . , be the operators given in Definition 3.1. For convenience

we replace the indices j by j + 1. That is, Δ0 = S0, FD(Δjf ) = ϕ(2−j+1ξ)FD(f ) and

f = ∑∞
j=0Δjf in the sense of S ′(Rd ).

DEFINITION 4.1. For s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Dunkl-Besov

space Bs,kp,q(Rd ) is defined by

Bs,kp,q (R
d) = {f ∈ S ′(Rd ) | ‖f ‖

B
s,k
p,q (Rd)

= ‖{Δjf }‖lsq (Lpk ) < ∞} .
DEFINITION 4.2. Let s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Dunkl-Triebel-

Lizorkin space Fs,kp,q(Rd ) is defined by

Fs,kp,q(R
d ) = {f ∈ S ′(Rd) | ‖f ‖

F
s,k
p,q (Rd)

= ‖{Δjf }‖Lpk (lsq ) < ∞} .
DEFINITION 4.3. For s ∈ R and 1 ≤ p ≤ ∞, the Dunkl-Bessel potential space

Hs
p,k(R

d ) is defined as the space J −s
k (L

p
k (R

d )), equipped with the norm ‖f ‖Hs
p,k (R

d) =
‖J s

k (f )‖Lpk (Rd).
REMARK 4.1. We can define these spaces for 0 < p < 1 in the same way. In or-

der to study the case of 0 < p < 1, (vector-valued) Hardy spaces are useful, that is, the
theory of maximal operators is necessary. In our Dunkl setting, it is not accomplished gener-
ally, because of the difficulty arisen from the facts that an explicit formula for a generalized
translation operator τy is unknown and τy is not a positive operator.

4.2. Equivalent norms. Let f ∈ S ′(Rd ). We say that f has a general Dunkl-
Littlewood-Paley decomposition if f is decomposed as f = ∑∞

j=0 uj , where each uj is a

functions on Rd satisfying

suppFD(u0) ⊂ {ξ | |ξ | ≤ 1},
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suppFD(uj ) ⊂ {ξ | 2j−2 ≤ |ξ | ≤ 2j }, j = 1, 2, . . . .

Obviously, the Dunkl-Littlewood-Paley decomposition f = ∑∞
j=0Δjf is an example of the

generalized decomposition.

THEOREM 4.1. (1) Let s ∈ R and 1 ≤ p, q ≤ ∞. Then

‖f ‖
B
s,k
p,q (Rd)

∼ inf ‖{uj }‖lsq (Lpk ) ,
where the infimum is taken over all general Dunkl-Littlewood-Paley decompositions f =∑
j≥0 uj ∈ S ′(Rd ) with ‖{uj }‖lsq (Lpk ) < ∞.

(2) Let s ∈ R and 1 < p < ∞. Then

‖f ‖
F
s,k
p,2(R

d)
∼ inf ‖{uj }‖Lpk (ls2) ,

where the infimum is taken over all general Dunkl-Littlewood-Paley decompositions f =∑
j≥0 uj ∈ S ′(Rd ) with ‖{uj }‖Lpk (ls2) < ∞.

PROOF. Since FD satisfies (2.2), we can apply the same argument used in the proof of
Theorem 4.2.2 in [15]. We note that

Δkf =
∑

|l−k|≤2

Δkul =
∑

r=0,1,2

Δkuk+r .

Hence (1) follows from the inequality ‖φk ∗D uk+r‖Lpk (Rd) ≤ c‖uk+r‖Lpk (Rd) for 1 ≤ p ≤ ∞,

where c is independent of k (see (2.3)). (2) follows from the inequality ‖{φk∗Duk+r }‖Lpk (ls2) ≤
c‖{uk+r}‖Lpk (ls2) for 1 < p < ∞, where c is independent of k, which is obtained in Theorem

3.13 in [7]. �

REMARK 4.2. In the Euclidean case, (2) holds for Fs,kp,q(Rd ) with 1 < q < ∞, be-
cause the inequality ‖{φk ∗D uk+r }‖Lpk (lsq) ≤ c‖{uk+r }‖Lpk (lsq ) follows from the Hörmander

multiplier theorem. However, in our Dunkl setting, we have no Hörmander type multiplier
theorem. When q = 2, we can apply the Plancherel formula for the Dunkl transform FD and
thereby we can obtain (2).

COROLLARY 4.2. Let s ∈ R and 1 ≤ p, q ≤ ∞. Let {uj }j∈N be a sequence of
functions such that ‖{uj }‖lsq (Lpk ) < ∞.

(1) If suppFD(uj ) ⊂ 2jR for some annulus R centered at the origin, then

f = ∑∞
j=0 uj belongs to Bs,kp,q(Rd) and there exists a positive constant C(s) such that

‖f ‖
B
s,k
p,q (Rd)

≤ C(s)‖{uj }‖lsq (Lpk ).
(2) If s > 0 and suppFD(uj ) ⊂ 2jB for some ball B centered at the origin, then

f = ∑∞
j=0 uj belongs to Bs,kp,q(Rd) and there exists a positive constant C(s) such that

‖f ‖
B
s,k
p,q (Rd)

≤ C(s)‖{uj }‖lsq (Lpk ).
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PROOF. We can find an integer N such that Δkf = ∑
|l−k|≤N Δkul in the case of (1)

and Δkf = ∑
l≥k−N Δkul in the case of (2). Hence (1) follows as in Theorem 4.1 (1) (see

[7], Proposition 3.6) and (2) follows as in [7], Proposition 3.7. �

COROLLARY 4.3. Let p, q be as above. The definitions of the spaces Bs,kp,q(Rd ) and

F
s,k
p,2(R

d) do not depend on the choice of the couple (ϕ,ψ) defining the Dunkl-Littlewood-

Paley decomposition.

In the following, we denote by F̃ s,kp,q(Rd ) the space of all f ∈ S ′(Rd)which has a general

Dunkl-Littlewood-Paley decomposition f = ∑∞
j=0 uj with ‖{uj }‖Lpk (lsq ) < ∞. Clearly,

F
s,k
p,q(Rd ) ⊂ F̃

s,k
p,q(Rd) and Fs,kp,2(R

d ) = F̃
s,k
p,2(R

d ) by Theorem 4.1 (2).

THEOREM 4.4. Let 1 < p < ∞ and s ∈ R, we have

F
s,k
p,2(R

d) = Hs
p,k(R

d ) .

PROOF. Because of Fs,kp,2(R
d ) = F̃

s,k
p,2(R

d ), it is enough to show that F̃ s,kp,2(R
d ) =

Hs
p,k(R

d ). When s = 0, this is nothing but a theorem of Littlewood-Paley type. The general

case of s �= 0 follows form the lifting property (see Theorem 4.7 below). �

COROLLARY 4.5. Let s ∈ N and 1 < p < ∞ then

F
s,k
p,2(R

d ) = W
s,p
k (Rd ) ,

where Ws,p
k (Rd ) = {u ∈ S ′(Rd ) | T μu ∈ Lpk (Rd) for all μ ∈ Nd with |μ| = s}.

4.3. Lifting property. We recall that for f ∈ S ′(Rd),

FD(TjΔnf )(ξ) = 2nφ̃(2−nξ)FD(f )(ξ), φ̃(ξ) = iξjφ(ξ) .

Then we can obtain

THEOREM 4.6. Let s ∈ R and 1 ≤ p, q ≤ ∞. The operator Tj is a linear con-

tinuous operator from B
s,k
p,q(Rd ) into Bs−1,k

p,q (Rd), from F̃
s,k
p,q(Rd) into F̃ s−1,k

p,q (Rd), and from

H
s,k
p,q(Rd ) into Hs−1,k

p,q (Rd).

Similarly, we recall that J t
k , t ∈ R, is a linear continuous injective operator from S(Rd )

onto S(Rd ) and is extended to a linear continuous operator from S ′(Rd) onto S ′(Rd ) with
(J t
k )

−1 = J−t
k .

THEOREM 4.7. Let s, t ∈ R and 1 ≤ p, q ≤ ∞. The operator J t
k is a linear continu-

ous injective operator from B
s,k
p,q(Rd) onto Bs−t,kp,q (Rd), from F̃

s,k
p,q(Rd ) onto F̃ s−t,kp,q (Rd), and

from H
s,k
p,q(Rd ) onto Hs−t,k

p,q (Rd).
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PROOF. Since FD satisfies (2.2), we can apply the same arguments used in the proof
of Theorem 5.1.1 in [15]. �

4.4. Embeddings. As in the Euclidean case (see [15], 5.2), the monotone character
of lq -spaces and Minkowski’s inequality yield the following.

THEOREM 4.8. (1) If s1 < s2 and 1 ≤ p, q ≤ ∞, then

Bs2,kp,q (R
d ) ↪→ Bs1,kp,q (R

d ) ,

F s2,kp,q (R
d ) ↪→ Fs1,kp,q (R

d) .

(2) If s ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q1 < q2 ≤ ∞, then

Bs,kp,q1
(Rd ) ↪→ Bs,kp,q2

(Rd) ,

F s,kp,q1
(Rd ) ↪→ Fs,kp,q2

(Rd) .

(3) For s ∈ R and 1 ≤ p, q ≤ ∞, let r = min{p, q}, t = max{p, q}. Then

Bs,kp,r (R
d) ↪→ Fs,kp,q (R

d) ↪→ B
s,k
p,t (R

d ).(4.1)

As in [15], §6, we can obtain.

THEOREM 4.9. Let s ∈ R and 1 ≤ p, q < ∞. ThenD(Rd ) is dense in Bs,kp,q(Rd) and

F
s,k
p,q(Rd ).

4.5. Duality. In the Euclidean case we see that (Bsp,q(R
d ))′ = B−s

p′,q ′(Rd ) and

(F sp,q(R
d ))′ = F−s

p′,q ′(Rd), where p′, q ′ are conjugate numbers of p, q respectively (see [15],

§7). For the Bs,kp,q -spaces, we can apply the same argument used in [15], §7. However, we

can not do for the Fs,kp,q -spaces, because Hörmander’s type multiplier theorem is used in the
Euclidean case (see Remark 4.2). For the Hs

p,k-space, the duality follows from the one of

L
p
k (R

d ).

THEOREM 4.10. (1) If s ∈ R and 1 ≤ p < ∞, then

(H s
p,k(R

d))′ = H−s
p′,k(R

d) .

(2) If s ∈ R and 1 ≤ p, q < ∞, then

(Bs,kp,q(R
d))′ = B

−s,k
p′,q ′ (Rd) .

4.6. Interpolation. We can apply the real method used in [15], §8. In this process,
the duality is used frequently. In our Dunkl setting, as shown in Theorem 4.10 the duality

holds only for Bs,kp,q -spaces and Hs
p,k-spaces. Hence, we have the following.
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THEOREM 4.11. (1) Let s0, s1 ∈ R, s0 �= s1, 0 < θ < 1, s = (1 − θ)s0 + θs1,
1 ≤ p, q, q0, q1 ≤ ∞. Then(

Bs0,kp,q0
(Rd ), Bs1,kp,q1

(Rd)
)
θ,q

= Bs,kp,q(R
d) .

(2) Let s ∈ R, 1 ≤ p0, p1 ≤ ∞, p0 �= p1, 0 < θ < 1, 1
p

= 1−θ
p0

+ θ
p1

, then(
F
s,k
p0,2

(Rd), F s,kp1,2
(Rd)

)
θ,p

= F
s,k
p,2(R

d) .

(3) Let s0, s1 ∈ R, s0 �= s1, 1 ≤ p0, p1 ≤ ∞, p0 �= p1, 0 < θ < 1, s = (1 − θ)s0 + θs1,
1
p

= 1−θ
p0

+ θ
p1

, then (
F
s0,k
p0,2

(Rd ), F s1,kp1,2
(Rd)

)
θ,p

= Bs,kp,p(R
d) .

(4) Let s0, s1 ∈ R, s0 �= s1, 0 < θ < 1, s = (1 − θ)s0 + θs1, 1 ≤ p, q, q0, q1 ≤ ∞. Then(
Fs0,kp,q0

(Rd ), F s1,kp,q1
(Rd)

)
θ,q

= Bs,kp,q(R
d) .(4.2)

PROOF. (1), (2), (3) follows from the arguments used in Theorem 8.1.3 and Theorem
8.3.3 in [15]. (4) follows from (1) and (4.1). �

As a consequence of real and complex interpolations, we can deduce multiplicative in-
equalities, which will be needed in the theory of differential operators.

THEOREM 4.12. (1) If u belongs to B
s,k
p,q(Rd) ∩ B

t,k
p,q(Rd), then u belongs to

B
θs+(1−θ)t,k
p,q (Rd ) for all θ ∈ [0, 1] and

‖u‖
B
θs+(1−θ)t,k
p,q (Rd) ≤ ‖u‖θ

B
s,k
p,q (Rd)

‖u‖1−θ
B
t,k
p,q (Rd)

.

(2) If u belongs to Bs,kp,∞(Rd) ∩ Bt,kp,∞(Rd) and s < t , then u belongs to Bθs+(1−θ)t,k
p,1 (Rd )

for all θ ∈ (0, 1) and there exists a positive constant C(t, s) such that

‖u‖
B
θs+(1−θ)t,k
p,1 (Rd) ≤ C(t, s)‖u‖θ

B
s,k
p,∞(Rd)

‖u‖1−θ
B
t,k
p,∞(Rd)

.

(3) If u belongs to Bs,kp,∞(Rd) ∩ Bs+ε,kp,∞ (Rd ) and ε > 0, then u belongs to Bs,kp,1(R
d) and

there exists a positive constant C such that

‖u‖
B
s,k
p,1(R

d)
≤ C

ε
‖u‖

B
s,k
p,∞(Rd) log2

(
e +

‖u‖
B
s+ε,k
p,∞ (Rd)

‖u‖
B
s,k
p,∞(Rd)

)
.

PROOF. (1) is obvious from Hölder’s inequality. As for (2), we write ‖u‖
B
θs+(1−θ)t,k
p,1 (Rd)

as ∑
j≤N

2j (θs+(1−θ)t)‖Δju‖Lpk (Rd) +
∑
j>N

2j (θs+(1−θ)t)‖Δju‖Lpk (Rd) ,
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where N is chosen here after. By the definition of the Dunkl-Besov norms, we see that

2j (θs+(1−θ)t)‖Δju‖Lpk (Rd) ≤ 2j (1−θ)(t−s)‖u‖
B
s,k
p,∞(Rd) ,

2j (θs+(1−θ)t)‖Δju‖Lpk (Rd) ≤ 2−jθ(t−s)‖u‖
B
t,k
p,∞(Rd)

and thus, ‖u‖
B
θs+(1−θ)t,k
p,1 (Rd) is dominated by

‖u‖
B
s,k
p,∞(Rd)

∑
j≤N

2j (1−θ)(t−s) + ‖u‖
B
t,k
p,∞(Rd)

∑
j>N

2−jθ(t−s)

≤C‖u‖
B
s,k
p,∞(Rd)

2(N+1)(1−θ)(t−s)

2(1−θ)(t−s) − 1
+ ‖u‖

B
t,k
p,∞(Rd)

2−Nθ(t−s)

1 − 2−θ(t−s) .

Hence, in order to complete the proof of (2), it suffices to choose N such that

‖u‖
B
t,k
p,∞(Rd)

‖u‖
B
s,k
p,∞(Rd)

≤ 2N(t−s) < 2
‖u‖

B
t,k
p,∞(Rd)

‖u‖
B
s,k
p,∞(Rd)

.

As for (3), it is easy to see that ‖u‖
B
s,k
p,1(R

d)
is dominated as∑

j≤N−1

2js‖Δju‖Lpk (Rd) +
∑
j≥N

2js‖Δju‖Lpk (Rd)

≤(N + 1)‖u‖
B
s,k
p,∞(Rd) + 2−(N−1)ε

2ε − 1
‖u‖

B
s+ε,k
p,∞ (Rd) .

Hence, letting

N = 1 +
[

1

ε
log2

‖u‖
B
s+ε,k
p,∞ (Rd)

‖u‖
B
s,k
p,∞(Rd)

]
,

we can obtain the desired estimate. �

5. Some properties related with the index

We continue to study the Bk,sp,q spaces. The results obtained in the previous section are
exactly same as in the Euclidean case. In this section we obtain some properties related with
the index γ .

5.1. Embeddings

THEOREM 5.1. If s0, s1 ∈ R, s1 ≤ s0, 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ q ≤ q1 ≤ ∞,

s0 − d+2γ
p

= s1 − d+2γ
p1

, then

B
s,k
p,q(Rd) ↪→ B

s1,k
p1,q1(R

d) .
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PROOF. In order to prove the inclusion, we use the identities

Δjf = φ̃j ∗D Δjf, j = 1, 2, . . . , Δ0f = χ̃ ∗D Δ0f .

Then Bernstein’s inequality (Proposition 3.1 (1)) gives that for j = 0, 1, 2, . . . ,

‖Δjf ‖
L
p1
k (R

d)
≤ C2

j (d+2γ )( 1
p− 1

p1
)‖Δjf ‖Lpk (Rd) .

Thus, by definition of the inhomogeneous Dunkl-Besov spaces, we see that

‖f ‖
B
s1 ,k
p1,q1 (R

d)
≤ C(‖Δ0f ‖Lpk (Rd +

( ∑
j∈N

(2js12
j (d+2γ )( 1

p− 1
p1
)‖Δjf ‖Lpk (Rd))

q1

) 1
q1

≤ C(‖Δ0f ‖Lpk (Rd) +
( ∑
j∈N

(2js‖Δjf ‖Lpk (Rd))
q1

) 1
q1

≤ C‖f ‖
B
s,k
p,q (Rd)

,

because q ≤ q1. �

PROPOSITION 5.2. If 1 < p < ∞, then B
d+2γ
p ,k

p,1 (Rd) ↪→ C0(Rd ) and B0,k
∞,1(R

d) ↪→
Cb(Rd ).

PROOF. To prove that B
d+2γ
p ,k

∞,1 (Rd) ↪→ Cb(Rd) for 1 < p ≤ ∞, we use again Bern-

stein’s inequalities (see Proposition 3.1) to deduce that

‖Δju‖L∞
k (R

d) ≤ C2j
d+2γ
p ‖Δju‖Lpk (Rd) .

This ensures that the series
∑
j Δju of continuous bounded functions converges uniformly to

a continuous bounded function on Rd . Hence u is a bounded continuous function on Rd . If p

is finite, one can use in addition thatD(Rd ) is dense in B
d+2γ
p

,k

p,1 (Rd) (see Theorem 4.9). Then

we can conclude that u decays at infinity. �

5.2. Sobolev type embedding. In the previous paper [7], Theorem 4.3, the second

author proved the Sobolev embedding theorem; if s > 2γ+d
2 , then

B
s,k
2,2(R

d) = Hs
2,k(R

d) ↪→ B
s−γ− d

2 ,k∞,∞ (Rd ) .

In this subsection we consider the case s < 2γ+d
2 . We recall that B0,k

1,1 (R
d) ⊂ L1

k(R
d ) by the

definition and Bs,kr,r (Rd) ↪→ F
s,k
r,2 (R

d) = Hs
r,k(R

d ) ↪→ Lrk(R
d) for 1 < r ≤ 2 by (4.1). We

here obtain a stronger integrability in the case of 0 < s < 2γ+d
r

.
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THEOREM 5.3. If s ∈ R, 1 ≤ r ≤ ∞, 0 < s <
2γ+d
r

, then we have a continuous
embedding

Bs,kr,r (R
d ) ↪→ L

p

k (R
d) ,

where p = r(2γ + d)

2γ + d − rs
.

PROOF. We recall that for f ∈ S(Rd),

‖f ‖p
L
p
k (R

d)
= p

∫ ∞

0
λp−1mk({x | |f (x)| ≥ λ})dλ ,

where mk(E) is the volume of E ⊂ Rd with respect ωk(x)dx. For A > 0, we put f =
f1,A + f2,A with f1,A = ∑

2j<A�j f , and f2,A = ∑
2j≥A�j f . Then by using Proposition

3.1 we deduce that

‖f1,A‖L∞
k (R

d) ≤
∑

2j<A

2js‖�j f ‖Lrk(Rd)2
j (
d+2γ
r −s)

≤ CA
d+2γ
r −s‖f ‖

B
s,k
r,r (Rd)

.(5.1)

We take now A = Aλ such that CA
d+2γ
r

−s
λ ‖f ‖

B
s,k
r,r (Rd)

= λ
4 . Then for all λ > 0, we see that

mk({x | |f (x)| ≥ λ}) ≤ mk({x | |f1,A(x)| ≥ λ
2 })+mk({x | |f2,A(x)| ≥ λ

2 })
≤ mk({x | |f2,Aλ(x)| ≥ λ

2 })
≤ 2rλ−r‖f2,Aλ‖rLrk(Rd)

and moreover, for ε > 0,

‖f2,Aλ‖rLrk(Rd) =
∫

Rd

∣∣∣∣ ∑
2j>A

�j f (x)

∣∣∣∣rωk(x)dx
=

∫
Rd

∑
2j>A

∣∣∣∣2jε�j f (x)

∣∣∣∣rωk(x)dx ·
( ∑

2j>A

2−jεr ′
) r
r′

≤ cA−εr
λ

∑
2j≥Aλ

2jεr‖�j f ‖r
Lrk(R

d)
.

Hence by Fubini’s theorem we can deduce that

‖f ‖p
L
p
k (R

d)
≤ c

∫ ∞

0
λp−1−rA−εr

λ

∑
2j≥Aλ

2jεr‖�j f ‖r
Lrk(R

d)
dλ

≤ c
∑
j≥−1

∫ 4c2j (
2γ+d
r −s)‖f ‖

B
s,k
r,r (Rd )

0
λ
p−r−1− εr2

2γ+d−rs dλ
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× (4c‖f ‖
B
s,k
r,r (Rd)

)
εr2

2γ+d−rs 2jεr‖�j f ‖r
Lrk(R

d)

≤ c‖f ‖p−r
B
s,k
r,r (Rd)

∑
j≥−1

2j (p−r)( 2γ+d−rs
r

)‖�j f ‖r
Lrk(R

d)

≤ c‖f ‖p−r
B
s,k
r,r (Rd)

∑
j≥−1

2rjs‖�j f ‖r
Lrk(R

d)
= c‖f ‖p

B
s,k
r,r (Rd)

.

This implies the desired result. �

THEOREM 5.4. If 1 ≤ r ≤ ∞ and s ∈ R such that 0 < s <
2γ+d
r

, then we have

‖f ‖Lpk (Rd) ≤ C‖f ‖1− r
p

B
−( 2γ+d

r −s),k
∞,∞ (Rd)

‖f ‖
r
p

B
s,k
r,r (Rd)

,

where p = r(2γ + d)

2γ + d − rs
.

PROOF. The precedent proof is available. In fact it suffices to modify the calculation
in (5.1) by

‖f1,A‖L∞
k (R

d) ≤ CA
d+2γ
r

−s‖f ‖
B

−( 2γ+d
r −s),k

∞,∞ (Rd)

and by taking A = Aλ with CA
d+2γ
r −s

λ ‖f ‖
B

−( 2γ+d
r −s),k

∞,∞ (Rd)
= λ

4 . �

5.3. Paraproduct algorithm. In this subsection we study how the product of uv,
u, v ∈ S ′(R) acts on Dunkl-Besov spaces. This could be well useful in nonlinear partial
differential-difference equations. Let u ∈ S ′(Rd) and u = ∑

p �pu be the Dunkl-Littlewood-

Paley decomposition of u. This implies that the partial sum

Squ =
∑
p≤q−1

�pu

converges to u ∈ S ′(Rd). Let us consider two tempered distributions

u =
∑
p

Δpu and v =
∑
q

Δqv .

Formally, the product uv can be written as

uv =
∑
p,q

ΔpuΔqv .

We introduce the paraproduct and the remainder operators associated with the Dunkl opera-
tors.
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DEFINITION 5.1. (1) The paraproduct operatorΠ(u, v): S ′(Rd)×S ′(Rd) → S ′(Rd )
is defined by Π(u, v) = Πu(v) and

Πuv =
∑
q≥1

Sq−2u ·Δqv .

(2) The remainder operator R(u, v) : S ′(Rd )× S ′(Rd ) → S ′(Rd) is defined by

R(u, v) =
∑

|p−q|≤1

ΔpuΔqv .

Then Bony’s paraproduct decomposition of uv is given as

uv = Πuv +Πvu+ R(u, v) .

The following theorems describe paraproduct estimates in the Dunkl-Besov spaces, that is,
the estimates of the action of the paraproduct and remainder operators on the Dunkl-Besov
spaces. Their proofs are given by using the equivalent norms of the Dunkl-Besov spaces and
Bernstein’s estimates in (3.1) (see [7]).

THEOREM 5.5. Let 1 ≤ p, r ≤ ∞ and s ∈ R.

(i) If s > 0, then Π is a bilinear continuous from L∞
k (R

d ) × B
s,k
p,r (Rd) to Bs,kp,r (Rd )

and there exists a positive constant C such that

‖Π‖L(L∞
k (R

d)×Bs,kp,r (Rd),Bs,kp,r (Rd)) ≤ Cs+1.

(ii) If s > 0, t < 0, s + t > 0 and 1 ≤ r, r1, r2 ≤ ∞, 1
r

= 1
r1

+ 1
r2

, then Π is a bilinear

continuous from B
t,k∞,r1(R

d)×Bs,kp,r2(Rd) to Bs+t,kp,r (Rd) and there exists a positive constant C
such that

‖Π‖L(Bt,k∞,r1
(Rd)×Bs,kp,r2 (Rd),Bs+t,kp,r (Rd)) ≤ Cs+t

−t .

THEOREM 5.6 (Morse type estimate). Let (s1, s2) ∈ R2 and 1 ≤ p,p1, p2, r, r1,

r2 ≤ ∞. Assume that

1

p
≤ 1

p1
+ 1

p2
,

1

r
≤ 1

r1
+ 1

r2
≤ 1 and s1 + s2 > (d + 2γ )

(
1

p1
+ 1

p2
− 1

p

)
.

Then R is a bilinear continuous from B
s1,k
p1,r1(R

d )×B
s2,k
p2,r2(R

d ) to B
s1,2,k
p,r (Rd ) and there exists

a positive constant C such that

‖R‖L(Bs1 ,kp1,r1 (R
d)×,Bs2,kp2,r2 (R

d),B
s1,2 ,k
p,r (Rd))

≤ Cs1+s2+1

s1 + s2
,

where s1,2 = s1 + s2 − (d + 2γ )
(

1
p1

+ 1
p2

− 1
p

)
.
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Combining these estimates of the paraproducts and the remainders, we can deduce the
following.

COROLLARY 5.7. (1) Let s > 0 and 1 ≤ p, r ≤ ∞. Then Bs,kp,r (Rd) ∩ L∞
k (R

d) is
an algebra and there exists a positive constant C such that

‖uv‖
B
s,k
p,r (Rd)

≤ C
(
‖u‖L∞

k (R
d)‖v‖Bs,kp,r (Rd) + ‖u‖

B
s,k
p,r (Rd)

‖v‖L∞
k (R

d)

)
.

(2) Let (s1, s2) ∈ R2, 1 ≤ p2, r2 ≤ ∞, s1 + s2 >
d+2γ
p1

and s1 <
d+2γ
p1

. Then

‖uv‖
B
s,k
p2 ,r2 (R

d)
≤ C

(
‖u‖

B
s1 ,k
p1,∞(Rd)

‖v‖
B
s2 ,k
p2 ,r2 (R

d)
+ ‖u‖

B
s2 ,k
p2,r2 (R

d)
‖v‖

B
s1 ,k
p1 ,∞(Rd)

)
,

where s = s1 + s2 − d+2γ
p1

.

(3) Let (s1, s2) ∈ R2, 1 ≤ p1, p2, p, r1, r2 ≤ ∞, p ≥ max(p1, p2), sj <
d+2γ
pj

and

s1 + s2 > (d + 2γ )( 1
p1

+ 1
p2

− 1
p
). Then

‖uv‖
B
s1,2 ,k
p,r (Rd)

≤ C‖u‖
B
s1 ,k
p1 ,r1 (R

d)
‖v‖

B
s2 ,k
p2 ,r2 (R

d)
,

where s1,2 = s1 + s2 − (d + 2γ )
( 1
p1

+ 1
p2

− 1
p

)
and r = max(r1, r2).

6. Application to differential-difference equations

In this section we treat differential-difference equations, given by replacing the Laplacian
Δ in a differential equation with the Dunkl-LaplacianΔk, and consider some basic properties
of the solutions in Dunkl-Besov spaces. Though the process is a standard way, we sketch their
proofs to understand the essential parts.

6.1. The slowly hypoellipticity. We consider the linear equation

−�ku+
∑

1≤i,j≤d
ci,j TiuTju+ cu = 0(6.1)

with ci,j ∈ R and c > 0.

THEOREM 6.1. If u is a solution of (6.1) such that u in B1,k
1,2 (R

d) ∩W 1,∞
k (Rd), then

u ∈ Bn,k1,2 (R
d) ∩ L∞

k (R
d ) for all n ∈ N and in particular, u ∈ E(Rd ).

PROOF. If u in B1,k
1,2 (R

d), then each Tiu ∈ B0,k
1,2 (R

d ). Therefore, it follows from Corol-

lary 5.7, (1) that ci,j TiuTju ∈ B0,k
1,2 (R

d) ∩ L∞
k (R

d ). Hence, we can deduce that

−�ku+ cu ∈ B0,k
1,2 (R

d ) .
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Since the operator −�k + cI is isomorphism from B
s,k
p,q(Rd) in Bs−2,k

p,q (Rd) for all s ∈ R and

(p, q) ∈ [1,∞]2, it follows that u ∈ B2,k
1,2 (R

d). By iteration we deduce that u ∈ Bn,k1,2 (R
d) for

all n ∈ N. Then it follows from the Theorem 5.1 that u ∈ Bn−
d+2γ

2 ,k

2,2 (Rd). On the other hand,

the Sobolev imbedding theorem (see [7], Theorem 4.3) yields that Hs
2,k(R

d ) = B
s,k
2,2(R

d ) ↪→
Cs−γ− d

2 (Rd) if s > γ + d
2 . Thereby, the desired result follows. �

6.2. Dunkl-Schrödinger equation. Let I be an interval of R (bounded or un-
bounded). We shall consider a space-time estimate of the solutions u(t, x), (t, x) ∈ I × Rd ,
of the Dunkl-Schrödinger equation{

∂tu− i�ku = f ,

u|t=0 = g
(6.2)

with initial data g and f . For any Banach space X, let Lq(I,X) denote a mixed space-time
Banach space consisting of measurable functions u : I → X such that

‖u‖Lq(I,X) =
( ∫

I

‖u(t, ·)‖qXdt
) 1
q

< ∞

if 1 ≤ q < ∞ and ‖u‖L∞(I,X) = ess supt∈I‖u(t, ·)‖X < ∞ if q = ∞. In what follows we
shall consider a Strichartz type estimate of the solution u of (6.2) and obtain the Lq(I,X)-

norm of u when X = Hs
r,k(R

d) and Bs,kr,2 (R
d). The special case of X = Lrk(R

d) = H 0
r,k(R

d )

was treated in [8].

We suppose that g ∈ X and f ∈ Lq(I,X′) where X,X′ are Hs
r,k(R

d) and Bs,kr,2 (R
d). As

in the Euclidean case, we use the integral formulation of u

u(t, x) = Ik(t)g(x)+
∫ t

0
Ik(t − s)f (s, x)ds ,

= Ik(g)(t, x)+ Φk(f )(t, x) ,(6.3)

where Ik(t) = eit�k , t ∈ R, is the Schrödinger semi-group. Moreover, the exponents q, r are
required to satisfy the so-called admissible condition:

DEFINITION 6.1. A pair (q, r) is called γ + d
2 -admissible if q, r ≥ 2, (q, r, γ + d

2 ) �=
(2,∞, 1) and

1

q
+ d + 2γ

2r
≤ d + 2γ

4
.

In particular, when d + 2γ > 2 and (q, r) = (
2, 2d+4γ

d+2γ−2

)
, the equality holds.

THEOREM 6.2 (Strichartz type estimate).
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(1) Let s ∈ R and (q, r) be a γ + d
2 -admissible pair. Then there exists a constant C such

that for all g ∈ S ′(Rd),

‖Ik(g)‖Lq(I,Hs
r,k (R

d)) ≤ C‖g‖Hs
r′ ,k (R

d) ,

‖Ik(g)‖Lq(I,Bs,kr,2 (Rd)) ≤ C‖g‖
B
s,k

r′ ,2(R
d)
.

(2) Let s ∈ R and (q, r), (q1, s1) be γ + d
2 -admissible pairs. Then there exists a constant C

such that for all f ∈ S ′(I × Rd),

‖Φk(f )‖Lq(I,Hs
r,k (R

d)) ≤ C‖f ‖
L
q
′
1 (I,Hs

r
′
1,k
(Rd))

,

‖Φk(f )‖Lq(I,Bs,kr,2 (Rd)) ≤ C‖f ‖
L
q
′
1 (I,B

s,k

r
′
1 ,2
(Rd))

.

PROOF. Let t �= 0, s ∈ R and 2 ≤ p ≤ ∞. As in the Euclidean case (cf. Corollary 4.1
in [8]), we can deduce that

‖Ik(t)g‖L∞
k (R

d) ≤ 1

ck|t|(γ+ d
2 )

‖g‖L1
k(R

d).

Since ‖Ik(t)g‖L2
k(R

d) = ‖g‖L2
k(R

d), we see by interpolation that

‖Ik(t)g‖Lpk (Rd) ≤ 1

(c2
k |t|2γ+d)(

1
2 − 1

p
)
‖g‖

L
p′
k (R

d)
.(6.4)

On the other hand, For any v ∈ S ′(Rd) it is easy to see that

F−1
D (vFD(Ik(g)(t, .))) = Ik(t)F−1

D (vFD(g)) .(6.5)

In particular, it follows from (6.4) that for 2 ≤ p ≤ ∞,

‖F−1
D (vFD(Ik(g)(t, .)))‖Lpk (Rd) ≤ 1

(c2
k |t|2γ+d)(

1
2 − 1

p )
‖F−1

D (vFD(g))‖
L
p′
k (R

d)
.

Therefore, the definitions of the Dunkl-Bessel potential and Dunkl-Besov norms yield that

‖Ik(t)g‖Hs
p,k (R

d) ≤ 1

(c2
k |t|2γ+d)(

1
2 − 1

p
)
‖g‖Hs

p′ ,k (R
d) ,

‖Ik(t)g‖
B
s,k
p,q (Rd)

≤ 1

(c2
k |t|2γ+d)(

1
2 − 1

p
)
‖g‖

B
s,k

p′ ,q (R
d)
.

Then by using the standard argument, we can deduce the desired estimates. �
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6.3. Generalized heat equation. As in the previous section we shall obtain a space-
time estimate of the solution u(t, x), (t, x) ∈ I × Rd , of the generalized heat equation{

∂tu− �ku = f ,

u|t=0 = g .
(6.6)

As before, to estimate the solution u of (6.6), we use the integral formulation

u(t, x) = Hk(t)g(x)+
∫ t

0
Hk(t − τ )f (τ, x)dτ ,(6.7)

whereHk(t) is the generalized heat semi-group. Then by using the explicit form of the kernel
of Hk(t) obtained by Rösler [11] and the corresponding formula (6.5), we can deduce the
following (see [9]).

LEMMA 6.3. There exist positive constants κ and C such that for all 1 ≤ p ≤ ∞,
τ ≥ 0 and j ∈ N,

‖Δj(Hk(τ )u)‖Lpk (Rd) ≤ Ce−κ22j τ‖Δju‖Lpk (Rd) .
THEOREM 6.4. Let s ∈ R, T > 0 and 1 ≤ p, q, r ≤ ∞. We suppose that g ∈

B
s,k
p,r (Rd) and f ∈ Lq((0, T ), Bs−2+ 2

q
,k

p,r (Rd)). Then (6.6) has a unique solution u belongs to

Lq((0, T ), B
s+ 2

q
,k

p,r (Rd))
⋂
L∞((0, T ), Bs,kp,r (Rd))

and there exists a constant C such that for all q ≤ q1 ≤ ∞,

‖u‖
Lq1 ((0,T ),B

s+ 2
q1
,k

p,r (Rd))

≤ C
(
(1 + T

1
q1 )‖g‖

B
s,k
p,r (Rd)

+ (1 + T
1+ 1

q1
− 1
q )‖f ‖

Lq((0,T ),B
s−2+ 2

q ,k

p,r (Rd))

)
.

If in addition r is finite, then u belongs to C([0, T ], Bs,kp,r (Rd)).
PROOF. Since g, f are tempered, (6.6) has a unique solution u in S ′((0, T ) × Rd )

satisfying

FD(u)(t, ξ) = e−t‖ξ‖2FD(g)(ξ)+
∫ t

0
e(τ−t )‖ξ‖2FD(f )(τ, ξ)dτ .

Hence, applyingΔj , j ≥ 1, to (6.7), we see that

Δju(t, ·) = Hk(t)Δj g +
∫ t

0
Hk(t − τ )Δjf (τ, ·)dτ

and thus, by Lemma 6.3, we can deduce that

‖Δju(t, ·)‖Lpk (Rd) ≤ ‖Hk(t)Δjg‖Lpk (Rd) +
∫ t

0
‖Hk(t − τ )Δjf (τ, ·)‖Lpk (Rd)dτ
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≤ Ce−κ22j t‖Δjg‖Lpk (Rd) +
∫ t

0
e−κ22j (t−τ )‖Δjf (τ, ·)‖Lpk (Rd)dτ .

Then it follows from (2.3) that ‖Δju‖Lq1 ((0,T ),Lpk (R
d)) is dominated by(

1 − e−κT q122j

κq122j

) 1
q1 ‖Δj g‖

B
s,k
p,r (Rd)

+
(

1 − e−κT q222j

κq222j

) 1
q2 ‖Δjf ‖Lq((0,T ),Lpk (Rd))(6.8)

with 1
q2

= 1 + 1
q1

− 1
q
. Moreover, similarly as above, we can obtain that

‖�0u(t, ·)‖Lpk (Rd) ≤ ‖�0g‖Lpk (Rd) +
∫ t

0
‖�0f (τ, ·)‖Lpk (Rd)dτ ,

and thus, if 1 ≤ q ≤ q1 ≤ ∞,

‖�0u‖Lq1 ((0,T ),Lpk (R
d)) ≤ C

(
T

1
q1 ‖�0g‖Lpk (Rd) + T

1
q2 ‖�0f ‖Lq((0,T ),Lpk (Rd))

)
.(6.9)

Finally, taking the lr -norm with respect to j in (6.8) and (6.9) with the usual convention if
r = ∞, we can deduce the desired estimate. �
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