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Abstract. Let k be an integer. In [3, 4], Frankl, Ota and Tokushige proved that the maximum number of three-

covers of a k-uniform intersecting family with covering number three is k3 − 3k2 + 6k − 4 for k = 3 or k ≥ 9, but
the case 4 ≤ k ≤ 8 remained open. In this paper, we prove that the same holds for k = 4, and show that a 4-uniform
family with covering number three which has 36 three-covers is uniquely determined.

1. Introduction

Throughout this paper, we let X denote a finite set. We let 2X denote the family of all

subsets of X and, for an integer k ≥ 1, we let
(
X
k

)
denote the family of those subsets of X

which have cardinality k. A family F ⊆ 2X is said to be k-uniform if F ⊆ (
X
k

)
. Let F ⊆ 2X be

a k-uniform family. We say that F is intersecting if F ∩G �= ∅ for all F,G ∈ F. A set C ⊆ X

is called a cover of F if it intersects with every member of F, i.e., C ∩ F �= ∅ for all F ∈ F.
Let C(F) := {C : C is a cover of F}. The covering number of F, denoted by τ (F), is defined
by τ (F) := minC∈�(�) |C|. Note that if F is intersecting, then we have τ (F) ≤ k because

F ⊆ C(F). For an integer t ≥ 1, we define Ct (F) := C(F) ∩ (
X
t

)
. Note that if t < τ(F), then

Ct (F) = ∅. Also it is easy to see that if t = τ (F), then |Ct (F)| ≤ kt (see, for example, the
proof of Lemma 2.1 (ii) (a) in Section 2).

Let t, k be integers with k ≥ t ≥ 1, and assume that |X| is sufficiently large compared
with t and k. Define

pt(k) := max
{|Ct (F)| : F ⊆ 2Xis k-uniform and intersecting, and τ (F) = t

}

(from the fact that every k-uniform family F with τ (F) = t satisfies |Ct (F)| ≤ kt , which is
mentioned at the end of the preceding paragraph, it follows that if |X| is sufficiently large, then
the value of pt(k) does not depend on |X|). This paper is concerned with p3(k). However,
the definition of pt(k) looks somewhat technical. Thus we here state a result of Frankl, Ota
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and Tokushige [4], which shows the importance of the function pt−1(k) in the study of the
following more natural function fk,t (n). Define

fk,t (n) := max
{|F| : F ⊆ 2Xis k-uniform and intersecting, and τ (F) = t

}
,

where n = |X|. Note that the famous theorem of Erdős, Ko and Rado [1] shows that if

n ≥ 2k ≥ 4 and t ≥ 1, then fk,t (n) ≤ (
n−1
k−1

)
. Now clearly fk,1(n) = (

n−1
k−1

)
. For t ≥ 2, it

is shown in [4] that if k is sufficiently large compared with t , then, as n tends to infinity, we

have fk,t (n) ≤ pt−1(k)
(

n
k−t

) + O(nk−t−1) (in fact, it is expected, though not yet proved, that

equality holds). This shows the role of the function pt−1(k) in the determination of fk,t (n)

(for a more precise result concerning the case where 2 ≤ t ≤ 4, see [7], [2] and [3]).
We turn to pt (k). Clearly p1(k) = k for every k ≥ 1. For t ≥ 2, in Frankl, Ota and

Tokushige [5], it is conjectured that pt (k) = kt − (
t
2

)
kt−1 + O(kt−2) (k → ∞), and the

conjecture is settled affirmatively for t = 4, 5 (for t ≥ 6, it is proved in the same paper that

pt (k) ≤ kt − 1√
2

⌊
t−1

2

⌋ 3
2 kt−1 + O(kt−2)). For t = 2, 3, the following precise results are

proved in [2], [3] and [4].

THEOREM A (Frankl [2]). Let k ≥ 2. Then p2(k) = k2 − k + 1.

THEOREM B (Frankl, Ota and Tokushige [3, 4]). Let k = 3 or k ≥ 9. Then p3(k) =
k3 − 3k2 + 6k − 4.

We now describe examples related to Theorems A and B.

EXAMPLE 1. Let k ≥ 2. Fix 2k − 1 elements yi , zj (1 ≤ i ≤ k and 1 ≤ j ≤ k − 1) of
X. Set Y := {y1, y2, . . . , yk}, Z1 := {z1, z2, . . . , zk−1, y1} and Z2 := {z1, z2, . . . , zk−1, y2},
and define F

(k)
1 := {Y,Z1, Z2}. Then F

(k)
1 is k-uniform and intersecting, τ (F

(k)
1 ) = 2, and

|C2(F
(k)
1 )| = k2 − k + 1.

EXAMPLE 2. Let k ≥ 3. Fix 3(k − 1) elements xi , yi , zi (1 ≤ i ≤ k − 1) of X.
For each i = 1, 2, set Xi := {x1, x2, . . . , xk−1, yi}, Yi := {y1, y2, . . . , yk−1, zi} and Zi :=
{z1, z2, . . . , zk−1, xi}, and define F

(k)
2 := {X1,X2, Y1, Y2, Z1, Z2}. Then F

(k)
2 is k-uniform

and intersecting, τ (F
(k)
2 ) = 3, and |C3(F

(k)
2 )| = (k − 1)3 + 3(k − 1) = k3 − 3k2 + 6k − 4.

In [2], [3] and [4], the following two theorems, which are stronger than Theorems A and
B, are actually proved.

THEOREM C (Frankl [2]). Let k ≥ 2, and let F ⊆ (
X
k

)
be an intersecting family with

τ (F) = 2. Then |C2(F)| ≤ k2 − k + 1, with equality if and only if F is isomorphic to F
(k)
1 .

THEOREM D (Frankl et al. [3, 4]). Let k = 3 or k ≥ 9, and let F ⊆ (
X
k

)
be an inter-

secting family with τ (F) = 3. Then |C3(F)| ≤ k3 − 3k2 + 6k − 4, with equality if and only if

F is isomorphic to F
(k)
2 .
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It is natural to conjecture that Theorems B and D hold for 4 ≤ k ≤ 8 as well. In this
paper, as an initial step toward the determination of p3(k) for 4 ≤ k ≤ 8, we prove the
following theorem.

THEOREM 1. We have p3(4) = 36.

We actually prove the following stronger result, which is an analogue of Theorems C and
D;

THEOREM 2. Let F ⊆ (
X
4

)
be an intersecting family with τ (F) = 3. Then |C3(F)| ≤

36, with equality if and only if F is isomorphic to F
(4)
2 .

Our notation is standard except for the following. Let A ⊆ 2X and Y,Z ⊆ X with Y ∩
Z = ∅, and write Y = {y1, y2, . . . , yl} and Z = {z1, z2, . . . , zm}. We define A(y1y2 · · · yl) =
A(Y ) := {A ∈ A : Y ⊆ A}, A(ȳ1ȳ2 · · · ȳl) = A(Ȳ ) := {A ∈ A : Y ∩ A = ∅} and
A(y1y2 · · · ylz̄1z̄2 · · · z̄l ) = A(Y Z̄) := {A ∈ A : Y ⊆ A and Z ∩ A = ∅}.

2. Preliminaries

Throughout the rest of this paper, let F ⊆ (
X
4

)
be an intersecting family with τ (F) = 3,

and let C := C3(F). We start with two easy lemmas.

LEMMA 2.1. Let x, y ∈ X with x �= y. Then the following hold.

(i) We have |F(x̄)| ≥ 3 and |F(x̄ȳ)| ≥ 1.
(ii) (a) We have |C(xy)| ≤ 4.

(b) Suppose that |C(xy)| = 4. Then |F(x̄ȳ)| = 1 and, if we write F(x̄ȳ) = {F },
then C(xy) = {{x, y, z} : z ∈ F

}
.

PROOF. Suppose that |F(x̄)| ≤ 2. Then since F is intersecting, there exists v ∈ X−{x}
such that v ∈ F for each F ∈ F(x̄). This means that {x, v} is a cover of F, which contradicts
the assumption that τ (F) = 3. Thus |F(x̄)| ≥ 3. Similarly if F(x̄ȳ) = ∅, then {x, y} is a
cover of F, a contradiction. Thus |F(x̄ȳ)| ≥ 1. This proves (i). To prove (ii), having (i) in
mind, take F ∈ F(x̄ȳ). Then by the definition of C, C(xy) ⊆ {{x, y, z} : z ∈ F

}
. Hence

|C(xy)| ≤ 4. Suppose that |C(xy)| = 4. Then C(xy) = {{x, y, z} : z ∈ F
}
. Since F is an

arbitrary member of F(x̄ȳ), this also implies F(x̄ȳ) = {F }. Thus (ii) is proved. �

LEMMA 2.2. Let v,w, x and y be four distinct elements of X. Suppose that
|C(xyv̄w̄)| = 4, and write F(x̄ȳ) = {F }. Then F ∩ {v,w} = ∅.

PROOF. In view of Lemma 2.1 (ii) (a), we have C(xy) = C(xyv̄w̄) and |C(xy)| = 4.
Hence by Lemma 2.1 (ii) (b), C(xy) = {{x, y, z} : z ∈ F

}
. Since C(xy) = C(xyv̄w̄), this

implies F ∩ {v,w} = ∅. �
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LEMMA 2.3. Let Y ⊆ X with 1 ≤ |Y | ≤ 2. Let F1, F2, F3 ∈ F, and suppose that
Fi ∩ Fj = Y for any i, j with 1 ≤ i < j ≤ 3. Then the following hold.

(i) If |Y | = 2, then |C(Ȳ )| ≤ 8.

(ii) If |Y | = 1, and |F ∩ G| = 1 for all F,G ∈ F with F �= G, then |C(Ȳ )| ≤ 19.

PROOF. Since Fi ∩Fj = Y for any i, j with 1 ≤ i < j ≤ 3 and since C∩(Fi −Y ) �= ∅
for any C ∈ C(Ȳ ) and any i with 1 ≤ i ≤ 3,

C(Ȳ ) ⊆ {{α, β, γ } : α ∈ F1 − Y, β ∈ F2 − Y, γ ∈ F3 − Y
}
. (2.1)

Hence if |Y | = 2, then |C(Ȳ )| ≤ (4 − |Y |)3 = 8.
Suppose that |Y | = 1, and |F ∩ G| = 1 for all F,G ∈ F with F �= G. By Lemma

2.1 (i), we can take G ∈ F(Ȳ ). Then by assumption, |Fi ∩ G| = 1 for each 1 ≤ i ≤ 3.
Write (Fi − Y ) ∩ G = {ai} for each 1 ≤ i ≤ 3. Then by (2.1), C ∩ {a1, a2, a3} �= ∅ for

all C ∈ C(Ȳ ), and hence C(Ȳ ) ⊆ {{α, β, γ } : α ∈ F1 − Y, β ∈ F2 − Y, γ ∈ F3 − Y
} −{{α, β, γ } : α ∈ F1 − (Y ∪ {a1}), β ∈ F2 − (Y ∪ {a2}), γ ∈ F3 − (Y ∪ {a3})

}
. Consequently

|C(Ȳ )| ≤ 27 − 8 = 19. �

In the following three lemmas, Lemma 2.4 through 2.6, we fix the following notation.
Let F1, F2 ∈ F with |F1 ∩F2| = 2, and write F1 =: {a1, a2, a3, a4} and F2 =: {b1, b2, b3, b4}
so that ai = bi for each 1 ≤ i ≤ 2 and ai �= bi for each 3 ≤ i ≤ 4. Set G1 := C(a3b3ā1ā2),
G2 := C(a3b4ā1ā2), G3 := C(a4b4ā1ā2) and G4 := C(a4b3ā1ā2). Note that C(ā1ā2) =⋃4

l=1 Gl .

LEMMA 2.4. Let l be an integer with 1 ≤ l ≤ 4, and suppose that |Gl | = 4. Then
Gl ∩ Gl−1 �= ∅ and Gl ∩ Gl+1 �= ∅, where indices are to be read modulo 4.

PROOF. By the cyclic symmetry of {a3, b3}, {a3, b4}, {a4, b4} and {a4, b3}, we may
assume l = 1. Then by Lemma 2.1 (ii) (a), G1 = C(a3b3). Having Lemma 2.1 (ii)
(b) in mind, write F(ā3b̄3) = {F }. Then by Lemma 2.2, F ∩ {a1, a2} = ∅. Since F

is intersecting, it follows that F ∩ F1 = {a4} and F ∩ F2 = {b4}. Hence by Lemma
2.1 (ii) (b), {a3, b3, a4}, {a3, b3, b4} ∈ C(a3b3). This implies {a3, b3, a4} ∈ G1 ∩ G4 and
{a3, b3, b4} ∈ G1 ∩ G2, and hence we have G1 ∩ G4 �= ∅ and G1 ∩ G2 �= ∅. �

LEMMA 2.5. We have |C(ā1ā2)| ≤ 12. Furthermore, if equality holds, then one of the
following holds:

(i) |Gl| = 4 for each 1 ≤ l ≤ 4, and
({a3,a4,b3,b4}

3

) ⊆ C(ā1ā2); or
(ii) |Gl| = 3 for each 1 ≤ l ≤ 4, and Gl ∩ Gm = ∅ for any l,m with 1 ≤ l < m ≤ 4.

PROOF. Since |C| = 3 for all C ∈ C, we clearly have G1 ∩ G3 = G2 ∩ G4 = ∅. This
implies that for each 1 ≤ m ≤ 4, we have

⋂
1≤l≤4
l �=m

Gl = ∅. Hence by the inclusion-exclusion

principle, |C(ā1ā2)| = | ⋃1≤l≤4 Gl | = ∑4
l=1(|Gl | − |Gl ∩ Gl+1|), where indices are to be
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read modulo 4. By Lemmas 2.1 (ii) (a) and 2.4, |Gl | − |Gl ∩ Gl+1| ≤ 3 for each 1 ≤ l ≤ 4.

Consequently |C(ā1ā2)| = ∑4
l=1(|Gl |− |Gl ∩Gl+1|) ≤ 12. Suppose that equality holds. Then

|Gl | − |Gl ∩ Gl+1| = 3 for each 1 ≤ l ≤ 4. If |Gl | = 4 for each 1 ≤ l ≤ 4, then by Lemma

2.4,
({a3,a4,b3,b4}

3

) ⊆ C(ā1ā2), and hence (i) holds. Thus by symmetry, we may assume that
|G1| = 3 and G1 ∩ G2 = ∅. Since |G2| − |G2 ∩ G3| = 3 and G1 ∩ G2 = ∅, it follows from
Lemma 2.4 that |G2| = 3 and G2 ∩ G3 = ∅. By a similar argument, we get |G3| = |G4| = 3
and G3 ∩ G4 = G1 ∩ G4 = ∅. Since G1 ∩ G3 = G2 ∩ G4 = ∅, this means that (ii) holds. �

LEMMA 2.6. Suppose that |F(a1a2)| ≥ 3. Then |C(ā1ā2)| ≤ 10. Furthermore, if
|C(ā1ā2)| = 10, then |F(a1a2)| = 3, and there exist x ∈ {a3, a4} and y ∈ {b3, b4} such that
F(a1a2) = {

F1, F2, {a1, a2, x, y}}.

PROOF. Suppose that |C(ā1ā2)| ≥ 10. Let F3 ∈ F(a1a2) − {F1, F2}, and write
F3 = {a1, a2, x, y}. Then by Lemma 2.3 (i), {x, y} ∩ (F1 ∪ F2) �= ∅. Suppose that
x /∈ F1 ∪ F2 or y /∈ F1 ∪ F2. By the symmetry of x and y and the symmetry of a3, a4,
b3 and b4, we may assume that x = a3 and y /∈ F1 ∪ F2. Then G3 ∪ G4 ⊆ {{a3, a4, b4},
{a4, b4, y}, {a3, a4, b3}, {a4, b3, y}}, which implies C(ā1ā2) = ⋃4

i=1 Gi ⊆ G1 ∪ G2 ∪{{a4, b4, y}, {a4, b3, y}}. Hence by Lemmas 2.1 (ii) (a) and 2.4, |C(ā1ā2)| ≤ |G1 ∪ G2|+ 2 =
|G1| + (|G2| − |G1 ∩ G2|) + 2 ≤ 4 + 3 + 2 = 9, a contradiction. Thus x, y ∈ F1 ∪ F2.
By the symmetry of x and y and the symmetry of {a3, b3}, {a3, b4}, {a4, b3} and {a4, b4},
we may assume that x = a3 and y = b3. Then G3 ⊆ {{a3, a4, b4}, {a4, b3, b4}

}
. Hence

C(ā1ā2) = ⋃4
i=1 Gi = G1 ∪G2 ∪G4. Since G2 ∩G4 = ∅, this together with Lemmas 2.1 (ii) (a)

and 2.4 implies that |C(ā1ā2)| = |G1∪G2∪G4| = (|G1|−|G1∩G2|)+|G2|+(|G4|−|G1∩G4|) ≤
3 + 4 + 3 = 10. Since we are assuming that |C(ā1ā2)| ≥ 10, it follows that |C(ā1ā2)| = 10.
Note that this in particular implies that |Gl | ≥ 3 for each 1 ≤ l ≤ 4 with l �= 3. We also have
|G3| ≤ |{{a3, a4, b4}, {a4, b3, b4}

}| = 2.
Suppose that there exists F4 ∈ F(a1a2) − {F1, F2, F3}. Arguing as in the first half of the

preceding paragraph, we see that there exist x ′ ∈ {a3, a4} and y ′ ∈ {b3, b4} such that F4 =
{a1, a2, x

′, y ′}. Then {x ′, y ′} �= {x, y}. Hence, arguing as in the second half of the preceding
paragraph, we see that for some m (1 ≤ m ≤ 4) with m �= 3, we have |Gl | ≥ 3 for each l �= m.
But this contradicts the assertion that |G3| ≤ 2. Therefore F(a1a2) = {F1, F2, F3}. �

In Lemmas 2.7 through 2.11, we fix the following notation. Let F,F ′ ∈ F with F �= F ′,
and let j0 := |F ∩ F ′|. Let a ∈ X − (F ∪ F ′), and set H := {{a, v,w} : v ∈ F − F ′, w ∈
F ′ − F

}
(it is not always true that H ⊆ C). The following lemma follows from the definition

of H.

LEMMA 2.7. (i) For each v ∈ F − F ′, |H(v)| = 4 − j0.

(ii) |H| = (4 − j0)
2.

LEMMA 2.8. (i) C(a) ⊆ (⋃
u∈F∩F ′ C(au)

) ∪ H.
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(ii) |C(a)| ≤ 4j0 + (4 − j0)
2.

PROOF. Take C ∈ C(a)−⋃
u∈F∩F ′ C(au). Then since C ∩F �= ∅ and C ∩F ′ �= ∅, we

get C ∈ H. Since C is arbitrary, this proves (i). Statement (ii) follows from (i) and Lemmas
2.1 (ii) (a) and 2.7 (ii). �

We here prove three technical lemmas.

LEMMA 2.9. Suppose that j0 = 1, and let v0 ∈ F − F ′ and w0 ∈ F ′ − F . Then
|C(a)| − |C(av0)| − |C(aw0)| + |C(av0w0)| ≤ 8.

PROOF. Write F ∩ F ′ = {u}. Note that |C(av0)| + |C(aw0)| − |C(av0w0)| =
|C(av0) ∪ C(aw0)|. Hence by Lemmas 2.8 (i) and 2.1 (ii) (a), |C(a)| − (|C(av0)| +
|C(aw0)| − |C(av0w0)|) = |C(a)| − |C(av0) ∪ C(aw0)| = |C(a) − (

C(av0) ∪ C(aw0)
)| =

|(C(au)∪(C(a)∩H)
)−(

C(av0)∪C(aw0)
)| ≤ |C(au)|+|(C(a)∩H

)−(
C(av0)∪C(aw0)

)| ≤
|C(au)|+ |{{a, v,w} : v ∈ F −F ′ − {v0}, w ∈ F ′ −F −{w0}

}| ≤ 4+ (4− j0 −1)2 = 8. �

LEMMA 2.10. Suppose that j0 ≤ 2 and |C(a)| ≥ 11. Then C(av) �= ∅ for each v ∈ F .

PROOF. Note that j0 = 1 or 2. Take v ∈ F .
First we consider the case where v ∈ F ∩ F ′. By Lemma 2.8 (i), C(a) ⊆(⋃

u∈F∩F ′ C(au)
) ∪H = C(av) ∪ (⋃

u∈(F∩F ′)−{v} C(au)
) ∪ H. We have

| ⋃u∈(F∩F ′)−{v} C(au)| ≤ 4(j0 − 1) by Lemma 2.1 (ii) (a) and |H| = (4 − j0)
2 by

Lemma 2.7 (ii). Hence |C(a)| ≤ |C(av)| + 4(j0 − 1) + (4 − j0)
2. Since |C(a)| ≥ 11 by

assumption, this implies |C(av)| ≥ 11 − (
4(j0 − 1) + (4 − j0)

2
)
. Since j0 = 1 or 2, we get

|C(av)| ≥ 2.
Next we consider the case where v ∈ F − F ′. By Lemma 2.8 (i), C(a) =(⋃

u∈F∩F ′ C(au)
) ∪(

C(a) ∩ H
) = ( ⋃

u∈F∩F ′ C(au)
) ∪ (

C(av) ∩ H
) ∪

(
C(a) ∩ (

H −
H(v)

)) ⊆ ( ⋃
u∈F∩F ′ C(au)

) ∪ C(av) ∪ (
H − H(v)

)
. We have | ⋃u∈F∩F ′ C(au)| ≤ 4j0

by Lemma 2.1 (ii) (a) and |H − H(v)| = (3 − j0)(4 − j0) by Lemma 2.7. Hence
|C(a)| ≤ 4j0 + |C(av)| + (3 − j0)(4 − j0). Since |C(a)| ≥ 11 and j0 = 1 or 2, this im-
plies |C(av)| ≥ 11 − (

4j0 + (3 − j0)(4 − j0)
) = 1, as desired. �

LEMMA 2.11. Suppose that j0 ≤ 2 and |C(a)| ≥ 12. Then |H − C(a)| ≤ 1.

PROOF. Note that |H−C(a)| = |(C(a)∪H)−C(a)| = |C(a)∪H|− |C(a)|. Hence by

Lemma 2.8 (i), |H− C(a)| = |(⋃u∈F∩F ′ C(au)
) ∪ H| − |C(a)|. Consequently |H− C(a)| ≤

4j0 + (4 − j0)
2 − |C(a)| by Lemmas 2.1 (ii) (a) and 2.7 (ii). Since |C(a)| ≥ 12 and j0 = 1 or

2 by assumption, this implies |H − C(a)| ≤ 4j0 + (4 − j0)
2 − 12 ≤ 1. �

The following lemma follows from Theorem C. However, for the convenience of the
reader, we include a proof which does not depend on Theorem C.
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LEMMA 2.12. Let a ∈ X. Then |C(a)| ≤ 13. Furthermore, if equality holds, then
there exist Y,Z ⊆ X − {a} with Y ∩ Z = ∅ and y1, y2 ∈ Y with y1 �= y2 such that |Y | =
4, |Z| = 3 and F(ā) = {

Y,Z ∪ {y1}, Z ∪ {y2}
}
.

PROOF. In view of Lemma 2.1 (i), we can take F,F ′ ∈ F(ā) with F �= F ′. Let j0

and H be as in Lemmas 2.7 and 2.8. By Lemma 2.8 (ii), |C(a)| ≤ 13. Suppose that equality
holds. Then by Lemma 2.8 (ii), j0 = 1 or 3. Further by Lemmas 2.8 (i), 2.1 (ii) (a) and 2.7
(ii),

|C(au)| = 4 for each u ∈ F ∩ F ′ , (2.2)

C(au) ∩ C(au′) = ∅ for any u, u′ ∈ F ∩ F ′ with u �= u′ , (2.3)

and

H ⊆ C(a) . (2.4)

Assume for the moment that j0 = 3. Let u ∈ F ∩ F ′. By Lemma 2.1 (i), we can take
F ′′ ∈ F(āū). If F ′′ ∩(F ∩F ′) �= ∅, then, letting u′ ∈ F ′′ ∩(F ∩F ′), we get {a, u, u′} ∈ C(au)

from (2.2) and Lemma 2.1 (ii) (b), which implies {a, u, u′} ∈ C(au) ∩ C(au′), contradicting
(2.3). Thus F ′′ ∩ (F ∩ F ′) = ∅. Hence |F ′′ ∩ F | = |F ′′ ∩ F ′| = 1. This means that replacing
F ′ by F ′′, we may assume j0 = 1.

In the rest of the proof of Lemma 2.12, we assume j0 = 1. Write F ∩ F ′ = {y1}.
By Lemma 2.1 (i), we can take G ∈ F(ā) − {F,F ′}. By (2.4), we have G ⊇ F − F ′ or
G ⊇ F ′ − F . We may assume G ⊇ F ′ − F . Then |G ∩ F | = 1. Write G ∩ F = {y2}. Since
G �= F ′, y2 �= y1. Since G is arbitrary, we get F(ā) − {F,F ′} ⊆ F(āȳ1). Since |C(ay1)| = 4
by (2.2), it now follows from Lemma 2.1 (ii) (b) that F(ā) − {F,F ′} = {G}. Therefore if we
let Y = F and Z = F ′ − F , Y,Z, y1 and y2 have the required properties. �

3. Proof of Theorem 2

As in Section 2, let F ⊆ (
X
4

)
be an intersecting family with τ (F) = 3, and let C = C3(F).

In order to prove Theorem 2, it suffices to show that F ∼= F
(4)
2 , assuming that |C| ≥ 36. First

we prove a technical claim, which we use toward the end of the proof.

CLAIM 3.1. Let F,F ′,G ∈ F, and suppose that |F ∩ G| = |F ′ ∩ G| = |F ∩ F ′| = 1
and F ∩ G �= F ′ ∩ G. Write G = {a1, a2, a3, a4} so that F ∩ G = {a1} and F ′ ∩ G = {a2}.
Then |C(ā1ā2ā3)| ≥ 2.

PROOF. By the inclusion-exclusion principle, |C(a1) ∪ C(a2) ∪ C(a3)| = |C(a1)| +
|C(a2)| + |C(a3)| − |C(a1a2)| − |C(a1a3)| − |C(a2a3)| + |C(a1a2a3)| ≤ |C(a1)| + |C(a2)| +
(|C(a3)| − |C(a1a3)| − |C(a2a3)| + |C(a1a2a3)|). Since |C(a1)| ≤ 13 and |C(a2)| ≤ 13
by Lemma 2.12 and |C(a3)| − |C(a1a3)| − |C(a2a3)| + |C(a1a2a3)| ≤ 8 by Lemma 2.9,
we obtain |C(a1) ∪ C(a2) ∪ C(a3)| ≤ 34. Recall that we are assuming |C| ≥ 36. Thus
|C(ā1ā2ā3)| = |C| − |C(a1) ∪ C(a2) ∪ C(a3)| ≥ 2. �
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Next we show that F has two members whose intersection has cardinality greater than or
equal to two.

CLAIM 3.2. There exist F,G ∈ F with F �= G such that |F ∩ G| ≥ 2.

PROOF. Suppose that |F ∩ G| = 1 for all F,G ∈ F with F �= G. For each x ∈ X,
we have |C(x̄)| = |C| − |C(x)| ≥ 36 − 13 = 23 by Lemma 2.12, and hence it follows
from Lemma 2.3 (ii) that |F(x)| ≤ 2. Since F is intersecting, there exists x ∈ X such that
|F(x)| = 2. Let F(x) = {F1, F2}, and write F1 = {x, a2, a3, a4} and F2 = {x, b2, b3, b4}. By

Lemma 2.1 (i), we can take F3 ∈ F(x̄b̄2). Then F3 ∩ {a2, a3, a4} �= ∅ and F3 ∩ {b3, b4} �= ∅.
By symmetry, we may assume that F3 = {a2, b3, y, z} with y, z ∈ X − (F1 ∪ F2). By
Lemma 2.1 (i), we can take F4 ∈ F(x̄ā2). Since |F(v)| ≤ 2 for all v ∈ X, it follows that
F4 ∩ {a3, a4} �= ∅, F4 ∩ {b2, b4} �= ∅ and F4 ∩ {y, z} �= ∅. By symmetry, we may assume that

F4 = {a3, b2, y,w} with w ∈ X − (
⋃3

i=1 Fi). By Lemma 2.1 (i), we can take F5 ∈ F(x̄ȳ).
Then F5 ∩ {a2, a3, b2, b3, x, y} = ∅, and hence F5 = {a4, b4, z,w}. By inspection, we
now see that |C| ≤ |C3({F1, F2, F3, F4, F5})| = 30, which contradicts the assumption that
|C| ≥ 36. �

Having Claim 3.2 in mind, take F1, F2 ∈ F (F1 �= F2) with |F1 ∩ F2| ≥ 2, and set
i0 := |F1 ∩F2|. Write F1 = {a1, a2, a3, a4} and F2 = {b1, b2, b3, b4} so that ai = bi for each
1 ≤ i ≤ i0 and ai �= bi for each i0 + 1 ≤ i ≤ 4.

We consider the cases where i0 = 2 and i0 = 3 separately. In Case 1, the case where
i0 = 2, we obtain a contradiction, which means that F has the property that there exist no
F,G ∈ F such that |F ∩ G| = 2. In Case 2, the case where i0 = 3, based on this property,

we show that F is isomorphic to F
(4)
2 .

Case 1: i0 = 2.

CLAIM 3.3. One of the following holds:
(i) |C(a1)| = |C(a2)| = 12 and C(a1a2) = ∅; or

(ii) |C(ai)| = 13, |C(a3−i )| ≥ 11 and |C(a1a2)| ≤ 2 for some i with 1 ≤ i ≤ 2.

PROOF. Since |C(a1)| + |C(a2)| − |C(a1a2)| = |C(a1) ∪ C(a2)| = |C| − |C(ā1ā2)| ≥
36 − 12 = 24 by Lemma 2.5, the desired conclusion follows from Lemma 2.12. �

CLAIM 3.4. We have |C(a1)| ≥ 13 or |C(a2)| ≥ 13.

PROOF. Suppose that |C(ai)| ≤ 12 for each i = 1, 2. Then by Claim 3.3, |C(ai)| = 12
for each i = 1, 2 and C(a1a2) = ∅, and hence |C(ā1ā2)| = |C|−|C(a1)|−|C(a2)| ≥ 36−24 =
12. By Lemma 2.5, this implies |C(ā1ā2)| = 12. Let G1 := C(a3b3ā1ā2), G2 := C(a3b4ā1ā2),
G3 := C(a4b4ā1ā2) and G4 := C(a4b3ā1ā2). Then (i) or (ii) of Lemma 2.5 holds.

First we consider the case where Lemma 2.5 (ii) holds; that is to say, |Gl| = 3 for
each 1 ≤ l ≤ 4, and Gl ∩ Gm = ∅ for any l,m with 1 ≤ l < m ≤ 4. Write G1 ={{a3, b3, x}, {a3, b3, y}, {a3, b3, z}

}
. Since G1 ∩G2 = ∅ and G1 ∩G4 = ∅, we have {x, y, z} ∩
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{a4, b4} = ∅. Hence x, y, z ∈ X − ⋃4
i=1{ai, bi}. Take F ∈ F(ā3b̄3). Then {x, y, z} ⊆ F .

Since F ∩ Fh �= ∅ for each h = 1, 2, F = {a1, x, y, z} or F = {a2, x, y, z}. We may assume
F = {a1, x, y, z}. Take F ′ ∈ F(ā1ā2). Since F ′ ∩Fh �= ∅ for each h = 1, 2, {ai, bj } ⊆ F ′ for
some i, j ∈ {3, 4}. Hence |F ∩F ′| ≤ 2. Also note that a2 /∈ F ∪F ′ and a1 ∈ F . Consequently,
applying Lemma 2.10 with a = a2 and v = a1, we obtain C(a1a2) �= ∅. Therefore we get a
contradiction to the earlier assertion that C(a1a2) = ∅.

Next we consider the case where Lemma 2.5 (i) holds; that is to say, |Gl | = 4 for each

1 ≤ l ≤ 4 and
({a3,a4,b3,b4}

3

) = W ⊆ C(ā1ā2). Since G1 ⊆ C(a3b3), we have 4 = |G1| ≤
|C(a3b3)| ≤ 4 by Lemma 2.1 (ii) (a). This forces |G1| = |C(a3b3)| = 4, and hence G1 =
C(a3b3). Similarly G2 = C(a3b4), G3 = C(a4b4) and G4 = C(a4b3). Since |C(a3b3)| =
|C(a4b4)| = 4, it follows form Lemma 2.1 (ii) (b) that |F(ā3b̄3)| = |F(ā4b̄4)| = 1. Write
F(ā3b̄3) = {F } and F(ā4b̄4) = {F ′}. By Lemma 2.2, F ∩{a1, a2} = F ′ ∩ {a1, a2} = ∅. Since
{a3, b3, a4}, {a3, b3, b4} ∈ W ⊆ C(ā1ā2), we have {a3, b3, a4}, {a3, b3, b4} ∈ C(ā1ā2a3b3) =
C(a3b3). Hence a4, b4 ∈ F − F ′. Similarly a3, b3 ∈ F ′ − F . Hence |F ∩ F ′| ≤ 2. Also note
that a2 /∈ F ∪ F ′. Consequently, applying Lemma 2.11 with a = a2, we see that at least one
of {a2, a3, b4} and {a2, a4, b3} belongs to C. If {a2, a3, b4} ∈ C, {a2, a3, b4} ∈ C(a3b4) − G2;
if {a2, a4, b3} ∈ C, {a2, a4, b3} ∈ C(a4b3) − G4. Therefore we get a contradiction to the fact
that we have both G2 = C(a3b4) and G4 = G(a4b3).

Thus in either case, we get a contradiction. This completes the proof of Claim 3.4. �

By Claim 3.4, (i) of Claim 3.3 does not hold. Hence (ii) of Claim 3.3 holds. By symme-
try, we may assume |C(a1)| = 13, |C(a2)| ≥ 11 and |C(a1a2)| ≤ 2. By Lemma 2.12 there
exist Y,Z ⊆ X − {a1} with Y ∩ Z = ∅ and y1, y2 ∈ Y with y1 �= y2 such that |Y | = 4,
|Z| = 3 and F(ā1) = {

Y,Z ∪ {y1}, Z ∪ {y2}
}
. Then

C(a1) = {{a1, y, z} : y ∈ Y, z ∈ Z
} ∪ {{a1, y1, y2}

}
. (3.1)

If a2 ∈ Y ∪ Z, then by (3.1), |C(a1a2)| ≥ 3, which contradicts the fact that |C(a1a2)| ≤ 2.
Thus a2 /∈ Y ∪ Z. By (3.1), this implies

C(a1a2) = ∅ . (3.2)

Set F3 := Y , F4 = Z ∪ {y1} and F5 := Z ∪ {y2}. Note that F(ā1) = F(ā1ā2) = {F3, F4, F5}.
CLAIM 3.5. We have F(a1) = F(a2) = F(a1a2) and F(ā1) = F(ā2) = F(ā1ā2).

PROOF. Since F(ā1) = F(ā1ā2), we have F(ā1) ⊆ F(ā2), and hence F(a2) ⊆ F(a1).
By way of contradiction, suppose that F(a1) − F(a2) �= ∅, and take F ∈ F(a1) − F(a2).
Since |F3 ∩ F4| = 1, at least one of F3 and F4, say Fh, satisfies |F ∩ Fh| ≤ 2. Note that
a2 /∈ F∪Fh and a1 ∈ F−Fh. Consequently, applying Lemma 2.10 with F ′ = Fh, a = a2 and
v = a1, we get C(a1a2) �= ∅. But this contradicts (3.2). Thus F(a1) = F(a2). This implies
F(ā1) = F(ā2), and hence F(a1) = F(a2) = F(a1a2) and F(ā1) = F(ā2) = F(ā1ā2). �

CLAIM 3.6. There exist v ∈ {a3, a4} and w ∈ {b3, b4} such that {v,w} ∩ Y �= ∅ and
{v,w} ∩ Z �= ∅.
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PROOF. Recall that F3, F4, F5 ∈ F(ā1ā2). Hence F4 ∩ {a3, a4} = F4 ∩ F1 �= ∅ and
F4 ∩{b3, b4} = F4 ∩F2 �= ∅. This implies that we have Z ∩{a3, a4} �= ∅ or Z ∩{b3, b4} �= ∅.
By symmetry, we may assume that Z∩{b3, b4} �= ∅. Note that Y ∩{a3, a4} = F3 ∩{a3, a4} =
F3 ∩ F1 �= ∅. Now if we take v ∈ Y ∩ {a3, a4} and w ∈ Z ∩ {b3, b4}, then v and w have the
required properties. �

Let v and w be as in Claim 3.6. Let F6 ∈ F(v̄w̄). Since {a1, v,w} ∈ C(a1) by (3.1),
a1 ∈ F6. Hence by Claim 3.5, F6 ∈ F(a1a2) − {F1, F2}. By Lemma 2.12, |C(ā1ā2)| ≥ |C| −
|C(a1)| − |C(a2)| ≥ 36 − 26 = 10. In view of Lemma 2.6, this implies that |C(ā1ā2)| = 10,
F(a1a2) = {F1, F2, F6}, and F6 = {a1, a2, c, d}, where {a3, a4} − {v} = {c} and {b3, b4} −
{w} = {d}. Take F ∈ F(c̄d̄). Since F(a1a2) = {F1, F2, F6}, F /∈ F(a1a2). Therefore
by Claim 3.5, F ∈ F − F(a1a2) = F − F(a1) = F(ā1) = F(ā1ā2). But then F ∩ F6 =
F ∩{a1, a2, c, d} = ∅, which contradicts the assumption that F is intersecting. This completes
the discussion for Case 1.

Case 2: i0 = 3.
We have shown that Case 1 leads to a contradiction. Thus

|F ∩ G| = 1 or |F ∩ G| = 3 for any F,G ∈ F with F �= G . (3.3)

Let F3 ∈ F(ā3ā4). Then by (3.3), |F3 ∩F1| = |F3 ∩{a1, a2}| = 1. By the symmetry of a1 and
a2, we may assume that F3 ∩F1 = {a1}. By (3.3), this implies F3 ∩F2 = F3 ∩{a1, b4} = {a1}.
Hence F3 ∩ (F1 ∪ F2) = {a1}. Write F3 = {a1, c1, c2, c3}. Then ci ∈ X − (F1 ∪ F2)

for each 1 ≤ i ≤ 3. Let F4 ∈ F(ā1ā4). Then we can argue as above using (3.3), to get
|F4 ∩ (F1 ∪ F2)| = |F4 ∩ {a2, a3}| = 1. By the symmetry of a2 and a3, we may assume
that F4 ∩ (F1 ∪ F2) = {a2}. By (3.3), either F4 ∩ F3 = {c1, c2, c3} or |F4 ∩ F3| = |F4 ∩
{c1, c2, c3}| = 1. Suppose that |F4 ∩ F3| = 1. Then {a4, b4, ci} is the only possible member
of C(ā1ā2ā3), where ci is the unique element of F4 ∩ F3. Hence |C(ā1ā2ā3)| ≤ 1. But since
|F3 ∩ F1| = |F4 ∩ F1| = |F4 ∩ F3| = 1, F3 ∩ F1 = {a1} and F4 ∩ F1 = {a2}, this contradicts
Claim 3.1. Thus F4 ∩ F3 = {c1, c2, c3}, and hence F4 = {a2, c1, c2, c3}.

Let F5 ∈ F(ā1c̄3). Then by (3.3), |F5∩(F3∪F4)| = |F5∩{c1, c2}| = 1. By the symmetry
of c1 and c2, we may assume that F5 ∩(F3 ∪F4) = {c1}. Then by (3.3), F5 ∩(F1 ∪F2) = {a3}
or F5 ∩ (F1 ∪ F2) = {a4, b4}. If F5 ∩ (F1 ∪ F2) = {a3}, then since |F5 ∩ F3| = 1, we
get a contradiction to Claim 3.1 by arguing as in the first paragraph with F4 replaced by F5.

Thus F5 ∩ (F1 ∪ F2) = {a4, b4}. Hence F5 = {c1, a4, b4, d} with d ∈ X − (
⋃4

h=1 Fh). Let
F6 ∈ F(ā1c̄1). Then by (3.3), |F6 ∩ (F3 ∪ F4)| = |F6 ∩ {c2, c3}| = 1. By the symmetry of
c2 and c3, we may assume that F6 ∩ (F3 ∪ F4) = {c2}. Then, arguing as in the first paragraph
with F1 and F2 replaced by F3 and F4, and F3 and F4 replaced by F5 and F6, we obtain
F6 = {c2, a4, b4, d}.

Now note that {F1, F2, F3, F4, F5, F6} ∼= F
(4)
2 . Since |C| ≥ 36, this implies |C| = 36

and C = C3({F1, . . . , F6}). In particular,
{{x, y, z} : x ∈ {c1, c2, c3}, y ∈ {a1, a2, a3}, z ∈ {a4, b4, d}} ⊆ C , (3.4)
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and {{a1, a2, z} : z ∈ {a4, b4, d}} ∪ {{a4, b4, x} : x ∈ {c1, c2, c3}
}

∪ {{c1, c2, y} : y ∈ {a1, a2, a3}
} ⊆ C . (3.5)

Suppose that there exists F ∈ F − {F1, . . . , F6}. By (3.4), we have F ⊇ {c1, c2, c3} or
F ⊇ {a1, a2, a3} or F ⊇ {a4, b4, d}. By symmetry, we may assume F ⊇ {c1, c2, c3}. Since
F ∩ F1 �= ∅, F ∩ F2 �= ∅ and F �= F3, F4, this forces F = {a3, c1, c2, c3}. But then

{a1, a2, d} ∩ F = ∅, which contradicts (3.5). Therefore F = {F1, . . . , F6} ∼= F
(4)
2 .

This completes the proof of Theorem 2. �
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