Covers in 4-uniform Intersecting Families with Covering Number Three

Shuya CHIBA, Michitaka FURUYA, Ryota MATSUBARA*
and Masanori TAKATOU

Tokyo University of Science and *Shibaura Institute of Technology
(Communicated by K. Ota)

Abstract

Let k be an integer. In [3, 4], Frankl, Ota and Tokushige proved that the maximum number of threecovers of a k-uniform intersecting family with covering number three is $k^{3}-3 k^{2}+6 k-4$ for $k=3$ or $k \geq 9$, but the case $4 \leq k \leq 8$ remained open. In this paper, we prove that the same holds for $k=4$, and show that a 4 -uniform family with covering number three which has 36 three-covers is uniquely determined.

1. Introduction

Throughout this paper, we let X denote a finite set. We let 2^{X} denote the family of all subsets of X and, for an integer $k \geq 1$, we let $\binom{X}{k}$ denote the family of those subsets of X which have cardinality k. A family $\mathcal{F} \subseteq 2^{X}$ is said to be k-uniform if $\mathcal{F} \subseteq\binom{X}{k}$. Let $\mathcal{F} \subseteq 2^{X}$ be a k-uniform family. We say that \mathcal{F} is intersecting if $F \cap G \neq \emptyset$ for all $F, G \in \mathcal{F}$. A set $C \subseteq X$ is called a cover of \mathcal{F} if it intersects with every member of \mathcal{F}, i.e., $C \cap F \neq \emptyset$ for all $F \in \mathcal{F}$. Let $\mathcal{C}(\mathcal{F}):=\{C: C$ is a cover of $\mathcal{F}\}$. The covering number of \mathcal{F}, denoted by $\tau(\mathcal{F})$, is defined by $\tau(\mathcal{F}):=\min _{C \in \mathcal{C}(\mathcal{F})}|C|$. Note that if \mathcal{F} is intersecting, then we have $\tau(\mathcal{F}) \leq k$ because $\mathcal{F} \subseteq \mathcal{C}(\mathcal{F})$. For an integer $t \geq 1$, we define $\mathcal{C}_{t}(\mathcal{F}):=\mathcal{C}(\mathcal{F}) \cap\binom{X}{t}$. Note that if $t<\tau(\mathcal{F})$, then $\mathcal{C}_{t}(\mathcal{F})=\emptyset$. Also it is easy to see that if $t=\tau(\mathcal{F})$, then $\left|\mathcal{C}_{t}(\mathcal{F})\right| \leq k^{t}$ (see, for example, the proof of Lemma 2.1 (ii) (a) in Section 2).

Let t, k be integers with $k \geq t \geq 1$, and assume that $|X|$ is sufficiently large compared with t and k. Define

$$
p_{t}(k):=\max \left\{\left|\mathcal{C}_{t}(\mathcal{F})\right|: \mathcal{F} \subseteq 2^{X} \text { is } k \text {-uniform and intersecting, and } \tau(\mathcal{F})=t\right\}
$$

(from the fact that every k-uniform family \mathcal{F} with $\tau(\mathcal{F})=t$ satisfies $\left|\mathcal{C}_{t}(\mathcal{F})\right| \leq k^{t}$, which is mentioned at the end of the preceding paragraph, it follows that if $|X|$ is sufficiently large, then the value of $p_{t}(k)$ does not depend on $\left.|X|\right)$. This paper is concerned with $p_{3}(k)$. However, the definition of $p_{t}(k)$ looks somewhat technical. Thus we here state a result of Frankl, Ota

[^0]and Tokushige [4], which shows the importance of the function $p_{t-1}(k)$ in the study of the following more natural function $f_{k, t}(n)$. Define
$$
f_{k, t}(n):=\max \left\{|\mathcal{F}|: \mathcal{F} \subseteq 2^{X} \text { is } k \text {-uniform and intersecting, and } \tau(\mathcal{F})=t\right\}
$$
where $n=|X|$. Note that the famous theorem of Erdős, Ko and Rado [1] shows that if $n \geq 2 k \geq 4$ and $t \geq 1$, then $f_{k, t}(n) \leq\binom{ n-1}{k-1}$. Now clearly $f_{k, 1}(n)=\binom{n-1}{k-1}$. For $t \geq 2$, it is shown in [4] that if k is sufficiently large compared with t, then, as n tends to infinity, we have $f_{k, t}(n) \leq p_{t-1}(k)\binom{n}{k-t}+O\left(n^{k-t-1}\right.$) (in fact, it is expected, though not yet proved, that equality holds). This shows the role of the function $p_{t-1}(k)$ in the determination of $f_{k, t}(n)$ (for a more precise result concerning the case where $2 \leq t \leq 4$, see [7], [2] and [3]).

We turn to $p_{t}(k)$. Clearly $p_{1}(k)=k$ for every $k \geq 1$. For $t \geq 2$, in Frankl, Ota and Tokushige [5], it is conjectured that $p_{t}(k)=k^{t}-\binom{t}{2} k^{t-1}+O\left(k^{t-2}\right)(k \rightarrow \infty)$, and the conjecture is settled affirmatively for $t=4,5$ (for $t \geq 6$, it is proved in the same paper that $p_{t}(k) \leq k^{t}-\frac{1}{\sqrt{2}}\left\lfloor\frac{t-1}{2}\right\rfloor^{\frac{3}{2}} k^{t-1}+O\left(k^{t-2}\right)$). For $t=2,3$, the following precise results are proved in [2], [3] and [4].

THEOREM A (Frankl [2]). Let $k \geq 2$. Then $p_{2}(k)=k^{2}-k+1$.
Theorem B (Frankl, Ota and Tokushige [3, 4]). Let $k=3$ or $k \geq 9$. Then $p_{3}(k)=$ $k^{3}-3 k^{2}+6 k-4$.

We now describe examples related to Theorems A and B.
Example 1. Let $k \geq 2$. Fix $2 k-1$ elements $y_{i}, z_{j}(1 \leq i \leq k$ and $1 \leq j \leq k-1)$ of X. Set $Y:=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}, Z_{1}:=\left\{z_{1}, z_{2}, \ldots, z_{k-1}, y_{1}\right\}$ and $Z_{2}:=\left\{z_{1}, z_{2}, \ldots, z_{k-1}, y_{2}\right\}$, and define $\mathcal{F}_{1}^{(k)}:=\left\{Y, Z_{1}, Z_{2}\right\}$. Then $\mathcal{F}_{1}^{(k)}$ is k-uniform and intersecting, $\tau\left(\mathcal{F}_{1}^{(k)}\right)=2$, and $\left|\mathfrak{C}_{2}\left(\mathcal{F}_{1}^{(k)}\right)\right|=k^{2}-k+1$.

EXAMPLE 2. Let $k \geq 3$. Fix $3(k-1)$ elements $x_{i}, y_{i}, z_{i}(1 \leq i \leq k-1)$ of X. For each $i=1,2$, set $X_{i}:=\left\{x_{1}, x_{2}, \ldots, x_{k-1}, y_{i}\right\}, Y_{i}:=\left\{y_{1}, y_{2}, \ldots, y_{k-1}, z_{i}\right\}$ and $Z_{i}:=$ $\left\{z_{1}, z_{2}, \ldots, z_{k-1}, x_{i}\right\}$, and define $\mathcal{F}_{2}^{(k)}:=\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}\right\}$. Then $\mathcal{F}_{2}^{(k)}$ is k-uniform and intersecting, $\tau\left(\mathcal{F}_{2}^{(k)}\right)=3$, and $\left|\mathcal{C}_{3}\left(\mathcal{F}_{2}^{(k)}\right)\right|=(k-1)^{3}+3(k-1)=k^{3}-3 k^{2}+6 k-4$.

In [2], [3] and [4], the following two theorems, which are stronger than Theorems A and B, are actually proved.

Theorem C (Frankl [2]). Let $k \geq 2$, and let $\mathcal{F} \subseteq\binom{X}{k}$ be an intersecting family with $\tau(\mathcal{F})=2$. Then $\left|\mathfrak{C}_{2}(\mathcal{F})\right| \leq k^{2}-k+1$, with equality if and only if \mathcal{F} is isomorphic to $\mathcal{F}_{1}^{(k)}$.

Theorem D (Frankl et al. [3, 4]). Let $k=3$ or $k \geq 9$, and let $\mathcal{F} \subseteq\binom{X}{k}$ be an intersecting family with $\tau(\mathcal{F})=3$. Then $\left|\mathcal{C}_{3}(\mathcal{F})\right| \leq k^{3}-3 k^{2}+6 k-4$, with equality if and only if \mathcal{F} is isomorphic to $\mathcal{F}_{2}^{(k)}$.

It is natural to conjecture that Theorems B and D hold for $4 \leq k \leq 8$ as well. In this paper, as an initial step toward the determination of $p_{3}(k)$ for $4 \leq k \leq 8$, we prove the following theorem.

THEOREM 1. We have $p_{3}(4)=36$.
We actually prove the following stronger result, which is an analogue of Theorems C and D;

Theorem 2. Let $\mathcal{F} \subseteq\binom{X}{4}$ be an intersecting family with $\tau(\mathcal{F})=3$. Then $\left|\mathcal{C}_{3}(\mathcal{F})\right| \leq$ 36, with equality if and only if \mathcal{F} is isomorphic to $\mathfrak{F}_{2}^{(4)}$.

Our notation is standard except for the following. Let $\mathcal{A} \subseteq 2^{X}$ and $Y, Z \subseteq X$ with $Y \cap$ $Z=\emptyset$, and write $Y=\left\{y_{1}, y_{2}, \ldots, y_{l}\right\}$ and $Z=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$. We define $\mathcal{A}\left(y_{1} y_{2} \cdots y_{l}\right)=$ $\mathcal{A}(Y):=\{A \in \mathcal{A}: Y \subseteq A\}, \mathcal{A}\left(\overline{y_{1}} \overline{y_{2}} \cdots \bar{y}_{l}\right)=\mathcal{A}(\bar{Y}):=\{A \in \mathcal{A}: Y \cap A=\emptyset\}$ and $\mathcal{A}\left(y_{1} y_{2} \cdots y_{l} \overline{z_{1}} \overline{z_{2}} \cdots \overline{z_{l}}\right)=\mathcal{A}(Y \bar{Z}):=\{A \in \mathcal{A}: Y \subseteq A$ and $Z \cap A=\emptyset\}$.

2. Preliminaries

Throughout the rest of this paper, let $\mathcal{F} \subseteq\binom{X}{4}$ be an intersecting family with $\tau(\mathcal{F})=3$, and let $\mathcal{C}:=\mathcal{C}_{3}(\mathcal{F})$. We start with two easy lemmas.

Lemma 2.1. Let $x, y \in X$ with $x \neq y$. Then the following hold.
(i) We have $|\mathcal{F}(\bar{x})| \geq 3$ and $|\mathcal{F}(\bar{x} \bar{y})| \geq 1$.
(ii) (a) We have $|\mathcal{C}(x y)| \leq 4$.
(b) Suppose that $|\mathcal{C}(x y)|=4$. Then $|\mathcal{F}(\bar{x} \bar{y})|=1$ and, if we write $\mathcal{F}(\bar{x} \bar{y})=\{F\}$, then $\mathcal{C}(x y)=\{\{x, y, z\}: z \in F\}$.

Proof. Suppose that $|\mathcal{F}(\bar{x})| \leq 2$. Then since \mathcal{F} is intersecting, there exists $v \in X-\{x\}$ such that $v \in F$ for each $F \in \mathcal{F}(\bar{x})$. This means that $\{x, v\}$ is a cover of \mathcal{F}, which contradicts the assumption that $\tau(\mathcal{F})=3$. Thus $|\mathcal{F}(\bar{x})| \geq 3$. Similarly if $\mathcal{F}(\bar{x} \bar{y})=\emptyset$, then $\{x, y\}$ is a cover of \mathcal{F}, a contradiction. Thus $|\mathcal{F}(\bar{x} \bar{y})| \geq 1$. This proves (i). To prove (ii), having (i) in mind, take $F \in \mathcal{F}(\bar{x} \bar{y})$. Then by the definition of $\mathcal{C}, \mathcal{C}(x y) \subseteq\{\{x, y, z\}: z \in F\}$. Hence $|\mathcal{C}(x y)| \leq 4$. Suppose that $|\mathcal{C}(x y)|=4$. Then $\mathcal{C}(x y)=\{\{x, y, z\}: z \in F\}$. Since F is an arbitrary member of $\mathcal{F}(\bar{x} \bar{y})$, this also implies $\mathcal{F}(\bar{x} \bar{y})=\{F\}$. Thus (ii) is proved.

Lemma 2.2. Let v, w, x and y be four distinct elements of X. Suppose that $|\mathcal{C}(x y \bar{v} \bar{w})|=4$, and write $\mathcal{F}(\bar{x} \bar{y})=\{F\}$. Then $F \cap\{v, w\}=\emptyset$.

Proof. In view of Lemma 2.1 (ii) (a), we have $\mathcal{C}(x y)=\mathcal{C}(x y \bar{v} \bar{w})$ and $|\mathcal{C}(x y)|=4$. Hence by Lemma 2.1 (ii) (b), $\mathcal{C}(x y)=\{\{x, y, z\}: z \in F\}$. Since $\mathcal{C}(x y)=\mathcal{C}(x y \bar{v} \bar{w})$, this implies $F \cap\{v, w\}=\emptyset$.

Lemma 2.3. Let $Y \subseteq X$ with $1 \leq|Y| \leq 2$. Let $F_{1}, F_{2}, F_{3} \in \mathcal{F}$, and suppose that $F_{i} \cap F_{j}=Y$ for any i, j with $1 \leq i<j \leq 3$. Then the following hold.
(i) If $|Y|=2$, then $|\mathcal{C}(\bar{Y})| \leq 8$.
(ii) If $|Y|=1$, and $|F \cap G|=1$ for all $F, G \in \mathcal{F}$ with $F \neq G$, then $|\mathcal{C}(\bar{Y})| \leq 19$.

Proof. Since $F_{i} \cap F_{j}=Y$ for any i, j with $1 \leq i<j \leq 3$ and since $C \cap\left(F_{i}-Y\right) \neq \emptyset$ for any $C \in \mathcal{C}(\bar{Y})$ and any i with $1 \leq i \leq 3$,

$$
\begin{equation*}
\mathcal{C}(\bar{Y}) \subseteq\left\{\{\alpha, \beta, \gamma\}: \alpha \in F_{1}-Y, \beta \in F_{2}-Y, \gamma \in F_{3}-Y\right\} . \tag{2.1}
\end{equation*}
$$

Hence if $|Y|=2$, then $|\mathcal{C}(\bar{Y})| \leq(4-|Y|)^{3}=8$.
Suppose that $|Y|=1$, and $|F \cap G|=1$ for all $F, G \in \mathcal{F}$ with $F \neq G$. By Lemma 2.1 (i), we can take $G \in \mathcal{F}(\bar{Y})$. Then by assumption, $\left|F_{i} \cap G\right|=1$ for each $1 \leq i \leq 3$. Write $\left(F_{i}-Y\right) \cap G=\left\{a_{i}\right\}$ for each $1 \leq i \leq 3$. Then by (2.1), $C \cap\left\{a_{1}, a_{2}, a_{3}\right\} \neq \emptyset$ for all $C \in \mathcal{C}(\bar{Y})$, and hence $\mathcal{C}(\bar{Y}) \subseteq\left\{\{\alpha, \beta, \gamma\}: \alpha \in F_{1}-Y, \beta \in F_{2}-Y, \gamma \in F_{3}-Y\right\}-$ $\left\{\{\alpha, \beta, \gamma\}: \alpha \in F_{1}-\left(Y \cup\left\{a_{1}\right\}\right), \beta \in F_{2}-\left(Y \cup\left\{a_{2}\right\}\right), \gamma \in F_{3}-\left(Y \cup\left\{a_{3}\right\}\right)\right\}$. Consequently $|\mathcal{C}(\bar{Y})| \leq 27-8=19$.

In the following three lemmas, Lemma 2.4 through 2.6, we fix the following notation. Let $F_{1}, F_{2} \in \mathcal{F}$ with $\left|F_{1} \cap F_{2}\right|=2$, and write $F_{1}=:\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $F_{2}=:\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ so that $a_{i}=b_{i}$ for each $1 \leq i \leq 2$ and $a_{i} \neq b_{i}$ for each $3 \leq i \leq 4$. Set $\mathcal{G}_{1}:=\mathcal{C}\left(a_{3} b_{3} \bar{a}_{1} \bar{a}_{2}\right)$, $\mathcal{G}_{2}:=\mathcal{C}\left(a_{3} b_{4} \bar{a}_{1} \bar{a}_{2}\right), \mathcal{G}_{3}:=\mathcal{C}\left(a_{4} b_{4} \bar{a}_{1} \bar{a}_{2}\right)$ and $\mathcal{G}_{4}:=\mathcal{C}\left(a_{4} b_{3} \bar{a}_{1} \bar{a}_{2}\right)$. Note that $\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)=$ $\bigcup_{l=1}^{4} \mathcal{G}_{l}$.

LEMMA 2.4. Let l be an integer with $1 \leq l \leq 4$, and suppose that $\left|\mathcal{G}_{l}\right|=4$. Then $\mathcal{G}_{l} \cap \mathcal{G}_{l-1} \neq \emptyset$ and $\mathcal{G}_{l} \cap \mathcal{G}_{l+1} \neq \emptyset$, where indices are to be read modulo 4 .

Proof. By the cyclic symmetry of $\left\{a_{3}, b_{3}\right\},\left\{a_{3}, b_{4}\right\},\left\{a_{4}, b_{4}\right\}$ and $\left\{a_{4}, b_{3}\right\}$, we may assume $l=1$. Then by Lemma 2.1 (ii) (a), $\mathcal{G}_{1}=\mathcal{C}\left(a_{3} b_{3}\right)$. Having Lemma 2.1 (ii) (b) in mind, write $\mathcal{F}\left(\bar{a}_{3} \bar{b}_{3}\right)=\{F\}$. Then by Lemma $2.2, F \cap\left\{a_{1}, a_{2}\right\}=\emptyset$. Since \mathcal{F} is intersecting, it follows that $F \cap F_{1}=\left\{a_{4}\right\}$ and $F \cap F_{2}=\left\{b_{4}\right\}$. Hence by Lemma 2.1 (ii) (b), $\left\{a_{3}, b_{3}, a_{4}\right\},\left\{a_{3}, b_{3}, b_{4}\right\} \in \mathcal{C}\left(a_{3} b_{3}\right)$. This implies $\left\{a_{3}, b_{3}, a_{4}\right\} \in \mathcal{G}_{1} \cap \mathcal{G}_{4}$ and $\left\{a_{3}, b_{3}, b_{4}\right\} \in \mathcal{G}_{1} \cap \mathcal{G}_{2}$, and hence we have $\mathcal{G}_{1} \cap \mathcal{G}_{4} \neq \emptyset$ and $\mathcal{G}_{1} \cap \mathcal{G}_{2} \neq \emptyset$.

LEMmA 2.5. We have $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right| \leq 12$. Furthermore, if equality holds, then one of the following holds:
(i) $\left|\mathcal{G}_{l}\right|=4$ for each $1 \leq l \leq 4$, and $\binom{\left\{a_{3}, a_{4}, b_{3}, b_{4}\right\}}{3} \subseteq \mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)$; or
(ii) $\left|\mathcal{G}_{l}\right|=3$ for each $1 \leq l \leq 4$, and $\mathcal{G}_{l} \cap \mathcal{G}_{m}=\emptyset$ for any l, m with $1 \leq l<m \leq 4$.

Proof. Since $|C|=3$ for all $C \in \mathcal{C}$, we clearly have $\mathcal{G}_{1} \cap \mathcal{G}_{3}=\mathcal{G}_{2} \cap \mathcal{G}_{4}=\emptyset$. This implies that for each $1 \leq m \leq 4$, we have $\bigcap_{\substack{1 \leq 1 \leq 4 \\ l \neq m}} \mathcal{G}_{l}=\emptyset$. Hence by the inclusion-exclusion principle, $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right|=\left|\bigcup_{1 \leq l \leq 4} \mathcal{G}_{l}\right|=\sum_{l=1}^{4}\left(\left|\mathcal{G}_{l}\right|-\left|\mathcal{G}_{l} \cap \mathcal{G}_{l+1}\right|\right)$, where indices are to be
read modulo 4. By Lemmas 2.1 (ii) (a) and 2.4, $\left|\mathcal{G}_{l}\right|-\left|\mathcal{G}_{l} \cap \mathcal{G}_{l+1}\right| \leq 3$ for each $1 \leq l \leq 4$. Consequently $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right|=\sum_{l=1}^{4}\left(\left|\mathcal{G}_{l}\right|-\left|\mathcal{G}_{l} \cap \mathcal{G}_{l+1}\right|\right) \leq 12$. Suppose that equality holds. Then $\left|\mathcal{G}_{l}\right|-\left|\mathcal{G}_{l} \cap \mathcal{G}_{l+1}\right|=3$ for each $1 \leq l \leq 4$. If $\left|\mathcal{G}_{l}\right|=4$ for each $1 \leq l \leq 4$, then by Lemma 2.4, $\binom{\left\{a_{3}, a_{4}, b_{3}, b_{4}\right\}}{3} \subseteq \mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)$, and hence (i) holds. Thus by symmetry, we may assume that $\left|\mathcal{G}_{1}\right|=3$ and $\mathcal{G}_{1} \cap \mathcal{G}_{2}=\emptyset$. Since $\left|\mathcal{G}_{2}\right|-\left|\mathcal{G}_{2} \cap \mathcal{G}_{3}\right|=3$ and $\mathcal{G}_{1} \cap \mathcal{G}_{2}=\emptyset$, it follows from Lemma 2.4 that $\left|\mathcal{G}_{2}\right|=3$ and $\mathcal{G}_{2} \cap \mathcal{G}_{3}=\emptyset$. By a similar argument, we get $\left|\mathcal{G}_{3}\right|=\left|\mathcal{G}_{4}\right|=3$ and $\mathcal{G}_{3} \cap \mathcal{G}_{4}=\mathcal{G}_{1} \cap \mathcal{G}_{4}=\emptyset$. Since $\mathcal{G}_{1} \cap \mathcal{G}_{3}=\mathcal{G}_{2} \cap \mathcal{G}_{4}=\emptyset$, this means that (ii) holds.

Lemma 2.6. Suppose that $\left|\mathcal{F}\left(a_{1} a_{2}\right)\right| \geq 3$. Then $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right| \leq 10$. Furthermore, if $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right|=10$, then $\left|\mathcal{F}\left(a_{1} a_{2}\right)\right|=3$, and there exist $x \in\left\{a_{3}, a_{4}\right\}$ and $y \in\left\{b_{3}, b_{4}\right\}$ such that $\mathcal{F}\left(a_{1} a_{2}\right)=\left\{F_{1}, F_{2},\left\{a_{1}, a_{2}, x, y\right\}\right\}$.

Proof. Suppose that $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right| \geq 10$. Let $F_{3} \in \mathcal{F}\left(a_{1} a_{2}\right)-\left\{F_{1}, F_{2}\right\}$, and write $F_{3}=\left\{a_{1}, a_{2}, x, y\right\}$. Then by Lemma 2.3 (i), $\{x, y\} \cap\left(F_{1} \cup F_{2}\right) \neq \emptyset$. Suppose that $x \notin F_{1} \cup F_{2}$ or $y \notin F_{1} \cup F_{2}$. By the symmetry of x and y and the symmetry of a_{3}, a_{4}, b_{3} and b_{4}, we may assume that $x=a_{3}$ and $y \notin F_{1} \cup F_{2}$. Then $\mathcal{G}_{3} \cup \mathcal{G}_{4} \subseteq\left\{\left\{a_{3}, a_{4}, b_{4}\right\}\right.$, $\left.\left\{a_{4}, b_{4}, y\right\},\left\{a_{3}, a_{4}, b_{3}\right\},\left\{a_{4}, b_{3}, y\right\}\right\}$, which implies $\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)=\bigcup_{i=1}^{4} \mathcal{G}_{i} \subseteq \mathcal{G}_{1} \cup \mathcal{G}_{2} \cup$ $\left\{\left\{a_{4}, b_{4}, y\right\},\left\{a_{4}, b_{3}, y\right\}\right\}$. Hence by Lemmas 2.1 (ii) (a) and 2.4, $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right| \leq\left|\mathcal{G}_{1} \cup \mathcal{G}_{2}\right|+2=$ $\left|\mathcal{G}_{1}\right|+\left(\left|\mathcal{G}_{2}\right|-\left|\mathcal{G}_{1} \cap \mathcal{G}_{2}\right|\right)+2 \leq 4+3+2=9$, a contradiction. Thus $x, y \in F_{1} \cup F_{2}$. By the symmetry of x and y and the symmetry of $\left\{a_{3}, b_{3}\right\},\left\{a_{3}, b_{4}\right\},\left\{a_{4}, b_{3}\right\}$ and $\left\{a_{4}, b_{4}\right\}$, we may assume that $x=a_{3}$ and $y=b_{3}$. Then $\mathcal{G}_{3} \subseteq\left\{\left\{a_{3}, a_{4}, b_{4}\right\},\left\{a_{4}, b_{3}, b_{4}\right\}\right\}$. Hence $\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)=\bigcup_{i=1}^{4} \mathcal{G}_{i}=\mathcal{G}_{1} \cup \mathcal{G}_{2} \cup \mathcal{G}_{4}$. Since $\mathcal{G}_{2} \cap \mathcal{G}_{4}=\emptyset$, this together with Lemmas 2.1 (ii) (a) and 2.4 implies that $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right|=\left|\mathcal{G}_{1} \cup \mathcal{G}_{2} \cup \mathcal{G}_{4}\right|=\left(\left|\mathcal{G}_{1}\right|-\left|\mathcal{G}_{1} \cap \mathcal{G}_{2}\right|\right)+\left|\mathcal{G}_{2}\right|+\left(\left|\mathcal{G}_{4}\right|-\left|\mathcal{G}_{1} \cap \mathcal{G}_{4}\right|\right) \leq$ $3+4+3=10$. Since we are assuming that $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right| \geq 10$, it follows that $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right|=10$. Note that this in particular implies that $\left|\mathcal{G}_{l}\right| \geq 3$ for each $1 \leq l \leq 4$ with $l \neq 3$. We also have $\left|\mathcal{G}_{3}\right| \leq\left|\left\{\left\{a_{3}, a_{4}, b_{4}\right\},\left\{a_{4}, b_{3}, b_{4}\right\}\right\}\right|=2$.

Suppose that there exists $F_{4} \in \mathcal{F}\left(a_{1} a_{2}\right)-\left\{F_{1}, F_{2}, F_{3}\right\}$. Arguing as in the first half of the preceding paragraph, we see that there exist $x^{\prime} \in\left\{a_{3}, a_{4}\right\}$ and $y^{\prime} \in\left\{b_{3}, b_{4}\right\}$ such that $F_{4}=$ $\left\{a_{1}, a_{2}, x^{\prime}, y^{\prime}\right\}$. Then $\left\{x^{\prime}, y^{\prime}\right\} \neq\{x, y\}$. Hence, arguing as in the second half of the preceding paragraph, we see that for some $m(1 \leq m \leq 4)$ with $m \neq 3$, we have $\left|\mathcal{G}_{l}\right| \geq 3$ for each $l \neq m$. But this contradicts the assertion that $\left|\mathcal{G}_{3}\right| \leq 2$. Therefore $\mathcal{F}\left(a_{1} a_{2}\right)=\left\{F_{1}, F_{2}, F_{3}\right\}$.

In Lemmas 2.7 through 2.11, we fix the following notation. Let $F, F^{\prime} \in \mathcal{F}$ with $F \neq F^{\prime}$, and let $j_{0}:=\left|F \cap F^{\prime}\right|$. Let $a \in X-\left(F \cup F^{\prime}\right)$, and set $\mathcal{H}:=\left\{\{a, v, w\}: v \in F-F^{\prime}, w \in\right.$ $\left.F^{\prime}-F\right\}$ (it is not always true that $\mathcal{H} \subseteq \mathcal{C}$). The following lemma follows from the definition of \mathcal{H}.

Lemma 2.7. (i) For each $v \in F-F^{\prime},|\mathcal{H}(v)|=4-j_{0}$.
(ii) $|\mathcal{H}|=\left(4-j_{0}\right)^{2}$.

LEMMA 2.8. (i) $\mathcal{C}(a) \subseteq\left(\bigcup_{u \in F \cap F^{\prime}} \mathcal{C}(a u)\right) \cup \mathcal{H}$.
(ii) $|\mathcal{C}(a)| \leq 4 j_{0}+\left(4-j_{0}\right)^{2}$.

Proof. Take $C \in \mathcal{C}(a)-\bigcup_{u \in F \cap F^{\prime}} \mathcal{C}(a u)$. Then since $C \cap F \neq \emptyset$ and $C \cap F^{\prime} \neq \emptyset$, we get $C \in \mathcal{H}$. Since C is arbitrary, this proves (i). Statement (ii) follows from (i) and Lemmas 2.1 (ii) (a) and 2.7 (ii).

We here prove three technical lemmas.
Lemma 2.9. Suppose that $j_{0}=1$, and let $v_{0} \in F-F^{\prime}$ and $w_{0} \in F^{\prime}-F$. Then $|\mathcal{C}(a)|-\left|\mathcal{C}\left(a v_{0}\right)\right|-\left|\mathcal{C}\left(a w_{0}\right)\right|+\left|\mathcal{C}\left(a v_{0} w_{0}\right)\right| \leq 8$.

Proof. Write $F \cap F^{\prime}=\{u\}$. Note that $\left|\mathcal{C}\left(a v_{0}\right)\right|+\left|\mathcal{C}\left(a w_{0}\right)\right|-\left|\mathcal{C}\left(a v_{0} w_{0}\right)\right|=$ $\left|\mathcal{C}\left(a v_{0}\right) \cup \mathcal{C}\left(a w_{0}\right)\right|$. Hence by Lemmas 2.8 (i) and 2.1 (ii) (a), $|\mathcal{C}(a)|-\left(\left|\mathcal{C}\left(a v_{0}\right)\right|+\right.$ $\left.\left|\mathcal{C}\left(a w_{0}\right)\right|-\left|\mathcal{C}\left(a v_{0} w_{0}\right)\right|\right)=|\mathcal{C}(a)|-\left|\mathcal{C}\left(a v_{0}\right) \cup \mathcal{C}\left(a w_{0}\right)\right|=\left|\mathcal{C}(a)-\left(\mathcal{C}\left(a v_{0}\right) \cup \mathcal{C}\left(a w_{0}\right)\right)\right|=$ $\left|(\mathcal{C}(a u) \cup(\mathcal{C}(a) \cap \mathcal{H}))-\left(\mathcal{C}\left(a v_{0}\right) \cup \mathcal{C}\left(a w_{0}\right)\right)\right| \leq|\mathcal{C}(a u)|+\left|(\mathcal{C}(a) \cap \mathcal{H})-\left(\mathcal{C}\left(a v_{0}\right) \cup \mathcal{C}\left(a w_{0}\right)\right)\right| \leq$ $|\mathcal{C}(a u)|+\left|\left\{\{a, v, w\}: v \in F-F^{\prime}-\left\{v_{0}\right\}, w \in F^{\prime}-F-\left\{w_{0}\right\}\right\}\right| \leq 4+\left(4-j_{0}-1\right)^{2}=8$.

Lemma 2.10. Suppose that $j_{0} \leq 2$ and $|\mathcal{C}(a)| \geq 11$. Then $\mathcal{C}(a v) \neq \emptyset$ for each $v \in F$.
Proof. Note that $j_{0}=1$ or 2 . Take $v \in F$.
First we consider the case where $v \in F \cap F^{\prime}$. By Lemma 2.8 (i), $\mathcal{C}(a) \subseteq$ $\left(\bigcup_{u \in F \cap F^{\prime}} \mathcal{C}(a u)\right) \cup \mathcal{H}=\mathcal{C}(a v) \cup\left(\bigcup_{u \in\left(F \cap F^{\prime}\right)-\{v\}} \mathcal{C}(a u)\right) \cup \mathcal{H}$. We have $\left|\bigcup_{u \in\left(F \cap F^{\prime}\right)-\{v\}} \mathcal{C}(a u)\right| \leq 4\left(j_{0}-1\right)$ by Lemma 2.1 (ii) (a) and $|\mathcal{H}|=\left(4-j_{0}\right)^{2}$ by Lemma 2.7 (ii). Hence $|\mathcal{C}(a)| \leq|\mathcal{C}(a v)|+4\left(j_{0}-1\right)+\left(4-j_{0}\right)^{2}$. Since $|\mathcal{C}(a)| \geq 11$ by assumption, this implies $|\mathcal{C}(a v)| \geq 11-\left(4\left(j_{0}-1\right)+\left(4-j_{0}\right)^{2}\right)$. Since $j_{0}=1$ or 2 , we get $|\mathcal{C}(a v)| \geq 2$.

Next we consider the case where $v \in F-F^{\prime}$. By Lemma 2.8 (i), $\mathcal{C}(a)=$ $\left(\bigcup_{u \in F \cap F^{\prime}} \mathcal{C}(a u)\right) \cup(\mathcal{C}(a) \cap \mathcal{H})=\left(\bigcup_{u \in F \cap F^{\prime}} \mathcal{C}(a u)\right) \cup(\mathcal{C}(a v) \cap \mathcal{H}) \cup(\mathcal{C}(a) \cap(\mathcal{H}-$ $\mathcal{H}(v))) \subseteq\left(\bigcup_{u \in F \cap F^{\prime}} \mathcal{C}(a u)\right) \cup \mathcal{C}(a v) \cup(\mathcal{H}-\mathcal{H}(v))$. We have $\left|\bigcup_{u \in F \cap F^{\prime}} \mathcal{C}(a u)\right| \leq 4 j_{0}$ by Lemma 2.1 (ii) (a) and $|\mathcal{H}-\mathcal{H}(v)|=\left(3-j_{0}\right)\left(4-j_{0}\right)$ by Lemma 2.7. Hence $|\mathcal{C}(a)| \leq 4 j_{0}+|\mathcal{C}(a v)|+\left(3-j_{0}\right)\left(4-j_{0}\right)$. Since $|\mathcal{C}(a)| \geq 11$ and $j_{0}=1$ or 2 , this implies $|\mathcal{C}(a v)| \geq 11-\left(4 j_{0}+\left(3-j_{0}\right)\left(4-j_{0}\right)\right)=1$, as desired.

Lemma 2.11. Suppose that $j_{0} \leq 2$ and $|\mathcal{C}(a)| \geq 12$. Then $|\mathcal{H}-\mathcal{C}(a)| \leq 1$.
Proof. Note that $|\mathcal{H}-\mathcal{C}(a)|=|(\mathcal{C}(a) \cup \mathcal{H})-\mathcal{C}(a)|=|\mathcal{C}(a) \cup \mathcal{H}|-|\mathcal{C}(a)|$. Hence by Lemma 2.8 (i), $|\mathcal{H}-\mathcal{C}(a)|=\left|\left(\bigcup_{u \in F \cap F^{\prime}} \mathcal{C}(a u)\right) \cup \mathcal{H}\right|-|\mathcal{C}(a)|$. Consequently $|\mathcal{H}-\mathcal{C}(a)| \leq$ $4 j_{0}+\left(4-j_{0}\right)^{2}-|\mathcal{C}(a)|$ by Lemmas 2.1 (ii) (a) and 2.7 (ii). Since $|\mathcal{C}(a)| \geq 12$ and $j_{0}=1$ or 2 by assumption, this implies $|\mathcal{H}-\mathcal{C}(a)| \leq 4 j_{0}+\left(4-j_{0}\right)^{2}-12 \leq 1$.

The following lemma follows from Theorem C. However, for the convenience of the reader, we include a proof which does not depend on Theorem C.

Lemma 2.12. Let $a \in X$. Then $|\mathcal{C}(a)| \leq 13$. Furthermore, if equality holds, then there exist $Y, Z \subseteq X-\{a\}$ with $Y \cap Z=\emptyset$ and $y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$ such that $|Y|=$ $4,|Z|=3$ and $\mathcal{F}(\bar{a})=\left\{Y, Z \cup\left\{y_{1}\right\}, Z \cup\left\{y_{2}\right\}\right\}$.

Proof. In view of Lemma 2.1 (i), we can take $F, F^{\prime} \in \mathcal{F}(\bar{a})$ with $F \neq F^{\prime}$. Let j_{0} and \mathcal{H} be as in Lemmas 2.7 and 2.8. By Lemma 2.8 (ii), $|\mathcal{C}(a)| \leq 13$. Suppose that equality holds. Then by Lemma 2.8 (ii), $j_{0}=1$ or 3 . Further by Lemmas 2.8 (i), 2.1 (ii) (a) and 2.7 (ii),

$$
\begin{gather*}
|\mathcal{C}(a u)|=4 \text { for each } u \in F \cap F^{\prime} \tag{2.2}\\
\mathcal{C}(a u) \cap \mathcal{C}\left(a u^{\prime}\right)=\emptyset \text { for any } u, u^{\prime} \in F \cap F^{\prime} \text { with } u \neq u^{\prime} \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{H} \subseteq \mathcal{C}(a) \tag{2.4}
\end{equation*}
$$

Assume for the moment that $j_{0}=3$. Let $u \in F \cap F^{\prime}$. By Lemma 2.1 (i), we can take $F^{\prime \prime} \in \mathcal{F}(\bar{a} \bar{u})$. If $F^{\prime \prime} \cap\left(F \cap F^{\prime}\right) \neq \emptyset$, then, letting $u^{\prime} \in F^{\prime \prime} \cap\left(F \cap F^{\prime}\right)$, we get $\left\{a, u, u^{\prime}\right\} \in \mathcal{C}(a u)$ from (2.2) and Lemma 2.1 (ii) (b), which implies $\left\{a, u, u^{\prime}\right\} \in \mathcal{C}(a u) \cap \mathcal{C}\left(a u^{\prime}\right)$, contradicting (2.3). Thus $F^{\prime \prime} \cap\left(F \cap F^{\prime}\right)=\emptyset$. Hence $\left|F^{\prime \prime} \cap F\right|=\left|F^{\prime \prime} \cap F^{\prime}\right|=1$. This means that replacing F^{\prime} by $F^{\prime \prime}$, we may assume $j_{0}=1$.

In the rest of the proof of Lemma 2.12, we assume $j_{0}=1$. Write $F \cap F^{\prime}=\left\{y_{1}\right\}$. By Lemma 2.1 (i), we can take $G \in \mathcal{F}(\bar{a})-\left\{F, F^{\prime}\right\}$. By (2.4), we have $G \supseteq F-F^{\prime}$ or $G \supseteq F^{\prime}-F$. We may assume $G \supseteq F^{\prime}-F$. Then $|G \cap F|=1$. Write $G \cap F=\left\{y_{2}\right\}$. Since $G \neq F^{\prime}, y_{2} \neq y_{1}$. Since G is arbitrary, we get $\mathcal{F}(\bar{a})-\left\{F, F^{\prime}\right\} \subseteq \mathcal{F}\left(\bar{a} \bar{y}_{1}\right)$. Since $\left|\mathcal{C}\left(a y_{1}\right)\right|=4$ by (2.2), it now follows from Lemma 2.1 (ii) (b) that $\mathcal{F}(\bar{a})-\left\{F, F^{\prime}\right\}=\{G\}$. Therefore if we let $Y=F$ and $Z=F^{\prime}-F, Y, Z, y_{1}$ and y_{2} have the required properties.

3. Proof of Theorem 2

As in Section 2, let $\mathcal{F} \subseteq\binom{X}{4}$ be an intersecting family with $\tau(\mathcal{F})=3$, and let $\mathcal{C}=\mathcal{C}_{3}(\mathcal{F})$. In order to prove Theorem 2, it suffices to show that $\mathcal{F} \cong \mathcal{F}_{2}^{(4)}$, assuming that $|\mathcal{C}| \geq 36$. First we prove a technical claim, which we use toward the end of the proof.

CLAIM 3.1. Let $F, F^{\prime}, G \in \mathcal{F}$, and suppose that $|F \cap G|=\left|F^{\prime} \cap G\right|=\left|F \cap F^{\prime}\right|=1$ and $F \cap G \neq F^{\prime} \cap G$. Write $G=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ so that $F \cap G=\left\{a_{1}\right\}$ and $F^{\prime} \cap G=\left\{a_{2}\right\}$. Then $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2} \bar{a}_{3}\right)\right| \geq 2$.

PROOF. By the inclusion-exclusion principle, $\left|\mathcal{C}\left(a_{1}\right) \cup \mathcal{C}\left(a_{2}\right) \cup \mathcal{C}\left(a_{3}\right)\right|=\left|\mathcal{C}\left(a_{1}\right)\right|+$ $\left|\mathcal{C}\left(a_{2}\right)\right|+\left|\mathcal{C}\left(a_{3}\right)\right|-\left|\mathcal{C}\left(a_{1} a_{2}\right)\right|-\left|\mathcal{C}\left(a_{1} a_{3}\right)\right|-\left|\mathcal{C}\left(a_{2} a_{3}\right)\right|+\left|\mathcal{C}\left(a_{1} a_{2} a_{3}\right)\right| \leq\left|\mathcal{C}\left(a_{1}\right)\right|+\left|\mathcal{C}\left(a_{2}\right)\right|+$ $\left(\left|\mathcal{C}\left(a_{3}\right)\right|-\left|\mathcal{C}\left(a_{1} a_{3}\right)\right|-\left|\mathcal{C}\left(a_{2} a_{3}\right)\right|+\left|\mathcal{C}\left(a_{1} a_{2} a_{3}\right)\right|\right)$. Since $\left|\mathcal{C}\left(a_{1}\right)\right| \leq 13$ and $\left|\mathcal{C}\left(a_{2}\right)\right| \leq 13$ by Lemma 2.12 and $\left|\mathcal{C}\left(a_{3}\right)\right|-\left|\mathcal{C}\left(a_{1} a_{3}\right)\right|-\left|\mathcal{C}\left(a_{2} a_{3}\right)\right|+\left|\mathcal{C}\left(a_{1} a_{2} a_{3}\right)\right| \leq 8$ by Lemma 2.9, we obtain $\left|\mathcal{C}\left(a_{1}\right) \cup \mathcal{C}\left(a_{2}\right) \cup \mathcal{C}\left(a_{3}\right)\right| \leq 34$. Recall that we are assuming $|\mathcal{C}| \geq 36$. Thus $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2} \bar{a}_{3}\right)\right|=|\mathcal{C}|-\left|\mathcal{C}\left(a_{1}\right) \cup \mathcal{C}\left(a_{2}\right) \cup \mathcal{C}\left(a_{3}\right)\right| \geq 2$.

Next we show that \mathcal{F} has two members whose intersection has cardinality greater than or equal to two.

Claim 3.2. There exist $F, G \in \mathcal{F}$ with $F \neq G$ such that $|F \cap G| \geq 2$.
Proof. Suppose that $|F \cap G|=1$ for all $F, G \in \mathcal{F}$ with $F \neq G$. For each $x \in X$, we have $|\mathcal{C}(\bar{x})|=|\mathcal{C}|-|\mathcal{C}(x)| \geq 36-13=23$ by Lemma 2.12, and hence it follows from Lemma 2.3 (ii) that $|\mathcal{F}(x)| \leq 2$. Since \mathcal{F} is intersecting, there exists $x \in X$ such that $|\mathcal{F}(x)|=2$. Let $\mathcal{F}(x)=\left\{F_{1}, F_{2}\right\}$, and write $F_{1}=\left\{x, a_{2}, a_{3}, a_{4}\right\}$ and $F_{2}=\left\{x, b_{2}, b_{3}, b_{4}\right\}$. By Lemma 2.1 (i), we can take $F_{3} \in \mathcal{F}\left(\bar{x} \bar{b}_{2}\right)$. Then $F_{3} \cap\left\{a_{2}, a_{3}, a_{4}\right\} \neq \emptyset$ and $F_{3} \cap\left\{b_{3}, b_{4}\right\} \neq \emptyset$. By symmetry, we may assume that $F_{3}=\left\{a_{2}, b_{3}, y, z\right\}$ with $y, z \in X-\left(F_{1} \cup F_{2}\right)$. By Lemma 2.1 (i), we can take $F_{4} \in \mathcal{F}\left(\bar{x} \bar{a}_{2}\right)$. Since $|\mathcal{F}(v)| \leq 2$ for all $v \in X$, it follows that $F_{4} \cap\left\{a_{3}, a_{4}\right\} \neq \emptyset, F_{4} \cap\left\{b_{2}, b_{4}\right\} \neq \emptyset$ and $F_{4} \cap\{y, z\} \neq \emptyset$. By symmetry, we may assume that $F_{4}=\left\{a_{3}, b_{2}, y, w\right\}$ with $w \in X-\left(\bigcup_{i=1}^{3} F_{i}\right)$. By Lemma 2.1 (i), we can take $F_{5} \in \mathcal{F}(\bar{x} \bar{y})$. Then $F_{5} \cap\left\{a_{2}, a_{3}, b_{2}, b_{3}, x, y\right\}=\emptyset$, and hence $F_{5}=\left\{a_{4}, b_{4}, z, w\right\}$. By inspection, we now see that $|\mathcal{C}| \leq\left|\mathcal{C}_{3}\left(\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}\right)\right|=30$, which contradicts the assumption that $|\mathcal{C}| \geq 36$.

Having Claim 3.2 in mind, take $F_{1}, F_{2} \in \mathcal{F}\left(F_{1} \neq F_{2}\right)$ with $\left|F_{1} \cap F_{2}\right| \geq 2$, and set $i_{0}:=\left|F_{1} \cap F_{2}\right|$. Write $F_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $F_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ so that $a_{i}=b_{i}$ for each $1 \leq i \leq i_{0}$ and $a_{i} \neq b_{i}$ for each $i_{0}+1 \leq i \leq 4$.

We consider the cases where $i_{0}=2$ and $i_{0}=3$ separately. In Case 1, the case where $i_{0}=2$, we obtain a contradiction, which means that \mathcal{F} has the property that there exist no $F, G \in \mathcal{F}$ such that $|F \cap G|=2$. In Case 2 , the case where $i_{0}=3$, based on this property, we show that \mathcal{F} is isomorphic to $\mathcal{F}_{2}^{(4)}$.

Case 1: $i_{0}=2$.

CLAIM 3.3. One of the following holds:

(i) $\left|\mathcal{C}\left(a_{1}\right)\right|=\left|\mathcal{C}\left(a_{2}\right)\right|=12$ and $\mathcal{C}\left(a_{1} a_{2}\right)=\emptyset$; or
(ii) $\left|\mathcal{C}\left(a_{i}\right)\right|=13,\left|\mathcal{C}\left(a_{3-i}\right)\right| \geq 11$ and $\left|\mathcal{C}\left(a_{1} a_{2}\right)\right| \leq 2$ for some i with $1 \leq i \leq 2$.

Proof. Since $\left|\mathcal{C}\left(a_{1}\right)\right|+\left|\mathcal{C}\left(a_{2}\right)\right|-\left|\mathcal{C}\left(a_{1} a_{2}\right)\right|=\left|\mathcal{C}\left(a_{1}\right) \cup \mathcal{C}\left(a_{2}\right)\right|=|\mathcal{C}|-\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right| \geq$ $36-12=24$ by Lemma 2.5, the desired conclusion follows from Lemma 2.12.

CLAIM 3.4. We have $\left|\mathcal{C}\left(a_{1}\right)\right| \geq 13$ or $\left|\mathcal{C}\left(a_{2}\right)\right| \geq 13$.
Proof. Suppose that $\left|\mathcal{C}\left(a_{i}\right)\right| \leq 12$ for each $i=1,2$. Then by Claim 3.3, $\left|\mathcal{C}\left(a_{i}\right)\right|=12$ for each $i=1,2$ and $\mathcal{C}\left(a_{1} a_{2}\right)=\emptyset$, and hence $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right|=|\mathcal{C}|-\left|\mathcal{C}\left(a_{1}\right)\right|-\left|\mathcal{C}\left(a_{2}\right)\right| \geq 36-24=$ 12. By Lemma 2.5, this implies $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right|=12$. Let $\mathcal{G}_{1}:=\mathcal{C}\left(a_{3} b_{3} \bar{a}_{1} \bar{a}_{2}\right), \mathcal{G}_{2}:=\mathcal{C}\left(a_{3} b_{4} \bar{a}_{1} \bar{a}_{2}\right)$, $\mathcal{G}_{3}:=\mathcal{C}\left(a_{4} b_{4} \bar{a}_{1} \bar{a}_{2}\right)$ and $\mathcal{G}_{4}:=\mathcal{C}\left(a_{4} b_{3} \bar{a}_{1} \bar{a}_{2}\right)$. Then (i) or (ii) of Lemma 2.5 holds.

First we consider the case where Lemma 2.5 (ii) holds; that is to say, $\left|\mathcal{G}_{l}\right|=3$ for each $1 \leq l \leq 4$, and $\mathcal{G}_{l} \cap \mathcal{G}_{m}=\emptyset$ for any l, m with $1 \leq l<m \leq 4$. Write $\mathcal{G}_{1}=$ $\left\{\left\{a_{3}, b_{3}, x\right\},\left\{a_{3}, b_{3}, y\right\},\left\{a_{3}, b_{3}, z\right\}\right\}$. Since $\mathcal{G}_{1} \cap \mathcal{G}_{2}=\emptyset$ and $\mathcal{G}_{1} \cap \mathcal{G}_{4}=\emptyset$, we have $\{x, y, z\} \cap$
$\left\{a_{4}, b_{4}\right\}=\emptyset$. Hence $x, y, z \in X-\bigcup_{i=1}^{4}\left\{a_{i}, b_{i}\right\}$. Take $F \in \mathcal{F}\left(\bar{a}_{3} \bar{b}_{3}\right)$. Then $\{x, y, z\} \subseteq F$. Since $F \cap F_{h} \neq \emptyset$ for each $h=1,2, F=\left\{a_{1}, x, y, z\right\}$ or $F=\left\{a_{2}, x, y, z\right\}$. We may assume $F=\left\{a_{1}, x, y, z\right\}$. Take $F^{\prime} \in \mathcal{F}\left(\bar{a}_{1} \bar{a}_{2}\right)$. Since $F^{\prime} \cap F_{h} \neq \emptyset$ for each $h=1,2,\left\{a_{i}, b_{j}\right\} \subseteq F^{\prime}$ for some $i, j \in\{3,4\}$. Hence $\left|F \cap F^{\prime}\right| \leq 2$. Also note that $a_{2} \notin F \cup F^{\prime}$ and $a_{1} \in F$. Consequently, applying Lemma 2.10 with $a=a_{2}$ and $v=a_{1}$, we obtain $\mathcal{C}\left(a_{1} a_{2}\right) \neq \emptyset$. Therefore we get a contradiction to the earlier assertion that $\mathcal{C}\left(a_{1} a_{2}\right)=\emptyset$.

Next we consider the case where Lemma 2.5 (i) holds; that is to say, $\left|\mathcal{G}_{l}\right|=4$ for each $1 \leq l \leq 4$ and $\binom{\left\{a_{3}, a_{4}, b_{3}, b_{4}\right\}}{3}=\mathcal{W} \subseteq \mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)$. Since $\mathcal{G}_{1} \subseteq \mathcal{C}\left(a_{3} b_{3}\right)$, we have $4=\left|\mathcal{G}_{1}\right| \leq$ $\left|\mathcal{C}\left(a_{3} b_{3}\right)\right| \leq 4$ by Lemma 2.1 (ii) (a). This forces $\left|\mathcal{G}_{1}\right|=\left|\mathcal{C}\left(a_{3} b_{3}\right)\right|=4$, and hence $\mathcal{G}_{1}=$ $\mathcal{C}\left(a_{3} b_{3}\right)$. Similarly $\mathcal{G}_{2}=\mathcal{C}\left(a_{3} b_{4}\right), \mathcal{G}_{3}=\mathcal{C}\left(a_{4} b_{4}\right)$ and $\mathcal{G}_{4}=\mathcal{C}\left(a_{4} b_{3}\right)$. Since $\left|\mathcal{C}\left(a_{3} b_{3}\right)\right|=$ $\left|\mathcal{C}\left(a_{4} b_{4}\right)\right|=4$, it follows form Lemma 2.1 (ii) (b) that $\left|\mathcal{F}\left(\bar{a}_{3} \bar{b}_{3}\right)\right|=\left|\mathcal{F}\left(\bar{a}_{4} \bar{b}_{4}\right)\right|=1$. Write $\mathcal{F}\left(\bar{a}_{3} \bar{b}_{3}\right)=\{F\}$ and $\mathcal{F}\left(\bar{a}_{4} \bar{b}_{4}\right)=\left\{F^{\prime}\right\}$. By Lemma 2.2, $F \cap\left\{a_{1}, a_{2}\right\}=F^{\prime} \cap\left\{a_{1}, a_{2}\right\}=\emptyset$. Since $\left\{a_{3}, b_{3}, a_{4}\right\},\left\{a_{3}, b_{3}, b_{4}\right\} \in \mathcal{W} \subseteq \mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)$, we have $\left\{a_{3}, b_{3}, a_{4}\right\},\left\{a_{3}, b_{3}, b_{4}\right\} \in \mathcal{C}\left(\bar{a}_{1} \bar{a}_{2} a_{3} b_{3}\right)=$ $\mathcal{C}\left(a_{3} b_{3}\right)$. Hence $a_{4}, b_{4} \in F-F^{\prime}$. Similarly $a_{3}, b_{3} \in F^{\prime}-F$. Hence $\left|F \cap F^{\prime}\right| \leq 2$. Also note that $a_{2} \notin F \cup F^{\prime}$. Consequently, applying Lemma 2.11 with $a=a_{2}$, we see that at least one of $\left\{a_{2}, a_{3}, b_{4}\right\}$ and $\left\{a_{2}, a_{4}, b_{3}\right\}$ belongs to \mathcal{C}. If $\left\{a_{2}, a_{3}, b_{4}\right\} \in \mathcal{C},\left\{a_{2}, a_{3}, b_{4}\right\} \in \mathcal{C}\left(a_{3} b_{4}\right)-\mathcal{G}_{2}$; if $\left\{a_{2}, a_{4}, b_{3}\right\} \in \mathcal{C},\left\{a_{2}, a_{4}, b_{3}\right\} \in \mathcal{C}\left(a_{4} b_{3}\right)-\mathcal{G}_{4}$. Therefore we get a contradiction to the fact that we have both $\mathcal{G}_{2}=\mathcal{C}\left(a_{3} b_{4}\right)$ and $\mathcal{G}_{4}=\mathcal{G}\left(a_{4} b_{3}\right)$.

Thus in either case, we get a contradiction. This completes the proof of Claim 3.4.
By Claim 3.4, (i) of Claim 3.3 does not hold. Hence (ii) of Claim 3.3 holds. By symmetry, we may assume $\left|\mathcal{C}\left(a_{1}\right)\right|=13,\left|\mathcal{C}\left(a_{2}\right)\right| \geq 11$ and $\left|\mathcal{C}\left(a_{1} a_{2}\right)\right| \leq 2$. By Lemma 2.12 there exist $Y, Z \subseteq X-\left\{a_{1}\right\}$ with $Y \cap Z=\emptyset$ and $y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$ such that $|Y|=4$, $|Z|=3$ and $\mathcal{F}\left(\bar{a}_{1}\right)=\left\{Y, Z \cup\left\{y_{1}\right\}, Z \cup\left\{y_{2}\right\}\right\}$. Then

$$
\begin{equation*}
\mathcal{C}\left(a_{1}\right)=\left\{\left\{a_{1}, y, z\right\}: y \in Y, z \in Z\right\} \cup\left\{\left\{a_{1}, y_{1}, y_{2}\right\}\right\} . \tag{3.1}
\end{equation*}
$$

If $a_{2} \in Y \cup Z$, then by (3.1), $\left|\mathcal{C}\left(a_{1} a_{2}\right)\right| \geq 3$, which contradicts the fact that $\left|\mathcal{C}\left(a_{1} a_{2}\right)\right| \leq 2$. Thus $a_{2} \notin Y \cup Z$. By (3.1), this implies

$$
\begin{equation*}
\mathcal{C}\left(a_{1} a_{2}\right)=\emptyset \tag{3.2}
\end{equation*}
$$

Set $F_{3}:=Y, F_{4}=Z \cup\left\{y_{1}\right\}$ and $F_{5}:=Z \cup\left\{y_{2}\right\}$. Note that $\mathcal{F}\left(\bar{a}_{1}\right)=\mathcal{F}\left(\bar{a}_{1} \bar{a}_{2}\right)=\left\{F_{3}, F_{4}, F_{5}\right\}$.
CLAIM 3.5. We have $\mathcal{F}\left(a_{1}\right)=\mathcal{F}\left(a_{2}\right)=\mathcal{F}\left(a_{1} a_{2}\right)$ and $\mathcal{F}\left(\bar{a}_{1}\right)=\mathcal{F}\left(\bar{a}_{2}\right)=\mathcal{F}\left(\bar{a}_{1} \bar{a}_{2}\right)$.
PRoof. \quad Since $\mathcal{F}\left(\bar{a}_{1}\right)=\mathcal{F}\left(\bar{a}_{1} \bar{a}_{2}\right)$, we have $\mathcal{F}\left(\bar{a}_{1}\right) \subseteq \mathcal{F}\left(\bar{a}_{2}\right)$, and hence $\mathcal{F}\left(a_{2}\right) \subseteq \mathcal{F}\left(a_{1}\right)$. By way of contradiction, suppose that $\mathcal{F}\left(a_{1}\right)-\mathcal{F}\left(a_{2}\right) \neq \emptyset$, and take $F \in \mathcal{F}\left(a_{1}\right)-\mathcal{F}\left(a_{2}\right)$. Since $\left|F_{3} \cap F_{4}\right|=1$, at least one of F_{3} and F_{4}, say F_{h}, satisfies $\left|F \cap F_{h}\right| \leq 2$. Note that $a_{2} \notin F \cup F_{h}$ and $a_{1} \in F-F_{h}$. Consequently, applying Lemma 2.10 with $F^{\prime}=F_{h}, a=a_{2}$ and $v=a_{1}$, we get $\mathcal{C}\left(a_{1} a_{2}\right) \neq \emptyset$. But this contradicts (3.2). Thus $\mathcal{F}\left(a_{1}\right)=\mathcal{F}\left(a_{2}\right)$. This implies $\mathcal{F}\left(\bar{a}_{1}\right)=\mathcal{F}\left(\bar{a}_{2}\right)$, and hence $\mathcal{F}\left(a_{1}\right)=\mathcal{F}\left(a_{2}\right)=\mathcal{F}\left(a_{1} a_{2}\right)$ and $\mathcal{F}\left(\bar{a}_{1}\right)=\mathcal{F}\left(\bar{a}_{2}\right)=\mathcal{F}\left(\bar{a}_{1} \bar{a}_{2}\right)$.

CLAIm 3.6. There exist $v \in\left\{a_{3}, a_{4}\right\}$ and $w \in\left\{b_{3}, b_{4}\right\}$ such that $\{v, w\} \cap Y \neq \emptyset$ and $\{v, w\} \cap Z \neq \emptyset$.

Proof. Recall that $F_{3}, F_{4}, F_{5} \in \mathcal{F}\left(\bar{a}_{1} \bar{a}_{2}\right)$. Hence $F_{4} \cap\left\{a_{3}, a_{4}\right\}=F_{4} \cap F_{1} \neq \emptyset$ and $F_{4} \cap\left\{b_{3}, b_{4}\right\}=F_{4} \cap F_{2} \neq \emptyset$. This implies that we have $Z \cap\left\{a_{3}, a_{4}\right\} \neq \emptyset$ or $Z \cap\left\{b_{3}, b_{4}\right\} \neq \emptyset$. By symmetry, we may assume that $Z \cap\left\{b_{3}, b_{4}\right\} \neq \emptyset$. Note that $Y \cap\left\{a_{3}, a_{4}\right\}=F_{3} \cap\left\{a_{3}, a_{4}\right\}=$ $F_{3} \cap F_{1} \neq \emptyset$. Now if we take $v \in Y \cap\left\{a_{3}, a_{4}\right\}$ and $w \in Z \cap\left\{b_{3}, b_{4}\right\}$, then v and w have the required properties.

Let v and w be as in Claim 3.6. Let $F_{6} \in \mathcal{F}(\bar{v} \bar{w})$. Since $\left\{a_{1}, v, w\right\} \in \mathcal{C}\left(a_{1}\right)$ by (3.1), $a_{1} \in F_{6}$. Hence by Claim 3.5, $F_{6} \in \mathcal{F}\left(a_{1} a_{2}\right)-\left\{F_{1}, F_{2}\right\}$. By Lemma 2.12, $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right| \geq|\mathcal{C}|-$ $\left|\mathcal{C}\left(a_{1}\right)\right|-\left|\mathcal{C}\left(a_{2}\right)\right| \geq 36-26=10$. In view of Lemma 2.6, this implies that $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2}\right)\right|=10$, $\mathcal{F}\left(a_{1} a_{2}\right)=\left\{F_{1}, F_{2}, F_{6}\right\}$, and $F_{6}=\left\{a_{1}, a_{2}, c, d\right\}$, where $\left\{a_{3}, a_{4}\right\}-\{v\}=\{c\}$ and $\left\{b_{3}, b_{4}\right\}-$ $\{w\}=\{d\}$. Take $F \in \mathcal{F}(\bar{c} \bar{d})$. Since $\mathcal{F}\left(a_{1} a_{2}\right)=\left\{F_{1}, F_{2}, F_{6}\right\}, F \notin \mathcal{F}\left(a_{1} a_{2}\right)$. Therefore by Claim 3.5, $F \in \mathcal{F}-\mathcal{F}\left(a_{1} a_{2}\right)=\mathcal{F}-\mathcal{F}\left(a_{1}\right)=\mathcal{F}\left(\bar{a}_{1}\right)=\mathcal{F}\left(\bar{a}_{1} \bar{a}_{2}\right)$. But then $F \cap F_{6}=$ $F \cap\left\{a_{1}, a_{2}, c, d\right\}=\emptyset$, which contradicts the assumption that \mathcal{F} is intersecting. This completes the discussion for Case 1.

Case 2: $i_{0}=3$.
We have shown that Case 1 leads to a contradiction. Thus

$$
\begin{equation*}
|F \cap G|=1 \text { or }|F \cap G|=3 \text { for any } F, G \in \mathcal{F} \text { with } F \neq G \tag{3.3}
\end{equation*}
$$

Let $F_{3} \in \mathcal{F}\left(\bar{a}_{3} \bar{a}_{4}\right)$. Then by (3.3), $\left|F_{3} \cap F_{1}\right|=\left|F_{3} \cap\left\{a_{1}, a_{2}\right\}\right|=1$. By the symmetry of a_{1} and a_{2}, we may assume that $F_{3} \cap F_{1}=\left\{a_{1}\right\}$. By (3.3), this implies $F_{3} \cap F_{2}=F_{3} \cap\left\{a_{1}, b_{4}\right\}=\left\{a_{1}\right\}$. Hence $F_{3} \cap\left(F_{1} \cup F_{2}\right)=\left\{a_{1}\right\}$. Write $F_{3}=\left\{a_{1}, c_{1}, c_{2}, c_{3}\right\}$. Then $c_{i} \in X-\left(F_{1} \cup F_{2}\right)$ for each $1 \leq i \leq 3$. Let $F_{4} \in \mathcal{F}\left(\bar{a}_{1} \bar{a}_{4}\right)$. Then we can argue as above using (3.3), to get $\left|F_{4} \cap\left(F_{1} \cup F_{2}\right)\right|=\left|F_{4} \cap\left\{a_{2}, a_{3}\right\}\right|=1$. By the symmetry of a_{2} and a_{3}, we may assume that $F_{4} \cap\left(F_{1} \cup F_{2}\right)=\left\{a_{2}\right\}$. By (3.3), either $F_{4} \cap F_{3}=\left\{c_{1}, c_{2}, c_{3}\right\}$ or $\left|F_{4} \cap F_{3}\right|=\mid F_{4} \cap$ $\left\{c_{1}, c_{2}, c_{3}\right\} \mid=1$. Suppose that $\left|F_{4} \cap F_{3}\right|=1$. Then $\left\{a_{4}, b_{4}, c_{i}\right\}$ is the only possible member of $\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2} \bar{a}_{3}\right)$, where c_{i} is the unique element of $F_{4} \cap F_{3}$. Hence $\left|\mathcal{C}\left(\bar{a}_{1} \bar{a}_{2} \bar{a}_{3}\right)\right| \leq 1$. But since $\left|F_{3} \cap F_{1}\right|=\left|F_{4} \cap F_{1}\right|=\left|F_{4} \cap F_{3}\right|=1, F_{3} \cap F_{1}=\left\{a_{1}\right\}$ and $F_{4} \cap F_{1}=\left\{a_{2}\right\}$, this contradicts Claim 3.1. Thus $F_{4} \cap F_{3}=\left\{c_{1}, c_{2}, c_{3}\right\}$, and hence $F_{4}=\left\{a_{2}, c_{1}, c_{2}, c_{3}\right\}$.

Let $F_{5} \in \mathcal{F}\left(\bar{a}_{1} \bar{c}_{3}\right)$. Then by (3.3), $\left|F_{5} \cap\left(F_{3} \cup F_{4}\right)\right|=\left|F_{5} \cap\left\{c_{1}, c_{2}\right\}\right|=1$. By the symmetry of c_{1} and c_{2}, we may assume that $F_{5} \cap\left(F_{3} \cup F_{4}\right)=\left\{c_{1}\right\}$. Then by (3.3), $F_{5} \cap\left(F_{1} \cup F_{2}\right)=\left\{a_{3}\right\}$ or $F_{5} \cap\left(F_{1} \cup F_{2}\right)=\left\{a_{4}, b_{4}\right\}$. If $F_{5} \cap\left(F_{1} \cup F_{2}\right)=\left\{a_{3}\right\}$, then since $\left|F_{5} \cap F_{3}\right|=1$, we get a contradiction to Claim 3.1 by arguing as in the first paragraph with F_{4} replaced by F_{5}. Thus $F_{5} \cap\left(F_{1} \cup F_{2}\right)=\left\{a_{4}, b_{4}\right\}$. Hence $F_{5}=\left\{c_{1}, a_{4}, b_{4}, d\right\}$ with $d \in X-\left(\bigcup_{h=1}^{4} F_{h}\right)$. Let $F_{6} \in \mathcal{F}\left(\bar{a}_{1} \bar{c}_{1}\right)$. Then by (3.3), $\left|F_{6} \cap\left(F_{3} \cup F_{4}\right)\right|=\left|F_{6} \cap\left\{c_{2}, c_{3}\right\}\right|=1$. By the symmetry of c_{2} and c_{3}, we may assume that $F_{6} \cap\left(F_{3} \cup F_{4}\right)=\left\{c_{2}\right\}$. Then, arguing as in the first paragraph with F_{1} and F_{2} replaced by F_{3} and F_{4}, and F_{3} and F_{4} replaced by F_{5} and F_{6}, we obtain $F_{6}=\left\{c_{2}, a_{4}, b_{4}, d\right\}$.

Now note that $\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}\right\} \cong \mathcal{F}_{2}^{(4)}$. Since $|\mathcal{C}| \geq 36$, this implies $|\mathcal{C}|=36$ and $\mathcal{C}=\mathcal{C}_{3}\left(\left\{F_{1}, \ldots, F_{6}\right\}\right)$. In particular,

$$
\begin{equation*}
\left\{\{x, y, z\}: x \in\left\{c_{1}, c_{2}, c_{3}\right\}, y \in\left\{a_{1}, a_{2}, a_{3}\right\}, z \in\left\{a_{4}, b_{4}, d\right\}\right\} \subseteq \mathcal{C} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
\left\{\left\{a_{1}, a_{2}, z\right\}: z \in\left\{a_{4}, b_{4}, d\right\}\right\} & \cup\left\{\left\{a_{4}, b_{4}, x\right\}: x \in\left\{c_{1}, c_{2}, c_{3}\right\}\right\} \\
& \cup\left\{\left\{c_{1}, c_{2}, y\right\}: y \in\left\{a_{1}, a_{2}, a_{3}\right\}\right\} \subseteq \mathcal{C} . \tag{3.5}
\end{align*}
$$

Suppose that there exists $F \in \mathcal{F}-\left\{F_{1}, \ldots, F_{6}\right\}$. By (3.4), we have $F \supseteq\left\{c_{1}, c_{2}, c_{3}\right\}$ or $F \supseteq\left\{a_{1}, a_{2}, a_{3}\right\}$ or $F \supseteq\left\{a_{4}, b_{4}, d\right\}$. By symmetry, we may assume $F \supseteq\left\{c_{1}, c_{2}, c_{3}\right\}$. Since $F \cap F_{1} \neq \emptyset, F \cap F_{2} \neq \emptyset$ and $F \neq F_{3}, F_{4}$, this forces $F=\left\{a_{3}, c_{1}, c_{2}, c_{3}\right\}$. But then $\left\{a_{1}, a_{2}, d\right\} \cap F=\emptyset$, which contradicts (3.5). Therefore $\mathcal{F}=\left\{F_{1}, \ldots, F_{6}\right\} \cong \mathcal{F}_{2}^{(4)}$.

This completes the proof of Theorem 2.

References

[1] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313-320.
[2] P. Frankl, On intersecting families of finite sets, Bull. Austral. Math. Soc. 21 (1980), 363-372.
[3] P. Frankl, K. Ota and N. Tokushige, Uniform intersecting families with covering number four, J. Combin. Theory Ser. A 71 (1995), 127-145.
[4] P. Frankl, K. Ota and N. Tokushige, Covers in uniform intersecting families and a counterexample to a conjecture of Lovász, J. Combin. Theory Ser. A 74 (1996), 33-42.
[5] P. Frankl, K. Ota and N. Tokushige, Uniform intersecting families with covering number restrictions, Combin. Probab. Comput. 7 (1998), no. 1, 47-56.
[6] Z. FÜREDI, Matching and covers in hypergraphs, Graphs and Combin. 4 (1988), 115-206.
[7] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384.

Present Addresses:

Shuya Chiba
Department of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan.
e-mail: chiba@rs.kagu.tus.ac.jp
Michitaka Furuya
Department of Mathematical Information Science,
Tokyo University of Science,
1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan.
Ryota Matsubara
College of Engineering,
Shibaura Institute of Technology,
307 Fukasaku, Minuma-ku, Saitama-Shi, Saitama, 337-8570 Japan.
e-mail: ryota@sic.shibaura-it.ac.jp
Masanori Takatou
Department of Mathematical Information Science,
Tokyo University of Science,
1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan.
e-mail: takatou@rs.kagu.tus.ac.jp

[^0]: Received November 4, 2010; revised December 21, 2010
 Key words and phrases: intersecting family, covering number

