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Abstract. We extend a well–known result of H. Fujita and H. Morimoto [1] to exterior domains of R
m, with

m ≥ 4.

1. Statement of the theorem

The steady–state Navier–Stokes problem is to find a solution of the equations

∆u − u · ∇u − ∇p = 0 in Ω,

div u = 0 in Ω,

u = a on ∂Ω

(1)

in the unknown u and p.
In a well–known paper of 1997 [1] H. Fujita and H. Morimoto proved that1 if Ω is a

bounded regular domain of R
m (m = 2, 3) and the boundary datum a is expressed by

a = µ∇ξ + γ , (2)

with ξ ∈ W 2,2(Ω) harmonic function and γ satisfying the compatibility condition∫
∂Ω

γ · n = 0 ,

where n is the outward (with respect to Ω) unit normal to ∂Ω , then there is a discrete at most
countable subset G of R such that for µ �∈ G a positive constant c0 = c0(µ, ξ,Ω) exists such
that if

‖γ ‖W 1/2,2(∂Ω) ≤ c0 ,
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then (1) has a solution

(u, p) ∈ [W 1,2
σ (Ω) ∩ C∞(Ω)] × [L2(Ω) ∩ C∞(Ω)] .

A noteworthy consequence of this theorem is that, modulo (at most) a countable set, for every
“flux” µ there is a nonpotential solution of (1)2. This results has been extended in [6] to
boundary data (2) in Lebesgue spaces and to the problem

∆u − u · ∇u − ∇p = 0 in Ω ,

div u = 0 in Ω ,

u = a on ∂Ω ,

lim|x|→+∞ u(x) = 0 ,

(3)

where Ω is the exterior Lipschitz domain of R
3

Ω = R
m \

h⋃
i=1

Ωi, Ωi ∩ Ωj = ∅, i �= j (4)

and Ωi is a bounded domain with connected Lipschitz boundary. To be precise, it is showed
that, if ξ vanishes at infinity, there is a discrete at most countable subset G of R such that if
µ �∈ G, then a positive constant c0 exists such that if ‖γ ‖L∞(∂Ω) ≤ c0, then (3) has a C∞
solution in Ω which decays at infinity as the fundamental solution of the Stokes equations.

In the present paper we aim at showing that the Fujita–Morimoto approach can be also
used to get existence of a solution of system (3) in higher dimensions for boundary data in
natural trace spaces and for large fluxes. Our main purpose is indeed to prove the following

THEOREM 1. Let Ω be an exterior domain of R
m (m ≥ 4) of class C2 and let a be

expressed by (2) with ξ ∈ D2,q (Ω) (q > m/2) harmonic function vanishing at infinity. There

is a discrete at most countable subset G of R \ (−α, α) with α = (m−2)
√

m
(m−1)‖∇ξ‖Lm(Ω)

such that if

µ �∈ G, then a positive constant c0 = c0(m, ξ, µ,Ω) exists such that if ‖γ ‖W 1−2/m,m/2(∂Ω) ≤
c0, then (3) has a solution

(u, p) ∈ [D1,m/2
σ,0 (Ω) ∩ C∞(Ω)] × [Lm/2(Ω) ∩ C∞(Ω)] .

Notation. We use a standard vector notation as, e.g., in [3]. Wk,q(Ω) (k ∈ N0, q ∈
[1,+∞]) is the usual Sobolev space and Wk−1/q,q(∂Ω) (k ≥ 1) is its trace space; Dk,q(Ω) =
{ϕ ∈ L1

loc(Ω) : ‖∇kϕ‖Lq(Ω) < +∞}, ∇kϕ = ∇, . . . ,∇k−times ϕ; D
k,q

0 (Ω), D
k,q

0 (Ω) are the

completions of C∞
0 (Ω), C∞

0 (Ω) respectively with respect to ‖∇kϕ‖Lq(Ω) (for the properties

of these spaces see [3] Ch. II); if V is a linear subspace of L1
loc(Ω), Vσ = {u ∈ V :∫

Ω
u · ∇ϕ = 0,∀ϕ ∈ C∞

0 (Ω)}; SR = {x ∈ R
m : |x| < R} and the symbol c stands for a

positive constant whose numerical value is unessential to our purposes.
2If Ω is an annulus of R

2, then G = ∅ (see [2], [4]).
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2. Preliminary results

Let us recall some well–known results we shall need to prove Theorem 1. In what follows

Ω denotes an exterior domain of R
m (m ≥ 4) of class C2. As is always possible, we assume

that �Ω contains S1.
The Stokes equations

∆u − ∇p = 0,

div u = 0 ,
(5)

in R
m, m ≥ 4, admit the fundamental solution (see [3] Ch. IV)

Uij (x − y) = − 1

2|∂S1|(m − 2)

[
δij

|x − y|m−2 + (m − 2)
(xi − yi)(xj − yj )

|x − y|m
]

,

qi(x − y) = − 1

|∂S1|
xi − yi

|x − y|m .

For f ∈ Lq(Ω) the pair (volume potential)

V[f ] =
∫

Ω

U (x − y) · f (y)dvy,

P[f ] =
∫

Ω

q(x − y) · f (y)dvy

is a solution of the (nonhomogeneous) Stokes equations

∆u − ∇p = f ,

div u = 0
(6)

in Ω .

LEMMA 1. If q ∈ (1,m/2), then V maps boundedly Lq(Ω) into D
2,q

σ,0(Ω). Moreover,

∫
Ω

rε|∇2V[f ]|m
3 ≤ c

∫
Ω

rε|f |m
3 ,

for all f such that rε|f |m/3 ∈ L1(Ω), with ε ∈ (0, 1).

LEMMA 2. If ϕ ∈ D
1,q

0 (Ω), q ∈ [1,m), then for large R

∫
∂S1

|ϕ(R, ζ )|qdζ ≤ cRq−m

∫
�SR

|∇ϕ|q . (7)

Moreover, there is a positive constant c depending only on q and Ω such that

‖ϕ‖
L

mq
m−q (Ω)

≤ q(m − 1)

2(m − q)
√

m
‖ϕ‖D1,q (Ω) , (8)
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for all ϕ ∈ D
1,q

0 (Ω).

Lemma 1 is a special version of the classical Calderón–Zygmund theorem (see [7]),

while Lemma 2 is the Sobolev’s inequality in the space D
1,q

0 (Ω) (see [3] Ch. II).
Consider the Stokes problem

∆u − ∇p = f in Ω,

div u = 0 in Ω,

u = a on ∂Ω .

(9)

LEMMA 3. If a ∈ W 1−1/q,q(∂Ω), q ∈ ( m
m−1 ,m), and f ∈ Ls(Ω) with s = mq

m+q
,

1 < s < m
2 , then (9) admits a unique solution

(u, p) ∈ [D1,q
σ,0(Ω) ∩ C∞(Ω)] × [Lq(Ω) ∩ C∞(Ω)]

and

‖u‖D1,q (Ω) + ‖p‖Lq (Ω) ≤ c{‖a‖W 1−1/q,q (∂Ω) + ‖f ‖Ls(Ω)}.
Lemma 3 is a classical result in the theory of Navier–Stokes equations (see [3] Ch. V).

3. Proof of Theorem 1

Since ξ vanishes at infinity, by well–known properties of harmonic functions

|∇kξ(x)| ≤ cr2−m−k , (10)

for large r = |x| and for every nonnegative integer k. Hence for v ∈ D
1,m/2
0 (Ω) it follows

that

∇ξ · ∇v, v · ∇2ξ ∈ Ls(Ω), s ∈ [1,mq/(m + q)] .

Therefore, by Lemma 1 the operator

K[v] =
∫

Ω

U(x − y) · [∇ξ · ∇v + v · ∇2ξ ](y)dvy

maps boundedly D
1,m/2
σ,0 (Ω) into D

2,s
σ,0(Ω) for all s ∈ (1,mq/(m + q)] and

‖K[v]‖D2,s (Ω) ≤ c(s, ξ,Ω)‖v‖D1,m/2(Ω) . (11)

Let {vk}k∈N be a bounded sequence in D
1,m/2
σ,0 (Ω). By (11) {K[vk]}k∈N is bounded

in D
2,s
σ,0(Ω) so that, since q > m/2, by Rellich’s compacteness theorem we can extract a

subsequence, still denoted by the same symbol, which converges strongly in D
1,m/2
loc (Ω).
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By (8) and the inequality (|a| + |b|)q ≤ c(|a|q + |b|q) (q ≥ 1)

{∫
Ω

rε
∣∣∇K[vk]

∣∣m
2

} 2
3 =

{∫
Ω

∣∣r 2ε
m ∇K[vk]

∣∣m
2

} 2
3

≤ c

∫
Ω

∣∣∇(r
2ε
m ∇K[vk])

∣∣m
3 ≤ c

∫
Ω

rε
∣∣∇2K[vk]

∣∣m
3 + c

∫
Ω

r− m
3 + 2ε

3
∣∣∇K[vk]

∣∣m
3 ,

with 0 < ε � 1. Hence by Lemma 1, (11) and the inequality

∫
Ω

r− m
3 + 2ε

3
∣∣∇K[vk]

∣∣m
3 ≤

{∫
Ω

∣∣∇K[vk]
∣∣mq

3

}1/q {∫
Ω

r( 2ε
3 − m

3 )q ′
}1/q ′

for q close to 1, it follows

{∫
Ω

rε|∇K[vk]|m
2

} 2
3 ≤ c

∫
Ω

rε|∇ξ · ∇vk + vk · ∇2ξ |m
3 + c . (12)

Since by Hölder’s inequality and (10)∫
Ω

rε|∇ξ · ∇vk|m
3 ≤ c

∫
Ω

rε+(1−m) m
3 |∇vk|m

3

≤ c‖∇vk‖m/3
Lm/2(Ω)

{∫
Ω

r(3ε+(1−m)m

} 1
3 ≤ c‖∇vk‖m/3

Lm/2(Ω)
,

∫
Ω

rε|vk · ∇2ξ |m
3 ≤ c

∫
Ω

rε− m2
3 |vk|m

3

≤ c‖vk‖m/3
Lm(Ω)

{∫
Ω

rε−m2/2
} 2

3 ≤ c‖∇vk‖m/3
Lm/2(Ω)

,

(12) and the boundedness of {vk} in D1,m/2(Ω) imply∫
Ω

rε|∇K[vk]|m
2 ≤ c . (13)

Now, by (13)∫
Ω

|∇K[vk − vh]|m
2 ≤

∫
Ω∩SR

|∇K[vk − vh]|m
2

+ 1

Rε

∫
�SR

rε|∇K[vk − vh]|m
2 ≤

∫
Ω∩SR

|∇K[vk − vh]|m
2 + c

Rε
,

for large R, so that the sequence {K[vk]}k∈N converges strongly in D1,m/2(Ω) and the opera-

tor K is compact from D
1,m/2
σ,0 (Ω) into itself.

Let M[v] ∈ D
1,m/2
σ,0 (Ω) be the solution of equations (9) in Ω with boundary datum

−trK[v]|∂Ω . Starting from (11) and repeating the above argument, we see that also M is
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compact from D
1,m/2
σ,0 (Ω) into itself. Then, setting

L = I − µ(K + M) : D
1,m/2
σ,0 (Ω) → D

1,m/2
σ,0 (Ω) ,

by classical results we see that L is invertible for all µ ∈ R \ G, with G discrete at most
countable subset of R.

For u ∈ D
1,m/2
σ,0 (Ω) denote by J [u] the solution of

∆v − ∇p = u · ∇u in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω .

By Lemma 1 J [u] maps D
1,m/2
σ,0 (Ω) into D

2,m/3
σ,0 (Ω) and it holds

‖J [u]‖D2,m/3(Ω) ≤ c‖u‖2
D1,m/2(Ω)

. (14)

Let

(uγ , pγ ) ∈ D
1,m/2
σ,0 (Ω) × Lm/2(Ω)

be the solution of Stokes’ problem with boundary datum γ and for µ �∈ G consider the
functional equation

u′ = −1
L [uγ ] + −1

L [J [u]] = S[u] (15)

in D
1,m/2
σ,0 (Ω). By the continuity of

−1
L and (14)

‖−1
L [uγ ]‖D1,m/2(Ω) ≤ c‖uγ ‖D1,m/2(Ω) ≤ c1‖γ ‖W 1−2/m,m/2(∂Ω) ,

∥∥−1
L [J [u]]∥∥

D1,m/2(Ω)
≤ c2‖u‖2

D1,m/2(Ω)
,

for some positive constants c1 and c2 depending only on m, µ, ξ and Ω .

Consider the ball of D
1,m/2
σ,0 (Ω)

B =
{
u ∈ D

1,m/2
σ,0 (Ω) : ‖u‖D1,m/2(Ω) ≤ 1

(2 + ε)c2

}

for some positive ε, and assume that

‖γ ‖W 1−2/m,m/2(∂Ω) <
1

(2 + ε)2c1c2
.
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Of course, S maps B into itself and it is not difficult to see that

‖S[u] − S[v]‖� ≤ c2‖u − v‖D1,m/2(Ω)

{‖u‖D1,m/2(Ω) + ‖v‖D1,m/2(Ω)

}

≤ 2

2 + ε
‖u − v‖D1,m/2(Ω) .

Therefore, S is a contraction in B so that (15) has a fixed point w

w = −1
L [uγ ] + −1

L [J [w]]
and coming back to L, we have that w satisfies the equation

w − µ(K + M)[w] = uγ + J [w] .

Hence, taking the Stokes operator, it follows that w is a solution of

∆w − µ∇ξ · ∇w − µw · ∇2ξ − w · ∇w − ∇Q = 0 in Ω ,

div w = 0 in Ω ,

w = γ on ∂Ω ,

for a suitable pressure field Q. Since (µ∇ξ,− 1
2 |µ∇ξ |2) is a solution of (3)1,2 with boundary

datum µ∇ξ , the pair

(w + µ∇ξ,Q − 1
2 |µ∇ξ |2)

gives the desired solution of (3). The regularity of (w,Q) in Ω is proved by well–known
arguments (see [3] Section VIII.5) and the condition (3)4 is satisfied in the sense of (7).

It remains to show that if µ ∈ (−α, α), then KernL = {0}. If u ∈ KernL, then u

satisfies the equations

∆u − µ∇ξ · ∇u − µu · ∇2ξ − ∇p = 0 in Ω ,

div u = 0 in Ω ,

u = 0 on ∂Ω

(16)

for a suitable pressure field p. By what we said about the operator L, (u, p) is regular and

(u, p) ∈ D
1,q

σ,0(Ω) × Lq(Ω), q ∈ [2,m/2]. Let g be a regular function in R
m, equal to 1

in SR , vanishing in �S2R and such that |∇g| ≤ cR−1. Multiplying (16) scalarly by gu and
integrating over Ω , we have∫

Ω

g|∇u|2 = µ

∫
Ω

gu · ∇u · ∇ξ + µ

∫
Ω

[ 1
2 |u|2∇ξ + (u · ∇ξ)u] · ∇g

−
∫

Ω

[∇u · u − pu] · ∇g .

(17)
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Since by Hölder inequality
∣∣∣∣
∫

Ω

|u|2∇ξ · ∇g
∣∣∣∣ ≤ c

Rm

∫
S2R\SR

|u|2 ≤ c

R2

{∫
Ω

|u|m
}2/m

,

∣∣∣∣
∫

Ω

(u · ∇ξ)u · ∇g
∣∣∣∣ ≤ c

R2

{∫
Ω

|u|m
}2/m

,

∣∣∣∣
∫

Ω

∇g · ∇u · u
∣∣∣∣ ≤ ‖∇g‖Lm(S2R\SR)‖u‖

L
2m

m−2 (S2R\SR)
‖∇u‖L2(S2R\SR)

≤ c‖u‖
L

2m
m−2 (S2R\SR)

‖∇u‖L2(S2R\SR) ,

∣∣∣∣
∫

Ω

pu · ∇g
∣∣∣∣ ≤ c‖u‖

L
2m

m−2 (S2R\SR)
‖p‖L2(S2R\SR)

and u · ∇u · ∇ξ ∈ L1(Ω), we are allowed to let R → +∞ in (17) to get∫
Ω

|∇u|2 = µ

∫
Ω

u · ∇u · ∇ξ . (18)

Therefore, taking into account that by Sobolev’s inequality (8) ‖u‖
L

2m
m−2 (Ω)

≤
(m−1)

(m−2)
√

m
‖∇u‖L2(Ω),

∣∣∣∣
∫

Ω

u · ∇u · ∇ξ

∣∣∣∣ ≤ ‖u‖
L

2m
m−2 (Ω)

‖∇u‖L2(Ω)‖∇ξ‖Lm(Ω)

≤ (m − 1)

(m − 2)
√

m
‖∇ξ‖Lm(Ω)‖∇u‖2

L2(Ω)

and (18) yields
[

1 − |µ|(m − 1)

(m − 2)
√

m
‖∇ξ‖Lm(Ω)

] ∫
Ω

|∇u|2 ≤ 0 .

Hence the desired result follows at once. �
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